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Abstract. The processes involved in the exchange of water,
energy and carbon in terrestrial ecosystems are strongly in-
tertwined. To accurately represent the terrestrial biosphere in
land surface models (LSMs), the intrinsic coupling between
these processes is required. Soil moisture and leaf area index
(LAI) are two key variables at the nexus of water, energy
and vegetation. Here, we evaluated two prognostic LSMs
(ISBA and ORCHIDEE) and a diagnostic model (based on
the LSA SAF, Satellite Application Facility for Land Surface
Analysis, algorithms) in their ability to simulate the latent
heat flux (LE) and gross primary production (GPP) coher-
ently and their interactions through LAI and soil moisture.
The models were validated using in situ eddy covariance ob-
servations, soil moisture measurements and remote-sensing-
based LAI. It was found that the diagnostic model performed
consistently well, regardless of land cover, whereas impor-
tant shortcomings of the prognostic models were revealed
for herbaceous and dry sites. Despite their different archi-
tecture and parametrization, ISBA and ORCHIDEE shared
some key weaknesses. In both models, LE and GPP were
found to be oversensitive to drought stress. Though the simu-
lated soil water dynamics could be improved, this was not the
main cause of errors in the surface fluxes. Instead, these er-
rors were strongly correlated to errors in LAI. The simulated
phenological cycle in ISBA and ORCHIDEE was delayed
compared to observations and failed to capture the observed
seasonal variability. The feedback mechanism between GPP
and LAI (i.e. the biomass allocation scheme) was identified
as a key element to improve the intricate coupling between
energy, water and vegetation in LSMs.

1 Introduction

Terrestrial ecosystems modulate the surface fluxes of heat,
water and carbon and are thereby an essential driver of
weather and climate (Pielke et al., 1998). They are a substan-
tial dynamic component of the global carbon budget, with
15 % of the global atmospheric CO2 being exchanged yearly
through the stomata of leaves and assimilated through photo-
synthesis (IPCC, 2013). Furthermore, the pivotal role of veg-
etation in the global climate is mediated by its impact on the
hydrological cycle (Falkenmark et al., 2004). Despite its im-
portance in the framework of the globally changing climate,
large uncertainties remain in our understanding of the cou-
pling of the energy, water and carbon cycle in the terrestrial
biosphere (Piao et al., 2013; De Kauwe et al., 2017; IPCC,
2019).

Land surface models (LSMs) are key tools to quantify
these surface fluxes and to better the representation of their
interactions. They allow the coupled simulation of the fluxes
of water, energy and carbon between the surface and the at-
mosphere and are a crucial component of numerical weather
models and earth system models. Over the past decades, they
have evolved from their initial simple biophysical configura-
tion to include more complex feedback mechanisms, such as
soil moisture dynamics, dynamic vegetation and plant phe-
nology (Delire et al., 2020; Fisher and Koven, 2020).

The processes involved in the surface fluxes from the ter-
restrial biosphere, such as photosynthesis, transpiration, soil
hydrology and leaf phenology, are deeply intertwined with
each other. Soil moisture and leaf area index (LAI) are two

Published by Copernicus Publications on behalf of the European Geosciences Union.



4362 J. De Pue et al.: Local-scale evaluation of the simulated interactions between energy, water and vegetation

key variables at the nexus between energy, water and vegeta-
tion processes.

Root zone soil moisture affects the leaf exchange of wa-
ter and carbon by modulating the stomatal closure (Raschke,
1979). Although the physiological processes involved are
well described, there is a substantial disagreement in the
stomatal behaviour across various models (De Kauwe et al.,
2017). An evaluation of the impact of soil moisture in the
CMIP5 models (Taylor et al., 2012) indicated that the LSMs
were generally oversensitive to drought stress and wet events
(Huang et al., 2016). Whereas several other studies have
reported similar outcomes (Piao et al., 2013; Kolus et al.,
2019), Rebel et al. (2012) found an underestimation of OR-
CHIDEE response to drought. Some of the key challenges
lie in the upscaling of leaf-level processes to canopy-scale
and ecosystem-scale simulations (De Kauwe et al., 2017);
the broad range of processes contributing to evapotranspira-
tion (ET), along with numerous feedback mechanisms (Bo-
nan et al., 2014; Fisher and Koven, 2020); and the difficulty
to simulate soil moisture dynamics and infiltration itself (Li
et al., 2018; Vereecken et al., 2019). Furthermore, the valida-
tion of these simulations is hampered due to the scale mis-
match between flux footprint and model grid and the chal-
lenge in accurately observing the partitioning of the surface
fluxes (transpiration, soil evaporation, canopy intercept evap-
oration, etc.; Nelson et al., 2020).

Leaf area index is another key variable in terrestrial
ecosystem models. It is used to represent the abundance of
foliar vegetation and its canopy state. Many leaf-scale pro-
cesses are scaled to canopy-scale surface fluxes, proportional
to LAI. Over the past decades, simulations with prognostic
LAI have become an established approach to account for in-
terseasonal variability in the terrestrial vegetation in land sur-
face models (Calvet et al., 1998; Dickinson et al., 1998; Krin-
ner et al., 2005; Gibelin et al., 2006). The coupling of the
carbon assimilation to a biomass allocation scheme allows
the simulation of the variable phenological cycle and the
vegetation response to atmospheric forcings. The degree of
complexity of this scheme is very variable amongst models
and ranges from fairly simplistic (e.g. in ISBA, Le Moigne
et al., 2018, or CHTESSEL, Boussetta et al., 2013) to ad-
vanced, with dedicated phenology modules or non-structural
carbohydrate dynamics (e.g. in ORCHIDEE, Krinner et al.,
2005; CLM, Lawrence et al., 2019; or CLASS, Asaadi et al.,
2018). Previous studies have concluded that LSMs are capa-
ble of representing the amplitude of the seasonal LAI cycle
with reasonable accuracy (Gibelin et al., 2008), but substan-
tial shortcomings are found in the timing of the phenological
cycle and the interseasonal variability (Lafont et al., 2012).
The disagreement amongst models (and observations) can be
attributed to our limited knowledge of the drivers of budburst
and senescence, biomass allocation, reserve dynamics, and
belowground processes (Le Roux et al., 2001; Fatichi et al.,
2019). As a consequence of the coupling of the vegetation
dynamics with the water and carbon cycles, the uncertainty

Figure 1. First-order relations (plain lines) and feedbacks (dashed
lines) of the state variables and surface fluxes in prognostic LSMs.
The feedback mechanisms are not present in diagnostic models, and
the soil moisture–LAI relation (dotted line) occurs only in prognos-
tic LSMs with dedicated phenology schemes.

associated with the seasonal cycle of LAI propagates back to
the surface fluxes.

The resulting feedbacks from the coupling are summarized
in Fig. 1. Soil moisture and LAI are state variables which de-
termine the exchange of heat, water and carbon. Through the
feedback to soil moisture in prognostic models, uncertainties
in the exchange of heat and water (e.g. sensible heat flux, H ;
latent heat flux, LE; or evapotranspiration) propagate to the
carbon assimilation. Inversely, uncertainties in gross primary
production (GPP) or the vegetation growth affect the heat and
water fluxes over LAI. Finally, through phenology equations
in some models (e.g. ORCHIDEE for grass), soil moisture
can also affect LAI directly.

This study focuses on the representation of these inter-
actions in two well-established prognostic LSMs – OR-
CHIDEE (Krinner et al., 2005) and ISBA (Le Moigne et al.,
2018) – and one diagnostic model (Ghilain et al., 2011;
Martínez et al., 2020). The evaluation of LSMs is typically
achieved by validating components of the LSMs individu-
ally, as mediated by the ever-increasing availability of long-
term in situ measurements of energy, water and carbon fluxes
from eddy covariance (EC) tower networks (Balzarolo et al.,
2014; Napoly et al., 2017; Dirmeyer et al., 2018). In situ ob-
servations of surface fluxes, meteorological conditions and
soil moisture are an essential resource in the study of terres-
trial ecosystems and the development of LSMs. In combi-
nation with remote-sensing-based observations of LAI, they
provide key insights in the interactions between the surface
fluxes and the biosphere.

Beyond the validation of the model outputs, the assess-
ment of the model dynamics and internal interactions is
needed to further advance LSM development. Approaches to
tackle this include sensitivity analyses, anomaly analysis or
isolation of extreme events (e.g. Alton, 2016; Huang et al.,
2016). Additionally, the quality of the prognostic state vari-
ables can be assessed through a functional evaluation. Here,
the diagnostic LSM is used as a vehicle to test the impact of
the prognostic soil moisture and LAI on the surface fluxes.
Diagnostic LSMs are typically designed to estimate fluxes
from observed state variables, such as remote-sensing-based
soil moisture and LAI. Replacing the observed states by the
prognostic states allows their impact on the surface fluxes to
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be tested. To our knowledge, this is the first study to perform
such a functional evaluation of LSMs.

The objective of this paper is to evaluate the performance
and internal dynamics of three LSMs at the local scale. Our
focus is the relation between the surface fluxes (LE, GPP)
and important state variables (soil moisture, LAI). This is
done by (1) validation and intercomparison of the simulated
surface fluxes and prognostic states in these models, (2) com-
parison of the model dynamics (phenology and flux partition-
ing), and (3) evaluation of the interactions with soil moisture
and LAI. Given the degree of coupling in the current LSM,
we try to disentangle the relation between key facets of the
terrestrial vegetation in a holistic way.

2 Materials and methods

2.1 Models

Three well-established models were used to simulate the in-
trinsically coupled fluxes of water, energy and carbon from
terrestrial vegetation: a diagnostic model based on the LSA
SAF (Satellite Application Facility for Land Surface Anal-
ysis) algorithms (hereafter referred to as DiagMod), ISBA
and ORCHIDEE. Each model has a different approach to
represent plant phenology. Whereas ISBA has a fairly sim-
ple biomass allocation scheme to represent the phenologi-
cal cycle, ORCHIDEE relies on dedicated phenology mod-
ules, and DiagMod is driven by remote-sensing-based forc-
ing variables, such as LAI.

Simulations were performed for a wide range of hydro-
climatic biomes and plant functional types at the local scale
(i.e. a single grid point). The simulated fluxes were validated
using eddy covariance measurements, and the simulated phe-
nology was compared to remote-sensed observations of LAI.

For adequate intercomparison, the models were configured
to run with identical land cover and atmospheric forcing. The
land cover at each site was derived from ECOCLIMAP 2
(Faroux et al., 2013) and corrected manually if this was not
representative of the tower footprint area (based on ICOS and
FLUXNET metadata and satellite imagery). The sources of
the forcing variables are listed in Table 1. ERA5 was used
to replace tower variables with large gaps in the time se-
ries (e.g. relative humidity; Hersbach et al., 2020). It was
verified that the impact of the use of ERA5 instead of lo-
cal forcings was limited (not shown here). The forcing from
ERA5 (hourly resolution) was linearly interpolated to match
the 30 min temporal resolution from the tower observations.

An overview of some key plant physiology parameters and
soil physical parameters is given in the Supplement, along
with full option name lists of the ISBA and ORCHIDEE runs
to allow reproducibility.

Most of the vegetation parameters in ISBA are derived
from the TRY plant trait database (Kattge et al., 2011; Delire
et al., 2020). Parameters in ORCHIDEE are regularly cal-

ibrated using various data types, including satellite obser-
vations and in situ observations of fluxes and atmospheric
CO2 concentration (e.g. Kuppel et al., 2012, 2014; MacBean
et al., 2015; Peylin et al., 2016). Kuppel et al. (2014) used 78
FLUXNET sites to optimize parameters related to the NEE
(net ecosystem exchange) and LE fluxes (see their Table S2).
Hence, whereas the ORCHIDEE parameters were not opti-
mized using the specific dataset of this study, a part of it may
have been used formerly in this regard. Similarly, key param-
eters of the diagnostic model have been (indirectly) derived
from a subset of the global eddy covariance network (Gar-
bulsky et al., 2010; Martínez et al., 2020).

2.1.1 Diagnostic model (DiagMod)

The diagnostic model used in this study is based
on the algorithms applied in the LSA SAF prod-
ucts. The LSA SAF algorithm to simulate surface tur-
bulent energy fluxes was developed in the framework
of the EUMETSAT deployment of “Satellite Applica-
tions Facilities” (SAFs; https://www.eumetsat.int/about-us/
satellite-application-facilities-safs, last access: 15 July 2022)
and is used to generate LSA SAF ET, LE and H products
operationally (i.e in near-real time). It is a soil vegetation at-
mosphere transfer (SVAT) model, largely driven by remote-
sensing-based observations of downwelling long- and short-
wave radiation, LAI, and albedo. It relies on the Jarvis (1976)
approach to calculate the stomatal response to environmental
factors.

In operational mode, the observations of the Spinning En-
hanced Visible and Infrared Imager (SEVIRI) on board the
Meteosat Second Generation Satellite (MSG) are the primary
source of the forcing variables. A more in-depth outline of
the algorithm is given in Ghilain et al. (2011, 2012). Conse-
quently, it was designed to run at the resolution of MSG ob-
servations, but its capabilities at the sub-kilometre scale were
recently demonstrated (Barrios et al., 2020). For this study,
the model was configured to run at the kilometre scale (i.e.
the local scale corresponding to the footprint of eddy covari-
ance measurements), using LAI from the European Coper-
nicus Global Land Service (CGLS) and soil moisture from
ERA5.

More recently, a LSA SAF GPP product was developed,
based on the Monteith light use efficiency (LUE) concept
(Martínez et al., 2020). This product is calculated at the end
of the LSA SAF pipeline, as it relies on several other LSA
SAF products, such as ET, reference ET, LAI and FAPAR.
The same formulation was adopted in the diagnostic model
in our study, resulting in coherent surface fluxes.
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Table 1. Source of forcing variables. Tower: flux tower observations from FLUXNET2015 dataset (Pastorello et al., 2020) and the ICOS
“2018 drought initiative” dataset (Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2019); TRENDY (Sitch et al., 2015; https:
//sites.exeter.ac.uk/trendy, last access: 15 July 2022); CGLS: Copernicus Global Land Service (Camacho et al., 2013); ECMWF: soil texture
used in the ECMWF Integrated Forecast System (https://apps.ecmwf.int/codes/grib/param-db?id=43, last access: 15 July 2022); HWSD:
harmonized world soil database (Nachtergaele et al., 2010); FAO/USDA: USDA texture map based on FAO digital Soil Map of the World
(Reynolds et al., 2000). θ (h=−100 cm) refers to the water content at matric head, which equals −100 cm, derived from the water retention
curve.

Forcing DiagMod ISBA ORCHIDEE

Air temperature ERA5 ERA5 ERA5
Air humidity ERA5 ERA5 ERA5
Wind Tower ERA5 ERA5
Wind direction – ERA5 ERA5
Atmospheric pressure ERA5 ERA5 ERA5
Precipitation rain – Tower Tower
Precipitation snow – Tower Tower
Shortwave radiation Tower Tower Tower
Longwave radiation Tower Tower Tower
CO2 concentration – TRENDY TRENDY
Soil moisture ERA5 Prognostic Prognostic
LAI CGLS Prognostic Prognostic
FAPAR CGLS – –

Photosynthesis model Monteith (1972) Goudriaan et al. (1985),
Jacobs et al. (1996)

Farquhar et al. (1980),
Collatz et al. (1992)

Phenology – Photosynthesis-driven Dedicated modules
Soil layers 4 14 12
Soil type ECMWF HWSD FAO/USDA
Pedotransfer function Wösten et al. (1999) Clapp and Hornberger (1978) Carsel and Parrish (1988)
Water-limiting threshold θ (h=−100 cm) θ (h=−100 cm) 0.8 · θ (h=−330 cm)

Contrary to ISBA and ORCHIDEE, the calculations for
LE and GPP in the diagnostic model do not share parame-
ters like stomatal resistance. Instead, the GPP calculations
are coupled to LE by using the actual evapotranspiration as
an input variable.

2.1.2 ISBA

Within the Surfex (SURFace Externalisée) land surface
model, ISBA (Interactions between Soil, Biosphere and At-
mosphere) is the component dedicated to modelling the ex-
change of water, energy and carbon fluxes between the soil–
vegetation–snow continuum and the atmosphere (Masson
et al., 2013; Le Moigne et al., 2018). In this case, a con-
figuration of ISBA with interactive carbon cycling is used,
i.e. ISBA-CC (Gibelin et al., 2008; Delire et al., 2020). The
fluxes of water and carbon from the vegetation are coupled
through the stomatal resistance. This shared parameter is cal-
culated through the A-gs surface scheme and largely depends
on soil moisture stress and air temperature (Calvet et al.,
2004). The parametrization for this scheme is based on plant
traits derived from the TRY database (Kattge et al., 2011;
Delire et al., 2020).

The assimilation of carbon results in the evolution of LAI
through a biomass allocation scheme. The growth and senes-

cence of leaves is purely photosynthesis-driven. The biomass
reservoirs are coupled to a soil organic matter module to cal-
culate the respiration terms.

The simulations with ISBA were performed on the Surfex
v8.1 platform (https://www.umr-cnrm.fr/surfex/, last access:
15 July 2022). The soil profile was discretized in 14 layers
(up to 12 m depth), using a diffusion scheme for soil heat and
water transfer and an exponential decrease in hydraulic con-
ductivity through the profile. The nitrogen dilution scheme
(Calvet and Soussana, 2001) and canopy radiation trans-
fer scheme (Carrer et al., 2013) were enabled. In the forest
patches, the energy fluxes were calculated with the recently
developed multi-energy balance scheme (MEB; Boone et al.,
2017). Contrary to the standard soil–vegetation composite
version of ISBA (which was used for the non-forest patches),
MEB explicitly solves the transfer of mass and energy be-
tween the soil surface, the snowpack, the canopy and the at-
mosphere. At the time of this study, the combination of MEB
and prognostic LAI modelling is still considered experimen-
tal (Le Moigne et al., 2018). A spin-up period of 3 years was
sufficient to eliminate effects from the initial model state on
the surface fluxes (respiration is not analysed in this study).
ISBA was not coupled to a hydrological model (e.g. CTRIP;
Decharme et al., 2019). Consequently, there was no lateral
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groundwater flow or a water table, only free drainage at the
bottom of the soil profile.

2.1.3 ORCHIDEE

ORCHIDEE is the land surface model of the Institut Pierre
Simon Laplace (IPSL) earth system model and was initially
described in Krinner et al. (2005). We used the version pre-
pared for the 6th Coupled Model Inter-comparison Project
(CMIP6) (Boucher et al., 2020; Cheruy et al., 2020).

The LAI is prognostic, and the phenology models used
for the various plant functional types (PFTs) are described
in Botta et al. (2000) and MacBean et al. (2015). The canopy
is discretized in layers of increasing thickness from the top
to the bottom of the canopy. The incoming light is attenu-
ated through the canopy following a Beer–Lambert extinc-
tion law. The photosynthesis is modelled at the leaf level
following Farquhar et al. (1980) for C3 species and Collatz
et al. (1992) for C4 species. The maximum carboxylation rate
at 25 ◦C is a PFT-dependent parameter. The maximum car-
boxylation rate varies with the temperature following Med-
lyn et al. (2002) and Kattge and Knorr (2007). A water stress
function depending on soil moisture and root profile (de Ros-
nay and Polcher, 1998) is applied to the maximum carboxy-
lation rate and the stomatal and mesophyll conductances. An
analytical solution to the three equations linking CO2 assim-
ilation, stomatal conductance and CO2 leaf intercellular con-
centration is computed following Yin and Struik (2009). The
assimilation is then upscaled over the layers to calculate the
GPP.

A single-layer energy balance is computed per grid cell.
LE is the weighted average of the snow sublimation, the soil
evaporation, the canopy transpiration and the evaporation of
foliage water; all these terms were initially computed follow-
ing Ducoudré et al. (1993). The soil is now discretized over
2 m into 11 layers of increasing thickness, and the hydrology
scheme follows Richard’s equation (De Rosnay et al., 2002;
d’Orgeval et al., 2008). There is free drainage at the bottom.
The soil thermodynamics are described in Wang et al. (2016),
and the snow scheme is detailed in Wang et al. (2013).

To initialize the simulations, a first spin-up phase was
performed, where we cycled over the available FLUXNET
years for at least 45 years. This enables an equilibrium to be
reached for the aboveground biomass and the water stocks
and fluxes, as an initial state for the transient simulation.

2.2 Test sites

The performance of the models was evaluated at the
field scale, using observations from flux towers. From the
FLUXNET2015 dataset (Pastorello et al., 2020) and the
ICOS “2018 drought initiative” dataset (Drought 2018 Team
and ICOS Ecosystem Thematic Centre, 2019), sites were se-
lected with adequate EC data quality (at least 1 year of car-
bon fluxes, dominated by observations with quality flag 1 or

better), homogeneous land cover (within 1 km radius from
the tower, assessed via Google Earth) and limited disturbance
due to management. This resulted in the 56 sites listed in
Table 2 and a total of 526 simulation years. A total of 33
of these sites are dominated by forest land cover, whereas
18 are dominated by herbaceous vegetation, and 5 are crop
sites (the models are configured to run without management
practices). The FLUXNET and ICOS data products had been
pre-processed with the ONEFLUX processing pipeline (Pa-
storello et al., 2020). The test sites were classified per PFT
(taken from the FLUXNET/ICOS IGBP metadata), domi-
nant vegetation type (forest, herbaceous or crop) and hydro-
climatic biome (HCB; Papagiannopoulou et al., 2018).

In addition to the classification based on land cover and
meteorology, the sites were classified in “aridity classes”. In
the LSMs, the root zone soil moisture modulates the stom-
atal conductance when it drops below field capacity (ISBA)
or below 80 % of the difference between field capacity and
wilting point (ORCHIDEE). As a proxy for aridity, the frac-
tion of the simulation time that the simulated soil moisture in
the topsoil (0–7 cm) drops below this threshold was used. It
was found that this was significantly (Wilcoxon signed-rank
test p < 0.05) more frequent in ISBA (48 % of the time, me-
dian value of all sites) compared to ORCHIDEE (26 % of the
time). Significant differences persisted deeper in the soil pro-
file, until 70 cm depth. Using this metric, the sites were clas-
sified in four classes, equal in size, going from least (class 1)
to most arid (class 4) (see Table 2). This classification was
based on the ISBA simulations, but a similar classification
was obtained with ORCHIDEE (despite the differences in
absolute values). The vegetation at sites with aridity class 1
was mainly dominated by forest, whereas the aridity class 4
sites were mostly occupied by herbaceous vegetation. No ev-
ident relation with the hydro-climatic biomes was found.

Not all sites are equipped with soil moisture sensors, nor is
there a standardized set-up or post-processing for soil mois-
ture in the datasets used for this study. Consequently, the val-
idation of the simulated soil moisture and the sensitivity anal-
ysis was only performed for the sites with sensors. Further-
more, some sites were equipped with multiple sensors in the
soil profile. Here, only the median score of the sensors was
used in the statistics (i.e. one score per site). For the valida-
tion, all sensors up to 2 m depth were used, whereas only the
sensors up to 0.5 m depth (i.e. the shallow root zone) were
used in the sensitivity analysis (though the impact on the re-
sults was minimal).

2.3 Validation

The simulated H and LE were validated with the observed
daily mean fluxes from flux towers. The non-closure of the
energy balance is a well-known issue in the eddy covariance
observations (Cui and Chui, 2019). The turbulent fluxes in
the FLUXNET and ICOS datasets were corrected for this,
under the assumption that the measured Bowen ratio was cor-
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Table 2. Selection of 56 FLUXNET/ICOS sites used in this study. Classification by PFT, HCB (boreal-/mid-latitude-/transitional-
/subtropical-/tropical+energy-/water-/temperature-driven) and Köppen. LE corr: relative change in the mean LE flux after correction for
energy balance closure (no value: correction not available). Aridity: aridity class, derived from ISBA simulations.

Code Name Country Database Start End PFT HCB Köppen LE corr Aridity

AR-Vir Virasoro Argentina FLUXNET2015 2009 2013 ENF Trans_W Cfa – 2
AU-ASM Alice Springs Australia FLUXNET2015 2009 2013 SAV SubTr_W BSh 0.09 4
AU-Ade Adelaide River Australia FLUXNET2015 2006 2009 WSA Trans_W As 0.29 3
AU-Cpr Calperum Australia FLUXNET2015 2009 2014 SAV Trans_W BSk 0.02 4
AU-DaP Daly River Savanna Australia FLUXNET2015 2006 2013 GRA Trans_E As 0.22 3
AU-DaS Daly River Cleared Australia FLUXNET2015 2007 2014 SAV Trans_E Aw 0.03 3
AU-Dry Dry River Australia FLUXNET2015 2007 2014 SAV Trans_E As 0.27 4
AU-How Howard Springs Australia FLUXNET2015 2000 2014 WSA Trans_E As 0.19 3
AU-Stp Sturt Plains Australia FLUXNET2015 2007 2014 GRA Trans_E As 0.08 4
AU-Wac Wallaby Creek Australia FLUXNET2015 2004 2008 EBF Trans_E Cfb 0.12 1
AU-Wom Wombat Australia FLUXNET2015 2009 2012 EBF Trans_W Cfb 0.27 2
BE-Bra Brasschaat Belgium ICOS Drought 1995 2018 MF MidL_T Cfb 0.17 1
BE-Lon Lonzée Belgium ICOS Drought 2003 2018 CRO MidL_T Cfb 0.48 4
BE-Vie Vielsalm Belgium ICOS Drought 1995 2018 MF MidL_T Cfb −0.03 1
BR-Sa3 Santarem Brazil FLUXNET2015 2000 2005 EBF Tropic Aw 0.17 2
CA-Gro Ontario Canada FLUXNET2015 2003 2015 MF Bor_T Dfb 0.42 1
CA-NS6 UCI-1989 burn site Canada FLUXNET2015 2001 2006 OSH Bor_T BSk – 3
CA-SF2 Saskatchewan Canada FLUXNET2015 2001 2006 ENF Bor_T Dwc 0.41 3
CA-SF3 Saskatchewan Canada FLUXNET2015 2001 2007 OSH Bor_T Dwc 0.35 2
CG-Tch Tchizalamou Congo FLUXNET2015 2005 2009 SAV Tropic As – 2
CH-Lae Lägern Switzerland ICOS Drought 2003 2018 MF MidL_T Dfb – 2
CN-Din Dinghushan China FLUXNET2015 2002 2005 EBF SubTr_E Cwa – 3
CZ-BK1 Bily Kriz forest Czech Rep. ICOS Drought 2003 2018 ENF MidL_T Dfb – 1
DE-Kli Klingenberg Germany ICOS Drought 2003 2018 CRO MidL_T Dfb 0.46 3
DE-Obe Oberbrenburg Germany ICOS Drought 2007 2018 ENF MidL_T Dfb 0.21 1
DE-RuS Selhausen Jülich Germany ICOS Drought 2010 2018 CRO MidL_T Cfb 0.47 4
DE-Seh Selhausen Germany FLUXNET2015 2006 2010 CRO MidL_T Cfb 0.14 4
DE-Spw Spreewald Germany FLUXNET2015 2009 2014 WET MidL_T Cfb – 3
DE-Tha Tharandt Germany ICOS Drought 1995 2018 ENF MidL_T Dfb 0.26 1
FI-Hyy Hyytiälä Finland ICOS Drought 1995 2018 ENF Bor_WT Dfb 0.03 1
FI-Let Lettosuo Finland ICOS Drought 2008 2018 ENF Bor_WT Dfb −0.26 1
FR-Fon Fontainebleau France FLUXNET2015 2004 2014 DBF MidL_T Cfb – 3
FR-LBr Le Bray France FLUXNET2015 1995 2008 ENF Trans_E Cfb 0.21 2
FR-Pue Puéchabon France FLUXNET2015 1999 2014 EBF Trans_E Csa 0.42 2
GF-Guy Guyaflux Fr. Guiana FLUXNET2015 2004 2015 EBF Tropic As – 2
GH-Ank Ankasa Ghana FLUXNET2015 1989 1989 EBF Tropic Aw 0.56 1
IT-Cpz Castelporziano Italy FLUXNET2015 1996 2009 EBF Trans_E Csa 0.07 2
IT-Ro1 Roccarespampani Italy FLUXNET2015 1999 2008 DBF Trans_E Csa – 3
IT-SRo San Rossore Italy FLUXNET2015 1998 2012 ENF Trans_E Csa 0.37 2
JP-MBF Moshiri Japan FLUXNET2015 2002 2005 DBF Bor_T Dfb – 1
JP-SMF Seto Japan FLUXNET2015 2001 2006 MF Trans_E Cfa – 1
MY-PSO Pasoh Malaysia FLUXNET2015 2002 2009 EBF Tropic Af −0.01 1
NL-Loo Loobos Netherlands ICOS Drought 1995 2018 ENF MidL_T Cfb 0.05 1
PA-SPn Sardinilla Panama FLUXNET2015 2007 2010 DBF Trans_E Aw – 2
RU-Che Cherski Russia FLUXNET2015 2001 2005 WET Bor_E Dwc – 4
RU-Fyo Fyodorovskoye Russia ICOS Drought 1997 2018 ENF Bor_WT Dfb −0.18 3
SD-Dem Demokeya Sudan FLUXNET2015 2004 2009 SAV SubTr_W Aw 0.62 4
US-ARM Lamont United States FLUXNET2015 2003 2013 CRO MidL_W Cfa 0.19 4
US-Ivo Ivotuk United States FLUXNET2015 2004 2008 WET Bor_E Dwc −0.15 2
US-Me6 Metolius United States FLUXNET2015 2010 2015 ENF Trans_E Dsb 0.46 3
US-SRC Santa Rita Creosote United States FLUXNET2015 2008 2015 OSH Trans_E BSh 0.65 4
US-SRG Santa Rita Grassland United States FLUXNET2015 2008 2015 GRA Trans_E BSh 0.30 4
US-SRM Santa Rita Mesquite United States FLUXNET2015 2004 2015 WSA Trans_E BSh 0.26 4
US-Sta Saratoga United States FLUXNET2015 2005 2010 OSH MidL_W Dfb – 2
US-UMd UMBS Disturbance United States FLUXNET2015 2007 2015 DBF Bor_T Dfb – 3
ZA-Kru Skukuza South Africa FLUXNET2015 1999 2013 SAV Trans_W Csa 0.21 4

Biogeosciences, 19, 4361–4386, 2022 https://doi.org/10.5194/bg-19-4361-2022



J. De Pue et al.: Local-scale evaluation of the simulated interactions between energy, water and vegetation 4367

rect (Pastorello et al., 2020). Due to missing observations of
the ground heat flux, this correction was not possible for all
sites. The validation ofH and LE was only performed for the
sites where all fluxes were available. The mean correction of
LE of each site is listed in Table 2.

Similarly, the simulated GPP was validated with the
FLUXNET/ICOS GPP data. The net ecosystem exchange
(NEE) observed at the flux tower was partitioned into its
ecosystem respiration (RECO) and GPP components using
the daytime fluxes and constant friction velocity (USTAR)
threshold method (Pastorello et al., 2020). Only data with a
quality flag indicating good quality (1) or better were used in
this analysis. Though some authors have recommended cor-
recting the carbon fluxes in a similar way as the turbulent
fluxes, such a procedure was not included in the processing
pipeline (Massman and Lee, 2002; Gao et al., 2019; see also
Sect. 4).

An important key to the feedback mechanism between
the surface fluxes is the LAI. The simulated LAI from
ISBA-CC and ORCHIDEE was validated using the remote-
sensing-based LAI from the European Copernicus Global
Land Service (http://land.copernicus.eu/global/, last access:
15 July 2022). The LAI data product used here is derived
from SPOT-VGT and PROBA-V satellite data; it has a spa-
tial resolution of 1 km and a temporal resolution of 10 d (Ca-
macho et al., 2013). The sites were selected to be fairly ho-
mogeneous within the footprint area, and the observed LAI
is assumed to be representative of the direct surroundings of
the eddy covariance stations.

The simulated soil moisture profiles of ISBA and OR-
CHIDEE and the ERA5 soil moisture (used in DiagMod)
were validated where possible. To reduce biases caused by
different soil physical properties of the soil profiles or dif-
ferences in scale between models and observations, the ob-
served and simulated volumetric soil moisture (θ ) was con-
verted to the effective saturation (Se) as follows:

Se =
θ − θmin

θmax− θmin
, (1)

where θmin and θmax were assumed to be the 5th and 95th
percentile of the observed soil moisture at a site for the ob-
servations or the residual and saturated water content for the
simulations.

For H , LE, GPP, LAI and Se, the classical validation in-
dices are calculated: mean error (ME), root mean square error
(RMSE), Pearson correlation (r) and Nash–Sutcliffe model
efficiency (NS). They were calculated as in Eqs. (2)–(5), in
which y∗ and yo are the predicted and observed values, y the
mean of y, and no the number of observations:

ME=
∑no (y∗− yo)

no
(2)

RMSE=

√∑no(y∗− yo)2

no
(3)

r =

∑no(y∗− y∗)(yo− yo)√∑no(y∗− y∗)2
∑no(yo− yo)2

(4)

NS= 1−
∑
(y∗− yo)2∑
(yo− yo)2

. (5)

Taylor diagrams were constructed using the Pearson cor-
relation (r) and standard deviation (σ ) of the observed and
simulated variables. The validation was performed using the
daily totals and averages.

Furthermore, the same analysis was also performed on the
anomalies in the mean annual cycles to isolate the capability
of the models to capture seasonal variability. The mean an-
nual cycles were computed per site, across all its site years.
The validation indices of the seasonal anomalies have the
subscript ANOM, e.g. NSANOM.

Significant differences between the models were evaluated
with the Wilcoxon signed-rank test (paired), and the signif-
icance of the PFT, HCB, aridity class and dominant land
cover to classify the model performances was evaluated with
the Kruskal–WallisH test. Differences between classes were
tested with the Mann–Whitney U test (non-paired).

2.4 Model dynamics

2.4.1 Phenology

The capability of the models to reproduce the timing of the
seasonal cycle of LE, GPP and LAI was evaluated. The de-
tection of the start, maximum and end of the seasonal cycle
(SOS, MOS and EOS) was achieved by applying a smooth-
ing operation (20 d rolling mean), followed by a threshold
procedure (Maleki et al., 2020). In this threshold procedure,
the minima and maxima were used to delineate the growing
and senescent phase of the season. MOS was defined as the
date when the maximum of the season is reached; SOS and
EOS were defined as the date where the growing or senescent
phase crosses the threshold value T . T was calculated for
each growing or senescent phase as T = P5+0.2(P95−P5),
where P5 and P95 are the 5th and 95th percentile.

2.4.2 Partitioning

To compare the model dynamics, the simulated LE flux parti-
tioning, water balance and water use efficiency (WUE) were
evaluated as well. Direct observations of the LE flux parti-
tioning were not available, but it is possible to extract the
transpiration component from the total LE flux, using the un-
derlying water use efficiency (uWUE) method (Zhou et al.,
2016; Nelson et al., 2020). From the GPP and transpiration
(Tr), the WUE was derived:

WUE=
GPP
Tr

. (6)
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2.5 Evaluation of prognostic LAI and soil moisture

2.5.1 Sensitivity and error correlation

To assess the sensitivity of the fluxes to the state variables
(Se and LAI), the slope of the seasonal anomalies of the
fluxes against the anomalies of the state variables was de-
termined. This analysis was performed for the observations
and the simulations and compared. Note that the linear slope
was used here, though a linear response is not necessarily ex-
pected (e.g. the response to soil moisture anomalies depends
on a wet/dry regime). The goal of this analysis was to in-
vestigate whether LSMs are capable of reproducing a similar
relationship as found in the observations. Significant differ-
ences between the models were evaluated with the Wilcoxon
signed-rank test.

To evaluate whether errors in the state variables result in
errors in the surface fluxes (or vice versa), the Spearman rank
correlation between both was calculated. Since Copernicus
LAI was the reference LAI, this analysis was not possible
for LAI in DiagMod.

2.5.2 Functional evaluation with DiagMod

The diagnostic model is a suitable vehicle to test the impact
of the prognostic state variables from ISBA and ORCHIDEE
on the surface fluxes. Given its architecture to easily ingest
state variables, it can serve as an independent model platform
to evaluate the quality of the soil moisture and LAI. DiagMod
simulations were performed using soil moisture and/or LAI
from ISBA and ORCHIDEE and compared to simulations
with soil moisture from ERA5 and CGLS LAI (resulting in
seven runs per site; see Table 4).

The fraction of absorbed photosynthetically active radia-
tion (FAPAR) is an important variable in DiagMod to pro-
duce GPP, but it is no output of the prognostic models. In
order to be consistent with the prognostic LAI, FAPAR was
estimated using a simple Beer law with a general-purpose
extinction coefficient value of 0.5 (Eq. 7; Monsi and Saeki,
2005).

FAPAR= 1− exp(−0.5 LAI) (7)

The soil moisture of the soil profiles in the prognostic models
was integrated to match the four layers in DiagMod (0–7, 7–
21, 21–72, 72–189 cm). Furthermore, the soil moisture was
rescaled using the wilting point and field capacity parameters
of the models.

Prior to the evaluation of the prognostic state, the repro-
ducibility of the prognostic models by the DiagMod was
tested. The detailed results are shown in the Supplement.
It was found that the surface fluxes produced by DiagMod,
forced by the same atmospheric conditions, soil moisture and
LAI, were more closely correlated to those from ISBA com-
pared to ORCHIDEE. Differences can be caused by differ-

ent parametrization of the plant physiology, as well as the
representation of processes (or lack thereof), such as rainfall
interception, snow cover or canopy radiation transfer.

3 Results

3.1 Validation

3.1.1 Surface fluxes: LE and GPP

The bias (ME) and accuracy (RMSE) of the simulated LE and
GPP are shown in Fig. 2, together with Taylor diagrams of
the simulated fluxes and their seasonal anomalies. It was ev-
ident that the inter-site variability in the model performance
is much larger than the inter-model variability. In terms of
bias and accuracy, the differences between the models were
relatively limited. All models suffered a substantial under-
estimation of LE, whereas the overall bias in GPP was rel-
atively small. Significant differences (Wilcoxon p < 0.05)
were found in the bias of GPP between DiagMod (overes-
timation) and ISBA (underestimation), and the simulated LE
was significantly more accurate in ISBA compared to OR-
CHIDEE.

Notably, no substantial bias was found in the simulated H
of any model to compensate for the consistent bias in LE (re-
sults shown in the Supplement). In this study, the corrected
fluxes from the FLUXNET/ICOS dataset were used as a ref-
erence. If the non-corrected fluxes were used instead, the bias
in LE was reduced, but the simulated H was overestimated
(not shown here). This points at the significant uncertainty
associated with the observed fluxes from eddy covariance
measurements. The estimated observation uncertainty in the
turbulent fluxes (associated with random measurement errors
and energy balance correction) had the same order of magni-
tude as the model errors.

The Taylor diagrams in Fig. 2 show that the average vari-
ability in the simulated LE and GPP was in fair agreement
with the observations. After removal of the mean seasonal
cycle, the performance of the models decreased (rANOM,
NSANOM), but the mean variability in the anomalies is rea-
sonably accurate. In terms of r and rANOM of LE and GPP,
ORCHIDEE was significantly outperformed by ISBA and
DiagMod (Wilcoxon p < 0.05). No significant differences
were found between ISBA and DiagMod.

The impact of the land cover type of the test site on the
model performance is illustrated in Fig. 3. Here, the test
sites are classified by the dominant vegetation type. The NS
and NSANOM of the simulated LE were not significantly im-
pacted in any of the models, whereas a significant influ-
ence (Kruskal p < 0.05) was found on the quality of the
simulated GPP in DiagMod and ORCHIDEE. The NS and
NSANOM of the simulated GPP in ORCHIDEE were signif-
icantly better (Mann–Whitney U p < 0.05) for forest sites
compared to sites that were dominated by herbaceous vege-
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Figure 2. Accuracy plot (a, d), Taylor diagram (b, e) and Taylor diagram of the seasonal anomalies (c, f) of the simulated daily mean LE (a–c)
and GPP (d–f). The median performance is shown with the opaque markers.

tation. Inversely, the simulation of the seasonal GPP anoma-
lies in DiagMod were significantly better at herbaceous test
sites (Mann–Whitney U p < 0.05). No significant impact
was found in the ISBA simulations. Notably, the differences
between the models were most pronounced at the herbaceous
sites (see also Table 3). Yet, despite its poorer performance
at the herbaceous sites, ORCHIDEE simulated GPP at forest
sites most accurately compared to the other models.

Similar results were found with the other validation in-
dices. A more detailed breakdown of the results per PFT and
HCB is given in the Supplement. A significant impact of PFT
and HCB on the NS of the simulated GPP (Kruskal p < 0.05)
was found in all models. This was contrasted by LE, where
a significant impact of HCB (Kruskal p < 0.05) was found
only for ORCHIDEE.

3.1.2 State variables: soil moisture and LAI

The validation results of Se and LAI are shown in Fig. 4. The
soil moisture from ERA5 (used in DiagMod) tended to be
overestimated compared to in situ observations, whereas an
overall negative bias was found in ISBA and ORCHIDEE.
The simulated variability in soil moisture was too low in all
models, in particular for ORCHIDEE. Notably, ERA5 out-
performed ISBA (p > 0.05) and ORCHIDEE (p < 0.05) in
terms of accuracy, despite their use of in situ meteorological
forcings (e.g. precipitation). ORCHIDEE performed signif-
icantly worse than the other two models for all validation

metrics (Wilcoxon p < 0.05). The highest correlation in the
anomalies was simulated by ISBA.

Compared to the surface fluxes, the accuracy of the sim-
ulated soil moisture was substantially lower. The validation
scores of Se are given in Table 3, separated per dominant
land cover type. In all models, the simulated Se was signif-
icantly better for herbaceous sites compared to forest sites.
The herbaceous sites are generally found in a water-driven
dryland climate, with strong precipitation-driven anomalies.

Similarly, the prognostic LAI was also of poorer quality
than the simulated surface fluxes. ISBA had a significantly
better ME and RMSE than ORCHIDEE, but both models
overestimated LAI and strongly underestimated its variabil-
ity. In particular, the variability in LAI in the evergreen
needleleaf forests was strongly underestimated in both mod-
els, as well as the variability in LAI in evergreen broadleaf
forests in ORCHIDEE. Furthermore, both models obtained
only a poor correlation and achieved a very poor correla-
tion of the seasonal anomalies. In both models, the simulated
LAI for forest sites was better than for the herbaceous sites,
though not significantly (p > 0.05). The simulated anoma-
lies were modelled significantly better (p < 0.05) at forest
sites than herbaceous sites (Table 3).
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Table 3. Nash–Sutcliffe model efficiency coefficient of LE, GPP, Se and LAI and their seasonal anomalies. Median scores given for all sites
and grouped per dominant land cover type. The scores for the DiagMod Se are computed using the ERA5 Se. Overall median scores are
given in bold font.

DiagMod ISBA ORCHIDEE

Forest Herb Crop Forest Herb Crop Forest Herb Crop

NS LE 0.47 0.51 0.32 0.40 0.49 0.42 0.58 0.64 0.39 0.40 0.36 0.43
GPP 0.37 0.33 0.32 0.44 0.31 0.44 0.10 0.27 0.15 0.46 −0.79 0.27
Se −0.01 −0.11 0.37 −0.70 −0.09 −0.74 0.52 −3.07 −0.37 −0.71 0.14 −2.89
LAI −0.74 −0.47 −1.05 −0.77 −1.56 −1.12 −3.91 −0.83

NSANOM LE 0.30 0.35 0.24 0.38 0.21 0.15 0.32 0.34 −0.03 −0.02 −0.12 0.07
GPP 0.04 −0.52 0.28 0.22 −0.07 −0.01 −0.14 −0.19 −0.19 0.11 −1.83 −0.22
Se 0.09 0.01 0.36 0.03 0.14 0.06 0.47 −0.14 0.06 0.02 0.43 −0.12
LAI −0.54 −0.32 −1.34 −3.74 −0.50 −0.03 −4.06 −2.68

Figure 3. NS and NSANOM of the simulated daily LE and GPP, grouped per land cover type.

3.2 Model dynamics

3.2.1 Phenology

The timing of the start, maximum and end of the seasonal cy-
cle was validated for LE, GPP and LAI. Figure 5 shows the
boxplots of the mean errors at all sites. In all models, the bias
and accuracy of the seasonality of LE and GPP were com-
parable, whereas the leaf phenology (i.e. LAI) was poorer.
The simulated phenology of LAI was delayed substantially,
in particular in ISBA. This bias was most pronounced by the
MOS, and to a lesser extent in EOS.

ISBA performed significantly worse than ORCHIDEE
(Wilcoxon p < 0.05) for ME of MOS GPP and MOS LAI

and RMSE of MOS LAI. The prognostic LAI in both mod-
els tended to peak towards the end of the growing season,
whereas the maximum LAI was reached in the beginning of
the season according to the observations. This is illustrated
in Fig. 6, where the mean annual LE, GPP and LAI cycles of
ENF and DBF sites are shown. The delayed GPP phenology
in ISBA is a feedback effect of the delayed prognostic LAI.
However, the effect is dampened since GPP is largely driven
by atmospheric forcings as well.

At forest sites, EOS of LAI tended to be simulated with the
highest accuracy. The phenology of herbaceous sites had a
higher variability (median standard deviation of EOS LAI at
forest sites was 7.7 d compared to 20.6 d at herbaceous sites),
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Figure 4. Accuracy plot (a, d), Taylor diagram (b, e) and Taylor diagram of the seasonal anomalies (c, f) of Se (a–c) and LAI (d–f). The
median performance is shown with the opaque markers.

which turned out to be challenging to capture for ISBA and
ORCHIDEE. An example is shown for the savanna sites in
Fig. 7. DiagMod relied on the remote-sensing-based LAI and
was significantly more accurate than the prognostic models
in capturing EOS of GPP (Wilcoxon p < 0.05).

As the models were configured to run without dedicated
management practices for the crop sites, EOS was estimated
too late due to the harvest practice (Fig. 7). Even in Diag-
Mod, EOS of GPP was delayed.

3.2.2 Water balance, WUE and LE partitioning

The water balance partitioning in ISBA and ORCHIDEE is
shown in Fig. 8. In both models, the evapotranspiration frac-
tion across PFTs was similar, but substantial differences were
found in the drainage and runoff in both models. Whereas
nearly no water was lost through runoff in the ISBA simu-
lations, a substantial amount of runoff was simulated with
ORCHIDEE. On the other hand, the drainage in ISBA was
consistently larger than in ORCHIDEE. DiagMod does not
compute a water balance, so it could not be included in this
comparison.

Both models agreed that the largest fraction of LE is
through transpiration of the vegetation (Fig. 9). Aside from
a few exceptions, T /ET in ORCHIDEE was larger than in
ISBA. The median T /ET in ISBA (0.53) is lower than in
ORCHIDEE (0.68) and is closer to the values derived from
the tower observations with the uWUE method (0.54). How-

ever, measurements by Lian et al. (2018) indicate that this is
an underestimation and suggest 0.62± 0.06 as a global esti-
mate.

When the observed average water use efficiency is plotted
versus the average LE flux, a pattern emerges in which the
sites are grouped per PFT (Fig. 10). A similar pattern was
found in the ISBA simulations, but not in the ORCHIDEE
simulations. The range in WUE across the test sites was
much smaller in ORCHIDEE than in the observations.

The difference in water use efficiency can be attributed to
differences in the modelled plant physiology or the amount of
drought stress experienced by the vegetation. As mentioned
above, the root zone soil moisture dropped significantly more
frequently below field capacity in ISBA compared to OR-
CHIDEE.

3.3 Evaluation of prognostic LAI and soil moisture

3.3.1 Sensitivity and error correlation

The sensitivity of the surface fluxes to soil moisture and
LAI was quantified with a simple linear regression between
their anomalies. The slope of these regressions indicates the
strength of the response to the state variables.

It was found that the sensitivity of the fluxes to the soil
moisture was strongly dependent on the land cover type, in
both the observations and the models (Fig. 11). A stronger
response was found at the herbaceous sites compared to the
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Figure 5. Mean error in the timing of the simulated seasonal cycle (start, max and end of season) for LE, GPP and LAI.

Figure 6. Mean annual cycle for LE, GPP and LAI in all evergreen needleleaf forest (a, c, e) and deciduous broadleaf forest (b, d, f) sites,
observed and simulated. Note: corrected LE observations were missing at all DBF sites.
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Figure 7. Mean annual cycle for LE, GPP and LAI at all savanna (a, c, e) and crop (b, d, f) sites, observed and simulated.

forest sites. ISBA and ORCHIDEE have too high a sensitiv-
ity to soil moisture, whereas the response in the diagnostic
model was closer to that in the observations. In Fig. 12, the
same data are plotted but classified per aridity class. This
illustrates the oversensitivity of ISBA and ORCHIDEE to
drought stress. Despite their differences in implementation
and parametrization, a striking similarity in their sensitivity
to drought was found, for both LE and GPP. The observations
did not show an increase in sensitivity of GPP to Se at dryer
sites.

At the forest sites, the response of GPP to Se anomalies
is counterintuitively negative. This might indicate that soil
moisture anomalies at forest sites were more dominated by
wet anomalies, associated with rainfall events. These events
coincide with a reduction in solar radiation, hence resulting
in a negative GPP response. At herbaceous sites soils were
generally drier, so the positive impact of the reduced drought

stress after the rainfall event was more dominant, resulting
in a positive response. This behaviour was mimicked well in
the models.

The sensitivity of LE and GPP to LAI was generally higher
at the herbaceous sites. Here, the models tended to underesti-
mate the sensitivity to LAI. At the forest sites, the sensitivity
was lower according to the observations. The modelled sen-
sitivity of LE to LAI was reasonably accurate, whereas the
sensitivity of GPP to LAI was too strong.

To evaluate the impact of the quality of Se and LAI on
the simulated surface fluxes, the Spearman correlation of the
errors in the state variables and the fluxes was calculated
(Fig. 13). It was found in both ISBA and ORCHIDEE that
LAI had a stronger error correlation to LE and GPP com-
pared to Se. Grouped per dominant land cover type (Fig. 14),
both models agree that the error correlation between LAI and
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Figure 8. Average water balance partitioning (deep drainage,
runoff, evapotranspiration and sublimation) per PFT class in ISBA
and ORCHIDEE.

Figure 9. Average LE partitioning per PFT class in ISBA and OR-
CHIDEE. LETR: transpiration; LER: intercept evaporation; LEG:
soil evaporation; LEI: ice/snow evaporation; other: including evap-
oration from flooded surfaces.

GPP was higher at the herbaceous sites compared to the for-
est sites. Notably, this was not the case for LAI–LE.

Furthermore, the errors in LE were most strongly corre-
lated to those in Se for all models. The highest error correla-
tion was found in DiagMod, where this was most pronounced
for the herbaceous sites. At these sites, the Se–GPP error
correlation was also the strongest for DiagMod, whereas no
strong Se–GPP error correlation was found in the other mod-
els.

3.3.2 Functional evaluation with DiagMod

The simulated LE and GPP from the DiagMod runs with soil
moisture and/or LAI from the prognostic models were val-
idated with tower observations. The resulting NS is shown

in Table 4 and Fig. 15. Similar tendencies were found in
RMSE, Pearson r and validation of the seasonal anomalies
(not shown here). The DiagMod run with CGLS LAI and
ERA5 soil moisture serves as a reference to evaluate the
prognostic state variables.

Soil moisture had a stronger impact on LE compared to
LAI. A significant (Wilcoxon p < 0.05) reduction in NS
was found when using soil moisture from ORCHIDEE. This
effect is most pronounced at the herbaceous (more water-
limited) sites. This is in contrast with the runs using soil
moisture from ISBA, which seemed to improve the simu-
lated LE at herbaceous sites (though not significantly). Sim-
ilar but smaller effects were found at the forest (less water-
limited) sites. On the other hand, the opposite was found for
the crop sites (n= 4) where simulations with soil moisture
from ISBA reduced the NS of the simulated LE significantly.

Despite strong differences in LAI, no significant impact
was found on LE (with the exception of crop sites with ISBA
LAI). A stronger sensitivity to LAI was found in the Diag-
Mod simulations of GPP. A significant reduction in NS was
found in all DiagMod runs, but most explicitly in the runs us-
ing the prognostic LAI. As in the simulations of LE, this was
most pronounced for the herbaceous sites. The use of LAI
from ISBA and ORCHIDEE strongly degraded the simulated
GPP at these sites, whereas it was unaffected by injecting the
prognostic soil moisture.

Overall these results are in line with the error correlations
in Fig. 13. The higher error correlation of LAI to LE and
GPP compared to the error correlations of soil moisture was
confirmed. Additionally, the stronger impact of prognostic
LAI on errors in GPP and of soil moisture on LE was found
in both analyses.

4 Discussion

4.1 Model performance

The validation metrics of the three models were generally
in agreement with previously performed local-scale evalu-
ations. Similar simulations with the diagnostic model were
done in the validation reports of both the LSA SAF evapo-
transpiration and surface flux products (Ghilain et al., 2018)
on one hand and the LSA SAF GPP product (Martínez et al.,
2020) on the other hand. The accuracy and Pearson correla-
tion obtained here were better than the ones previously re-
ported. This can be attributed to the use of local forcings in
this study, which are not used in the LSA SAF products. The
weaker performance of the algorithm for the sensible heat
flux was also identified by Ghilain et al. (2018).

The GPP product is a recent addition to the ensemble of
LSA SAF MSG products. It was demonstrated to outperform
similar products which also rely on the Monteith light-use
efficiency method (Martínez et al., 2020). Here, it was found

Biogeosciences, 19, 4361–4386, 2022 https://doi.org/10.5194/bg-19-4361-2022



J. De Pue et al.: Local-scale evaluation of the simulated interactions between energy, water and vegetation 4375

Figure 10. Median water use efficiency and LE in observations and simulations. Sites classified per PFT.

Figure 11. Boxplots of the slope of the linear regression between the anomalies in the state variables (Se and LAI) and the fluxes (LE and
GPP) at the test sites, grouped per dominant land cover.

to perform consistently well for forest and herbaceous sites
and achieve a comparable model performance to ISBA.

In previous intercomparison studies at the local scale
(Balzarolo et al., 2014) or global scale (Friedlingstein et al.,
2021), GPP was simulated more accurately with ORCHIDEE
than with ISBA, but this was not confirmed here. Since
these studies, substantial improvements have been made to

ISBA: introduction of the MEB scheme, parametrization up-
date, diffuse multilayer soil scheme, etc. (Boone et al., 2017;
Delire et al., 2020). The introduction of the MEB scheme
for forests on the energy fluxes was evaluated in-depth by
Napoly et al. (2017) at the local scale (though prognostic
LAI was not included in that study). Substantial improve-
ments toG andH were reported, thanks to the addition of an
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Figure 12. Boxplots of the slope of the linear regression between the anomalies in the state variables (Se and LAI) and the fluxes (LE and
GPP) at the test sites, grouped per aridity class (1: least frequent drought stress; 4: most frequent drought stress).

Table 4. Median Nash–Sutcliffe model efficiency index of the DiagMod runs (functional evaluation of the prognostic LAI and soil moisture).
Results presented for all sites and classified per dominant land cover. Significant differences (Wilcoxon p < 0.05) with reference DiagMod
runs are marked. Overall median scores are given in bold font.

NS – LE NS – GPP

LAI SM All Forest Herb Crop All Forest Herb Crop

DiagMod CGLS ERA5 0.47 0.51 0.32 0.40 0.37 0.33 0.32 0.44

laiISBA_smERA5 ISBA ERA5 0.42 0.43 0.22 0.52∗ 0.11∗ −0.02∗ −0.57∗ 0.38
laiCGLS_smISBA CGLS ISBA 0.45 0.52 0.46 −0.05∗ 0.27∗ 0.01∗ 0.44 0.45
laiISBA_smISBA ISBA ISBA 0.45 0.49 0.47 0.01∗ −0.08∗ −0.15∗ −0.28∗ 0.35

laiORCH_smERA5 ORCHIDEE ERA5 0.42 0.53 0.17 0.48 −0.24∗ −0.10∗ −1.92∗ 0.36
laiCGLS_smORCH CGLS ORCHIDEE 0.24∗ 0.29∗ −0.15∗ 0.43 0.29∗ −0.05∗ 0.45 0.53
laiORCH_smORCH ORCHIDEE ORCHIDEE 0.27∗ 0.30∗ −0.25∗ 0.39 −0.50∗ −0.45∗ −1.28∗ 0.32

Figure 13. Boxplots of the Spearman correlation between the errors
in the state variables (Se and LAI) and the fluxes (LE and GPP) at
all test sites.

insulating litter layer. The introduction of the MEB scheme
improved the mechanistic representation of the canopy, and
issues due to a shared roughness length of the vegetation and
bare soil in the composite scheme were circumvented. Our
findings agree with that outcome, but the bias we found for
LE is not in agreement with previous findings.

4.1.1 Observation uncertainties

With the emergence of freely available data from eddy co-
variance networks, the use of local datasets is an increasingly
standardized approach to evaluate the performance of land
surface models (Balzarolo et al., 2014; Napoly et al., 2017;
Williams et al., 2020; Chen et al., 2018; Joetzjer et al., 2015).
However, the eddy covariance observations notoriously suf-
fer from substantial biases and non-closure of the energy bal-
ance (Foken, 2008; Mauder et al., 2020). The non-closure of
the energy balance is attributed to (1) large advective fluxes
caused by surface heterogeneities; (2) systematic measure-
ment errors due to mismatch in observation footprint or in-
adequate sample rate; or (3) thermal processes, such as heat
storage or vegetation metabolism (Mauder et al., 2020; Chu
et al., 2021; Liu et al., 2021). The test sites in this study were
selected to have a relatively homogeneous land cover. Re-
gardless, the resulting uncertainty in the observations was
of the same order of magnitude as the model errors. The
turbulent fluxes are typically underestimated, as is the GPP
(Massman and Lee, 2002; Gao et al., 2019). Note that GPP
is not corrected for this possible bias in the ONEFLUX pro-
cessing pipeline (Pastorello et al., 2020). Furthermore, some
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Figure 14. Boxplots of the Spearman correlation between the errors in the state variables (Se and LAI) and the fluxes (LE and GPP) at the
test sites, grouped per dominant land cover.

studies have indicated that the eddy covariance observations
are closer to lysimeter data if the energy balance is closed
by correcting LE only (Wohlfahrt et al., 2010). Considering
this, the negative bias of the simulated LE (and GPP) in this
study could be even underestimated. Conversely, others sug-
gest that most or all of the deficit might be related to H (Ing-
wersen et al., 2011) or found a good match with independent
reference data without LE correction (Graf et al., 2014). Val-
idation results of the turbulent fluxes without energy balance
closure correction are given in the Supplement.

4.1.2 Forest vs. herbaceous

Generally, the differences between the accuracy of the simu-
lated surface fluxes was most distinct at the sites dominated
by herbaceous vegetation (excluding crop sites). These sites
have the most pronounced inter-annual variability, and sea-
sonal anomalies are strongly driven by precipitation events
(Weber et al., 2009). This can be largely attributed to their
natural occurrence in dryer climates and shallower root sys-
tem compared to forests. The seasonal cycle of LAI at the
herbaceous sites and its variability were simulated poorly
with the prognostic models. The error correlation analysis
indicated that these errors were strongly related to errors in
the surface fluxes.

At the crop sites, management practices were missing in
the prognostic models. In the mean annual cycle of LAI
(Fig. 7), it is evident that no harvest occurs. Despite this, the
simulations of LE were not significantly less accurate com-
pared to other land cover types. After harvest, LE consists
largely of bare soil evaporation. Though vegetation was still
present in the models, the bulk LE was still reasonably ac-
curate. More evident degradation of the results was found in
GPP after harvest, which was overestimated. Even in the di-
agnostic model, where management practices were incorpo-
rated implicitly in the forcing variables, GPP was overesti-
mated. Notably, despite the missing management practices
in the prognostic models, the quality of the simulated LE
and GPP (and their anomalies) was not significantly differ-
ent from that at natural herbaceous sites.

Still, the diagnostic model performed consistently well
for all types of land cover, contrary to the prognostic mod-
els. Only the seasonal variability in GPP at forest sites was
simulated less accurately than with the prognostic models.
Whereas the remote-sensing-based observations adequately
captured this variability for the herbaceous and crop sites,
they seemed to fall short for the forest sites.
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Figure 15. Nash–Sutcliffe model efficiency index of the DiagMod runs for the functional evaluation.

4.2 Interactions

LAI and soil moisture are two key variables in the interac-
tion between water, energy and vegetation. Though our un-
derstanding of the involved processes at the leaf-level scale
is advanced, it remains challenging to scale these relations to
the canopy level. This was illustrated by erroneous sensitivity
of the models to LAI and soil moisture. As in previous stud-
ies, the sensitivity of LE and GPP to soil moisture was gen-
erally overestimated (Piao et al., 2013; Huang et al., 2016) in
ISBA and ORCHIDEE, whereas the diagnostic model repre-
sented the observed sensitivity relatively well.

The interplay between LE and LAI was analysed in detail
by Forzieri et al. (2018, 2020). The estimated global sensi-
tivity of LE to LAI (3.66±0.45 W m−2 (m2 m−2)−1, accord-
ing to Forzieri et al., 2020) is lower than the one reported
here, but the applied methodology was not the same. Con-
trary to our study, anomalies due to climatic drivers (i.e. pre-
cipitation, temperature, etc.) were factored out, resulting in a
different response. The oversensitivity of LE to LAI in OR-
CHIDEE was also not confirmed in our study. Still, in accor-
dance with these studies, a stronger response between LE and
LAI was found for herbaceous/soil-moisture-supply-driven
sites compared to forest/demand-driven sites.

Despite the differences in their architecture and
parametrization, ISBA and ORCHIDEE demonstrated

similar behaviour in the interaction between water, energy
and vegetation. Comparable sensitivities and error correla-
tions were found in both models, indicating that they share
common weaknesses in their implementation.

4.2.1 LAI

The errors in the surface fluxes were strongly correlated to
errors in LAI for both prognostic models, even though their
sensitivity to LAI reflects the observed sensitivity reason-
ably well (compared to the sensitivity to soil moisture). This
seemed to indicate that the source of the errors in the fluxes
lies in the feedback mechanism between GPP and LAI (i.e.
biomass allocation and phenology), rather than in the for-
ward link between GPP and LAI (i.e. photosynthesis and leaf
to canopy upscaling).

The prognostic simulation of LAI in ISBA was introduced
by Gibelin et al. (2006) and uses a fairly simple scheme.
The latest update was the revision of plant trait parameters
according to the TRY database (Kattge et al., 2011; Delire
et al., 2020). It has frequently been reported that the seasonal
cycle of the simulated LAI in ISBA is delayed by a month or
more (Lafont et al., 2012; Gibelin et al., 2008; Joetzjer et al.,
2015). Delire et al. (2020) attributes this to the leaf longevity
parameter, and Szczypta et al. (2014) mention the vegetation
undergrowth dynamics as a possible cause for the mismatch
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between remote-sensing-based LAI and the prognostic LAI
in LSMs. However, the issue seems to be related to the ar-
chitecture of the biomass allocation scheme as well. The as-
similated carbon is attributed to the leaf biomass pool first,
from where it trickles down to the other pools. No carbon
reserve dynamics are implemented. The consequence is that
the simulated LAI in ISBA starts slow during spring, as GPP
is underestimated due to a low LAI. It continues to build up
LAI until late in the second half of the season, when photo-
synthetic conditions become suboptimal, and leaf senescence
is triggered. In contrast, the observed seasonal LAI cycles
reach a maximum in the first half of the growing season.

The functional evaluation with the diagnostic model
demonstrated that a fairly simple model is capable of sim-
ulating the surface fluxes accurately, given accurate obser-
vations of LAI. The prognostic LAI generally degraded the
results compared to simulations with remotely sensed LAI.
Data assimilation experiments have demonstrated the poten-
tial of remotely sensed LAI to improve the surface fluxes
(Albergel et al., 2017). Improvements to prognostic LAI
schemes are required to increase the skill of the LSMs to
simulate surface fluxes.

In that context, processes from ORCHIDEE and other
LSMs could be adopted to improve the fairly simple biomass
allocation scheme in ISBA. The importance of non-structural
carbohydrates to capture the leaf phenology in LSMs is well
known, though rarely implemented (Asaadi et al., 2018).
Fatichi et al. (2019) indicates that a full-grown canopy of
a deciduous broadleaf forest contains approximately 30 % of
the total yearly assimilated carbon, yet it is grown in 1 month
(1/5–1/6 of the growing season). This rough simplification
illustrates that reserve dynamics are essential to simulate the
seasonal cycle of the vegetation accurately. Such dynamics
are implemented in ORCHIDEE: once certain phenological
criteria are fulfilled, the carbon in a reserve pool is allocated
to leaf biomass to kick-start the phenological cycle. Still, de-
spite the dedicated phenology modules, non-structural carbo-
hydrate reserve dynamics and a more advanced leaf demog-
raphy, simulating LAI remained challenging in ORCHIDEE.
The timing of the phenological cycle was more accurate in
ORCHIDEE, though the accuracy of the simulated LAI was
significantly poorer than ISBA. This was the case in particu-
lar for herbaceous vegetation. This tendency towards delayed
phenology (and in particular a delayed leaf senescence) is
found in most earth system models in CMIP5 and CMIP6
(Park and Jeong, 2021; Song et al., 2021).

The discrepancy in complexity between the modelling
of photosynthesis and that of the biomass allocation has
been highlighted by several authors (Fatichi et al., 2016;
Friend et al., 2019), though the main challenge lies in the
parametrization of those processes. The allocation of carbon
in terrestrial vegetation is an important knowledge gap, hin-
dering the advancement of earth system models.

Finally, there are several important differences between
the remote-sensing-based vegetation and the idealized vege-

tation in the models which need to be recognized when com-
paring both. Firstly, the role of the understorey has a well-
known impact on the remote-sensing-based LAI (Camacho
et al., 2013), whereas the LSMs do not consider the separate
evolution of an understorey. This can result in substantial dif-
ferences in the seasonal cycle of LAI. This was illustrated by
the differences in the simulations and observations of the LAI
cycle at ENF sites. Continuous in situ LAI observations with
hemispherical photography at ENF sites are rare, but Rauti-
ainen et al. (2012) reported that the effective canopy LAI
(including non-green foliage) at FI-Hyy (boreal ENF site)
remained constant from June till mid-September. This is in
agreement with the flat LAI cycle for ENF in ORCHIDEE
but is in contrast with the remote-sensing-based LAI and the
prognostic LAI in ISBA. In an empirical model based on in
situ observations for the FR-LBr site, LAI demonstrated a
seasonal cycle. The understorey was responsible for most of
the seasonal variation, and 30 % of the LAI was attributed
to the understorey during the summer (Rivalland, 2003). The
seasonal cycle in the remote-sensing-based LAI seems exag-
gerated (ranging between 1 m2 m−2 in winter and 4 m2 m−2

in summer). However, considering the understorey and sea-
sonal variation in needleleaf greenness (Seyednasrollah et al.,
2021), assuming a flat LAI does not seem accurate either, in
the context of simulating GPP.

This brings up a second issue: the remote-sensing-based
LAI is the “green” LAI, i.e. photosynthetically active leaves
(Camacho et al., 2013), whereas LAI in LSMs is a key vari-
able which wears many hats. A single LAI variable is used
to represent the role of leaves in several processes (photosyn-
thesis, interception, canopy radiative transfer, surface rough-
ness, etc.), in which the greenness of the canopy is not always
important. These discrepancies contribute to the mismatch
between LAI in the observations and the models. Addressing
them might further advance the representation of vegetation
in LSMs.

4.2.2 Soil moisture

A significant difference between ISBA and ORCHIDEE is
found in the simulated soil moisture dynamics, the water par-
titioning and the water use efficiency. The simulated WUE in
ISBA was in fair agreement with what is deduced from the
eddy covariance observations. In contrast, the WUE in OR-
CHIDEE had a much narrower range. The comparison of the
LE partitioning shows also that a larger fraction of the water
was transpired in ORCHIDEE compared to ISBA. The dif-
ferences in WUE and flux partitioning could be attributed to
differences in the simulated plant physiology or to the qual-
ity of the simulated soil water content. The variability in the
simulated water content in ORCHIDEE was strongly under-
estimated, and the vegetation experienced significantly less
drought stress in ORCHIDEE. It is likely that this translated
to a low variability in WUE as well. Furthermore, a substan-
tial part of the precipitation was lost as surface runoff com-
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pared to ISBA. Though we did not have validation data to
evaluate the water partitioning, it seems that the simulations
of ORCHIDEE could be improved significantly by address-
ing the soil moisture dynamics. The superior simulation of
soil moisture in ISBA contributes to the good performance
in simulating the surface fluxes, in particular for sites with
herbaceous vegetation and water-driven climate. The func-
tional evaluation demonstrated that the prognostic soil mois-
ture from ISBA even resulted in an improvement in the sim-
ulated LE for these sites compared to simulations with ERA5
soil moisture.

Overall, the accurate simulation of soil moisture and wa-
ter infiltration is a challenge (perhaps one of the main chal-
lenges) in land surface models (Vereecken et al., 2019). The
poor quality of the simulated soil moisture compared to in
situ observations is also evident in this study, despite the
use of the multi-layer diffuse water transport scheme. The
soil physical parameters are determined using a global pe-
dotransfer function (PTF), using only texture as input. New,
advanced PTFs with global coverage have emerged in recent
years, using not only texture, but also climatology and land
use as predictors (Gupta et al., 2021). As soil moisture is the
basis of many processes in LSMs, incorporating these PTFs
seems to be the logical new step forward in LSMs (Fatichi
et al., 2020).

The local-scale simulations in this study were not coupled
to a hydrological model; thus groundwater dynamics were
lacking. Though only a limited effect of capillary rise was
found in studies with a coupled groundwater hydrology, the
impact can be non-negligible for forest ecosystems with a
deep root system (Decharme et al., 2019; MacBean et al.,
2020). The further development of groundwater dynamics in
LSMs is indispensable for the accurate coupling of energy,
water and carbon in forest vegetation and its response to se-
vere drought events.

Several efforts have already explored the potential of im-
proving soil moisture dynamics in LSMs. Substantial im-
provements to soil moisture have indeed been obtained by
calibrating the pedotransfer functions or soil physical param-
eters. Yet, the impact thereof on the surface fluxes has been
found to be relatively limited (Pinnington et al., 2021), or
in some cases even negative (Raoult et al., 2021). Though
many parameters in ISBA and ORCHIDEE are derived from
databases (Delire et al., 2020), the LSMs have been cal-
ibrated to produce accurate surface fluxes using (amongst
others) eddy covariance observations. The limited accu-
racy of the soil moisture dynamics might have been over-
compensated in the resulting parametrization (Raoult et al.,
2021). The oversensitivity to drought stress in ISBA and OR-
CHIDEE is possibly an illustration of this. Improvements
to the intricate network of gears under the hood of LSMs
are a delicate matter. Addressing the soil moisture dynamics
should go hand in hand with corrections to the oversensitivity
to drought stress.

5 Conclusions

Three land surface models were compared at the local scale,
using identical meteorological forcing and prescribed land
cover. The goal was to evaluate their skill to simulate sur-
face fluxes (LE and GPP), as well as their simulated inter-
action between water, energy and vegetation. It was found
that the diagnostic model (based on LSA SAF algorithms)
performed consistently well for all land covers. The prog-
nostic models (ISBA and ORCHIDEE) performed similarly
well for the forest sites, but the simulations for herbaceous
sites revealed some important shortcomings. The sensitiv-
ity analysis demonstrated that both models overestimate the
sensitivity to drought stress, which was occurring most fre-
quently at herbaceous sites. On the other hand, the error anal-
ysis showed that errors in the prognostic LAI (and not soil
moisture) were the dominant source of errors for LE and
GPP in ISBA and ORCHIDEE. This was underlined by the
functional evaluation with the diagnostic model. Given the
acceptable sensitivity to LAI, the source of these errors is
likely found in the feedback mechanism between GPP and
LAI. Compared to observations, the simulated phenologi-
cal cycle in both models was delayed and failed to capture
the observed seasonal variability. Processes describing car-
bon reserve dynamics during spring and leaf senescence were
found to be falling short or missing. Improvements in the leaf
phenology and biomass allocation scheme are required to im-
prove the simulated surface fluxes.

The analysis here demonstrated key strengths and weak-
nesses of each LSM. Most notably, we showed that ISBA and
ORCHIDEE shared key deficiencies concerning the coupling
of the water, energy and vegetation, despite their differences
in architecture and parametrization. Improving the feedback
between GPP and LAI, the soil moisture dynamics, and the
oversensitivity to drought might advance the performance of
these LSMs significantly.
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