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Abstract. Coupled physical–biogeochemical models can fill
the spatial and temporal gap in ocean carbon observations.
Challenges of applying a coupled physical–biogeochemical
model in the regional ocean include the reasonable prescrip-
tion of carbon model boundary conditions, lack of in situ ob-
servations, and the oversimplification of certain biogeochem-
ical processes. In this study, we applied a coupled physical–
biogeochemical model (Regional Ocean Modelling System,
ROMS) to the Gulf of Mexico (GoM) and achieved an un-
precedented 20-year high-resolution (5 km, 1/22◦) hindcast
covering the period of 2000 to 2019. The biogeochemical
model incorporated the dynamics of dissolved organic car-
bon (DOC) pools and the formation and dissolution of car-
bonate minerals. The biogeochemical boundaries were inter-
polated from NCAR’s CESM2-WACCM-FV2 solution after
evaluating the performance of 17 GCMs in the GoM waters.
Model outputs included carbon system variables of wide in-
terest, such as pCO2, pH, aragonite saturation state (�Arag),
calcite saturation state (�Calc), CO2 air–sea flux, and carbon
burial rate. The model’s robustness is evaluated via exten-
sive model–data comparison against buoys, remote-sensing-
based machine learning (ML) products, and ship-based mea-
surements. A reassessment of air–sea CO2 flux with previous
modeling and observational studies gives us confidence that
our model provides a robust and updated CO2 flux estima-
tion, and NGoM is a stronger carbon sink than previously
reported. Model results reveal that the GoM water has been
experiencing a∼ 0.0016 yr−1 decrease in surface pH over the
past 2 decades, accompanied by a ∼ 1.66 µatm yr−1 increase
in sea surface pCO2. The air–sea CO2 exchange estimation
confirms in accordance with several previous models and

ocean surface pCO2 observations that the river-dominated
northern GoM (NGoM) is a substantial carbon sink, and the
open GoM is a carbon source during summer and a car-
bon sink for the rest of the year. Sensitivity experiments
are conducted to evaluate the impacts of river inputs and
the global ocean via model boundaries. The NGoM carbon
system is directly modified by the enormous carbon inputs
(∼ 15.5 Tg C yr−1 DIC and ∼ 2.3 Tg C yr−1 DOC) from the
Mississippi–Atchafalaya River System (MARS). Addition-
ally, nutrient-stimulated biological activities create a ∼ 105
times higher particulate organic matter burial rate in NGoM
sediment than in the case without river-delivered nutrients.
The carbon system condition of the open ocean is driven by
inputs from the Caribbean Sea via the Yucatan Channel and
is affected more by thermal effects than biological factors.

1 Introduction

Carbon dioxide (CO2) concentration in the atmosphere in-
creased approximately 150 % from 1750 to 2019 (Le Quéré
et al., 2018), and the storage and transport of carbon in
Earth’s ecosystem under the context of climate change have
been receiving incremental attention over the past decades
(Anav et al., 2013; Lindsay et al., 2014; Jones et al., 2016).
The direction and magnitude of ocean–atmosphere CO2
fluxes are subject to change with increasing atmospheric
CO2 concentrations (Smith and Hollibaugh, 1993; Wollast
and Mackenzie, 1989; Landschützer et al., 2018), incremen-
tal ocean dissolved inorganic carbon (DIC) level (Torres
et al., 2011), modification of the coastal alkalinity gener-
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ation process (Renforth and Henderson, 2017), changes in
organic matter (OM) remineralization patterns (Buesseler et
al., 2020), and river inputs (Yao and Hu, 2017). As an enor-
mous reservoir, the ocean has taken up some 170± 20 PgC
(Le Quéré et al., 2018) since the industrial revolution. This
alleviates the CO2 accumulation rate in the atmosphere while
inducing a consequent increase in ocean carbon level and a
decrease in ocean pH and calcium mineral saturation state
(�, Doney et al., 2009). Given the role it plays in shaping
climate feedback in the long term and the risk for coastal
ecosystems under acidification stress, carbon sink quantities
and their trends have been studied and monitored by multiple
studies (Maher and Eyre, 2012; Czerny et al., 2013; Najjar et
al., 2018; Bushinsky et al., 2019).

Nevertheless, mismatches in carbon flux estimates among
different studies and difficulties in describing the spatial and
temporal pattern of pCO2 data collected from ship-based
measurements have left many vital questions unanswered.
Global Earth system models (ESMs) are essential tools for
studying the linkage between the ocean carbon cycle and cli-
mate change. Extensive utilization of ESMs in hindcasting
and coupled biogeochemistry provides pivotal information
for understanding the carbon cycle on a global scale (Anav
et al., 2013; Laurent et al., 2021; Lindsay et al., 2014; Jones
et al., 2016; Todd-Brown et al., 2014). However, their rel-
atively coarse spatial resolution is likely not appropriate to
be directly compared with field measurements. It is impera-
tive to apply high-resolution regional ocean models to under-
stand carbon exchange and carbon budget at a regional scale.
While high-resolution regional models have been developed
to represent the complex patterns of ocean circulation and el-
emental fluxes on the continental shelves, the regional ocean
carbon system is challenging to model and predict due to its
high sensitivity to the boundary and initial conditions, un-
certainties in the carbon pathway, and complex interactions
between the atmosphere, ocean, and land (Hofmann et al.,
2011).

The Gulf of Mexico (GoM) is a semi-closed marginal
sea. The presence of the Mississippi–Atchafalaya River Sys-
tem (MARS) and the obstructions from the Florida Strait
and Yucatan Channel mitigate the impact of the global
ocean on the GoM regarding water acidity and carbon lev-
els. Allochthonous nutrients from river input, upwelling, and
boundaries shape the general pattern of the carbon cycling
in the GoM (Cai et al., 2011; Chen et al., 2000; Delgado
et al.,2019; Dzwonkowski et al., 2018; Laurent et al., 2017;
Jiang et al., 2019; Sunda and Cai, 2012) and need to be prop-
erly included in carbon system modeling of the GoM. Fen-
nel et al. (2011) performed a coupled physical–biological
modeling of the northern GoM (NGoM) shelf with the ni-
trogen cycle to describe the phytoplankton variability under
the influence of the MARS covering the period of 1990 to
2004. They found that biomass accumulation in the light-
limited plume region near the Mississippi River delta was
not primarily controlled bottom-up by nutrient stimulation

because of the lack of nutrient limitation in the eutrophic
zone. Xue et al. (2016) achieved a first GoM carbon budget
and concluded that the export of carbon out of the gulf via
the Loop Current is largely balanced by river inputs and in-
flux from the air. Their regional carbon model used three sets
of initial and open boundary conditions derived from empir-
ical salinity–temperature–DIC–alkalinity relationships. Al-
though this method of carbon system prescription leveraged
the convenience of widely available physical variables and
was feasible for regions with scarce DIC and alkalinity data,
its reliability was questionable as temperature and salinity
alone cannot fully describe the spatial and temporal pattern
of these carbon variables. Laurent et al. (2017) presented a
regional model study of the eutrophication-driven acidifica-
tion and simulated the recurring development of extended
and acidified bottom waters in summer on the NGoM shelf.
They proved that the acidified waters were confined to a thin
bottom boundary layer where the production of CO2 was
dominated by benthic metabolic processes. Despite reduced
� values being produced at the bottom due to acidification,
these regions remain supersaturated with aragonite. Chen
et al. (2019) presented a unified model to estimate surface
pCO2 by applying machine learning (ML) methods to re-
mote sensing data and cruise pCO2 measurements. Their ML
model confirmed that the GoM was a carbon sink. Recently
Gomez et al. (2020) performed another GoM carbon model
study covering the period of 1981 to 2014. Their model ini-
tial and boundary conditions were derived from a down-
scaled Coupled Model Intercomparison Project 5 (CMIP5)
Modular Ocean Model (25 km resolution, Liu et al., 2015).
Their model results showed that the GoM was a sink for
atmospheric CO2 during winter–spring and a source during
summer-fall, producing a basin-wide mean CO2 uptake of
0.35 mol m−2 yr−1. Nevertheless, their model does not in-
clude the DOC pool or the calcification process, which are
imperative to describe the dynamic of DIC and alkalinity in
the ocean.

Despite the above carbon system regional modeling ef-
forts, we notice that several processes that could contribute
significantly to the carbon cycle in the GoM have not been
investigated yet. The carbon cycle in the ocean is linked with
the nutrient cycle through photosynthetic activities, calcifi-
cation, and OM remineralization (Anav et al., 2013; Farmer
et al., 2021; King et al., 2015). OM remineralization could
be the most critical mechanism regulating the ocean carbon
system, followed by the CaCO3 cycle (Lauvset et al., 2020),
with the remineralization of small detritus accounting for
over 40 % of the DIC production on the shelf (Laurent et al.,
2017). Autochthonous nutrients from direct remineralization
of OM determine the gradient of DIC in the euphotic layer
(Boscolo-Galazzo et al., 2021; Boyd et al., 2019). During this
process, the fast-sinking of OM and higher particulate to dis-
solved ratio foster a larger sedimentation rate and more sig-
nificant DIC removal of the euphotic layers; on the contrary,
the slower sinking and faster decomposition rate of OM fa-
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vor nutrient and DIC retention in the euphotic layers (Davis
et al., 2019; Mari et al., 2017; Turner, 2015). The reminer-
alization of land-derived OM and CaCO3 precipitation are
significant factors controlling air–sea CO2 flux (Mackenzie
et al., 2004). Studies have revealed that the formation of ma-
rine CaCO3 (Burton and Walter, 1987; Inskeep and Bloom,
1985; Zhong and Mucci, 1989; Zuddas and Mucci, 1998) and
the dissolution of marine CaCO3 mineral are�-dependent as
well (Adkins et al., 2021). The � will be depressed as more
CO2 dissolves in seawater and can be used as an indicator for
the buffering capacity of the ocean carbonate system. Given
that � influences the calcification rate of marine organisms
and regulates the acidity of bottom waters, it should be con-
sidered in the CaCO3 cycle for a comprehensive carbon cycle
assessment.

By using the biogeochemical boundaries from one of the
latest CMIP6 products, our model inherited the climate per-
turbation signals (Liu et al., 2021) and the accumulative ef-
fect of carbon variables from the global solutions. Our re-
gional model includes critical carbon cycle processes lacking
in previous efforts, including the most up-to-date carbonate
chemistry thermodynamic parameterization, phosphate cy-
cling, formation and dissolution of CaCO3, and the inclu-
sion of the DOC as a semi-labile carbon pool. The objective
of this study is (1) to assess the feasibility and robustness
of utilizing global model products to drive a regional cou-
pled physical–biogeochemical model and (2) to examine the
temporal trend of key variables of the carbon system (pCO2,
pH, air–sea CO2 exchange, and �) of the surface ocean in
the GoM. In addition, to evaluate the impact of MARS and
the global ocean on GoM’s carbon cycling, two perturbed
experiments are designed. The following sections are orga-
nized: model setup is given in Sect. 2; in Sect. 3, we vali-
date the model’s performance against buoys, remote-sensing-
based ML solution, and ship-based measurements. The trend
of key carbon system variables over the past two decades and
an assessment of the contribution of riverine inputs and the
global ocean are presented in Sect. 4. An evaluation of our re-
gional model’s performance against existing regional models
is given in Sect. 5, together with an outlook on future model
development.

2 Method

Model setup

Our model is built on the platform of the Coupled Ocean–
Atmosphere–Wave–Sediment Transport modeling system
(COAWST; Warner et al., 2010). COAWST is an open-
source community model which includes the Model Cou-
pling Toolkit to allow data exchange among three state-of-
the-art numerical models: Regional Ocean Modelling Sys-
tem (ROMS, svn 820, Haidvogel et al., 2008; Shchepetkin
and McWilliams, 2005), the Weather Research and Forecast-

Figure 1. Gulf-COAWST model domain with water depth in color
(unit: m). Subregional definitions follow Xue et al. (2016), which
are the Mexico shelf (MX), western Gulf of Mexico shelf (WGoM),
northern Gulf of Mexico shelf (NGoM), western Florida shelf (WF),
and open GoM.

ing model (WRF, Skamarock, et al., 2005), and the Simu-
lating Waves Nearshore model (SWAN, Booij et al., 1999).
The carbon model presented in this study is based on a well-
validated coupled physical–biogeochemical model by Zang
et al. (2019, 2020), which covers the entire GoM waters
(Gulf-COAWST, Fig. 1). Gulf-COAWST has a horizontal
grid resolution of ∼5 km and 36 sigma-coordinate (terrain-
following) vertical levels. A third-order upstream horizon-
tal advection and fourth-order centered vertical advection are
used for momentum and tracer advection. The biogeochemi-
cal model is developed based mainly on the pelagic N-based
biogeochemical model Pacific Ecosystem Model for Under-
standing Regional Oceanography (NEMURO, Kishi, et al.,
2007, 2011). In this study, we extend the original 11 state
variables of the NEMURO, including nutrients (Si(OH)4,
NO3, NH4), plankton groups (ZP: predator zooplankton, ZL:
large zooplankton, ZS: small zooplankton, PL: large phy-
toplankton, PS: small phytoplankton), dissolved organic ni-
trogen (DON), particulate organic nitrogen (PON), and opal
(OPL), to 17, with added variables of phosphate (PO4), par-
ticulate inorganic carbon (CalC), dissolved organic carbon
(DOC), oxygen (O2), dissolved inorganic carbon (DIC), and
total alkalinity (TA). The stoichiometry between carbon and
nitrogen in the OM production and remineralization is set to
6.625 following Fennel (2008).

The revised biogeochemical model incorporates key pro-
cesses regulating the carbon model, including primary pro-
duction, river DIC, PON and DOC delivery, sediment carbon
burial, CO2 air–sea flux, CaCO3 cycling, and OM remineral-
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ization (Fig. 2). Widely used carbon system variables, such
as pCO2, pH, and �, are used as carbon system state indi-
cators. The carbon module that takes in DIC, TA, PO4, Si
(dissolved inorganic silicon), salt, and temperature for calcu-
lating pCO2, pH, �Arag, and �Calc largely follows the rec-
ommended best practices (Dickson et al., 2007; Eyring et al.,
2016; Orr et al., 2017; Zeebe and Wolf-Gladrow, 2001), with
an updated parameter prescription for dissociation constants
for carbonic acid (K1) and the bicarbonate ion (K2) (Millero,
2010), as well as solubility products for aragonite KA and
calcite KC (Mucci, 1983) with a pressure effect (Millero,
1982, 2007).

The inorganic carbonate mineral (mainly CaCO3) forms
during the photosynthetic activities of some phytoplankton
species and fosters aggregation of detritus and their sinking.
The rate of CaCO3 production follows a dynamic ratio re-
garding the primary production of small phytoplankton with
low-temperature inhibition and enhancement during bloom
conditions (Moore et al., 2004). The production and dissolu-
tion of CaCO3 are important processes for ocean acidity reg-
ulation, as its production (by 1 unit) nominally takes away a
unit of [CO2−

3 ] from water, which reduces the alkalinity and
DIC by 2 units and 1 unit, respectively. This process rou-
tinely happens during photosynthetic activities of some phy-
toplankton species (such as coccolithophores, parameterized
implicitly as a portion of small phytoplankton in this model)
and other marine calcifiers. Carbonate minerals produced in
the euphotic zone could be treated as equivalent storage of
alkalinity and are usually transported towards the ocean sed-
iment through sinking. Aragonite and calcite are two com-
mon mineral phases of CaCO3 secured by marine organisms
and are included in the model.�Calc and�Arag are calculated
as the equilibrium product of Ca2+ and CO2−

3 . When �>1,
calcification is thermodynamically favored, and when �<1,
dissolution is thermodynamically favored. In Eq. (1), [Ca2+]
and [CO2−

3 ] are the concentrations of calcium and carbon-
ate ions, respectively. [Ca2+] is determined through salinity
(Millero, 1982, 1995), and [CO2−

3 ] is calculated through the
carbon module. Ksp is the stoichiometric solubility product
dependent on pressure, temperature, and salinity. Ksp is de-
fined for aragonite and calcite as KA and calcite KC, respec-
tively.

�=

[
Ca2+][CO2−

3

]
Ksp

(1)

In our model, the sediment pool of sinking particles is a sim-
plified representation of burial and benthic remineralization
processes, whereby the flux of sinking materials out of the
bottommost grid point is added to the sediment pool and en-
ters the burial pool (remains inactive) with a dynamic ratio,
the active sediment pools undergo enzyme-aided decompo-
sition at rates regulated by temperature and oxygen and then
release a corresponding influx of ammonium, DIC, and alka-
linity at the sediment–water interface. Our model uses a CO2

Figure 2. Schematic plot showing major processes incorporated in
the carbon cycle.

production ratio of 0.138 between sediment aerobic respira-
tion and denitrification (Fennel et al., 2006) and an alkalinity
production ratio of 1.93 between pyrite burial and denitri-
fication (Hu and Cai, 2011). Upon being sunk to acidified
regions, the dissolution of CaCO3, regulated by �, can con-
sume dissolved CO2 and neutralize the acid.

The bulk formula for air–sea gas exchange for CO2 is
used following Wanninkhof (1992). Air–sea CO2 flux is cal-
culated with a time step of 240 s and output in the form
of a daily average. The gas transfer velocity coefficient of
0.31 cm h−1 is used in Eq. (2).

FCO2 = k660

(
Sc

660

)−1/2

s 1pCO2 (2)

where FCO2 is the air–sea CO2 flux (in mmol CO2 m−2 d−1),
Sc is the Schmidt number (nondimensional) (calculated fol-
lowing Wanninkhof, 2014), s is the solubility of CO2 in sea-
water (in mol CO2 m−3 µatm−1) (calculated following Weiss,
1974), and1pCO2 is the air–sea pCO2 difference (in µatm).
The term k660 is the quadratic gas transfer coefficient in
cm h−1 (converted to m d−1). We calculated the air–sea
CO2 flux using the relationships of gas exchange with wind
speed at 10 m over the sea surface (U10), following Wan-
ninkhof (1992). We used the ocean convention for the CO2
flux; i.e., a positive flux is defined as the ocean being a
sink of atmospheric CO2. Air pCO2 level is prescribed us-
ing a fitted curve from the column-averaged dry-air mole
fraction of atmospheric carbon dioxide from 2002 to the
present derived from a satellite product (merged dataset from
SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT, and OCO-
2, https://cds.climate.copernicus.eu/, last access: 24 May
2021; Dils et al., 2014).
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We performed a 20-year model hindcast covering the
period of 1 January 2000 to 31 December 2019. The physical
model setup was similar to that of Zang et al. (2020), with
ocean physical initial and boundary conditions interpo-
lated from the 1/12◦ data-assimilated Hybrid Coordinate
Ocean Model (HYCOM/NCODA, GLBu0.08/expt_19.1,
expt_90.9, expt_91.0, expt_91.1, expt_91.2, and
GLBv0.08/expt_93.0, https://www.hycom.org, last ac-
cess: 27 September 2021; Chassignet et al., 2003, 2013).
Physical boundary conditions are of daily frequency
and include u, v, ubar, vbar, zeta, temperature, and salt.
Atmospheric forcings with 6-hourly frequency include
ground-level or sea surface downwelling shortwave and
longwave radiation, ground-level or sea surface upwelling
shortwave and longwave radiation, surface air pressure,
surface air temperature, relative humidity, precipitation,
wind at 10 m. They were extracted from the NCEP Climate
Forecast System Reanalysis (CFSR) (Saha et al., 2010) and
Climate Forecast System Version 2 (CFSv2) (Saha et al.,
2011). See Table A2 for a list of model forcing frequencies.

The Coupled Model Intercomparison Project 6 (CMIP6)
participating GCMs consume enormous research resources
and generate unprecedented knowledge on global carbon
system evolution with a whole-ecosystem conservation per-
spective (Bentsen et al., 2019; Bethke et al., 2019; Boucher
et al., 2021, 2018; Danabasoglu, 2019a, b; Danabasoglu,
2019c, d; Guo et al., 2018; Jungclaus et al., 2019; Krasting
et al., 2018; Lovato et al., 2021; Neubauer et al., 2019; Se-
land et al., 2019; Swart et al., 2019; Wieners et al., 2019;
Ziehn et al., 2019). Utilizing GCMs results in a refined re-
gional model that extends their research value, especially
in bridging coarse GCM products with in situ field obser-
vations. With the interannual variation estimated by GCMs,
the regional model could take advantage of global models
by using dynamic boundaries that reflect climate oscillations
and carbon accumulation in oceanic waters. In this study,
we carefully evaluate various GCM products as candidates
for initial and boundary conditions for the biogeochemical
model. The two prognostic variables dissolved inorganic car-
bon (DIC) and total alkalinity (TA) are the essential data
needed to drive a regional oceanic carbon model. There are
no time-varying observational products or reanalysis of DIC
and TA that have ideal three-dimensional coverage of the
GoM. NCAR’s CESM2-WACCM-FV2 solution was chosen
to serve as the model boundary due to its relatively small bias
in the carbonate variables in the GoM, relatively high hori-
zontal resolution in the GoM compared with other GCMs,
and availability of nutrients and carbon variables (see Ta-
ble A1 for more details). Monthly boundary conditions of
the biogeochemical variables (DIC, DOC, TA, NO3, PO4,
Si, NH3) are extracted from CESM2-WACCM-FV2 solu-
tions (historical, r1i1p1f1, nominal resolution 100 km, Dan-
abasoglu, 2019b). As the global model simulation ended
in December 2014, the biogeochemical boundary condition
of 2014 was used repeatedly for the period from 2015 to

2019. The oxygen boundary condition is static without tem-
poral changes since O2 is not available from the CESM2-
WACCM-FV2 and is interpolated from the World Ocean At-
las 2018 (WOA18) product (Boyer et al., 2018; García et al.,
2019). Freshwater and terrestrial nutrient inputs from 47 ma-
jor rivers discharged to the GoM are applied as point sources
with daily frequency. River discharge and water quality data
for rivers in the US are collected from the US Geological Sur-
vey (USGS) stations (https://maps.waterdata.usgs.gov, last
access: 25 August 2020). River DOC is prescribed follow-
ing the values reported by Shen et al. (2012), with addi-
tional references from several other studies (Reiman and Xu,
2019; Stackpoole et al., 2017; Wang et al., 2013; Xu and
DelDuco, 2017). Mexican river discharge data are collected
from BANDAS (https://www.gob.mx/conagua, last access:
25 December 2019). Water quality data for Mexican rivers
are prescribed as the average of that of the Mississippi and
Atchafalaya rivers. River nutrient and carbon load are re-
constructed from available USGS observations (see Fig. 3
for time series of river DIC and TA input). Missing river al-
kalinity values are interpolated from climatological values,
and missing river DIC values are calculated from pH and al-
kalinity using the MATLAB program CO2SYS (Lewis and
Wallace, 1998). Validations of the model’s performance in
physics, nutrient cycle, and primary production can be found
in Zang et al. (2019, 2020). In this study, we focus on the
model’s performance in the carbon cycle, which is presented
in the next section.

Since the model-simulated DIC concentration in the wa-
ter column is sensitive to initial conditions (Hofmann et al.,
2011; Xue et al., 2016), using the initial condition from a
snapshot (January 2000) of the global model result would
be appropriate as the global model has been well stabilized
up to the year 2000 from its “pre-industry” experiment. The
regional model has the benefit of swift spin-up, with the bio-
geochemical model typically completing its spin-up in 1 year
(e.g., Große et al., 2019; Laurent and Fennel, 2019; Laurent
et al., 2021). We conducted a series of sensitivity tests and
confirmed that a 1-year spin-up period (the year 2000) is suf-
ficient for our current model setup. All results presented be-
low are based on model outputs from 2001 to 2019 unless
otherwise specified. To quantify the impact of river discharge
and the global ocean on the carbon system in the GoM, in ad-
dition to the control experiment wherein the historical prod-
uct of the CESM2-WACCM-FV2 experiment is applied as
the boundary conditions (from here, experiment “His”), two
perturbed experiments, “Bry” and “NoR”, are added. The
Bry experiment has clamped DIC and TA conditions as those
of the year 2000 for all following years while keeping all
other experiment setups the same as that of the His. The NoR
experiment eliminates the presence of all rivers in the model
while keeping the rest of the experiment setup the same as
that of the His. As most available observations are confined
to the surface ocean, except for the GOMECC transects, for
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Figure 3. River DIC and TA concentration prescribed in the model.
Grey lines are the interpolated daily concentration values; colored
data points are raw data collected from multiple sources.

this study we focus on the surface ocean carbon condition in
the NGoM and open GoM waters.

3 Validation

This section focuses on the validation of the model results via
comparison against autonomous mooring systems with sur-
face pCO2 measurements, ship-based measurements from
the Gulf of Mexico Ecosystems and Carbon Cruise transects
(GOMECC, Barbero et al., 2019; Wanninkhof et al., 2013,
2016), and pCO2 underway measurements (data downloaded
from https://www.ncei.noaa.gov/access/oads/, last access: 15
August 2021). Direct observations of the GoM carbon sys-
tem have been recognized as unbalanced among seasons
due to fewer data points available in winter compared to
other seasons. To overcome the sporadic direct measurement
dataset, we also performed a model–data comparison against
the remote-sensing-based ML product of sea surface pCO2
by Chen et al. (2019).

3.1 Model–buoy comparisons

Temporal variability of sea surface pCO2 was recorded by
the autonomous mooring system at two sites (CoastalMS

and coastal LA) operated by the Atlantic Oceanographic
and Meteorological Laboratory (AOML) of the National
Oceanic and Atmospheric Administration (NOAA). The
CoastalMS buoy site (for location see Fig. 1, data coverage:
14 January to 9 December 2009; 17 March 2011 to 4 Au-
gust 2012; 10 July 2013 to 10 February 2014; 10 Febru-
ary to 3 May 2014; 12 December 2014 to 22 March 2015;
30 March 2015 to 22 September 2016; 23 September 2016
to 29 May 2017) is predominately impacted by the Mis-
sissippi River followed by the coastal ocean, whereas the
CoastalLA buoy site (data coverage: 14 July to 7 Novem-
ber 2017; 14 December 2017 to 26 April 2019; 4 June 2019
to 12 August 2020; 12 August 2020 to 25 August 2021;
25 August to 29 November 2021) is mutually influenced
by the Mississippi River and the coastal ocean. The high-
frequency measurements provide a time-resolved picture of
year-round changing pCO2 values. Temperature and salinity
can influence the chemical equilibrium in the carbonate sys-
tem, therefore shifting the pCO2 values. Validating the tem-
perature and salinity at these two mooring sites is a prerequi-
site before looking into the surface pCO2 levels. In Fig. 4, the
top four panels compare the sea surface temperature (SST)
and salinity (SSS) between model and buoy measurements
and show satisfying model–data agreements, with correla-
tion coefficients larger than 0.75. At CoastalMS, the range
for sea surface pCO2 is 150∼ 600 µatm. Sea surface pCO2
records are more volatile at CoastalLA with a maximum
value >800 µatm and a minimum value around 150 µatm.
Following the salinity drop, pCO2 at the CoastalMS site is si-
multaneously reduced, demonstrating the river’s influence on
both salinity and pCO2. At CoastalLA, however, the pCO2
level does not necessarily follow the trend of salinity, im-
plying complex controlling factors in addition to the river in-
puts. The bottom two panels of Fig. 4 show acceptable agree-
ment between measured and simulated sea surface pCO2,
with a correlation coefficient of 0.27 between modeled and
observed surface pCO2 at the CoastalMS buoy location and
a correlation coefficient of 0.55 between modeled and ob-
served surface pCO2 at the CoastalLA buoy location. We
notice model–data discrepancies in April 2018 at CoastalLA
and July 2011 at CoastalMS and ascribe such bias to the un-
certainty in the riverine DIC input prescription and the lim-
ited model horizontal resolution (∼ 5 km).

3.2 Model–cruise comparisons

Cruise carbon measurements include underway water pCO2
data and conductivity–temperature–depth (CTD) bottle re-
sults. We compare the model result at the LA transect
with the observations of GOMECC cruises conducted at the
same location during GOMECC1 in 2007, GOMECC2 in
2012, and GOMECC3 in 2017. Measurements of TA dur-
ing GOMECC cruises followed Dickson’s definition (1981),
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Figure 4. Time series of SST, SSS, and pCO2_sea at sites CoastalLA and CoastalMS.

wherein the TA is expressed as Eq. (3).

TA=
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Equation (3) contains 14 variables, among which
[
PO3−

4

]
is explicitly modeled as an active tracer,

[
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]
,[
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3

][
B(OH)−4
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,
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OH−
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,
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4

][
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,
[
H+
]
,

[HF], [H3PO4], and
[
HSO−4

]
are calculated by the carbon

module, and
[
HS−

]
, [HNO2], and [NH3] are unaccounted

for. Figure 5 shows the vertical profiles of observed DIC,
TA, and their ratio collected at the LA transects (−90◦W,
27.5–29.1◦ N, shown in Fig. 1) overlaid with the model so-
lution; the top 200 m depth is stretched three times to have
a better view of the more densely sampled observational
data, and a black dot is placed in the location of each ob-
servational data point, with the oversized colored dot rep-
resenting the value of the measurement. All three transects
were taken during July when nutrient supply from the MARS
was high. Model-simulated profiles at the transects are taken
from the closest date of the daily averaged output. The gen-
eral trends in Fig. 5 for DIC, TA, and their ratio demon-
strate a good match between the model result and the in
situ CTD data. A relatively low surface DIC concentration
(<2150 mmol m−3) above the 200 m isobath demonstrates
the river’s influence at the NGoM. The general increasing
trend of DIC with depth confirms the presence of a biologi-
cal pump, whereby inorganic carbon is utilized during pho-
tosynthesis in the euphotic layer. Subsequently, the gener-

ated OM sinks into deeper waters while being remineralized
along the way. The TA profiles show more variation com-
pared with DIC, for which a lower TA concentration (<2380
milliequivalents m−3) could generally be found at the sur-
face as the direct dilution from river discharge, followed
by a quick increase to ∼ 2380 milliequivalents m−3 in the
euphotic layer due to photosynthetic activities, which gen-
erate alkalinity. Deeper, the TA profiles show a decreasing
trend between 200 and 700 m, which could be explained by
the water column respiration and nitrification. The TA pro-
files show a slow increase from 800 m and deeper, which
coincides with the alkalinity generation processes in sedi-
ment and possibly dissolution of carbonate minerals, both
adding to the bottom water TA. The TA /DIC ratio has a
maximum at the surface due to low DIC concentration and
decreases with depth as DIC concentration increases. The
last column in Fig. 5, namely (d), (h), and (l), quantifies the
difference between the model solutions as well as the ob-
servations and the distribution of the difference. Figure 5d
shows that 51.2 % of model–obs difference for DIC is within
[−10, 10] µmol kg−1. Similarly, Fig. 5h shows that 49.8 % of
model–obs difference for TA is within [−10, 10] µmol kg−1,
and Fig. 5l shows that 91.6 % of model–obs difference for
the TA /DIC ratio is within [−0.020.02]. The model’s root
mean square error (RMSE) for DIC, TA, and the TA /DIC
ratio over the GOMECC (2007–2017) LA transect dataset is
30.97, 26.86, and 0.014, respectively.

3.3 Model–ML pCO2 product comparisons

Direct comparison between cruise measurements of ocean
surface pCO2 and daily averaged model results might suf-
fer from systematic bias due to the sparsity of cruise data,
both temporally and spatially. The ML model generates sur-
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Figure 5. Discrete measurement of DIC and TA along the LA transect during GOMECC1, GOMECC2, and GOMECC3 cruises shown as
oversized scattered dots (with the little black dots indicating their locations) compared with model results in color contour, with the water
depth shown on the left side of each figure in meters. The distributions of model bias and RMSE for DIC, TA, and the TA /DIC ratio
combining the three GOMECC cruises at the LA transect are shown in (d), (h), and (l), respectively.

face pCO2 from Chen et al. (2019) integrated >220 cruise
surveys for 2002–2019 and MODIS ocean color product cov-
ering 2002–2017. The comparison between the two surface
pCO2 products is shown in Fig. 6, where surface pCO2 re-
sults from Chen et al. (2019) are denoted as “ML” and re-
sults from this work are denoted as “Model” for the monthly
climatology from July 2002 to December 2017. The two re-
sults exhibit a similar spatial distribution of surface pCO2,
with our model result revealing more dominant features
from the Loop Current in the open ocean. Compared with
the ML model, our model produces lower pCO2 estimates
over NGoM during winter and fall, higher pCO2 estimates
over WF during summer, and a stronger influence from the
Caribbean Sea. Chen et al. (2019) reported that no satellite
data were found for pCO2<145 µatm or >550 µatm during
their model development. This can also be a factor when con-
sidering the differences between the two products. Further
comparison between our model and other products can be
found in Sect. 5.1.

Besides buoy records, transects, and the ML products,
we also perform an extensive model–data comparison using
available ship-based underway pCO2 measurements from

the Ocean Carbon and Acidification Dataset (https://www.
ncei.noaa.gov/access/oads/, last access: 12 October 2021).
These extensive model–data comparisons give us confidence
that our model, driven by carbon boundary conditions from
the global model, can reproduce temporal, spatial, and verti-
cal variability of the CO2 dynamics in the GoM.

4 Result

In this section, we present the spatial and temporal pattern of
key carbon system variables, namely pCO2, pH, �, and air–
sea CO2 flux simulated over the past 20 years in the GoM. In
this study, we emphasize the surface carbon condition in two
regions: NGoM and the open GoM, where most existing in
situ data are distributed. We perform a linear fit of the time
series of the key carbon system variables in each region and
show the fitted relationships in Fig. 7. The slopes of the fitted
linear plot give estimations of the change rate of each carbon
variable over the past 2 decades.
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Figure 6. Comparison of surface pCO2 between the ML model (Chen et al, 2019) and this work.

4.1 pCO2

We simulate a generally increasing trend in surface pCO2
level for both NGoM and open GoM, with an increasing
rate of 1.61 and 1.66 µatm yr−1, respectively (Fig. 7). Sea-
sonal ocean surface pCO2 variation is primarily affected by
temperature variations. To evaluate the pCO2 trend without
temperature effects, we decouple the thermal and nonther-
mal components of pCO2 at the ocean surface using Eqs. (4)
and (5) and further extract the pCO2 variation due to gross
primary production and air–sea CO2 flux. The temperature
sensitivity of CO2 of γT = 4.23 % per degree Celsius, pro-
posed by Takahashi et al. (1993), is used to perform the ther-
mal decoupling in Eqs. (4) and (5). The thermal effect on
pCO2 (pCOth

2 ) is defined as the deviation between apparent
pCO2 and the estimated pCO2 at the mean SST (denoted as
<SST>). The nonthermal counterpart (pCOnt

2 ) is obtained
by removing the thermal effect from the pCO2 time series

using Eq. (5). Note that this definition of pCOth
2 is different

from the original definition given by Takahashi et al. (2002).
The new definition allows the thermal and nonthermal CO2
components to sum up to the apparent pCO2. pCO2 vari-
ations due to gross primary production are estimated from
the carbon module based on the DIC consumed by gross pri-
mary production and denoted as pCOGPP

2 . pCO2 variations
due to air–sea CO2 flux are calculated from the carbon mod-
ule based on the DIC change from the air–sea exchange and
denoted as pCOflux

2 .
The contribution from gross primary production (GPP) is

the process that directly affects the CO2 uptake, and GPP
can be calculated by tracking the photosynthesis activity of
diatoms and small phytoplankton (which is a function of so-
lar radiation, temperature, nutrients, and phytoplankton con-
centrations). Respiration, on the other hand, is more compli-
cated to quantify since it concerns both living biota (phyto-
plankton, zooplankton) and nonliving detritus (PON, DOC).
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Figure 7. Time series and trend analysis of sea surface (a) pCO2, (b) pH, and (c) �Arag for the NGoM (blue) and open GoM (red). Solid
lines depict the daily spatial mean value; shaded areas stand for 1 standard deviation, and dashed lines trace the linear fit of the time series.

Both respiration at the surface and respiration that happens in
deeper water as detritus sinks modify DIC concentration and
create concentration gradients. We leave the respiration in the
end-member of the pCOnt

2 components, which incorporated
various mixing processes (e.g., river water and oceanic wa-
ter mixing, vertical mixing of upwelled waters, horizontal-
advection-induced lateral transport of tracers with concen-
tration gradients, and entrainment of waters with different
chemical nature – i.e., temperature, salt, DIC, TA, and detri-
tus concentration). Remineralization and respiration are in-
cluded in the term pCOmixing

2 due to the result of the two
processes altering water chemical nature (DIC, TA, detritus

concentration), and the impacts of water chemical nature on
pCO2 are constantly being modified by (and as a result of)
the mixing process.

pCOth
2 = pCO2 ·

[
1− exp(γT · (< SST>−SST))

]
(4)

pCOnt
2 = pCO2 · exp(γT · (< SST>−SST)) (5)

pCOnt
2 = pCOGPP

2 + pCOflux
2 + pCOmixing

2 (6)

Figure 8 shows the seasonal and spatial patterns of
four decoupled pCO2 components, namely pCOth

2 , pCOnt
2 ,

pCOGPP
2 , and pCOflux

2 . The pCOth
2 patterns in the second row

(e, f, g, h) of Fig. 8 reflect the fluctuation of pCO2 due to ther-
mal effects. Over the four seasons, a general pattern of rising
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pCOth
2 from spring to summer and a gradual reduction from

summer onwards can be observed. The NGoM shelf exhibits
the lowest pCOth

2 values during winter, while WF shows el-
evated pCOth

2 values during summer. The higher pCOth
2 val-

ues in the southern part of the Yucatan shelf reveal the warm
water flowing into the GoM from the Caribbean Sea. The top
row (a, b, c, d) of Fig. 8 shows the nonthermal component
of pCO2. The relatively high pCOnt

2 during winter on the
NGoM shelf, compared to that of the open GoM, shows the
strong solvation effect of CO2 with low SST, contributing to
a high DIC /TA ratio and strong carbon uptake.

The lower two rows of Fig. 8 show pCO2 changes due
to the gross primary production and CO2 air–sea exchange,
respectively. The pCOGPP

2 reflects the intensity of primary
production in terms of pCO2 reduction. pCOGPP

2 has larger
magnitudes in NGoM during spring and summer and is
gradually attenuated during and after fall. The large mag-
nitudes of pCOGPP

2 during summer in NGoM waters and
the open GoM region following the extension of the MARS
plume suggest strong biological CO2 removal in those re-
gions. These results show that gross primary production has a
stronger regulation on surface pCO2 during spring and sum-
mer in river-dominated waters and upwelling regions. At the
same time, a minor contribution from gross primary produc-
tion can be seen during winter, on the flat and shallow WF,
and in the open GoM regions south of the Loop Current.

The pCOflux
2 reflects the intensity of air–sea CO2 exchange

attempting to mitigate the disequilibrium caused by local
physical and biological processes. The relatively high value
of pCOnt

2 and low magnitude of pCOGPP
2 , as well as low river

discharge (minimal river water mixing) in the WF during
winter, indicate a strong CO2 uptake from the atmosphere
due to low SST. This analysis agrees with the low pCOth

2
and high pCOflux

2 values in the WF during winter, as shown
in Fig. 8d and p. Situations during seasons other than winter
are more complicated due to biological activities and mixing.
The Mississippi delta region has a high pCOth

2 value during
summer; however, combined with the effects of mixing and
strong primary production (large magnitude of pCOGPP

2 ),
this region acts as a strong carbon sink that exhibits a high
value of pCOflux

2 compensated from the atmosphere. Figure
8 demonstrates that most of the time during the year, the
surface pCO2 pattern is not dominated by a single factor
but a combination of multiple controlling processes. The re-
sult of pCO2 decomposition agrees with the current view of
the pCO2 dynamic and carbon uptake patterns in the GoM,
which is strong carbon uptake during winter due to the ther-
mal effect and high biological CO2 drawdown during spring
and summer under the riverine influence.

4.2 pH

Ocean surface pH in the GoM shows a clear decreasing trend,
with a 0.0020 yr−1 decrease over the NGoM region and a
0.0015 yr−1 decrease over the open GoM region. Figure 9

shows the seasonal pattern of ocean surface pH over the
GoM. Spatial and seasonal pH patterns show larger variation
over the NGoM, especially on the inner shelf (depth<50 m).
The pH level in the surface water is closely associated with
temperature, photosynthetic activities, and water mixing. The
high pH value on the NGoM shelf reveals the strong in-
fluence of riverine alkalinity export and nutrient-stimulated
primary production. The lower pH values on the WF shelf
during summer and the generalized greater pH values over
NGoM during winter demonstrate the high pH sensitivity to
SST. The upwelling region along the western Yucatan shelf
shows reduced pH values all year-round compared with its
surrounding waters. The upwelling along the WGoM slope
has a similar effect of reducing and maintaining a relatively
low pH, effectively forming a pH boundary between the shelf
water and the open GoM. The open GoM is largely domi-
nated by the warmer and lower-pH water from the Caribbean
Sea throughout the year.

4.3 Aragonite and calcite saturation state

Aragonite undersaturation occurs ([CO2−
3 ]<66 µmol kg2)

before calcite undersaturation ([CO2−
3 ]<42 µmol kg2)

(Feely et al., 2022, 2009). As a result, �Calc is approxi-
mately 50 % higher than�Arag, and their spatial and seasonal
variations are very similar, as shown in Fig. 10. Variations
in temperature, alkalinity, and pCO2 impose important
controls on �Arag. The multiyear variability of �Arag at the
ocean surface is shown in Fig. 7c. The NGoM region shows
a smaller decreasing trend in �Arag (0.0045 yr−1) compared
to that of the open GoM (0.0068 yr−1). Note that the data
in Fig. 7 do not include water from the shallow shelf waters
(water depth <10 m); therefore, the trend in NGoM does not
incorporate the condition in coastal estuaries. The spatial
distribution of �Arag across the GoM depicts a healthy
level of � and a low risk of ocean acidification (Fig. 10).
While the coastal ocean generally has a relatively high
� level, some coastal locations warrant special attention
when evaluating their tendency towards calcium mineral
dissolution. These locations include coastal regions that
experience a large load of riverine OM inputs (e.g., the
Mississippi River delta in summer) and the upwelling
regions that receive relatively higher-acidity water from
the bottom ocean (e.g., west of Yucatan). These regions
show significant � reductions compared to the surrounding
waters and are potential victims of ocean acidification. The
influence of the river on � is complex. On one hand, a
high nutrient level of river discharge could stimulate a high
photosynthetic rate, which consumes DIC and increases
�. On the other hand, photosynthesis favors calcification,
which consumes carbonate ions and reduces �. Therefore,
� is subject to increase with stronger photosynthesis and
decrease with stronger calcification. Hence, the magnitude
of the overall effect will depend upon photosynthetic rates
and the calcification rate. In this work, two phytoplank-
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Figure 8. Spatial distribution of sea surface pCO2 over four seasons. From the top to the bottom row: pCOth
2 (a through d), pCOnt

2 (e through
h), pCOGPP

2 (i through l), pCOflux
2 (m through p; positive indicates the air–sea CO2 flux works in the direction of increasing sea surface

pCO2).

Figure 9. Seasonally averaged sea surface pH over 2001–2019.

ton groups are modeled, diatoms (silicifying) and small
phytoplankton (implicitly including the calcifying coccol-
ithophores, foraminifera, and dinoflagellates), of which
only the small phytoplankton group has the potential to
conduct calcification (Raven and Giordano, 2009). Besides
being regulated by temperature and small phytoplankton
concentration, the calcification rate also depends on the
composition of the phytoplankton population. The small
phytoplankton group has a survival advantage at relatively
low nitrogen concentrations and could be grazed by two zoo-
plankton groups (mesozooplankton and microzooplankton),
whereas diatoms are more nutrient-demanding and can be
grazed by three zooplankton groups (predator zooplankton,
mesozooplankton, and microzooplankton). The competitive
phytoplankton evolution shapes the relative rates between
photosynthesis and calcification on the NGoM shelf during
summer. The reduced � to the east of the Mississippi River
delta is a combined result of high-DIC water entrained by
Loop Current eddies west of the delta and an increased ratio
of small phytoplankton in offshore waters.
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Figure 10. Seasonal mean sea surface �Arag and �Calc over 2001–2019.

4.4 Air–sea CO2 flux

Air–sea CO2 flux is calculated from daily averaged model
data from 2001–2019 (Table 3). The GoM overall is a
CO2 sink with a mean flux rate of 0.62 mol C m−2 yr−1

(11.77 Tg C yr−1), which is commensurate with the reported
value of 11.8 Tg C yr−1 by Coble et al. (2010). The greatest
carbon uptake rate occurs in winter (1.97 mol C m−2 yr−1),
while the weakest carbon uptake is present in fall
(0.16 mol C m−2 yr−1). The strongest carbon efflux is sim-
ulated in summer (−0.57 C m−2 yr−1). On average, water in
the NGoM acts as a sink throughout the year, and the wa-
ter in the open GoM acts as a weak source during summer
(and fall for 2002, 2004, 2006, and 2009) and a sink dur-
ing the rest of the year. The direction and magnitude of the
air–sea exchange can be seen in Fig. 11, where a positive
number indicates that the ocean is a carbon sink. The NGoM
is a very strong CO2 sink year-round, and the open GoM is
a source of CO2 during summer but a sink in the rest of the
year (except during fall in a few years), as shown in Fig. 11b.
There are clear trends and patterns in multiyear CO2 air–sea
flux, as shown in Fig. 11a, where a greater air–sea CO2 flux
average could be seen at the end of 2019 than that of 2001,
resulting in a stronger carbon influx in both regions. A signif-
icant anomaly in the middle part of the record (2009–2011)
can be observed, which could result from the influence of a
large negative North Atlantic Oscillation (NAO) index and El
Niño in 2010 (Buchan et al., 2014). Similar observations in
the Caribbean Sea are attributed to the single-year anomalies
in the climate indices and the climate mode teleconnection
(Wanninkhof et al., 2019).

4.5 Contribution from river and global ocean

In this section, we further diagnose river discharge and the
global ocean’s impacts on the GoM carbon system via a com-
parison between the control experiment (His) and the two
perturbed experiments (Bry and NoR). In the Bry experiment
the clamped boundary conditions that maintain the DIC and
TA level as that of the year 2000, and in the NoR experiment
the river forcing was removed to examine the impact of flu-
vial input on the coastal carbon system.

Figure 12 shows the multiyear mean levels of the four car-
bon variables (pCO2, pH, �Arag, and CO2 flux) simulated
by the three experiments. Table 1 summarizes the mean lev-
els of pCO2 over the NGoM and open GoM. The definition
of pCOth

2 , pCOnt
2 , pCOGPP

2 , pCOflux
2 , and pCOmixing

2 can be
found in Sect. 4.1. The pCOmixing

2 is defined in Eq. (6), which
reflects the pCO2 level due to the water mixing. It can also
be considered the pCO2 level determined by the water with
a multiyear mean temperature and without the influence of
gross primary production or air–sea CO2 flux.

The most salient difference among the three experiments
is the significant elevation of the annual mean pCO2 level
(in Fig. 12) in the NGoM by the NoR experiment, com-
bined with a significantly reduced carbon sink during sum-
mer (in Fig. 13, from 0.287 to −0.093 Tg per season us-
ing His as a benchmark). The difference can be better re-
solved by the pCO2 decomposition results shown in Ta-
ble 1, where a drastic change in the water carbon system
emerges in the NGoM during the NoR experiment (com-
pared to the other experiments with river input), evidenced
by the large pCOmixing

2 value deviating from that of the His
and Bry experiment in the NGoM region during spring, sum-
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Figure 11. Air–sea CO2 exchange over the GoM: (a) multiyear CO2 flux regression over the weekly mean levels in NGoM and open
GoM; (b) seasonal CO2 air–sea exchange budget over 2 decades in NGoM and open GoM.

mer, and winter. The low values of pCOnt
2 in NGoM dur-

ing summer can be explained by a strong biological draw-
down of CO2 associated with the high productivity fueled
by the riverine nutrient supply. pCOGPP

2 components of
−35.35 and −35.46 µatm, corresponding to the strong bio-
logical drawdown of CO2 in Bry and His experiments, are in
sharp contrast to that of the NoR experiment, which is only
−3.10 µatm. Consequently, distinct patterns of CO2 air–sea
flux are shown in Fig. 13, and highly contrasting CO2 air–
sea-flux-induced surface pCO2 changes are shown in Table 1
(pCOflux

2 ). The summer pCOflux
2 component for NGoM of

the two experiments with river inputs exhibits a relatively
large value (∼ 43 µatm) compared with that of the NoR ex-
periment (0.2 µatm), demonstrating a much smaller disequi-
librium between oceanic and atmospheric pCO2 when rivers
are absent. The changes introduced by removing the river
showcase the dominating impact of river input on the NGoM
carbon system in terms of gross primary production, surface
pCO2 level, and air–sea CO2 exchange. Due to the different
intensities of gross primary production, in the His experiment
sediment PON concentration is 6 times that of the NoR ex-

periment, and riverine nutrients in His fostered a∼ 105 times
higher PON burial rate in NGoM sediments than that of NoR.

Table 1 show a close resemblance in the magnitude and
seasonal pattern between the Bry and His experiment in
the open GoM region, with a small yet steady reduction in
pCOmixing

2 by the Bry experiment among all seasons. The
small reductions in pCOmixing

2 of the Bry experiment com-
pared to that of His reflect the contribution from extraneous
carbon accumulation from the global ocean that is included
in the His experiment. As expected, slightly greater CO2 sink
values are reported in Fig. 13 for Bry than His. Since the
Bry experiment has a smaller carbon accumulation in the
open GoM region compared to that of the His experiment,
the ocean surface requires a slightly greater carbon uptake to
reach equilibrium with the atmosphere. Since oceanic water
is a natural buffer system and the ocean surface is under con-
stant interaction with the atmosphere, it is reasonable that the
His and Bry experiments do not show significant differences
in surface carbon variables. However, this does not mean that
the accumulative signal of DIC from the global ocean is ne-
glectable. As shown in Fig. 14, the ocean water equilibrium
witnessed migration over the 20-year simulation. Compared
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Figure 12. Multiyear synoptic of sea surface pCO2, pH, CO2 air–
sea flux, and�Arag with His, Bry, and NoR experiments. Color bars
show the corresponding mean level from 2001 to 2019. Color leg-
end: blue – NGoM, red – open GoM, yellow – GoM-wide. The units
for pCO2, pH, CO2 flux, and �Arag are µatm, unitless (full scale),
mmol m−2 d−1, and unitless, respectively (note that the CO2 air–
sea flux used the ocean convention, with a positive value indicating
transport from air to sea; i.e., the ocean is a sink).

with the Bry experiment, the His experiment received accu-
mulated carbon input from the global ocean and underwent a
[CO2−

3 ] reduction as large as 15 % in some affected regions at
the 100 m depth. Combining the results from the three exper-
iments, we conclude that, in addition to elevated atmospheric
CO2 levels, inputs from both MARS and global oceans con-
tribute to the overall acidification trend in GoM, with the im-
pacts from MARS mainly limited to the NGoM shelf region
and the global ocean’s impacts spanning the open GoM.

5 Discussion

In this study, we demonstrate that the regional high-
resolution carbon model can reproduce the spatial and sea-
sonal patterns of ocean surface pCO2 in the GoM and gen-
erate reliable TA /DIC profiles in the NGoM shelf. We de-
tect a consistent acidification trend in the GoM over the past
2 decades. In this section, we present a side-by-side evalu-
ation of the regional model with GCMs, global climatology
products, and other regional models, followed by an envi-
sioning of the future outlook and model development.

5.1 Model performance

In this section, we further evaluate the performance of our
model via comparison against different global and regional
models, as well as climatological products. The GoM re-
gion has limited observations of dissolved inorganic carbon

(DIC) and total alkalinity (TA), and observational data cov-
ering different depths are even fewer. Due to lack of ob-
servations, global climatology products either have no cov-
erage in the GoM region, e.g., mapped observation-based
oceanic DIC monthly climatology from the Max Planck In-
stitute for Meteorology (MOBO-DIC_MPIM) (NCEI Ac-
cession 0221526) (Keppler et al., 2020), or only contain
surface carbon variables, e.g., the global gridded dataset
of the surface ocean carbonate system called OceanSODA-
ETHZ (v2021,NCEI Accession 0220059) (Gregor and Gru-
ber, 2020), climatological distributions of pH, pCO2, total
CO2, alkalinity, and CaCO3 saturation in the global surface
ocean (NCEI Accession 0164568) (Takahashi et al., 2017),
the partial pressure of carbon dioxide collected from sur-
face underway observations in the worldwide oceans (NCEI
Accession 0161129) (Bakker et al., 2017), an observation-
based global monthly gridded sea surface pCO2 product
(NCEI Accession 0160558) (Landschützer et al., 2017), and
a global ocean pCO2 climatology combining open-ocean and
coastal areas (NCEI Accession 0209633) (Landschützer et
al., 2020). The most updated global monthly TA (NCEI Ac-
cession 0222470) (Broullón et al., 2020b) and DIC (NCEI
Accession 0222469) (Broullón et al., 2020a) products offer
a 12-month climatology with a 1◦×1◦ spatial resolution and
102 vertical levels. Nevertheless, these products utilize a neu-
ral network approach to achieve three-dimensional coverage.
Thus, one should be cautious that the generated monthly cli-
matology products are not built solely from the interpola-
tion of observations (Cervantes-Díaz et al., 2022). Rather,
they are machine learning products with many untested as-
sumptions. For instance, they use pCO2 from LDEOv2016
(Takahashi et al., 2017) and TA from Broullón et al. (2019)
to compute surface DIC values to increase the spatial cover-
age in the training data used by the machine learning model
(Broullón et al. 2020a, b). In contrast, GCMs are based on
large-scale circulations that are coupled with biogeochemical
processes. They utilize rigorous reasoning numerical meth-
ods with conservation schemes and should therefore have
higher inherent consistency. In the following, we check the
bias of several regional model products (see Fig. 15) using
mean bias, RMSE, and R defined as follows:

Meanbias=
∑N

i=1
(Mi −Oi)/N, (7)

RMSE=

√
1
N

∑N

i=1
(Mi −Oi)

2, (8)

R =
Cov(M,O)
σmσo

(9)

where M stands for model output, O stands for observation,
Cov refers to the covariance, and σ indicates the standard
deviation. Further, we utilized the Taylor diagram to assess
the model’s ability to capture spatial patterns with regard to
a given set of reference data (Babaousmail et al., 2021). The
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Table 1. Sea surface pCO2 decomposition among experiments.

Unit: µatm NGoM Open GoM

His Bry NoR His Bry NoR

Spring pCO2 356.73 356.20 351.04 371.55 371.13 371.12
pCOnt

2 432.75 432.11 423.55 399.59 399.14 399.09
pCOth

2 −76.03 −75.92 −72.51 −28.04 −28.01 −27.98
pCOGPP

2 −26.83 −26.79 −3.34 −2.95 −2.96 −2.64
pCOflux

2 56.83 57.41 49.24 3.41 3.46 3.46

pCOmixing
2 401.72 400.43 376.06 399.12 398.64 398.27

Summer pCO2 369.53 368.98 413.42 417.45 417.00 415.42
pCOnt

2 327.13 326.63 364.24 382.49 382.09 380.7
pCOth

2 42.41 42.35 49.18 34.95 34.91 34.72
pCOGPP

2 −35.46 −35.35 −3.10 −3.44 −3.36 −2.09
pCOflux

2 43.41 43.57 0.20 −2.38 −2.34 −2.19

pCOmixing
2 318.90 318.13 367.24 388.31 387.79 384.97

Fall pCO2 345.82 345.56 352.78 393.38 393.12 392.80
pCOnt

2 353.69 353.43 358.06 370.78 370.54 370.28
pCOth

2 −7.8786 −7.88 −5.28 22.60 22.58 22.52
pCOGPP

2 −13.64 −13.61 −1.72 −1.69 −1.62 −1.27
pCOflux

2 63.87 64.08 58.23 0.19 0.23 0.25

pCOmixing
2 301.73 301.22 299.60 372.28 371.94 371.29

Winter pCO2 322.56 322.32 305.96 348.71 348.20 348.80
pCOnt

2 458.11 457.77 432.23 393.36 392.80 393.45
pCOth

2 −135.55 −135.45 −126.27 −44.65 −44.59 −44.65
pCOGPP

2 −8.01 −8.06 −1.88 −1.77 −1.82 −1.67
pCOflux

2 89.62 90.03 121.45 6.85 6.92 6.83

pCOmixing
2 373.68 372.96 308.51 388.27 387.69 388.29

Taylor skill score (TSS) is defined by Eq. (10):

TSS=
4(1+R)2(

σo
σm
+
σm
σo

)2
(1+R0)

2
, (10)

where σo and σm are the standard deviation of the observation
and model, respectively. The value of TSS ranges from 0 to 1,
with values close to 1 corresponding to better performance.
R is the correlation coefficient between the observation and
model, and Ro is the maximum correlation coefficient attain-
able (we use 0.999).

The nondimensional model skill defined in Eq. (10) can be
used to quantify the improvement of the model to reproduce
observed data with regard to the climatological value:

skill= 1−
∑N
i=1(di − I [mi])2∑N
i=1(di − ci)

2
, (11)

where di represents the available measurements, (di−=[mi])
is the observation–model difference, and (di − ci) is the
observation–climatology difference (Zhang et al., 2012).
Usually, a skill of 0.25 means the model can reproduce 25 %

Figure 13. Seasonal air–sea CO2 exchange at NGoM and the open
GoM region among the His (historical), Bry (fixed boundary), and
NoR (non-river) experiments.
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Figure 14. Comparison of monthly averaged carbonate ion concentration ([CO2−
3 ]) between His and Bry at 100 m depth in 2019. (a) De-

cember mean [CO2−
3 ] of the His experiment, (b) December mean [CO2−

3 ] of the Bry experiment, and (c) difference between (a) and (b).

more variance than those already described in climatology.
By using the observation–model difference from this work
and the observation–climatology difference from other mod-
els and climatology, we can evaluate the relative performance
between this work as well as other models and climatology
– a positive skill value ideally indicates improvement of the
model in the numerator over the model and climatology in
the denominator, while a negative skill value indicates the
opposite. We use the other products as the reference to calcu-
late the observation–product difference in the denominator,
use our model to calculate the observation–model difference
in the numerator, and list the corresponding skill value in Ta-
ble 2, indicating the percentage improvement or deterioration
gained by this work over the referenced product.

In Fig. 15, we interpolate regional model results to
the nearest location of the underway surface pCO2 mea-
surements. We limited the observational data from 1 Jan-
uary 2001 to 31 December 2014 to ensure the ideal cover-
age of most products. Model results by Xue et al. (2016)
only had temporal coverage from 2005 to 2010. Surface DIC,
TA, temperature, and salinity from Gomez et al. (2020) were
downloaded from NCEI Accession 0242495 (Gomez et al.,
2021) to derive the surface pCO2 patterns according to the
method described in their paper. Underway pCO2 observa-
tion data are compared with model results of the nearest year
in Fig. 15. The statistics of model–data comparison are listed
in Table 2.

For regional models, the 12-month ML-based climatology
product by Chen et al. (2019) has the best performance in
terms of RMSE (35.67) and skill (−0.11) (Table 2). How-
ever, the 12-monthly climatology product suffers from a
temporal disadvantage when compared with model products
with smaller time frequency. For example, model Chen 2019
had an R value of 0.54, while the daily averaged model (this
work) had an R value of 0.59. The multiyear monthly prod-
uct by Xue et al. (2016) has the largest RMSE (84.92) among

the tested products and overestimates shelf regions while un-
derestimating pCO2 in the open-ocean region (especially the
Loop Current). Overall, model Xue 2016 performs poorly in
regard to surface pCO2 with a low R value of 0.20 and a
low TSS of 0.24, and the model in this study can reproduce
80 % more variance than that already described in model Xue
2016 (the skill of this work over model Xue 2016 is 0.80). In
addition, the TSS of this work is 0.63, which is higher than
that of the model Xue 2016 (0.24), supporting one of the ma-
jor findings of this work that the NGoM is a carbon sink in-
stead of a source during summer. Likewise, the open ocean
should not be as strong a carbon sink as Xue et al. (2016)
suggested since their estimated pCO2 in the open ocean is
significantly lower than the observations. Model results by
Gomez et al. (2020) had a relatively low RMSE of 42.65 and
a relatively high TSS of 0.57 among all models. When using
model Gomez 2020 as the reference, this work generated a
skill score of 0.22. Figure 15 reveals that model Gomez 2020
tends to overestimate pCO2 on the northwest shelf of the
GoM and underestimate it in the open ocean, especially the
southern GoM connected with the Caribbean seas.

In Fig. 16, we extracted the monthly surface pCO2 trend
at two buoy locations from the regional models and clima-
tology products to be compared with the monthly averaged
buoy pCO2 measurements. Taylor diagrams are shown for
an integrated evaluation of the standard deviation and cor-
relation coefficient of each model and climatology product
concerning observation at the two buoy locations. At the two
buoy locations, most products tend to overestimate the sum-
mer pCO2, with model Xue 2016 yielding the largest overes-
timation. The coastal buoys recorded a typical low during the
May, June, and July period, but most products failed to cap-
ture such a trend. Global models with coarse resolution and
simplified, if any, river flux prescriptions generally perform
poorly in the coastal region. Even for the relatively well-
performing regional Gomez 2020 and the ML-based model
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Chen 2019, an overestimation as large as 100 µatm during
May or June is found. Such an overestimation likely results
in a reduced air–sea CO2 flux when the ocean is a carbon
sink (for flux estimates see Table 3). As shown in Fig. 16, this
work can capture the monthly climatology of surface pCO2
at two buoy locations relatively well. Such agreements re-
sult in relatively better correlation coefficients (with smaller
p values) and standard deviation within the range of [25 50]
for CoastalMS and [50 75] for CoastalLA in Fig16. Both the
monthly time series and the Taylor diagrams in Fig. 16 reveal
the benefits of this regional model as a good description of
the coastal carbon system under the influence of the MARS.

5.2 Air–sea flux

In Table 3, we compare the annual air–sea CO2 flux gen-
erated by this work with that reported by Xue et al. (2016)
for 2005–2010, Gomez et al. (2020) for 2005–2014, Rob-
bins et al. (2014) for 1996–2012, Huang et al. (2015) for
2004–2008, and Lohrenz et al. (2018) for 2006–2010. Us-
ing the same gas transfer velocity parameterization as this
study, Xue et al. (2016) simulated a smaller carbon sink in
the NGoM and a larger carbon sink estimation in the open
GoM due to their overestimation of shelf pCO2 and under-
estimation of the open GoM pCO2, as shown in Fig. 15.
The large bias of the open GoM carbon sink by Xue et
al. (2016) likely results from the oversimplified prescrip-
tion of the initial and boundary condition of DIC and TA
(based on the empirical relationship with temperature and
salinity), which led to an overestimation of carbon sink in
the open GoM (1.6 times the value reported by this work
and up to 3 times that reported by Gomez et al., 2020). To
compare with the flux estimates of Gomez et al. (2020), we
rescaled our estimates to the gas transfer velocity parame-
terization used in their work (based on Wanninkhof, 2014)
and produced mean estimations of 1.59± 2.13, 0.52± 0.34,
and 0.50± 0.86 mol m−2 yr−1 for the NGoM, open GoM,
and gulf-wide, respectively. It is expected that this work es-
timated a larger carbon sink in the NGoM region compared
with that of Xue et al. (2016) and Gomez et al. (2020), as re-
vealed in Figs. 15a–b and 16a–b. Surface pCO2 in the coastal
region simulated by Xue et al. (2016) is significantly overes-
timated, as shown in Figs. 15 and 16a–b. This model bias
corresponds to the smallest NGoM carbon sink estimation in
Table 3. Similarly, surface pCO2 in the coastal NGoM region
and at the two buoy locations was overestimated by Gomez
et al. (2020) (Figs. 15b, 16a, b). This pCO2 overestimation
can be a reason for its smaller carbon sink estimation for the
NGoM compared with that of Lohrenz et al. (2018), Huang
et al. (2015), and this work. Additionally, the NGoM is a
carbon source from June to October according to Gomez et
al. (2020), which is different from what we simulated in this
study (NGoM is a carbon sink all year-round). Combining
information from Fig. 16, where Gomez et al. (2020) overes-
timate pCO2 by∼ 50 µatm on average during June at the two

coastal locations, we conclude that the NGoM air–sea CO2
sink by Gomez et al. (2020) is likely underestimated. The
observation-based studies by Huang et al. (2015) yielded an
annual sink of 0.96± 3.7 mol C m−2 yr−1 for NGoM based
on wind data from the monthly satellite product QuikSCAT
(12.5 km resolution). Lohrenz et al. (2018) estimated an an-
nual sink of 1.1± 0.3 mol C m−2 yr−1 for NGoM using gas
transfer velocities estimated for each 8 d period. To sum up,
we conclude that the air–sea CO2 flux generated by this work
is more robust in the NGoM region than that in previous
model and climatology products. Nevertheless, a direct car-
bon flux comparison between model and observation-based
studies needs to account for the differences in wind data and
the gas transfer velocities.

5.3 Outlook and future model development

A likely warmer climate combined with heavier precipita-
tion and greater river discharge is predicted in the following
years for the MARS (Dai et al., 2020; Fischer and Knutti,
2015; Frei et al., 1998; Tao et al., 2014), although climate
change might reduce precipitation for some low- and middle-
latitude regions (Arora and Boer, 2001; Na et al., 2020). A
warmer climate will reduce the momentum of the Loop Cur-
rent, and less tropical water (reduced by about 20 %–25 %)
will be introduced into the GoM from the Caribbean (Liu et
al., 2012). As a consequence, the Loop Current might pene-
trate less into the NGoM and reduce the upwelling along the
NGoM and WF slope. Stronger river discharge with nutri-
ent loads will exacerbate the NGoM acidification in bottom
water (Laurent et al., 2018) while increasing the surface wa-
ter biological CO2 utilization and removal, creating larger
river plume regions that exhibit a distinct carbon footprint
compared to surrounding waters. Such predictions resemble
the perturbation prescribed in the Bry and NoR experiments,
wherein a reduced global ocean impact can be assessed by
the difference between Bry and His experiments, and impacts
from increased river discharge can be assessed by the differ-
ence between His and NoR experiments. We anticipate the
open GoM to be a stronger carbon sink in the future under
the projection of Loop Current weakening. And the NGoM
will continue to be a strong carbon sink, with the sink region
expanded in response to predicted greater river discharge and
smaller momentum in the Loop Current.

Field samples of the carbon system give us synoptic
knowledge of the carbon cycle in the ocean. However, carbon
system attributes are subject to large fluctuation due to tem-
perature, salinity, mixing, and biological activities; current
observations of the carbon system at the sea surface or verti-
cally along transects are far from enough to reveal the carbon
system evolution in the GoM. As ship-based observations are
limited by spatial coverage and temporal coverage, mooring
observations have a high frequency (∼ 3 h) in time but only
cover limited geological locations. The ML model derived
from remote sensing and cruise data inherits the bias from
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Table 2. Statistics of surface pCO2 comparison.

Xue 2016 Gomez 2020 Chen 2019 This work

Mean bias 0.15 −5.81 −1.04 0.53
RMSE 84.92 42.65 35.67 37.62
R (p value<1× 10−5) 0.20 0.51 0.54 0.59
TSS 0.24 0.57 0.42 0.63
Skill 0.80 0.22 −0.11 0

Figure 15. Comparison of sea surface pCO2 between regional ocean model products (Xue 2016, Gomez 2020, Chen 2019, this work) and
underway sea surface pCO2 measurements. A positive 1pCO2 indicates that the product data overestimate sea surface pCO2. A negative
1pCO2 suggests that the product data underestimate sea surface pCO2. A neutral 1pCO2 indicates that the product data agree well with
the observed sea surface pCO2. The white spaces between the cruise lines indicate that these regions do not have observational pCO2 data
and do not indicate neutral bias.

satellite ocean color products and ship-based measurements,
and, more importantly, it assumes that the training data con-
tains all information that defines the system it is trying to
predict, which is not necessarily the truth. One benefit of nu-
merical models is to offer information to bridge fragmentary
knowledge and fill in the gaps between observations and re-
ality. However, the marine carbon cycle is admittedly a com-
plex process. Several simplifications and parameterizations
are needed to perform a numerical simulation. Nevertheless,
specifications for some key processes may warrant further
investigation and better parameterization. (1) The multiple
alkalinity generation processes in the sediment pool (Fen-
nel et al., 2008; Thomas et al., 2009) in current experiments
are linked linearly with the aerobic decomposition of PON
with a fixed ratio, which can potentially induce large bias
during high PON concentrations. The anoxic zone chem-
istry component can be added to properly simulate the car-
bonate system in oxygen-deficient conditions (Raven et al.,
2021), which can prevail in bottom boundary layer waters in
coastal regions in NGoM, especially during summer. Adding
in anoxic zone chemistry will also allow a more diversified
prescription for TA generation, which plays a key role in the
understanding of sediment pH dynamics (Gustafsson et al.,
2019; Middelburg et al., 2020). (2) In our model, the density-
related fragmentation or flocculation of detritus OM is sim-

plified with one particulate and one dissolved pool, each with
a fixed sinking rate. Coagulation and flocculation can trans-
form DOC into particulate OM or subsequently form large
aggregates, whose remineralization rate can be much faster
(Ploug et al., 1999). The remineralization–sinking dynamic
determines the fate of OM decomposition (and water column
DIC profile) and should be allowed to have more degrees of
freedom in future model development. (3) Calcification in
this work can reflect the primary factors regulating marine
calcification. However, important feedback from water acid-
ity on the calcification is omitted due to the overall supersat-
uration with aragonite in GoM shelf waters. Therefore, the
modeled CaCO3 /PON ratio could not reflect the decreasing
trends of the CaCO3 /PON ratio under acidification (Zonder-
van et al., 2001). (4) Phytoplankton groups can play differ-
ent roles in carbon cycling given their different sizes, sinking
rates, and calcification rates, among others, and their relative
ratio would be critical to the carbon dynamic (Le Moigne et
al., 2015; Poulton et al., 2007). The interplay between zoo-
plankton grazing and phytoplankton bloom in this work cap-
tured the seasonal dynamic but only had fixed modes toward
nutrient levels. High nutrient concentration favors the suc-
cess of diatoms, and a lower nutrient level gives small phy-
toplankton a competitive advantage in NGoM (Aké-Castillo
and Vázquez, 2008; Chakraborty and Lohrenz, 2015; Qian
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Figure 16. Comparison of sea surface pCO2 among regional ocean model products (Xue 2016, Gomez 2020, Chen 2019, this work) at two
buoy sites. Climatology at the two buoy locations of Gomez et al. (2020) is calculated by multiyear averaging from 2000–2014 model surface
results. Climatology at the two buoy locations of Xue et al. (2016) is calculated by multiyear averaging from 2005–2010. Climatology at the
two buoy locations of Chen et al. (2019) is calculated from their 12-monthly ML surface pCO2 product (from July 2002 to December 2017).
Buoy raw observations have a frequency of∼ 3 h, and monthly averages are used to be compared with monthly model estimates. The p value
for each correlation coefficient is listed in the p-value table.

Table 3. Air–sea CO2 flux comparison among this work and previous studies for the GoM. The mean estimate is followed by the standard
deviation with the ± symbol. Positive flux indicates the ocean is a carbon sink with regard to the atmosphere.

Study type NGoM Open GoM Gulf-wide

mmol m−2 d−1

Model-based This work Spring 4.93± 10.55 2.91± 1.35 2.48± 3.75
Summer 1.71± 6.19 −1.83± 0.42 −1.55± 2.25
Fall 4.79± 4.93 0.17± 1.04 0.45± 2.47
Winter 10.00± 9.50 5.80± 2.24 5.40± 4.30

mol m−2 yr−1

Observation-based Annual 1.96± 2.63 0.64± 0.42 0.62± 1.06
Xue et al. (2016) Annual 0.32± 0.74 1.04± 0.46 0.71± 0.54
Gomez et al. (2020) Annual 0.93± 1.65 0.33± 0.87 0.35± 1.01
Robbins et al. (2014) Annual 0.44± 0.37 0.48± 0.07 0.19± 0.08
Huang et al. (2015) Annual 0.95± 3.7
Lohrenz et al. (2018) Annual 1.1± 0.3
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et al., 2003; Strom and Strom, 1996). More phytoplankton
groups and possible predation avoidance mechanisms could
be added to the model to give the bloom pattern (and subse-
quently the carbon export) more variance (Liszka, 2018; Rost
and Riebesell, 2004). (5) Adding the higher-trophic-level bi-
ology could be the next step to improving the model. Marine
fishes are reported to produce precipitated carbonates within
their intestines at high rates and contribute to TA increase in
the top 1000 m of ocean waters (Wilson et al., 2009). (6) This
model did not include sediment silicate weathering and car-
bon flux through atmospheric deposition, which can poten-
tially be important sources and sinks of carbon to the ocean
waters as well (Jurado et al., 2008; Wallmann et al., 2008).

6 Conclusions

This study presents a high-resolution regional carbon model
for the GoM with fully coupled carbonate chemistry calcula-
tions and air–sea interaction. The model can reliably simulate
the spatial and temporal pattern of the surface ocean carbon
system. We show, for the first time, a solid validation of a
regional carbon model via direct comparison against high-
frequency CO2 buoys, TA /DIC vertical profiles along the
coastal transects, a remote-sensing-based ML model product,
and underway pCO2 measurements (surface). We calculated
the decadal trends of important carbon system variables such
as pCO2, pH, air–sea CO2 exchange, and � over the NGoM
and open GoM regions.

The GoM surface pCO2 values experience a steady in-
crease from 2001 to 2019, with an increasing rate of
1.61 µatm yr−1 in NGoM and 1.66 µatm yr−1 in the open
GoM, respectively. Correspondingly, the ocean surface pH is
declining at a rate of 0.0020 and 0.0015 yr−1 for NGoM and
open GoM, respectively. The surface � over the NGoM and
open GoM region remains supersaturated with aragonite dur-
ing the time span of the model but with a slightly decreasing
trend. The carbon sink of both NGoM and open GoM regions
exhibits increasing trends and will continue to increase at a
faster pace in the coming years under the prospect of climate
change with rising atmospheric pCO2.

We decouple the influence on surface pCO2 into thermal
and nonthermal components and further analyze the surface
pCO2 changes due to gross primary production and air–
sea CO2 flux. We find that the low temperature during win-
ter and the biological uptake during spring and summer are
the primary drivers making GoM an overall CO2 sink. Dur-
ing the modeled period of 2001–2009, the GoM overall is
a CO2 sink with a mean flux rate of 0.62 mol C m−2 yr−1

(11.77 Tg C yr−1). The NGoM region is a CO2 sink year-
round and is very susceptible to changes in river forcing. The
open GoM region is dominated by thermal effects and con-
verts from a carbon sink to a source during summer.

The historical simulation (His) and perturbed tests (Bry,
NoR) are performed to determine whether observed changes

in the GoM carbon system are driven by secondary effects
of carbon accumulation from the global ocean or local forc-
ing, such as river inputs. The results show that, in addition
to the increasing atmospheric pCO2 over the GoM, the spa-
tial distribution and trend in carbon system variables could
only be explained when the effects of carbon accumulation
via boundary conditions and the impact from river discharge
are included. Although eliminating carbon accumulation via
boundary in the Bry experiment did not bring a significant
difference in surface carbon variables compared with that
of His, a clear chemical equilibrium shift between [CO2−

3 ]
and [HCO−3 ] can be observed at subsurface depths under the
perturbation of the accumulative boundary carbon concen-
trations. With a projected warming climate, we anticipate the
GoM to be a stronger carbon sink due to elevated river dis-
charge and reduced impact from the global ocean.
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Appendix A

Table A1. Summary of CMIP6 GCMs considered for boundaries conditions of the regional model.

Model name Institution∗ Resolution (m) DIC TA NH4 NO3
latitudinal×
longitudinal

CESM2 NCAR 54 137× 111 951 available available available not available
CESM2-FV2 NCAR 54 137× 111 951 available available available available
CESM2-WACCM NCAR 54 137× 111 951 available available available not available
CESM2-WACCM-FV2 NCAR 54 137× 111 951 available available available available
MPI-ESM1-2-LR MPI 124 664× 124 667 available available available available
MPI-ESM1-2-HR MPI 33 395× 42 614 available available not available available
MPI-ESM-1-2-HAM HAMMOZ-Consortium 124 664× 124 667 available available available available
ACCESS-ESM1-5 CSIRO 109 095× 99 669 available available available available
CMCC-ESM2 CMCC 97 659× 100 093 available available available available
CanESM5 CCCma 97 659× 100 093 available available available available
IPSL-CM6A-LR IPSL 97 659× 100 093 available available available available
IPSL-CM6A-LR-INCA IPSL 97 659× 100 093 available available available available
GFDL-CM4 GFDL 110 769× 99 690 available available not available not available
GFDL-ESM4 GFDL 110 804× 99 690 available available available available
NorESM2-MM NCC 93 221× 99 757 not available not available not available not available
NorESM2-LM NCC 93 221× 99 757 not available not available not available not available
NorCPM1 NCC 54 137× 111 951 not available not available not available not available

∗ Full names of institutions are as follows. CCCma: Canadian Centre for Climate Modelling and Analysis (Canada). CSIRO: Commonwealth Scientific and Industrial Research
Organization and Bureau of Meteorology (Australia). CMCC: Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy). IPSL: L’Institut Pierre-Simon Laplace (France). MPI:
Max Planck Institute for Meteorology (Germany). NCC: Norwegian Climate Centre (Norway). NCAR: National Center for Atmospheric Research (US). GFDL: Geophysical Fluid
Dynamics Laboratory (US).

Table A2. Model boundary frequency.

Boundary variable Data source Frequency used

u, v, ubar, vbar, zeta, temp, salt HYCOM daily

NO3, NH4, PO4, Si(OH)4, DIC,
TA, diatom, small phytoplankton,
microzooplankton, mesozooplankton,
predator zooplankton, CalC, DOC

CESM2-WACCM-FV2 monthly

Oxygen WOA static climatology

DON, PON, opal small positive value constant
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