

Supplement of

Modeling nitrous oxide emissions from agricultural soil incubation experiments using CoupModel

Jie Zhang et al.

Correspondence to: Jie Zhang (jiezh@agro.au.dk)

The copyright of individual parts of the supplement might differ from the article licence.

No	Treatment		Mean va	lues of discrete mea		Cumulative gas fluxes and mean mineral N derived						
								from integrati	on over sa	mpling per	riod	
		N ₂ O	CO ₂	\mathbf{NH}_{4}^{+}	NO ₃ -	NO	N ₂ O	CO ₂	\mathbf{NH}_{4^+}	NO ₃ -	NO	
	Units	g N m ⁻² day ⁻¹	g C m ⁻² day ⁻¹	g N m ⁻²	g N m ⁻²	g N m ⁻² day ⁻¹	g N m ⁻²	g C m ⁻²	g N m ⁻²	g N m ⁻²	g N m ⁻²	
	Mix RC											—
1	40 % WFPS, -NO ₃ -	0.002 (0.003)	3.46 (4.01)	0.37 (0.55)	-	-	0.059	88.6	0.34	-	-	
2	40 % WFPS, +NO ₃ -	0.003 (0.003)	3.12 (3.51)	0.40 (0.45)	-	-	0.067	80.7	0.34	-	-	
3	60 % WFPS, -NO ₃ -	0.021 (0.044)	4.08 (3.43)	0.53 (0.32)	-	-	0.340	126	0.60	-	-	
4	60 % WFPS, +NO ₃ -	0.161 (0.442)	4.10 (3.78)	0.58 (0.33)	-	9×10 ⁻⁴ (0.003)	3.968	129	0.53	-	0.012	
	Control RC											
5	40 % WFPS, -NO ₃ -	1×10 ⁻⁴ (4×10 ⁻⁵)	0.32 (0.30)	0.018 (0.016)	1.14 (0.17)	-	0.005	14.3	0.011	1.19	-	
6	40 % WFPS, +NO3 ⁻	4×10 ⁻⁴ (0.001)	0.21 (0.17)	0.013 (0.006)	6.21 (0.39)	-	0.014	7.41	0.011	6.11	-	
7	60 % WFPS, -NO ₃ -	0.005 (0.012)	0.99 (0.87)	0.018 (0.010)	1.11 (0.11)	-	0.118	36.1	0.015	1.13	-	
8	60 % WFPS, +NO3 ⁻	0.004 (0.009)	0.73 (0.80)	0.012 (0.006)	5.78 (0.21)	2×10 ⁻⁴ (6×10 ⁻⁵)	0.100	23.5	0.011	5.84	0.007	
	Mix WW											
9	40 % WFPS, -NO ₃ -	4×10 ⁻⁵ (3×10 ⁻⁵)	1.53 (0.66)	0.012 (0.010)	-	-	0.002	55.5	0.008	-	-	
10	40 % WFPS, +NO3 ⁻	8×10 ⁻⁴ (4×10 ⁻⁴)	1.87 (0.88)	0.029 (0.030)	-	-	0.031	71.2	0.018	-	-	
11	60 % WFPS, -NO ₃ -	7×10 ⁻⁴ (0.001)	1.89 (0.63)	0.019 (0.027)	-	-	0.015	71.1	0.008	-	-	
12	60 % WFPS, +NO ₃ -	0.001 (0.001)	2.10 (0.87)	0.020 (0.016)	-	1×10 ⁻⁴ (3×10 ⁻⁴)	0.029	79.8	0.014	-	0.002	
	Control WW											

25 Table S1: Summary of calibration data sets. Values in the brackets show the standard deviation of each time series measurements.

13	40 % WFPS, -NO3 ⁻	3×10 ⁻⁵ (1×10 ⁻⁵)	0.19 (0.06)	0.005 (0.004)	1.09 (0.20)	-	0.001	7.26	0.004	1.16	-
14	40 % WFPS, +NO ₃ -	2×10 ⁻⁴ (8×10 ⁻⁵)	0.12 (0.08)	0.014 (0.012)	6.48 (0.46)	-	0.007	4.25	0.011	6.27	-
15	60 % WFPS, -NO ₃ -	9×10 ⁻⁵ (5×10 ⁻⁵)	0.19 (0.06)	0.006 (0.006)	1.09 (0.12)	-	0.004	7.42	0.004	1.11	-
16	60 % WFPS, +NO ₃ -	1×10 ⁻⁴ (7×10 ⁻⁵)	0.13 (0.08)	0.006 (0.006)	5.83 (0.22)	2×10 ⁻⁴ (6×10 ⁻⁵)	0.005	5.10	0.004	5.84	0.007
Measurement occasions (n)		10 ^a	10 ^a	4 ^b	4 ^b	10 ^a					

^aSamples were taken at day 1, 3, 6, 9, 13, 16, 22, 29, 36 and 43 of incubation.

^bSamples were taken at day 1, 6, 22, and 43 of incubation.

Table S2: Parameters and equations related to the study. Equation indices refer to the manual (Jansson and Karlberg, 2010) and the bracketed "updated" equations are

30 described based on the update log in the manual and model interface.

No	Parameter name	Process	Unit	Equation	Description	Related process in Fig. 1
1	<i>kıı</i>	SOM decompositon	day-1	(6.3) $C_{DecompL} = k_1 f(T) f(\theta) C_{litter}$ where $C_{DecompL}$ is the decomposition rate of litter pool. $f(T)$ and $f(\theta)$ is the common response function for soil temperature and soil moisture. C_{litter} is the size of litter pool (litter 1 or litter 2). Changing k_l to k_h and C_{litter} to C_{humus} gives the decomposition rate of humus pool.	Rate coefficient for the decay of C in litter 1 (the active SOC pool and the plant metabolic C pool).	c1-c3, n1- n3
2	k ₁₂	SOM decompositon	day ⁻¹	(6.3)	Rate coefficient for the decay of C in litter 2 (the slow SOC pool and the plant structural C pool).	c6-c8, n4- n6
3	k _h	SOM decompositon	day-1	(6.3)	Rate coefficient for the decay of C in humus (the passive SOC pool).	c10, n7
4	СПт	SOM decompositon	-	(6.7) $N_{Litter \to Humus} = C_{Litter \to Humus}/cn_m$ (6.8) $N_{Litter \to NH_4} = C_{DecompL} \left(\frac{1}{CN_{Litter}} - \frac{f_{e,l}}{cn_m}\right)$ Soil mineralization/immobilization of N, where CN_{Litter} is the C/N ratio in litter pool. Changing $C_{DecompL}$ to $C_{DecompH}$, $f_{e,l}$ to $f_{e,h}$ and CN_{Litter} to CN_{Humus} gives the flow from the humus pool. A negative value means net immobilization.	A fixed C-N ratio of microbes used in the calculations of mineralization and immobilization.	n1-n7, n11

5	fe,11	SOM decompositon	-	$(6.4) C_{Litter \to CO_2} = (1 - f_{e,l}) \cdot C_{DecompL}$ (6.8)	Efficiency parameter of the decay of the active SOM pool and the plant metabolic material pool. $(1 - f_{e,ll})$ is the fraction of decomposed C mineralized to CO ₂ .	c1-c3, n1- n3
6	fe,12	SOM decompositon	-	(6.4) (6.8)	Efficiency of the decay of the slow SOM pool and the plant structural material pool. $(1-f_{e,l2})$ is the fraction of decomposed C mineralized to CO ₂ .	c6-c8, n4- n6
7	fe,h	SOM decompositon	-	(6.4) (6.8)	Efficiency of the decay of the passive SOM pool. $(1 - f_{e,h})$ is the fraction of decomposed C mineralized to CO ₂ .	c10, n7
8	fh.11	SOM decompositon	-	(6.5) $C_{Litter \rightarrow Humus} = f_{e,l}f_{h,l}C_{DecompL}$ (6.6) $C_{Litter \rightarrow Litter} = f_{e,l}(1 - f_{h,l}) \cdot C_{DecompL}$ The C fluxes from litter pool decomposition to humus pool and to litter pool respectively.	Fraction of the C and N contained in the active SOM pool and the plant metabolic material pool that will enter the passive pool.	c2-c3, n1- n2
9	fh,12	SOM decompositon	-	(6.5) (6.6)	Fraction of the C and N contained in the slow SOM pool and the plant structural material pool that will enter the passive pool.	c6-c7, n5- n6
10	θ _{wilt}	Soil hydrology	vol %	$ \begin{cases} (5.86) \\ f(\theta) \\ \\ = \begin{cases} p_{\theta satact} \\ min\left(\left(\frac{\theta_s - \theta}{p_{\theta v p p}}\right)^{p_{\theta p}} (1 - p_{\theta satact}) + p_{\theta satact}, \left(\frac{\theta - \theta_{wilt}}{p_{\theta Low}}\right)^{p_{\theta p}}\right) \\ \\ \theta_{wilt} < \theta < \theta_s \\ \\ \theta < \theta_{wilt} \end{cases} $	Wilting point in soil moisture response function.	c1-c10, n1-n11, n22-24

						-
11	İnitrmicr	Nitrification	gN m ⁻²	(6.26) $N_{micrN} = i_{nitmicr} \cdot n_{dist}$ where N_{micrN} is the initial biomass of nitrifiers in each layer and n_{dist} is a distribution function for the profile in the form of a linear function or an exponential function or a constant.	The initial biomass of nitrifiers for the whole soil profile.	Initial nitrifier biomass in each layer
12	NhrateNH4	Nitrification	mg N L ⁻¹	(6.57) $f(N_{NH_4 \ Cons}) = \frac{N_{NH_4}/(\theta \cdot \Delta z)}{(N_{NH_4}/(\theta \cdot \Delta z)) + n_{hrateNH_4}}$ The response function for soil ammonium concentration for nitrification.	The parameter describing the ammonium concentration for half rate in the response function for ammonium concentration.	n8
13	Nmicrate	Nitrification	mg ha/(day kg)	(6.56) $N_{NH_4 \rightarrow NO_3} = n_{micrate} f(T) f(\theta) f(N_{NH_4 Cons}) n_{pH} N_{micrN}$ where $N_{NH_4 \rightarrow NO_3}$ is the nitrification flux, N_{micrN} is the biomass of nitrifiers, $f(N_{NH_4 Cons})$ is the response function for soil ammonium concentration, n_{pH} is a parameter accounting for soil pH.	The nitrification rate coefficient in nitrification function when microbes are accounted for.	n8
14	ddenitrdie	Denitrification	day-1	(6.50)	The death rate coefficient of denitrifiers.	n21
15	d _{growthN20}	Denitrification	day-1	$(6.41) N_{N_2O \to micrDN} = d_{growthN_2O} \cdot f(N_{NO_3Concinhib}) \cdot f(C_{DO,dnCons}) \cdot f(N_{NXOYCOnc}) \cdot M_{activity} \cdot N_{micrDN}$ The losses of N ₂ O from the anaerobic nitrogen pool due to microbial growth, where $M_{activity}$ is the microbial activity of denitrifiers, $f(N_{NO_3Concinhib})$ is an inhibition response function for the nitrate content, and $f(C_{DO,dnCons})$ and $f(N_{NXOYCOnc})$ are response functions for dissolved organics and nitrogen concentration respectively.	The growth parameter in the denitrification function describing the loss of N ₂ O from the anaerobic nitrogen pool due to microbial growth.	n19
16	dgrowthNO	Denitrification	day ⁻¹	(6.41) $N_{NO \rightarrow micrDN} = d_{growthNO} \cdot f(C_{DO,dnCons}) \cdot f(N_{NxOyConc}) \cdot M_{activity} \cdot N_{micrDN}$ The losses of NO from the anaerobic nitrogen pool due to microbial growth. Changing $d_{growthNO}$ to $d_{growthNO2}$ or $d_{growthNO3}$ gives the losses of NO ₂ ⁻ or NO ₃ ⁻ respectively.	The growth parameter in the denitrification function describing the loss of NO from the anaerobic nitrogen pool due to microbial growth.	n17
17	d _{growthNO2}	Denitrification	day-1	(6.41)	The growth parameter in the denitrification function describing the loss of NO_2^- from the anaerobic nitrogen pool due to microbial growth.	n15
18	d _{growthNO3}	Denitrification	day-1	(6.41)	The growth parameter in the denitrification	n13

					function describing the loss of NO ₃ ⁻ from the anaerobic nitrogen pool due to microbial growth.	
19	dactratecoef	Denitrification	day ⁻¹	(6.51) $M_{activity} = f(T) \cdot f(pH) \cdot f(N_{AnTot}) \cdot f_{Anvol}(z) \cdot d_{actratecoef}$ The activity of denitrifiers, where $f(T)$, $f(pH)$ and $f(N_{AnTot})$ are response functions for soil temperature, pH and total nitrogen content in the anaerobic nitrogen pools respectively and $f_{Anvol}(z)$ is the anaerobic fraction.	The denitrification activity rate coefficient in denitrifer activity function.	Denitrifier activity
20	d _{pHhrate}	Denitrification	-	(6.51) (6.52) $f(pH) = 1 - \frac{1}{1+e^{(pH-d_{pHhrate})/d_{pHhhape}}}$ The response function for soil pH in the denitrification process, where $d_{pHhhape}$ is a shape parameter.	The pH half rate in denitrifier activity function	Denitrifier activity
28	İdenitmicr	Denitrification	gN m ⁻²	(6.26) $N_{micrDN} = i_{denitmicr} \cdot d_{dist}$ where N_{micrDN} is the initial biomass of denitrifiers in each layer and d_{dist} is a distribution coefficient that varies with depth.	The initial biomass of denitrifiers for the whole soil profile.	Initial denitrifier biomass in each layer
21	dinhihrate	Denitrification	mg N L ⁻¹	(6.42) $f(N_{NO_3 \text{ Concinhib}}) = \frac{d_{\text{inhibrate}}}{d_{\text{inhibrate}} + N_{NO_3 \text{ Conc}}}$ The inhibition response function for nitrate content in the soil that effect the growth of denitrifiers during N ₂ O formation.	The denitrification inhibition half rate of NO ₃ ⁻ that effect the growth of denitrification microbes during N ₂ O formation.	n19
22	<i>d</i> hrateNxOy	Denitrification	mg N L ⁻¹	(6.44) $f(N_{NxOyConc}) = \frac{N_{NxOyconc}}{d_{hrateNxOy} + N_{NxOyConc}}$ The response function for nitrogen concentratiaon for denitrification.	The parameter describing the nitrogen concentration for half rate in the NxOy denitrification process	n13, n15, n17, n19, n20
23	d _{effN20}	Denitrification	-	(6.47) $N_{rgN_2O} = N_{AnN_2O \to micrDN}/d_{effN_2O} - N_{AnN_2O \to micrDN}$ The growth respiration of denitrifers for N ₂ O, where $N_{AnN_2O \to micrDN}$ is the losses of N ₂ O from the anaerobic nitrogen pool due to microbial growth (eq. 1.30). Changing $N_{AnN_2O \to micrDN}$ to $N_{AnNO \to micrDN}$, $N_{AnNO2 \to micrDN}$ or $N_{AnNO3 \to micrDN}$, and changing d_{effN_2O} to d_{effNO3} , d_{effNO2} or d_{effNO3} gives the respiration based on NO, NO ₂ ⁻ or NO ₃ ⁻ respectively.	The efficiency parameter in the growth respiration function for N_2O .	n18
24	deffNO	Denitrification	-	(6.47)	The efficiency parameter in the growth	n16

					respiration function for NO.	
25	d _{effNO2}	Denitrification	-	(6.47)	The efficiency parameter in the growth respiration function for NO ₂ ⁻ .	n14
26	d _{effNO3}	Denitrification	-	(6.47)	The efficiency parameter in the growth respiration function for NO ₃ ⁻ .	n12
27	d _{rc} N ₂ O	Denitrification	day ⁻¹	(6.48) $N_{rmN_2O} = \frac{d_{rcN_2O} \cdot N_{N_2O}}{N_{AnTot}}$ The maintenance respiration of denitrifiers for N ₂ O, where N_{AnTot} is the total nitrogen content in the N ₂ O, NO, NO ₂ ⁻ and NO ₃ ⁻ pools, and N_{N_2O} is the nitrogen content in the N ₂ O pool. Changing d_{rcN_2O} to d_{rcNO} , d_{rcNO2} or d_{rcNO3} , and changing N_{N_2O} to N_{NO} , N_{NO2} or N_{NO3} gives the respiration based on NO, NO ₂ ⁻ or NO ₃ ⁻ respectively.	The respiration coefficient in the denitrification function describing the maintenance respiration for N ₂ O.	n18
28	d _{rcNO}	Denitrification	day-1	(6.48)	The respiration coefficient in the denitrification function describing the maintenance respiration for NO.	n16
29	d _{rcNO2}	Denitrification	day ⁻¹	(6.48)	The respiration coefficient in the denitrification function describing the maintenance respiration for NO ₂ ⁻ .	n14
30	d _{rcNO3}	Denitrification	day ⁻¹	(6.48)	The respiration coefficient in the denitrification function describing the maintenance respiration for NO ₃ ⁻ .	n12
31	ddenitrdiedormancy	Denitrification	day ⁻¹	$\begin{array}{l} (6.50) \mbox{ (updated)} \\ M_{death,DN} = d_{denitrdie} \cdot \max(N_{micrDN} - d_{denitrdiedormthres}, 0) \\ + d_{denitrdiedormancy} \cdot N_{micrDN} \\ \mbox{ The death rate of denitrifiers, where } N_{micrDN} \mbox{ is the biomass of denitrifiers.} \end{array}$	The death rate coefficient of denitrifiers during the entire range of microbial biomass	n21
32	$d_{\mathit{denitrdiedormthres}}$	Denitrification	g N ⁻¹ m ⁻²	(6.50)	The threshold of the amount of denitrifiers from which the death rate of denitrifiers will	n21

					be determined by the previous rate coefficient $d_{denitrdie}$.	
33	gaporshape	Gas processes	-	(6.99) $f_{Anvol} = e^{-g_{aporshape} \cdot O_{volcons}^2}$ where f_{Anvol} is the volumetric anaerobic fraction of soil, $g_{aporshape}$ is a shape parameter and $O_{volcons}$ is the volumetric oxygen concentration.	The shape parameter as a function of oxygen level in the volumetric anaerobic fraction of the soil.	g3
34	do2	Gas processes	-	(6.72) $O_{diffrate} = d_{O_2} \cdot f_a \cdot o_{O_2 \ diffrate} \cdot D_O$ where $O_{diffrate}$ is the oxygen diffusion rate, $o_{O_2 \ diffrate}$ is the oxygen diffusion rate at 20 °C, D_O is the diffusion coefficient in free air and f_a is the air porosity.	The tortuosity parameter in the calculation of oxygen diffusion rate.	O ₂ diffusion rate
35	dactpower	Gas processes	-	(6.51) (updated) $d(f_{Anvol}) = f_{Anvol}^{d_{actpower}}$ The response function for denitrifers to anaerobic fraction.	Power coefficient of denitrifiers response to anaerobic fraction	g4
36	0 diffred	Gas processes	-	$(6.71) f(O_2) = o_{diffred} \cdot f_{Anvol} \cdot (1 - f_{Anvol}) \cdot O_{diffrate} + o_b$ The oxygen diffusion exchange function used to calculate the diffusion of N trace gases from anaerobic fraction to aerobic fraction.	The oxygen diffusion reduction parameter in the oxygen diffusion exchange function.	g5
37	Ob	Gas processes	-	(6.71)	Base level of oxygen diffusion function	g5
38	&mfracNO	Gas processes	-	(6.64) $N_{NO_3 \rightarrow NO} = g_{mfracNO} \cdot f(\theta) \cdot f(T) \cdot f(pH) \cdot N_{NH_4 \rightarrow NO_3}$ The NO flux from the nitrification process, where $N_{NH_4 \rightarrow NO_3}$ is the nitrification rate, $f(\theta)$, $f(T)$ and $f(pH)$ are the response functions for soil moisture, temperature and pH respectively. Changing $g_{mfracNO}$ to $g_{mfracN2O}$ gives the N ₂ O flux from the nitrification process.	The maximum NO fraction parameter when NO is formed during the nitrification process	n25
39	gθsatcritNO	Gas processes	-	(6.65) $f(\theta)_{NO} = 1 - \frac{1}{1+e^{(\theta(z)/\theta_s(z)-g_{\theta satormNO})/g_{\theta satormNO}}}$ The response function for soil moisture for NO formation during the nitrification process, where $\theta(z)$ is the soil moisture content, $\theta_s(z)$ is the water content at saturation, and $g_{\theta satritNO}$ and $g_{\theta satormNO}$ are parameters. Changing $g_{\theta satritNO}$ to $g_{\theta satritNO}$, and $g_{\theta satormNO}$ to $g_{\theta satormN2O}$ gives the response function for soil moisture for N ₂ O formation during the nitrification process.	The relative saturation level in the response function for soil moisture when NO is formed during the nitrification process.	n25
40	βθsatformNO	Gas processes		(6.65)	The parameter describing the shape of the moisture response function for NO during the nitrification process.	n25
41	gmfracN2O	Gas processes	-	(6.64)	The maximum N ₂ O fraction parameter when N ₂ O is formed	n26

					during the nitrification	
					process	
42	$g_{\theta satcrit}N_2O$	Gas processes	-	(6.65)	The relative saturation	n26
					level in the response	
					function for soil	
					moisture when N ₂ O is	
					formed during the	
					nitrification process.	
43	$g_{ heta satform} N_2 O$	Gas processes	-	(6.65)	The parameter	n26
					describing the shape of	
					the moisture response	
					function for N ₂ O during	
					the nitrification	
					process.	
44	$p_{ heta Low}$	Common	vol %	(5.86)	Water content interval	c1-c10,
		abiotic			in the soil moisture	n1-n11,
		responses			response function for	n22-24
					microbial activity,	
					mineralisation-	
					immobilisation,	
					nitrification and	
					denitrification.	
45	t _{Q10}	Common	-	$(5.82) f(T) = t_{(1-t_{Q10bas})/10}^{(T-t_{Q10bas})/10}$	Response to a 10 °C	c1-c10,
		abiotic			soil temperature change	n1-n24
		responses			on the microbial	
					activity, mineralisation-	
					immobilisation,	
					nitrification and	
1					denitrification.	

Table S3: Model performances of 20,000 simulations (prior) and around 50 accepted simulations (posteriors). Units: CO₂ flux (g C m⁻² day⁻¹), N₂O flux (g N m⁻² day⁻¹), NO flux (g

N m ⁻² day ⁻¹), NH ₄ ⁺ (g N m ⁻²), NO ₃ ⁻ (g N m ⁻²), valid for the statistics of M	E.
--	----

Treatment	Number	Calibrated variables	Prior	Posterior									Selection criteria				
of variables accepted		ME			\mathbb{R}^2	R ²			ME			\mathbb{R}^2			ME		
	runs		Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Min	Max	Min
1	42	CO ₂	1.56	-3.42	16.0	0.85	0.61	0.99	-1.59	-3.31	2.29	0.70	0.62	0.98	-3.42	3.42	

		N_2O	-2.4E-03	-2.4E-03	0.03	0.59	3.5E-07	0.93	-1.6E-03	-2.3E-03	0.01	0.35	1.2E-03	0.80	-2.4E-03	0.01	
		NO															
		$\mathbf{NH4^{+}}$	5.31	-0.36	20.1	0.15	1.6E-09	1.00	0.05	-0.36	0.79	0.28	2.3E-03	1.00	-0.36	0.80	
		NO ₃ -															
2	63	CO ₂	1.90	-3.08	16.3	0.84	0.59	1.00	-0.15	-1.18	1.92	0.74	0.61	0.98	-1.20	2.00	
		N_2O	-1.8E-03	-2.6E-03	0.15	0.41	8.7E-08	0.95	-1.4E-04	-2.4E-03	4.9E-03	0.45	0.20	0.82	-2.4E-03	0.01	0.20
		NO															
		NH_{4^+}	5.09	-0.40	20.0	0.34	1.8E-06	1.00	-0.01	-0.38	0.48	0.66	0.01	1.00	-0.39	0.50	
		NO ₃ -															
3	58	CO ₂	1.54	-4.02	15.4	0.81	0.57	0.87	-1.95	-3.85	2.48	0.77	0.70	0.86	-4.00	4.00	
		N_2O	-0.01	-0.01	0.02	0.57	1.4E-06	1.00	-0.01	-0.01	-4.7E-03	0.23	0.01	0.75	-0.01	0.01	
		NO															
		NH_{4}^{+}	5.71	-0.53	20.0	0.08	1.2E-07	0.99	0.01	-0.33	0.28	0.32	6.5E-04	0.75	-0.33	0.28	
		NO ₃ -															
4	37	CO ₂	1.53	-4.04	16.2	0.61	0.31	0.67	2.21	0.19	4.92	0.56	0.33	0.67	-4.04	5.00	
		N_2O	-0.15	-0.16	-0.01	0.10	2.7E-07	1.00	-0.14	-0.16	-0.02	0.52	0.40	0.97	-0.16	0.16	0.40
		NO	0.01	-9.3E-04	0.21	0.13	4.9E-07	1.00	3.0E-03	-8.8E-04	0.01	0.28	2.5E-06	1.00	-8.8E-04	0.01	
		\mathbf{NH}_{4^+}	3.08	-0.58	19.6	0.47	0.0E+00	1.00	0.10	-0.42	1.43	0.51	0.12	1.00	-0.42	1.50	
		NO ₃ -															
5	40	CO ₂	0.88	-0.32	11.8	0.02	2.0E-10	0.05	-0.01	-0.18	0.43	0.03	6.0E-04	0.05	-0.18	0.48	
		N_2O	-3.6E-05	-6.7E-05	0.03	0.06	7.6E-09	0.36	1.8E-04	-6.5E-05	1.6E-03	0.12	0.05	0.27	-6.5E-05	1.9E-03	
		NO															
		NH_{4^+}	1.44	-0.01	14.0	0.36	4.8E-07	1.00	0.02	-0.01	0.06	0.31	2.1E-04	0.91	-0.01	0.06	
		NO ₃ -	-0.18	-0.94	0.20	0.96	1.0E-05	1.00	-0.29	-0.91	-0.18	0.90	0.17	1.00	-0.92	0.20	
6	67	CO ₂	0.99	-0.21	11.9	0.02	2.0E-10	0.05	-0.05	-0.19	0.20	0.03	6.0E-04	0.05	-0.20	0.20	
		N_2O	-4.4E-05	-3.5E-04	0.12	0.06	7.6E-09	0.36	-5.7E-05	-3.0E-04	5.0E-04	0.12	0.05	0.27	-3.0E-04	6.0E-04	
		NO															
		$\mathbf{NH4^{+}}$	1.36	-0.01	14.0	0.36	4.8E-07	1.00	4.7E-03	-0.01	0.02	0.31	2.1E-04	0.91	-0.01	0.02	
		NO ₃ -	0.46	-4.02	0.88	0.96	1.0E-05	1.00	0.33	-0.57	0.50	0.90	0.17	1.00	-0.60	0.60	
7	52	CO ₂	0.59	-0.98	11.4	0.28	0.03	0.38	-0.41	-0.72	0.84	0.32	0.09	0.38	-0.72	0.84	
		N_2O	-4.5E-03	-4.5E-03	0.03	0.16	1.9E-08	0.99	-4.0E-03	-4.5E-03	4.0E-03	0.17	0.01	0.41	-4.5E-03	4.5E-03	

		NO															
		\mathbf{NH}_{4^+}	1.85	-0.02	14.3	0.03	0.0E+00	1.00	0.02	-0.02	0.05	0.20	3.4E-04	0.98	-0.02	0.05	
		NO ₃ -	-0.08	-0.88	0.36	0.93	0.0E+00	1.00	-0.13	-0.39	0.14	0.88	0.04	0.99	-0.40	0.36	
8	47	CO ₂	0.85	-0.72	11.7	0.36	0.08	0.42	0.08	-0.22	0.89	0.37	0.13	0.42	-0.22	0.90	
		N ₂ O	-3.4E-03	-3.6E-03	0.14	0.13	8.2E-10	0.88	-2.0E-03	-3.6E-03	0.01	0.23	0.10	0.42	-3.6E-03	0.01	0.10
		NO	1.2E-04	-1.8E-04	0.12	0.61	8.4E-09	0.98	-4.6E-05	-1.8E-04	5.5E-04	0.68	0.01	0.97	-2.0E-04	6.0E-04	
		NH_{4^+}	1.79	-0.01	14.3	0.40	2.9E-07	1.00	0.03	-0.01	0.08	0.31	0.02	0.99	-0.01	0.08	
		NO ₃ -	-0.31	-4.41	0.15	0.79	5.3E-04	1.00	-0.48	-2.25	-0.22	0.81	0.29	0.98	-2.50	0.15	
9	59	CO ₂	1.84	-1.53	17.2	0.71	0.31	0.81	-0.07	-0.76	0.98	0.80	0.73	0.81	-0.79	1.00	
		N_2O	-1.1E-05	-3.6E-05	0.02	0.47	6.1E-09	0.78	-2.6E-05	-3.5E-05	4.8E-05	0.43	2.9E-04	0.63	-3.5E-05	5.0E-05	
		NO															
		\mathbf{NH}_{4}^{+}	1.39	-0.01	14.4	0.85	4.5E-05	1.00	-2.0E-03	-0.01	0.01	0.76	2.6E-03	1.00	-0.01	0.01	
		NO ₃ -															
10	46	CO ₂	1.50	-1.87	16.8	0.46	0.07	0.69	0.03	-0.87	1.48	0.54	0.25	0.68	-0.87	1.50	
		N_2O	-4.4E-04	-7.8E-04	0.13	0.22	1.4E-08	0.69	2.5E-05	-4.3E-04	8.0E-04	0.16	2.7E-04	0.46	-4.3E-04	8.0E-04	
		NO															
		\mathbf{NH}_{4^+}	1.33	-0.03	14.4	0.49	3.1E-07	1.00	-7.4E-04	-0.01	0.03	0.29	4.3E-04	0.97	-0.01	0.03	
		NO ₃ -															
11	41	CO ₂	2.56	-1.84	16.9	0.62	0.25	0.79	0.34	-1.15	1.58	0.72	0.49	0.79	-1.15	1.60	
		N_2O	-5.0E-04	-5.3E-04	0.03	0.56	2.1E-08	0.99	-4.8E-05	-5.1E-04	0.01	0.35	0.11	0.85	-5.1E-04	0.01	0.10
		NO															
		\mathbf{NH}_{4}^{+}	1.92	-0.02	14.7	0.61	3.6E-07	1.00	-4.3E-03	-0.01	0.02	0.55	3.6E-07	1.00	-0.02	0.02	
		NO ₃ -															
12	54	CO ₂	2.35	-2.05	16.7	0.32	0.06	0.61	0.04	-1.82	1.92	0.44	0.17	0.60	-2.00	2.00	
		N_2O	-7.0E-04	-9.8E-04	0.15	0.40	3.1E-08	0.99	-3.3E-04	-8.9E-04	1.2E-03	0.27	0.10	0.76	-9.0E-04	1.5E-03	0.10
		NO	2.9E-04	-8.9E-05	0.13	0.29	2.2E-09	0.99	1.3E-03	-8.8E-05	0.02	0.33	0.03	0.94	-8.9E-05	0.02	
		NH_{4^+}	1.86	-0.02	14.7	0.85	2.2E-07	1.00	1.0E-03	-0.01	0.01	0.34	9.5E-06	0.99	-0.01	0.01	
		NO ₃ -															
13	39	CO ₂	1.01	-0.19	11.9	0.43	0.14	0.52	-0.02	-0.12	0.22	0.51	0.39	0.52	-0.12	0.25	
		N ₂ O	4.6E-06	-2.0E-05	0.03	0.33	1.2E-08	0.80	2.1E-05	-1.9E-05	2.3E-04	0.37	1.3E-03	0.67	-1.9E-05	2.5E-04	
		NO															

		$\mathbf{NH4^{+}}$	1.42	-2.7E-03	14.0	0.79	5.9E-05	1.00	0.01	-2.3E-03	0.02	0.59	0.02	1.00	-2.3E-03	0.02
		NO ₃ -	-0.24	-0.90	0.14	0.73	0.0E+00	1.00	-0.27	-0.84	-0.24	0.75	1.9E-03	0.94	-0.90	0.14
14	49	CO ₂	1.09	-0.11	12.0	0.26	8.2E-04	0.45	-0.02	-0.11	0.11	0.42	0.33	0.45	-0.11	0.12
		N_2O	1.5E-04	-1.8E-04	0.13	0.44	6.3E-08	0.84	4.6E-05	-6.6E-05	2.0E-04	0.23	1.4E-04	0.65	-7.0E-05	2.0E-04
		NO														
		NH_{4^+}	1.37	-0.01	14.0	0.63	2.3E-07	0.99	1.2E-03	-0.01	0.02	0.46	0.01	0.85	-0.01	0.02
		NO ₃ -	0.57	-4.23	0.99	0.37	1.3E-07	1.00	0.46	-0.54	0.61	0.48	0.13	0.82	-0.99	0.99
15	39	CO ₂	1.40	-0.17	12.2	0.18	3.5E-03	0.34	0.08	-0.16	0.48	0.28	0.02	0.34	-0.17	0.50
		N_2O	-3.6E-05	-6.3E-05	0.03	0.61	4.2E-09	0.91	-3.9E-06	-6.0E-05	2.5E-04	0.41	1.3E-03	0.84	-6.0E-05	3.0E-04
		NO														
		NH_{4^+}	1.85	-2.1E-03	14.3	0.56	8.3E-05	1.00	0.02	-2.1E-03	0.05	0.36	8.3E-05	1.00	-2.1E-03	0.05
		NO ₃ -	-0.08	-0.86	0.35	0.97	0.0E+00	1.00	-0.14	-0.43	-0.08	0.92	0.03	0.99	-0.50	0.35
16	49	CO ₂	1.45	-0.12	12.3	0.22	0.13	0.24	0.03	-0.10	0.20	0.24	0.22	0.24	-0.12	0.20
		N_2O	1.2E-04	-1.3E-04	0.15	0.12	0.0E+00	0.45	1.2E-05	-1.2E-04	5.6E-04	0.14	1.8E-07	0.40	-1.2E-04	6.0E-04
		NO	1.4E-04	-1.8E-04	0.12	0.60	6.6E-07	0.98	2.2E-04	-1.8E-04	1.9E-03	0.65	0.02	0.91	-1.8E-04	2.0E-03
		NH_{4^+}	1.80	-3.2E-03	14.3	0.55	1.5E-09	1.00	1.6E-03	-3.2E-03	0.01	0.68	2.8E-03	1.00	-3.2E-03	0.01
		NO ₃ -	-0.21	-4.44	0.25	0.87	4.2E-06	1.00	-0.27	-0.83	-0.17	0.82	0.27	0.98	-1.00	1.00

Table S4: Model inputs and parameters used in the sensitivity analysis. Parameters intervals were defined as the default range in the model unless otherwise specified.

Parameter	Unit	Description	Ra	ange
			min	max
Input paramet	ters			
n _{soil}	%	Bulk soil porosity (measured: 52.8 %)	40	60
n _{residue}	%	Crop residue porosity (estimated: 86 %)	50	90
SOC ₁₁	-	Fraction of labile carbon pool in soil (estimated: 0.02)	0.001	0.1
SOC_h	-	Fraction of recalcitrant carbon pool in soil (estimated: 0.44)	0.3	0.64
ROC_{ll}	-	Fraction of labile organic carbon pool in residue (estimated: 0.82 for red	0.3	0.85
		clover and 0.55 for winter wheat)		
pH	-	Soil pH value (measured: 6.18)	5.5	6.5
Process param	neters			
Common abiot	ic responses			
$t_{Q10}{}^{a^*}$	-	Response to a 10 $^\circ\mathrm{C}$ soil temperature change on the microbial activity.	1.5	3
$p_{ heta Low}{}^{*}$	vol %	Lower value coefficient in the soil moisture response function	3	20
Soil hydrology				
$ heta_{\textit{wilt}}$ b*	vol %	Wilting point in soil moisture response function	5	20
Gas processes				
$g_{\it aporshape}$	-	Shape parameter in the volumetric anaerobic fraction of the soil	1	500
d_{O2}^{*}	-	Tortuosity parameter in the calculation of oxygen diffusion rate	0.3	1
$d_{actpower}$	-	Power coefficient of denitrifiers response to anaerobic fraction	1	5
<i>O</i> diffred [*]	-	Reduction parameter in the oxygen diffusion exchange function	1E-04	1
<i>o</i> _b *	-	Base level of oxygen diffusion function	1E-05	1
$g_{\it mfracN2O}$	-	Maximum N ₂ O fraction during the nitrification process	1E-04	0.1
$g_{\it mfracNO}$	-	Maximum NO fraction parameter during the nitrification process	1E-04	0.5
$g_{ heta satcritN2O}$	-	Relative saturation level in soil moisture response function for $\ensuremath{N_2O}$	0.1	1
		formation by nitrification		
$g_{ heta satformN2O}$	-	Shape parameter in moisture response function for $\mathrm{N}_2\mathrm{O}$ formation by	0.001	1
		nitrification		
$g_{ heta satcritNO}$	-	Relative saturation level in soil moisture response function for NO	0.1	1
		formation by nitrification		
$g_{ hetasatformNO}$	-	Shape parameter in soil moisture response function for NO by	0.001	1
		nitrification		

Denitrification				
$d_{inhihrate}^{*}$	mg N L ⁻¹	Denitrification inhibition half rate of $NO_3^{\ }$ during N_2O formation	0.1	100
$d_{pHhrate}{}^{a^*}$	-	pH half rate in denitrifier activity function	4	6
$d_{hrateNxOy}^{*}$	mg N L ⁻¹	Nitrogen concentration half rate in the $N_{x}O_{y}$ denitrification process	1	500
$d_{actratecoef}$	day-1	Rate coefficient of denitrifier activity	0.1	1
$d_{\it denitrdiedormancy}$	day-1	Death rate coefficient of denitrifiers during the entire range of microbial	1E-06	0.01
		biomass		
$d_{denitrdie}$	day-1	Death rate coefficient of denitrifiers.	1E-05	1
$d_{denitrdiedormthres}$	$g N^{-1} m^{-2}$	Threshold parameter in the denitrfier death function.	1E-05	0.1
$d_{e\!f\!f\!N2O}^{}^{*}$	-	Efficiency parameter in the growth respiration function for $N_2 O$	0.1	1
$d_{e\!f\!f\!NO}^{}^{*}$	-	Efficiency parameter in the growth respiration function for NO	0.1	1
$d_{e\!f\!f\!NO2}^{}^{*}$	-	Efficiency parameter in the growth respiration function for $\mathrm{NO}_2^{\text{-}}$	0.1	1
$d_{e\!f\!f\!NO3}^{}^{*}$	-	Efficiency parameter in the growth respiration function for NO_3	0.1	1
$d_{growthN20}^{*}$	day-1	Growth parameter describing the loss of $N_2 O$ from the anaerobic nitrogen	0.1	100
		pool		
$d_{growthNO}^{*}$	day-1	Growth parameter describing the loss of NO from the anaerobic nitrogen	0.1	100
		pool		
$d_{growthNO2}^{*}$	day-1	Growth parameter describing the loss of $\mathrm{NO}_2^{\text{-}}$ from the anaerobic nitrogen	0.1	100
		pool		
$d_{growthNO3}^{*}$	day-1	Growth parameter describing the loss of $\mathrm{NO}_3^{\scriptscriptstyle -}$ from the anaerobic nitrogen	0.1	100
		pool		
d _{rcN2O}	day-1	Maintenance respiration coefficient for N2O	0.1	100
d _{rcNO}	day-1	Maintenance respiration coefficient for NO	0.1	100
d _{rcNO2}	day-1	Maintenance respiration coefficient for NO2 ⁻	0.1	100
d _{rcNO3}	day-1	Maintenance respiration coefficient for NO3-	0.1	100
$i_{denitmicr}^{c^*}$	g N m ⁻²	Initial biomass of denitrifiers for the whole soil profile	0.01	1
Nitrification				
$i_{nitrmicr}^{c^*}$	g N m ⁻²	Initial biomass of nitrifiers for the whole soil profile	0.01	1
n _{micrate} *	mg ha day ⁻¹ kg ⁻¹	Nitrification rate coefficient in nitrification function	1E-06	1
$n_{hrateNH4}^{*}$	mg N L ⁻¹	Ammonium half rate in the response function for ammonium	0.1	50
		concentration.		
Soil organic proce	esses			
$cn_m^{d^*}$	-	Microbial C/N ratio used in the calculation of mineralization and	5	35
		immobilization		
$f_{e,h}$	-	Efficiency of the decay of humus	0.1	0.8

$f_{e,11}^{*}$	-	Efficiency of the decay of the litter 1 pool	0.1	0.8
$f_{e,l2}^{*}$	-	Efficiency of the decay of the litter 2 pool	0.1	0.8
<i>f</i> _{<i>h</i>,11}	-	Fraction of the C converting from litter 1 to humus	0.1	0.9
$f_{h,l2}$	-	Fraction of the C converting from litter 2 to humus	0.1	0.9
k_h^e	day-1	Rate coefficient for the decay of C in humus	1E-07	1E-04
<i>k</i> ¹¹ ^{<i>e</i>*}	day-1	Rate coefficient for the decay of C in litter 1	0.001	0.5
$k_{l2}^{e^{*}}$	day-1	Rate coefficient for the decay of C in litter 2	1E-05	0.1

Superscript a: Intervals estimated from (Saleh-Lakha et al., 2009).

40 Superscript b: Intervals estimated from (Rai et al., 2017).

Superscript c: A safety factor of 0.1-20 was used to define the interval based on the default values in the model (scaled by the soil thickness).

Superscript d: Intervals estimated from (Nylinder et al., 2011).

Superscript e: Intervals estimated from (Gijsman et al., 2002).

* Parameters used in calibration.

45

50

Table S5: Initial sizes of organic C and N pools for the bulk soil, red clover and winter wheat. The bulk density of soil is 1250 kg m^{-3} , and the height of soil matrix is 0.04 m. The application rate of residues is 0.4 kg m^{-2} .

		C ((g m ⁻²)			N (g m ⁻²)		C/N				
	Total	Litter1	Litter2	Humus	Total	Litter1	Litter2	Humus	Total	Litter1	Litter2	Humus	
Soil	752 ^a	15.0 ^b	406 ^b	331 ^b	74.5 ^a	1.1	26.1	47.3	10.1 ^a	14 ^b	15.6	7 ^b	
RC	179 ^a	147 ^b	32.2 ^b	0^{b}	10 ^a	9.84	0.16	0	17.9 ^a	14.9	200 ^b	7 ^b	
WW	182 ^a	100 ^b	81.8 ^b	0^{b}	2 ^a	1.59	0.41	0	90.9ª	62.8	200 ^b	7 ^b	

0.82:0.18; for winter wheat (WW), L1:L2 = 0.55:0.45. The predefined C/N ratios refers to (Gijsman et al., 2002).

Table S6: Comparison of modeled cumulative N_2O fluxes between single-layer model and multiple-layer model (STD: standard deviation). Unit: g N m⁻².

	Measured	Measured Simulated:		Simulated:			
Treatment		single-laye	er model ^a	multiple-layer model			
	Mean	Mean	STD	Mean	STD		

mix RC					
40 % WFPS, -NO3	0.059	0.041	0.080	0.021	0.074
40 % WFPS, +NO3	0.067	0.132	0.128	0.109	0.108
60 % WFPS, -NO3	0.340	0.012	0.043	0.002	0.020
60 % WFPS, +NO3	3.968	0.716	0.863	0.747	0.720
control RC					
40 % WFPS, -NO3	0.005	0.010	0.018	0.005	0.013
40 % WFPS, +NO3	0.014	0.015	0.012	0.015	0.010
60 % WFPS, -NO3	0.118	0.024	0.066	3×10 ⁻⁵	2×10-4
60 % WFPS, +NO3	0.100	0.072	0.123	0.014	0.047
mix WW					
40 % WFPS, -NO3	0.002	4×10 ⁻⁴	0.001	3×10 ⁻⁴	0.001
40 % WFPS, +NO3	0.031	0.041	0.017	0.040	0.019
60 % WFPS, -NO3	0.015	0.026	0.074	0.005	0.009
60 % WFPS, +NO3	0.029	0.034	0.031	0.021	0.025
control WW					
40 % WFPS, -NO3	0.001	0.002	0.003	0.001	0.002
40 % WFPS, +NO3	0.007	0.011	0.005	0.010	0.004
60 % WFPS, -NO3	0.004	0.003	0.004	9×10 ⁻⁵	2×10-4
60 % WFPS, +NO3	0.005	0.007	0.008	0.010	0.009

^aSingle-layer model calibrated by individual treatment

55 ^bSingle-layer model calibrated by multiple treatments

Table S	57:	Tł	ne mean	of simu	lated	oxygen,	anaerobic	fractio	on, N ₂	0	sources and	biomass	for	16	treatments	in t	he poster	ior mod	els	s.
---------	-----	----	---------	---------	-------	---------	-----------	---------	--------------------	---	-------------	---------	-----	----	------------	------	-----------	---------	-----	----

Volumetric oxygen	Volumetric anaerobic	Percentrage of	Percentrage of
content ^a (%)	fraction ^a (%)	cumulative N ₂ O	cumulative N ₂ O
		(denitrificaiton) (%)	(nitrificaiton) (%)
19.92	1.89	99.98	0.02
19.86	1.93	99.99	0.01
19.85	1.94	76.34	23.66
	Volumetric oxygen content ^a (%) 19.92 19.86 19.85	Volumetric oxygenVolumetric anaerobiccontenta (%)fractiona (%)19.921.8919.861.9319.851.94	Volumetric oxygenVolumetric anaerobicPercentrage ofcontenta (%)fractiona (%)cumulative N2O (denitrification) (%)19.921.8999.9819.861.9399.9919.851.9476.34

4	19.52	2.28	100	0.002	
9	19.99	1.84	99.88	0.12	
10	19.99	1.83	100	0.002	
11	19.96	1.86	85.49	14.51	
12	19.94	1.87	96.61	3.39	
13	19.94	1.87	98.99	1.01	
14	19.92	1.89	100	0.004	
15	19.88	1.92	99.99	0.01	
16	19.87	1.93	99.99	0.01	
21	19.99	1.84	99.76	0.24	
22	20.00	1.83	100	0.001	
23	19.98	1.84	99.95	0.05	
24	19.99	1.84	99.99	0.01	
Avera	age 19.91	1.90	97.31	2.69	

^a The average volumetric oxygen content and the average volumetric anaerobic fraction over the ten sampling days.

Figure S1: Scatter plots with linear regressions and 95 % uncertainty bands for the residuals of cumulative N₂O flux against (a) the observed cumulative N₂O fluxes, (b) the cumulative CO₂ residuals, (c) the average soil NH₄⁺ residuals, and (d) the average soil NO₃⁻ residuals, respectively.

65

Figure S2: Scatter plots with linear regressions and 95 % uncertainty bands for the residuals of simulated cumulative N_2O fluxes against (a) the observed cumulative N_2O fluxes, (b) the cumulative CO_2 residuals, (c) the average soil NH_{4^+} residuals, and (d) the average soil NO_3^- residuals, respectively. Only data from the control treatments were used here.

Treatment - 40 % WFPS, -NO₃ - 40 % WFPS, +NO₃ - 60 % WFPS, -NO₃ - 60 % WFPS, +NO₃

Figure S3: Simulated and measured daily (a) N₂O fluxes, (b) CO₂ fluxes, (c) soil NH₄⁺ content, and (d) soil NO₃⁻ content during the 43-day incubation. Scatter points represent measured data; and triangles with dashed lines represent simulated data (error bar: 95 % confidence interval). Simulated results were obtained from multi-treatment calibration. Daily measurements presented were re-calculated from the data provided by Taghizadeh-Toosi et al. (2021).

75 Figure S4: Cumulative distribution frequency of parameter values for accepted runs in all treatments.

 $\label{eq:spectral_state} Figure \ S5: \ Simulated \ N_2O/(N_2O+N_2) \ under \ two \ moisture \ levels \ across \ treatments \ (error \ bar: \ standard \ deviation; \ * \ p < 0.1 \ , \ ** \ p < 0.05 \ and \ *** \ p < 0.01).$

80

Figure S6: Simulated and measured daily (a) N₂O fluxes, (b) CO₂ fluxes, (c) soil NH₄⁺ content, and (d) soil NO₃⁻ content during the 43-day incubation at 40 % WFPS. Scatter points represent measured data; and triangles with dashed lines represent simulated data (error bar: 95 % confidence interval). Daily measurements presented were re-calculated from the data provided by Taghizadeh-Toosi et al. (2021).

Figure S7: Comparison of simulated N₂O evolution with different d_{effNO} and d_{effN2O} values for treatment 4. The lower $d_{effNXOy}$ values, the higher denitrifiers' ability to reduce N_xO_y. Parameter values in the legend from top to down: 1) fixed values, $d_{effNO} = 0.1$, $d_{effN2O} = 1$; 2) fixed values (default), $d_{effNO} = 0.428$, $d_{effN2O} = 0.151$; 3) $d_{effN2O} = 1$ (day 0-day 3) and 0.151 (after day 3), and default d_{effNO} ; 4) $d_{effNO} = 0.1$ (day 0-day 3) and 0.428 (after day 3), and default d_{effN2O} .

Figure S8: Simulated N₂O evolution with different initial NH₄⁺ input values ranging between 0.01 g N m⁻² (start of experiment) to 0.74 g
 N m⁻² (day 1) for treatment 4. Examples of one posterior run with calibrated parameters (a) and one model run with default parameters (b).

Calculating the porosity of soil-residue mixture

The bulk density of soil-residue mixture, $\rho_{b,m}$:

100
$$\rho_{b,m} = \frac{m_{d,1} + m_{d,2}}{V_{tot,1} + V_{tot,2}}$$

The dry density of soil-residue mixture, $\rho_{d,m}$:

$$\rho_{d,m} = \frac{m_{d,1} + m_{d,2}}{V_{d,1} + V_{d,2}}$$

where $m_{d,i}$ is the dry density (g cm⁻³), $V_{tot,i}$ is the total volume (cm³), $V_{d,i}$ is the dry volume (cm³), and index *i* in the subscript indicates soil (*i* = 1) and residue (*i* = 2).

105 The mass ratio of soil to residue is *a*, and $a = m_{d,l}/m_{d,2}$. A bulk soil core with the height of 4 cm contained 5 g of soil per cm², and 0.04 g of crop residue was applied into the soil per cm². Thus, the calculated *a* is 125 in the study.

The bulk density of soil-residue mixture, $\rho_{b,m}$, is rewritten as:

$$\rho_{b,m} = \frac{am_{d,2} + m_{d,2}}{\frac{am_{d,2}}{\rho_{b,1}} + \frac{m_{d,2}}{\rho_{b,2}}} = \frac{(a+1)\rho_{b,1}\rho_{b,2}}{a\rho_{b,2} + \rho_{b,1}}$$

The dry density of soil-residue mixture, $\rho_{d,m}$, is rewritten as:

110
$$\rho_{d,m} = \frac{am_{d,2} + m_{d,2}}{\frac{am_{d,2}}{\rho_{d,1}} + \frac{m_{d,2}}{\rho_{d,2}}} = \frac{(a+1)\rho_{d,1}\rho_{d,2}}{a\rho_{d,2} + \rho_{d,1}}$$

The porosity of the soil-residue mixture, θ_m , was determined by:

$$\theta_m = 100 \% \times (1 - \frac{\rho_{b,m}}{\rho_{d,m}})$$

References

Gijsman, A. J., Hoogenboom, G., Parton, W. J. and Kerridge, P. C.: Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter–residue module from CENTURY, Agron. J., 94, 462–474, doi:10.2134/agronj2002.4620, 2002.

Jansson, P.-E. and Karlberg, L.: Coupled heat and mass transfer model for soil-plant-atmosphere systems, [online] Available from: https://www.coupmodel.com/documentation (Accessed 10 February 2022), 2010.

120 Nylinder, J., Stenberg, M., Jansson, P.-E., Klemedtsson, Å. K., Weslien, P. and Klemedtsson, L.: Modelling

uncertainty for nitrate leaching and nitrous oxide emissions based on a Swedish field experiment with organic crop rotation, Agric. Ecosyst. Environ., 141, 167–183, doi:10.1016/j.agee.2011.02.027, 2011.

Rai, R. K., Singh, V. P. and Upadhyay, A.: Chapter 17 - Soil Analysis, in Planning and Evaluation of Irrigation Projects: Methods and Implementation, pp. 505–523, Elsevier, Amsterdam, Netherlands., 2017.

Saleh-Lakha, S., Shannon, K. E., Henderson, S. L., Goyer, C., Trevors, J. T., Zebarth, B. J. and Burton, D. L.: Effect of pH and temperature on denitrification gene expression and activity in *pseudomonas mandelii*, Appl. Environ. Microbiol., 75, 3903–3911, doi:10.1128/AEM.00080-09, 2009.

Taghizadeh-Toosi, A., Janz, B., Labouriau, R., Olesen, J. E., Butterbach-Bahl, K. and Petersen, S. O.: Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability

130 and moisture level, Plant Soil, 466, 121–138, doi:10.1007/s11104-021-05030-8, 2021.