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Abstract. Efforts to develop effective climate mitigation
strategies for agriculture require methods to estimate ni-
trous oxide (N2O) emissions from soil. Process-based bio-
geochemical models have been often used for field- and
large-scale estimates, while the sensitivity and uncertainty
of model applications to incubation experiments are less in-
vestigated. In this study, a process-oriented model (Coup-
Model) was used to simulate N2O and CO2 fluxes and soil
mineral nitrogen (N) contents in a short-term (43 d) facto-
rial incubation experiment (16 treatments). A global sensi-
tivity analysis (GSA) approach, “Morris screening”, was ap-
plied to quantify parameter sensitivity. The GSA suggested
that a higher number of sensitive parameters was associated
with N2O flux estimates and that inter-treatment variations
in parameter sensitivities were distinguished by soil moisture
levels or NO−3 content and residue types. Important parame-
ters regarding N2O flux estimates were linked to the decom-
posability of soil organic matter (e.g., organic C pool sizes)
and the denitrification process (e.g., Michaelis constant and
denitrifier respiratory rates). After calibration, the model bet-
ter captured temporal variations and magnitude of gas fluxes
and mineral N in unamended soils than in residue-amended
soils. Low-magnitude daily and cumulative N2O fluxes were
well simulated with mean errors (MEs) close to zero, but the
model tended to underestimate N2O fluxes, as observed daily
values increased by over 0.1 g N m−2 d−1, in which the ma-
jor mismatch was due to limited success of the model to de-
scribe the high emissions during the first few days after crop
residue addition. A larger uncertainty was also seen in the
magnitude of pulse emissions by the posterior simulations.

We also evaluated ancillary variables regarding N cycling,
which indicated that more frequent measurements and ad-
ditional types of observed data such as soil oxygen content
and the microbial sources of emitted N2O are required to fur-
ther evaluate model performance and biases. The major chal-
lenges for calibration were associated with high sensitivities
of denitrification parameters to initial soil abiotic conditions
and the instantaneous residue amendment. Model structure
uncertainties and improved modeling practices in the context
of incubation experiments were discussed.

1 Introduction

The potent greenhouse gas nitrous oxide (N2O) has been es-
timated to be responsible for about 7 % of the overall global
radiative forcing by long-lived greenhouse gases (World Me-
teorological Organization, 2021). N2O emissions from the
agricultural sector account for 60 %–70 % of the total anthro-
pogenic emissions of this gas (Davidson and Kanter, 2014;
Syakila and Kroeze, 2011). However, it is persistently diffi-
cult to reduce the uncertainties of N2O emission estimates,
and one reason is associated with the high spatiotemporal
variability in N2O (Kravchenko et al., 2017). To provide a
scientific basis for developing achievable climate mitigation
strategies, an improved understanding of N2O production in
agricultural soils and quantification of N2O emissions are ur-
gently needed.

N2O emissions from agricultural soils are driven by a suite
of microbiological processes, among which nitrification and
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denitrification predominate as sources of N2O (Butterbach-
Bahl et al., 2013). The factors directly regulating nitrification
and denitrification activity are the availability of mineral ni-
trogen (N), oxygen, and degradable carbon (C) sources used
by denitrifying organisms (Wijler and Delwiche, 1954). Indi-
rect controls include soil temperature, moisture, pH, and soil
texture. During nitrification, when ammonia (NH3, at equi-
librium with ammonium NH+4 ) is oxidized to nitrate (NO−3 ),
a small proportion of N may be lost as N2O (Firestone and
Davidson, 1989). Nitrification mainly occurs in well-aerated
soils with moderate water content (Goreau et al., 1980; Li et
al., 1992; Parton et al., 1996). In contrast, denitrification is
a microbial process that occurs under anaerobic conditions
in which NO−3 is reduced to gaseous N. Soil C substrates are
electron donors for denitrification, but they are also a sink for
oxygen that can lead to anaerobic microsites (Parkin, 1987)
where NO−3 is used as an electron acceptor for microbial res-
piration. Nitrifying and denitrifying bacteria are most active
in producing N2O in environments with abundant N relative
to assimilatory demands by other microorganisms or plants
(Firestone and Davidson, 1989), as is often the case follow-
ing soil amendment of fertilizers, manure, or crop residues.

Farming practices influence the interactions between mi-
crobial, physical, and chemical processes in the soil, and the
uncertainties associated with predicting N2O emissions from
agricultural soils amended with plant residues such as cover
crops or green manure can be particularly high. The incorpo-
ration of crop residues can reduce NH3 losses and enhance
degradation compared to leaving residues at the soil surface,
but at the same time the N input, elevated water holding ca-
pacity, and high local oxygen demand of residues may stim-
ulate the development of anaerobic microsites and bacterial
denitrification activity (Kravchenko et al., 2018; Kuzyakov
and Blagodatskaya, 2015). Also, mechanical disturbances
caused by tillage may influence soil properties (e.g., porosity,
aggregate size distribution, solute and gas diffusivities) and
microbial enzyme activities associated with N2O emissions
(Grandy and Robertson, 2006).

The quantification of N2O emissions from agroecosys-
tems based on field experiments often meets challenges as-
sociated with logistics, data gaps, and long-term resource
support (e.g., man power, equipment, and research budget).
Process-oriented biogeochemical models, e.g., DNDC (Li et
al., 1992), DayCent (Parton et al., 1996), APSIM (Keating et
al., 2003), and CoupModel (Jansson and Moon, 2001), can be
a complementary approach to quantify N2O emission, partly
addressing the above-mentioned challenges. When applying
process-based models, available in situ measurements can be
used to infer model parameters and allow simulation of soil N
transformations and N2O emissions on temporal and spatial
scales beyond the monitoring sites, but accurately simulating
the magnitude of and temporal variability in N2O fluxes un-
der contrasting field conditions remains a challenge. While
models provide reasonable estimates of annual N2O emis-
sions, they become less successful at finer time resolution

(e.g., diurnal time steps), and this represents a barrier to eval-
uating the effects of agricultural land use and management on
greenhouse gas emissions (Brilli et al., 2017). Such model er-
rors are often attributed to physical and biogeochemical pro-
cesses being inadequately represented, suggesting there is a
need to improve process descriptions beyond parameter opti-
mization (Abdalla et al., 2010; Brilli et al., 2017; Gaillard et
al., 2018; Uzoma et al., 2015).

Process-based models attempt to reproduce the most rele-
vant physical and biogeochemical processes through under-
standing grounded in the best available knowledge. Coup-
Model, used in the current investigation, has a high level of
detail on the interaction between biotic and abiotic processes
and has adopted submodules of nitrification, denitrification,
and gas transport from the model DNDC (Li et al., 2000;
Norman et al., 2008). The description of N2O emissions, in-
cluding the links between soil environmental factors and bi-
ological reactions, is based on a series of hypotheses and re-
sults generated from both field measurements and laboratory
incubations studies (Li et al., 2000), and the algorithms and
parameterization of microbial growth and decay dynamics
were specifically supported by the latter. Hence, controlled
laboratory experiments, in which the impact of ill-defined
pedo-climatic conditions on model predictability can be min-
imized, may be useful to optimize the model prediction of
N2O emissions following residue amendment.

The application of process-based models has often been
challenged by the paucity of prior information and mea-
surements compared to the model’s demands, and this is
also the case when applying a model to incubation experi-
ments. One widely used model calibration method to bridge
the gap between model requirements and available data, as
well as to quantify parameter uncertainties, is generalized
likelihood uncertainty estimation (GLUE) (Beven and Bin-
ley, 1992). During model calibration, uncertainty analysis
can assess how robust the model reasonably describes the
measurements and identify possible reasons to explain the
model errors (U.S. Environmental Protection Agency, 2009).
This may be facilitated by applying a global sensitivity anal-
ysis (GSA), which can rank the sensitivities of parameters so
that the model calibration can focus on the relatively more
sensitive parameters (Vezzaro et al., 2012), and thereby the
model’s uncertainties can be more efficiently constrained.
While model processes and performance have been exten-
sively documented, in many studies N2O emissions alone
were used to train and test the subroutines of nitrification
and denitrification (Chen et al., 2008). Evaluation under con-
trolled conditions and with ancillary measurements is notice-
ably lacking, which makes it difficult to assess the submod-
ules related to C and N processes like, for example, decom-
position, nitrification, and denitrification. Thus, a first step
in understanding model performance may be an evaluation
using new datasets that contain different variables linked to
N cycling based on targeted laboratory experiments. To our
knowledge, no previous study has attempted a systematic

Biogeosciences, 19, 4811–4832, 2022 https://doi.org/10.5194/bg-19-4811-2022



J. Zhang et al.: Modeling nitrous oxide emissions 4813

sensitivity and uncertainty analysis in the prediction of N2O
emissions based on soil incubation experiments. The present
study focused on the role of reactive C and N for N2O emis-
sions and used simulations of targeted experiments to iden-
tify key drivers. Simulating N2O dynamics in a short-term
laboratory study may be considered as zooming in on a single
field operation, in this case the incorporation of crop residues
by standard tillage operations.

For this work, we used CoupModel to simulate incuba-
tion experiments. CoupModel has a flexible setting of soil
layer thickness down to a scale of millimeters and is proper
for studying soil physical processes at the scale of incuba-
tion experiments. Besides, CoupModel has integrated mod-
ules that implement parameter calibration and uncertainty
analysis (Jansson, 2012). The calibration datasets used in the
model were obtained from a 43 d laboratory incubation using
a factorial-based design with various crop residue practices
and abiotic factors (Taghizadeh-Toosi et al., 2021). Specifi-
cally, our objectives were (i) to conduct a global sensitivity
analysis for parameters in a CoupModel setup that represents
soil N and C processes for incubation treatments; (ii) to cali-
brate the model and assess model uncertainty in the estimates
of N2O and CO2 emissions, soil ammonium, and nitrate un-
der different residue applications; and (iii) to discuss any lim-
itations in the model optimization with short-term incubation
experiments and suggest directions for future model develop-
ment. We hypothesized that the model is able to simulate the
daily and cumulative N2O emissions under contrasting envi-
ronments in incubated soil cores. Furthermore, we hypothe-
sized that only a few parameters in a complex model could
be constrained to an unambiguous solution with limited lab-
oratory measurements. Our findings can thus help diagnose
potential causes of model–measurement discrepancies con-
cerning C and N processes and specify conditions for which
model and data collection need to be improved.

2 Materials and methods

2.1 Laboratory incubation experiment

In spring 2018, soil used for the experiment was collected
from the 0–20 cm tilled layer at the Lönnstorp Field Sta-
tion, Sweden. Red beets had been grown in the previous year
with no cover crop during winter. The soil is sandy loam
(61.8 % sand, 22.4 % silt, and 15.8 % clay) with a pH of 6.18,
C content of 15 g kg−1, and N content of 1.49 g kg−1. After
sampling, the soil was partially dried, stored at −20 ◦C, and
thawed the day before being sieved to <6 mm for use in the
experiment.

Treatments were prepared under four different soil con-
ditions including two moisture levels (i.e., 40 % or 60 %
WFPS – water-filled pore space) and two nitrate content
levels (i.e., no nitrate addition or addition of KNO3 to
100 mg NO−3 –N kg−1 dry weight soil). Soil cores were pre-

pared by stepwise-packing 1 cm layers of soil to a density
of 1.25 g cm−3 in cylinders with a height of 8 cm, at each
step adding deionized water or a KNO3 solution. Following
moisture and nitrate adjustments, the soil was pre-incubated
for 1 week at 15 ◦C. The experiment involved two different
crop residues: red clover (RC) and winter wheat (WW). RC
residues had a C/N ratio of 17.9 and a moisture level corre-
sponding to 80 % of the fresh weight. The WW residues had
a C/N ratio of 90.9, and the moisture content corresponded
to 20 % of the fresh weight. WW residues had a higher pro-
portion of lignin and ash (11.7 %) than RC residues (5.1 %).
On Day 0 of the experiment, RC or WW residues were either
mixed in an amount of 0.04 g DM cm−2 (DM signifies dry
matter) into the soil from 0–4 cm depth and then repacked,
or residues were placed as a layer at 4 cm depth; only re-
sults from the mixed treatments were used in the present
study. Incubations with RC and WW took place sequentially,
and therefore each residue treatment had its own set of una-
mended controls. Thus, in total 16 incubation treatments (i.e.,
40 % vs. 60 % WFPS; ambient nitrate vs. nitrate addition; RC
vs. WW; and soil amended with residues vs. unamended con-
trols) were used for this modeling study.

All cylinders were covered at both ends with perforated
plastic caps and incubated at 15 ◦C for up to 43 d. Gas
sampling for N2O and CO2 flux measurements took place
10 times, i.e., on day 1, 3, 6, 9, 13, 16, 22, 29, 36, and 43. Gas
concentrations were determined by gas chromatography. Ad-
ditionally, nitric oxide (NO) fluxes were quantified in four se-
lected treatments set up separately. Soil mineral N pools in all
treatments were measured at four destructive samplings after
1, 6, 22, and 43 d of incubation. Further details about the ex-
perimental treatments, preparations, and analytical methods
are given by Taghizadeh-Toosi et al. (2021).

2.2 Model description and simulation setup

2.2.1 CoupModel

This study used CoupModel v6.1, which can be downloaded
from http://coupmodel.com, last access: 1 November 2021.
A detailed description of CoupModel can be found in Jans-
son and Karlberg (2010). The main structure of the model is a
one-dimensional vertical soil profile with user-defined layer
thickness and subdivisions. The current setup of CoupModel
includes a number of components, of which the follow-
ing processes are linked to N2O emissions (Fig. 1): (i) soil
organic matter (SOM) decomposition and mineralization,
(ii) nitrification and nitrifier growth, (iii) denitrification and
denitrifier growth, and (iv) gas diffusion between soil layers
and internal exchange of N trace gases between aerobic and
anaerobic microsites. In the nitrification subroutine, Coup-
Model accounts for response functions of soil temperature,
soil moisture, mineral N concentration, and pH. For denitri-
fication, each step in the chain of denitrification is explicitly
simulated, and denitrifier activity is directly influenced by
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soil temperature, pH, nitrogen oxides, and anaerobic fraction.
The anaerobic soil volume fraction is calculated using the
“anaerobic balloon” concept, as implemented in the DNDC
model (Li et al., 2000; Norman et al., 2008).

2.2.2 Simulation settings

The modeled soil profile consisted of a single soil layer with
a depth of 4 cm for the control treatments and 4.2 cm for the
treatments with residues, allowing a 2 mm increment as ob-
served in the experiment. We only simulated the upper half
of the 8 cm soil core to have proper gas boundary conditions
since the model only allows external gas exchange at the up-
per side of the soil profile, whereas in the experiments both
ends of the cylinder were exposed to air. For the water pro-
cess, it was assumed that there was no evaporation from the
surface and no vertical water flow across the lower bound-
ary, and a constant temperature was set for the upper and
lower boundaries, in accordance with incubation conditions.
The model was initialized based on the measured soil water
content, soil porosity, temperature, pH, total organic C and
N, NO−3 –N, and NH+4 –N of the incubated soil cores. The
dynamics of SOM were simulated with first-order kinetics
using three pools (litter1, litter2, and humus). Considering
there were no explicit pools designed for crop residue addi-
tion, we assigned the rapidly decomposable SOM and easily
metabolized residue components (e.g., sugars and proteins)
to litter1, the moderately decomposable SOM and structural
residue materials (e.g., lignin and other fibers) to litter2, and
the resistant SOM to humus. When initializing the organic
matter pools, we took the soil pool sizes from published pa-
pers and assumed that they were already close to a steady
state at the start of incubations (see the description in the fol-
lowing paragraphs), and hence the changes observed during
incubation were assumed to be mainly caused by the decom-
position of the residues introduced. For simulating gas trans-
port, we selected the steady-state mode in which the oxygen
content within the soil profile was derived from the balance
between soil oxygen consumption and surface air diffusive
supply, and the transient storage term of gases in the soil air
was not considered here.

Calibration datasets. Measurements used for model cal-
ibration were N2O flux, CO2 flux, NO−3 –N content, and
NH+4 –N content. As the gas fluxes and mineral N content in
the upper part with soil–residue mixtures and the lower part
with bulk soil were not analyzed separately, it was assumed
that soil C and N turnover in the lower, unamended part
was identical to that of control treatments in order to create
datasets for the residue-amended part for modeling. Specif-
ically, the amounts of mineral N and gas fluxes recorded on
individual sampling days in the controls were divided by 2
and subtracted from the values recorded in residue-amended
soil.

Initial values. (1) For mineral N, since the mineral N con-
tent in the unamended control soil changed little during incu-

bation and the mineral N content in crop residues was neg-
ligible, the initial NH+4 –N and NO−3 –N values for the con-
trol and residue-amended treatments were taken as the mea-
surement in control soil on day 1. (2) For soil moisture, for
the control treatments, the initial volumetric water content
was calculated from the water-filled pore space (WFPS) lev-
els of 40 % or 60 % and the total porosity of 0.53. For the
residue treatments, the initial volumetric water content was
calculated from the moisture content of soil and crop residues
(Taghizadeh-Toosi et al., 2021). (3) For organic matter pools,
the partitioning of soil organic C between litter1, litter2, and
humus was defined by the ratio 0.02 : 0.54 : 0.44 (Gijsman
et al., 2002). For crop residues, the fraction of easily me-
tabolized organic C was calculated from the lignin /N ratio:
0.85–0.013 (lignin /N) (Gijsman et al., 2002), and hence the
organic C allocation between litter1 and litter2 had a ratio of
0.82 : 0.18 for RC and 0.55 : 0.45 for WW. The allocation of
organic N to different pools followed the pattern of C and the
C/N ratios (Table S5).

A summary of calibration datasets can be found in Ta-
ble S1 of the Supplement, in which cumulative gas emis-
sions were estimated by linear interpolation between sam-
pling dates and integration of the area under emission curves,
while average mineral N contents were calculated by divid-
ing the integrated values by the sampling period. The results
for nitrate in soil cores with residues were not included due to
high uncertainty in the calculations that was probably caused
by solute transport between the unamended and amended soil
layers, as observed in a related incubation experiment using
some of the same soil and residue treatments conducted by
Lashermes et al. (2022).

2.3 Model sensitivity and uncertainty analysis

2.3.1 Global sensitivity analysis

Given uncertain prior information, the study used Morris
screening (Morris, 1991) for a global sensitivity analysis to
identify parameters to which estimates of N2O fluxes were
sensitive. We included seven input parameters related to the
characteristics of soil and crop residues (i.e., soil porosity,
crop residue porosity, soil pH, and organic C pool sizes), and
the parameter ranges were defined around the mean values of
measurements or estimations (Table S4). For parameters sup-
ported by measurements, i.e., soil porosity and pH, the ranges
were within 25 % of the mean values to represent realistic
microscale variations in the laboratory setup. The residue
porosity was estimated with a bulk density of 0.18 g cm−3

and a dry density of 1.3 g cm−3 (Lam et al., 2008; Zhang et
al., 2012), as well as with a wider uncertainty range of 40 %
due to compressibility. Bulk soil porosity and crop residue
porosity were used to calculate the soil–residue-mixture bulk
density used in the model input, and this calculation is in-
cluded in the Supplement. The ranges of organic pool frac-
tions were derived from literature values for cultivated soil, in
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Figure 1. A conceptual diagram of major C and N processes in the current setup of CoupModel. The details of parameters and equations in
each C or N process can be found in Table S2.

which the humus pool size (SOCh) had an uncertainty range
of ca. 40 %, and the labile carbon pool size (SOCl1) varied
within 2 orders of magnitude considering the marginal frac-
tion. The range of crop residue organic pool sizes was taken
from the constraints of the different estimated fractions of the
two crop residues.

Besides the seven input parameters, we considered 45 pro-
cess parameters involved in the relevant model processes.
Part of the parameter ranges (e.g., tQ10a , dpHhrate, cnm)
adopted in the study were based on the most relevant appli-
cations of CoupModel, experimental studies, and other pro-

cess models as shown in Table S4. Ranges for the remaining
model-specific parameters, including those involved in nitri-
fication and denitrification, could not be derived from the ex-
isting literature, and in the absence of better prior informa-
tion, we adopted the default ranges set by the model.

The Morris screening method is commonly used for sen-
sitivity analysis based on an efficient sampling strategy for
performing a randomized calculation of one-factor-at-a-time
(OAT) sensitivity analysis. This method can be viewed as a
compromise between a simple OAT approach and the more
complex GSA methods (e.g., variance-based approaches), as
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it provides a good approximation of the global sensitivity
measure of the parameters at an affordable computational
cost. Furthermore, it was considered excessive and unnec-
essary in the present study to adopt a more detailed analysis
given the limited available measurements.

The elementary effect (EE) was estimated by comparing
the variation of the model’s output yj with the variation of
a given parameter θi , according to Eq. (1). The number of
iterations n was set to 50, and the optimal perturbation fac-
tor 1 was set to 2/3 by dividing the input space into four
levels (Morris, 1991). To allow comparison across outputs,
the EE was then standardized using the standard deviation
of the model factor and the standard deviation of the output
(SEE, Eq. 2). The significance of the impact of parameters
was tested by comparing the mean of the SEE of those pa-
rameters to twice the standard error (sem, Eq. 3) (Sin et al.,
2009). If the input factor lies outside this range, it is said to
have a significant effect on the output. The codes used in the
analysis were adapted from Sin et al. (2009).

EEji =
y

(
θ
j

1 ,θ
j

2 , . . .,θ
j
i +1OPT, . . .,θ

j

m−1,θ
j
m

)
− y

(
θ
j
i

)
1

(1)

SEEji = EEji ·
σθi

σy
(2)
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σ
(

SEEji
)

√
n

(3)

The GSA was performed to a measure of model performance,
root mean square error (RMSE), for three variables: N2O
flux, CO2 flux, and soil NH+4 , which had relatively complete
measurement datasets. By applying the sensitivity analysis to
the likelihood measure, the main factors that drive the model
runs with a good fit to data could be identified (Ratto et al.,
2001). The results from sensitivity analyses were further used
to identify process parameters for inclusion in the uncertainty
analysis due to their contribution to output variability.

2.3.2 Uncertainty analysis

Model calibration was conducted separately for each of the
16 treatments to give more flexibility in model parameteri-
zation. The calibration was carried out with reference to five
measurement variables, namely N2O flux, CO2 flux, NH+4
content, NO−3 content, and NO flux (only four treatments),
using the GLUE method. The GLUE method does not seek
the single best fit to the measured data but utilizes an ensem-
ble of model simulations that represent equally good results
using informal likelihood measures (also called acceptance
criteria) to account for parameter equifinalities. In this study,
we first described the entire ensemble of model runs as prior
runs, and after applying selection criteria the selected ensem-
ble of model runs was analyzed as posterior runs or behav-
ioral runs. Based on the calculated sensitivity indices from
Morris screening, a total of 26 process parameters were se-
lected for calibration, in which the parameters with marginal

SEEs were omitted and only one denitrifier growth parame-
ter was kept in each step of the denitrification chain (see Ta-
ble S4). These parameters were uniformly or log-uniformly
distributed within the predefined ranges, from which 20 000
parameter sets were then randomly sampled for model runs.
Out of these runs, whether a parameter set was accepted or
not was based on the defined criteria, which in this study con-
sisted of the coefficient of determination,R2, and mean error,
ME. The latter is defined as ME=E (Oi−Si), where Si and
Oi are the simulated and observed data at each measurement
time step.

The ME acceptance threshold of each variable was set to
be around the average of daily measurements, taking into
account the different magnitudes of each variable (see Ta-
ble S3). The ME values of prior runs for some measurement
variables often showed a skewed distribution deviating from
0, meaning that the model may have systematically over-
or underestimated these variables. While setting the same
threshold on both sides rejected most of the prior model runs,
the ME criterion on one side might be looser than the other.
For N2O emissions with marked peak fluxes, a combination
of R2 and ME was used for the selection of posterior param-
eters to simulate the dynamics and magnitudes. An ensemble
of ca. 50 posterior runs was selected with an acceptance rate
of 0.25 % based on prior simulations. The uncertainties of
model predictions were quantified within the limits and pos-
terior probability distributions of parameters.

Finally, to investigate whether the treatment effects of soil
moisture and nitrate levels could be represented by a com-
mon parameterization, we also calibrated process parame-
ters against measurements combined with data from every
four treatments with the same residue application includ-
ing “40 % WFPS, −NO−3 ”, “40 % WFPS, +NO−3 ”, “60 %
WFPS, −NO−3 ”, and “60 % WFPS, +NO−3 ”. The prior pa-
rameter ensembles used the same 20 000 parameter sets as
the single-treatment calibration. Accordingly, the measure-
ment datasets from the four treatments in each group were
pooled, and thus a larger dataset for model evaluation was ob-
tained. The procedure of selecting behavioral runs followed
the aforementioned approach based on ME and R2. A dia-
gram that describes the analysis workflow for this study is
presented in Fig. 2.

3 Results

3.1 Sensitivity analysis

The results of Morris screening were evaluated by compar-
ing the absolute SEEs concerning N2O flux, CO2 flux, and
soil NH+4 for individual treatments. Figure 3a–c list the pa-
rameters ranking in the top five SEEs across the 16 treat-
ments. In general, a higher number of sensitive parameters
were found for N2O flux (18) than CO2 flux (8) and NH+4
(9). Also, more inter-treatment variations in the SEEs of pa-
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Figure 2. A schematic diagram of the workflow of the study to ana-
lyze parameter sensitivity and uncertainty of the CoupModel based
on 16 treatments from an incubation experiment (see text for de-
tails).

rameters were found for N2O flux. For CO2 flux and NH+4 ,
inter-treatment variations were found in the parameters rel-
evant to soil moisture levels (e.g., pθLow and θwilt), NO−3
content (dgrowthNO3), or residue types (e.g., fe,l2, fe,l1, and
cnm). For N2O, the parameters exhibiting relatively high
SEE values for most treatments belonged to categories of
SOM decomposition and denitrification (Table S2), includ-
ing deffNO, SOCh, dgrowthNO3, cnm, and dhrateNxOy. The model
input, SOCh, characterizing the partitioning of SOM pools
in the simulation, was found crucial in 13 out of 16 treat-
ments. deffNO represented the respiration of denitrifying bac-

teria based on NO and showed relatively large elementary
effects for almost all treatments by directly regulating the
reduction step from NO to N2O. The parameter dgrowthNO3
described the loss of NO−3 from the anaerobic nitrogen pool
due to microbial growth. dhrateNxOy represented the N con-
centration for half the rate in the denitrification process and
was also known as the Michaelis constant of the enzyme (see
n13, n15, n17, n19, and n20 in Fig. 1).

Parameters that had the greatest impact on CO2 emissions
were concentrated in the following: SOCh, SOM decom-
position rates (kl2, kl1), and the corresponding efficiencies
(fe,l2, fe,l1). In addition, pθLow and θwilt, which controlled
the lower limit of the soil moisture response function for the
decomposition of organic matter (see Eq. 5.86 in Table S2),
exhibited distinct influences for the treatments at the lower
moisture level.

The main processes influencing the NH+4 content of the
soil were identified as SOM decomposition and denitrifica-
tion, and influential parameters included cnm, SOCh, kl2, and
fe,l2. The C/N ratio of microbes, cnm, has an influence on the
mineral N content by changing the magnitude and direction
of soil mineralization and/or immobilization of nitrogen (see
n1–n7 and n11 in Fig. 1). Soil porosity (nsoil) had significant
effects on some treatments, especially under higher moisture
conditions. Besides, as a key intermediate of mineral nitro-
gen turnover, the content of NH+4 was also influenced by
denitrification-related parameters (e.g., dgrowthNO3).

The average SEEs across all treatments are shown in
Fig. 3d–f. For the N2O flux, all parameters were located
inside the wedge indicating that none of these parameters
showed a significant effect across all treatments despite their
significance in individual treatments. In contrast, we found
that the other two variables, CO2 flux and NH+4 content,
were significantly affected by 15 and 28 parameters, respec-
tively. Moreover, all parameters showed nonlinear effects on
the outputs as revealed by their non-zero standard deviations,
which suggested that simulated C and N processes did not
solely depend on individual parameters but also on their in-
teractions.

3.2 Uncertainty analysis

3.2.1 Temporal dynamics of N2O flux, CO2 flux, and
mineral N

The prior simulations generally showed that mean errors for
gas emissions and soil mineral N largely deviated from zero,
and these biases were reduced in the posterior simulations for
most model outputs (Fig. 4a–d). For N2O fluxes, most treat-
ments amended with WW and corresponding controls did not
show significant deviations from the observed fluxes. In con-
trast, in treatments amended with RC and corresponding con-
trols, though the absolute MEs had been reduced, there were
still significant deviations generally in the direction of under-
estimating the observed fluxes. For CO2 emissions, 13 out
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Figure 3. Sensitivity analyses for N2O flux, CO2 flux, and soil NH+4 content in all treatments. (a–c) Heat maps that include all parameters
ranked in the top five places for each treatment based on absolute values of standardized elementary effects (SEEs) – the higher the absolute
value, the more important the parameter is, as shown by the shade of color. (d–f) Estimated mean and standard deviation of SEEs averaged
across the 16 treatments, where the two lines drawn in each subplot correspond to twice the standard error (sem): µi =±2semi (see
Sect. 2.3.1): if a factor is located inside the wedge, its impact on the output is considered insignificant, and vice versa.
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of 16 treatments showed reduced mean errors in the behav-
ioral models, and half of the treatments showed insignificant
deviations from the observed fluxes. For soil NH+4 content,
there was a severe overestimation for most prior models, but
this was alleviated by posterior models, and seven treatments
showed insignificant deviations from zero after model cali-
bration. For soil NO−3 content in control treatments, the ME
ranges of posterior runs were around zero, while negative or
positive biases existed, especially the former.

In the experimental treatments with RC amendment,
N2O emission rates were consistently low at 40 % WFPS
but were markedly higher and peaked on day 3 at 60 %
WFPS (Fig. 5a). The highest measured daily N2O flux was
1.4 g N m−2 d−1 in the RC treatment with NO−3 addition at
60 % WFPS. Similar patterns were observed for CO2 emis-
sion rates, with emission peaks at an early stage of incubation
(day 1 or day 3), and then followed by a decline. In treat-
ments amended with WW, N2O evolution rates were gen-
erally low compared to those with RC amendment. Higher
rates were observed at 60 % WFPS and in NO−3 -amended
soil, but treatment effects were generally minor. For CO2
evolution, higher rates were detected by day 1, but there was
also a secondary peak after 1–2 weeks for the WW treat-
ments (Fig. 5b). The control treatments of the WW residue
incubations showed less CO2 and N2O release compared to
the control treatments of the preceding RC incubations. For
soil mineral N, there was a consistent increase in NH+4 –N
content by day 1 after residue application compared to the
controls, and both NH+4 –N and NO−3 –N showed smaller vari-
ations than gas fluxes (Figs. 5c–d and S6c–d). The simulated
evolution of associated variables is depicted in Fig. 5a–d for
treatments at 60 % WFPS and in Fig. S6a–d for treatments
at 40 % WFPS, respectively, and the results are summarized
below.

N2O. The posterior simulations (Figs. 5a and S6a) were
able to represent the scenarios with low daily N2O emis-
sions (10−5–10−2 g N m−2 d−1), while simulations failed to
capture the large emission peaks (e.g., 1.4 g N m−2 d−1 and
0.13 g N m−2 d−1 for the two RC treatments with NO−3
amendment), or the emission dynamics were reasonably sim-
ulated (e.g., R2>0.4; see Table S3), but the peak values
were lower than observed. The N2O fluxes obtained from
the model tended to increase over time and generally agreed
with the observed fluxes in the second part of the experiment.
Compared with residue-amended soils, the model better de-
scribed the magnitude and stable trend of N2O fluxes in con-
trol soils.

CO2. Overall, the posterior simulations mimicked the
measured dynamics and magnitude of CO2 emissions well
(Figs. 5b and S6b). There were overestimations or underes-
timations by the model, most pronounced in the early stage
of incubation. By day 14, a second peak of respiration was
observed for the WW treatments but not captured by the pos-
terior simulations.

NH+4 . For RC residue treatments, an increase in NH+4 was
observed within the first day, followed by net N mineraliza-
tion from the early- to mid-stage of the incubation period and
then a decline. In contrast, in the posterior simulations for
three of four treatments, the simulated NH+4 corresponded to
an enhanced net N mineralization throughout the incubation
(Figs. 5c and S6c). Such a continuous increase in soil NH+4
also existed in the prior simulations, which would not be rad-
ically altered in the posterior simulations by setting a stricter
selection criterion for R2. For WW residue and control treat-
ments the measured NH+4 content was at the detection limit,
and the magnitude of the simulated NH+4 content was either
in line with the measurements or a bit higher.

NO−3 . The simulated daily NO−3 content captured well the
magnitude of the measurements and showed small variations
throughout the incubation period for all control treatments
(Figs. 5d and S6d). While in most of the control treatments
except for the ones with high moisture and NO−3 amend-
ment, the observed NO−3 levels remained stable or slightly
increased during incubation. For the treatments amended
with crop residues, the simulated NO−3 content showed a
noticeable decrease throughout the period, consistent with
NO−3 being utilized as a substrate of denitrification in the
simulation. Though there was no explicit measurement of
NO−3 within the residue-amended layer in the present exper-
iment, the average NO−3 within the entire soil core in RC
treatments showed net consumption followed by a rebound
(Taghizadeh-Toosi et al., 2021), consistent with observations
for the RC-amended layer in a comparable incubation exper-
iment by Lashermes et al. (2022). Given that, the simulated
NO−3 content in residue treatments exhibiting a continuous
decline was probably lower than the actual values.

3.2.2 Cumulative gas fluxes and average mineral N
content

Model predictions of cumulative N2O fluxes and CO2 fluxes
for the 16 treatments were significant and strongly correlated
with the observed fluxes (Fig. 6 and Table 1). For N2O, there
was a consistent underestimation of high cumulative N2O
fluxes (slope β1: 0.17; ME: −0.23). The estimated slope of
the linear regression for cumulative CO2 flux approached 1,
indicating there was no consistent bias. For the average NH+4
and NO−3 content, the estimated slopes were also close to
unity, and the deviations between prediction and measure-
ment, signified by the relative RMSEs (rRMSEs), were 46 %
and 11 %, respectively. For the average NH+4 content in the
low-range, simulated values were found to overestimate the
measured data (Fig. 6c).

A regression of simulated cumulative N2O flux residu-
als against observed data confirmed that underestimations
were strongly (R2: 0.92) associated with the magnitude of
observed N2O fluxes (Fig. S1a). The negative slope of the
regression indicated an underestimate of 0.83 g N2O–N for
every 1 g of observed N2O–N per square meter. A regression
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Figure 4. Comparison of the ME ranges between prior simulations and posterior (accepted) simulations for (a) daily N2O fluxes, (b) CO2
fluxes, (c) soil NH+4 content, and (d) soil NO−3 content. The blue color shows ME values not significantly different from zero by one-sample
t tests (significance level α= 0.05). Treatment indices 1–4 represent treatments for mix RC, 5–8 for control RC, 9–12 for mix WW, and
13–16 for control WW, where treatment conditions are, in order, “40 % WFPS, −NO−3 ”, “40 % WFPS, +NO−3 ”, “60 % WFPS, −NO−3 ”,
and “60 % WFPS, +NO−3 ”. There are no measured data for nitrate in residue treatments.

of simulated cumulative N2O flux residual against the resid-
uals of other variables revealed that underestimations were
not strongly associated with the residuals of simulated NH+4
and NO−3 (Fig. S1c–d). However, we observed that cluster-
ing of residuals for mineral N existed, in which underestima-
tions of cumulative N2O flux tended to occur when soil NH+4
was overestimated and when soil NO−3 was underestimated.
Specifically, residuals for cumulative N2O flux and soil NO−3
were simultaneously underestimated in 53 % of the posterior
runs as revealed by scatter points falling in the third quad-
rant, and underestimations of N2O flux were accompanied
by overestimations of soil NH+4 in 41 % of the posterior runs
by looking at scattering points in the fourth quadrant.

3.2.3 Calibration by multiple treatments

Increasing the number of calibration treatments resulted in
lower uncertainty but, at the same time, reduced the perfor-
mance of posterior models for some treatments (Fig. 7). Cu-
mulative N2O fluxes were better simulated for the treatments
with higher observed fluxes in each group, especially treat-
ments at 60 % WFPS, but were overestimated for others with
low observed fluxes. The regression between the mean sim-
ulated and measured N2O flux only accounted for 47 % of
the variations in the data, much lower than the level of 96 %
in the single-treatment calibration procedure (Table 1). Sim-
ulated CO2 and NO−3 were generally close to the observed
data. In the same group, simulated CO2 fluxes showed no
difference between the two levels of soil NO−3 but not for the
levels of moisture. Simulated soil NH+4 showed a good agree-
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Figure 5. Simulated and measured daily (a) N2O fluxes, (b) CO2 fluxes, (c) soil NH+4 content, and (d) soil NO−3 content during the 43 d
incubation at 60 % WFPS. Scatter points represent measured data, and triangles with dashed lines represent simulated data (error bar: 95 %
confidence interval). Daily measurements presented were re-calculated from the data provided by Taghizadeh-Toosi et al. (2021).

ment with the measured data in the low range of NH+4 content
but had large model deviations for the four RC residue treat-
ments (a log-scale is used in Figs. 6c and 7c), in which theR2

was 0.50 in contrast to 0.98 in the single-treatment calibra-
tion procedure (Table 1). The statistics rRMSE and RMSE
are more sensitive to outliers compared to mean error (ME),
and regarding NH+4 , their high values for NH+4 (rRMSE of
411 % and RMSE of 0.50 in Table 1) would be reduced to
78 % and 0.01, respectively, after removing the four RC treat-
ments.

3.2.4 Simulated oxygen status and N2O sources

Simulated oxygen content in the soil cores was close to
that of the ambient air, with the modeled volumetric oxy-
gen content in air-filled pores ranging from 19.5 % to 20 %
throughout the incubation period independent of treatment
(Table S7). Still, according to the model, denitrification-
derived N2O accounted for 76 % to 100 % of the cumulative
emissions on average (Table S7).

In simulations, the 0–4 cm soil layer was treated as one
uniform compartment, and this could have influenced model
predictions. To investigate whether increasing the vertical
resolution would change the predicted oxygen availability,
the soil profile was divided into five uniform layers. The re-
sults showed that underestimations of high N2O fluxes still
existed after this change in the stratified representation of
the model (Table S6). The simulated soil oxygen profiles
were still predominantly aerobic for all treatments, as in the
single-layer model, but did show stratification by depth as
depicted in Fig. 8. The oxygen level was the lowest at the be-
ginning of incubation and then showed an increase over the
period studied, mirroring the trends in CO2 flux. Despite the
overall aerobic conditions in the soil, the large proportion of
denitrification-derived N2O emissions was accompanied by
the rapid growth of denitrifier biomass (data not shown).

3.2.5 Calibrated parameters

Although the number of parameters used for calibration
had been reduced by Morris screening, more than half of
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Figure 6. Simulated and measured (a) cumulative N2O fluxes, (b) cumulative CO2 fluxes, (c) average NH+4 content, and (d) average soil
NO−3 content during the 43 d incubation (error bar: 95 % confidence interval). Colors indicate different types of residue amendment, and
markers indicate different abiotic soil environments. Reference lines with a slope of 1.0 are shown on the graphs.

the 26 calibrated parameters still exhibited random distri-
butions within the predefined ranges (Fig. S4). High inter-
correlations between posterior parameters may explain why
some parameters could not be constrained to an unambigu-
ous solution. But five parameters were showing marked vari-
ability between treatments in their posterior distributions as
depicted in Fig. 9, where the prior ranges of these parameters
are indicated in the ordinate.

In most treatments, the parameter dhrateNxOy, representing
the half-saturation constant of N concentration in the deni-
trification process and also known as the Michaelis constant
of the enzyme, was well constrained at the lower range of
the parameter boundary within 50 mg N L−1 in contrast to
the mean of 250 mg N L−1 in the prior range (Fig. 9). A low
dhrateNxOy relative to the physical concentration of NO−3 re-
sulted in a pronounced response of denitrifying bacteria ac-
tivity to substrate availability (see Eq. 6.44 in Table S2).
In some treatments which had no NO−3 addition, i.e., treat-
ment 3, 7, 9, and 13, the parameter showed more diffuse dis-
tribution and higher medians compared to other treatments
(Fig. 9). An enzyme with high dhrateNxOy relative to the con-

centration of substrate is not normally saturated with sub-
strate, and thus the rate of formation of product is substrate-
limited.

In more than half of the treatments, the posterior distri-
bution of cnm, the microbial C/N ratio (cnm) involved in
calculations of mineralization and immobilization, was con-
centrated at around 10 on average. However, for some NO−3 -
amended treatments which usually had higher N2O emission
rates, i.e., treatments 4, 6, 10, 12, and 14, the distribution of
the calibrated microbial C/N ratio was not well constrained
but similar to the prior distribution with medians up to 20.

The parameter representing the rate coefficient for the de-
cay of the litter carbon pool, kl1, generally showed higher
values in WW treatments than controls, and its range for
the high nitrate RC treatment at 60 % WFPS (treatment 4)
was markedly higher than other treatments, indicating the
faster decomposition of labile organic matter. Besides, the ef-
ficiency of NO-based denitrifier respiration, deffNO, showed
a low-range distribution for treatment 4. Low deffNO values
induced a high respiration rate of denitrifiers carrying out
NO reduction (see Eq. 6.47 in Table S2). This treatment also
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Figure 7. Simulated and measured (a) cumulative N2O fluxes, (b) cumulative CO2 fluxes, (c) average NH+4 content, and (d) average
soil NO−3 content during the 43 d incubation (error bar: 95 % confidence interval). Simulated results were obtained from multi-treatment
calibration. Colors indicate different types of residue amendment, and markers indicate different abiotic soil environments. Reference lines
with a slope of 1.0 are shown on the graphs.

exhibited a low-range distribution of the efficiency of SOM
decomposition, fe,l1, associated with a high fraction of CO2
production.

4 Discussion

4.1 Simulation of decomposition and denitrification
processes

The sensitivity analyses, investigating the impact of param-
eter uncertainties on model predictions, showed the impor-
tance of the parameter interactions and associations between
different processes in the model (Fig. 3a–f). Compared with
CO2 emissions and soil NH+4 content, N2O emissions were
controlled by a larger range of parameters related to de-
composition and denitrification processes and had generally
lower SEEs. According to Fig. 3a, reliable information about
the size of humus and litter pools and their decomposition
rates will be critical in reducing the uncertainty of simulated

N2O emissions, and this could be particularly true where
part of the soil organic matter is fresh input from residues.
The results confirm the findings of previous experimental
and modeling studies showing the importance of substrate
heterogeneity for simulations of decomposition and denitri-
fication processes (Brilli et al., 2017; Eusterhues et al., 2003;
Sierra et al., 2011). However, other studies (Dungait et al.,
2012; Schmidt et al., 2011) also indicate that the chemical
structure of organic molecules alone may not determine their
stability in soil, and environmental and biological controls
(e.g., accessibility of the SOM to decomposers, abiotic reac-
tions, and desorption) predominate, especially in the longer
term.

In our model simulations, C and N in crop residues were
allocated to two labile pools, but the allocation ratio did not
greatly influence N2O emissions, soil respiration, or mineral
N. This could be related to the fact that the overall C/N ra-
tio of crop residues was kept constant as the sizes of organic
matter pools changed in the sensitivity analysis. The influ-
ence of crop residues on N2O emissions may be better re-
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Figure 8. Simulated O2 content and volumetric anaerobic fraction
by the multi-layer model for the treatment with the greatest soil res-
piration rate (i.e., RC treatment with NO−3 addition at 60 % WFPS).
The mean daily values from posterior runs were used here.

flected in other residue properties, e.g., the C/N ratio and
solubility of individual substrates (Aulakh et al., 1991; Surey
et al., 2020). Furthermore, it should be noted that the addition
of labile carbon from crop residues does not affect the de-
composition of native soil organic matter in the model (i.e.,
no priming effect), as the decomposition of organic matter in
labile and recalcitrant pools is calculated separately in Coup-
Model, as in other process-based models. The omission of
a priming effect, the importance of which has been shown
in field and laboratory studies (Kuzyakov, 2010), may cause
models to underestimate the effects of crop residue composi-
tion on soil C and N turnover, particularly in connection with
the initial burst of gas emissions.

In the present study, denitrifier growth parameters (e.g.,
deffNO, dgrowthNO3) showed considerable influence on the re-
lease of N2O in most treatments (Fig. 3a). Our results sug-
gested that the influences of microbial activities on N2O
emissions varied between different denitrification steps, and
the denitrifier respiration for NO reduction showed a rela-
tively larger and broader impact across treatments than other
steps. The analysis of the two statistical measures σ and µ
suggested that, rather than a single factor driving the model to
become more “behavioral” in predicting N2O emissions, the
collective effects of multiple parameters were more impor-
tant because one single parameter could exhibit various SEEs
as other parameters changed, represented by high variability
(σ ) compared to the mean (µ) in Fig. 3d. For calibration of
complex models, several combinations of different parameter
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Figure 9. Variability in five calibrated parameters among the 16 treatments. The boxplots show the 25 % and 75 % percentiles as the tops and
bottoms of the boxes, and the medians as the bold lines. Treatment indices 1–4 represent treatments for mix RC, 5–8 for control RC, 9–12
for mix WW, and 13–16 for control WW, where treatment conditions are, in order, “40 % WFPS, −NO−3 ”, “40 % WFPS, +NO−3 ”, “60 %
WFPS, −NO−3 ”, and “60 % WFPS, +NO−3 ”.

values might give the same goodness-of-fit between model
outputs and measured variables, which is defined as equifi-
nality (Beven and Freer, 2001). The model sensitivity to such
parameters is probably attenuated in the case of high-level
equifinalities. Besides, the importance of the parameter in-
teraction structure associated with equifinality could hinder
the constraint of parameters and hence the reduction of un-
certainty in N2O simulations when limited measurement data
are available. For instance, the fraction of C mineralized to
CO2, characterized by 1− fe,l1, and the decay rate of litter1
(kl1) have a product interaction regarding the production of
CO2 (see Eqs. 6.3 and 6.4 in Table S2). Also, the denitrifier
growth rates (e.g., dgrowthNO3) and the half-saturation con-
stant of nitrogen substrates (dhrateNxOy) influence the loss of
N from anaerobic N pools by invoking microbial growth via
a quotient interaction (see Eq. 6.41 and Eq. 6.44 in Table S2).

The parameters which have the greatest impact on soil res-
piration and NH+4 content were associated with SOM com-
position (SOCh) and decomposability (kl1, kl2, fe,l1, fe,l2),
suggesting that model uncertainty for soil respiration and soil
NH+4 could be greatly reduced if experimental data for either

SOM composition or decay rates were available. For simula-
tion of soil NH+4 , information about the microbial C/N ratio
(cnm) and denitrifier growth parameters (e.g., dgrowthNO3) is
also important because the availability of soil mineral N is
closely associated with decomposition dynamics and its con-
sumption by immobilization, nitrification, and denitrification
(Lashermes et al., 2022). The influence of the soil wilting
point on CO2 emissions and soil NH+4 content was larger un-
der dry conditions, while soil porosity had a greater effect on
these two variables under wet conditions. Soil porosity and
wilting point are key set points of the soil moisture response
function controlling the upper and lower bounds of the func-
tion, which implies that the measurement of soil hydraulic
properties could reduce model uncertainty under contrasting
soil moisture levels.

4.2 Model performance and possible explanations for
deviations

Overall, the performance of posterior models varied between
estimated variables and treatments. The timing and magni-
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tude of peak N2O emissions were more difficult to predict
than those of CO2 emissions. The GLUE calibration greatly
reduced model uncertainty associated with N2O gas emis-
sions, with an average reduction of 83 % in the posterior ME
range for all treatments (Fig. 4a), whereas the model still had
difficulties capturing high emissions observed in the incuba-
tion (Fig. 5a). This was probably in part due to model bi-
ases in describing abiotic and biotic properties but also due
to uncertainties in the measurement dataset as discussed be-
low (see Sect. 4.4). The model performance was generally
consistent with previous attempts to simulate N2O emissions
from agricultural soils where models have been able to repro-
duce the cumulative emissions but had the same difficulties
in describing the actual dynamics (e.g., Fuchs et al., 2020;
He et al., 2016). The evaluation of model bias with respect
to the slope β1 in the linear regression of model results vs.
observations (Table 1) showed that the model had a better
performance in its simulation of CO2 fluxes and soil mineral
contents than N2O fluxes. The major mismatch between the
model and measurements was associated with the underes-
timation of N2O flux during the first 3 d of the experiment.
Nevertheless, our model showed initial success by better cap-
turing the timing of N2O for mix RC, particularly for “60 %
WFPS,+NO−3 ” (R2>0.4, Fig. 5a) than other treatments. Ac-
cording to Gaillard et al. (2018), who evaluated the simulated
N2O flux from three process-oriented models (DNDC, Day-
Cent, and EPIC), an underestimation of 0.01–0.93 kg N2O–
N ha−1 for every 1 kg of observed N2O–N ha−1 across these
models was reported. When Fang et al. (2015) applied four
different algorithms to an irrigated corn field, they found
that all algorithms underestimated the four highest cumu-
lative N2O fluxes among eight N fertilizer treatments and
explained this with an underestimation of soil water con-
tent. In the present study, parameter-induced biases may have
been an important source of simulation uncertainty as shown
in Fig. 5, as some microbial coefficients were loosely con-
strained, with more denitrification-related parameters than
other process parameters (Fig. 3). So far very few studies
have reported parameterization and calibration of C and N
cycling for incubation experiments. Our identified parame-
ter sensitivities and constrained parameters could provide a
reference for future modeling of similar systems. More dis-
cussion of parameter calibration is presented in Sect. 4.4.

The unamended soil treatments (controls) were well de-
scribed by the model, indicating that the repacked and
pre-incubated soil was a suitable representation of normal
soil conditions. For amended soils, a rapid increase in soil
NH+4 was observed by day 1, while the modeled NH+4
tended to have a delayed increase for most residue treat-
ments (Fig. 5c). According to Lashermes et al. (2022), the
red clover residues contained water-soluble N (WSN) cor-
responding to ca. 1 g N m−2, which can account for the ob-
served increase. Cutting and mixing residues into the soil
probably accelerated the release and mineralization of N
from the WSN pool compared to a real field situation (Angers

and Recous, 1997), challenging the model that was cali-
brated to describe decomposition in natural environments
(see Sect. 4.4 for more discussion). It also stresses the im-
portance of realistic experimental setups for model parame-
terization under controlled laboratory conditions. The accu-
mulating trend of NH+4 simulated for the RC residue treat-
ments was in contrast to the transient NH+4 peaks observed
(Fig. 5c), which indicates that the modeled NH+4 release from
residue decomposition was greater than the NH+4 consump-
tion by microbial immobilization and nitrification that was
simulated. By setting stricter selection criteria of ME and R2

regarding NH+4 , such a trend could be avoided, but this was
accompanied by decreased N2O emission rates owing to re-
duced net N mineralization (data not shown). In our study,
the relationships between N2O flux residuals and the resid-
uals for mineral N were weak and not significant, indicating
that the N2O underestimation at high flux ranges may also be
due to other factors.

Inaccurate estimation of proximal factors such as soil wa-
ter content and temperature by the pedo-climatic subroutines
has been put forward as a main cause of errors in simulat-
ing C and N emissions in many process-based models (Brilli
et al., 2017), but in the present study, the soil water content
and temperature were constant during incubation. Instead, a
heterogeneous distribution of water within residue-amended
soil cores could be a problem for the description of soil water
content in the model because water retention capacity in the
soil might be altered by the practice of adding crop residues.
Lashermes et al. (2022) found that adding crop residues to
soil increased the average WFPS of this layer from 60 %
to 63 %. Also, Kravchenko et al. (2017) found that specific
gravimetric moisture of plant residues in soil could vary in
the range of 60 % to 220 % and that residues were character-
ized by high moisture even at low soil water contents. Hence,
the main effect of crop residues on the abiotic soil environ-
ment is probably not the marginal change in the average soil
moisture content but more likely the co-occurrence of ele-
vated water content and labile C and N within the soil core.
Residue fragments with high water retention capacity could
represent microenvironments markedly different from those
of the bulk soil and promote N2O emissions (Kravchenko et
al., 2017).

Model results indicated that the simulated O2 content of
soil air at 0–4 cm depth changed only slightly during in-
cubation and was close to the saturation partial pressure in
the atmosphere owing to faster diffusion supply compared to
soil respiration rates (Fig. 8). However, most O2 consump-
tion likely occurred in the microenvironment around residue
particles. This is supported by observations of O2 concen-
tration profiles in soil using O2 microsensors (Markfoged
et al., 2011) and planar optodes (Kravchenko et al., 2017),
which showed the aerated O2 partial pressure in the soil ma-
trix away from organic hotspots and steep gradients in O2
between bulk soil and hotspots of manure and residues, re-
spectively. Model simulations found that denitrification was
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the major process that produced N2O in the experiment, ac-
counting for 76 % to 100 % of the total estimated N2O emis-
sions. Parkin (1987) found that a thin water film, even as little
as 20 µm, could be enough to deplete air and support denitri-
fication at the surface of decaying litter, and it is thus possible
that the observed high N2O fluxes were produced via denitri-
fication despite a high average oxygen status within the soil.
However, existing process-based models do not describe the
heterogeneity in physical and biochemical processes caused
by organic amendments, which may limit the ability of these
models to reflect the microscale anaerobiosis and SOC avail-
ability, as well as to predict peak N2O emissions such as
those observed in RC treatments (Fig. 5a). Some studies
have explored methods to incorporate spatial variability into
denitrification models, although conceptual frameworks con-
sidering effects of heterogeneity on greenhouse gas emis-
sions have only in recent years emerged and gained attention
(Sihi et al., 2020). Using a stochastic modeling approach,
Parkin (1987) found that the patchy dispersion pattern of
high denitrification microsites was a major factor influencing
the overall rates of denitrification. Based on a parsimonious
numerical model, Sihi et al. (2020) used probability distribu-
tion functions to represent soil microsite production and con-
sumption of three greenhouse gases, which explained occa-
sional observations of simultaneous N2O uptake (reduction)
and CH4 uptake (oxidation) that were not typically captured
by other models. We suggest that model development should
improve the representation of microscale processes in soil,
for instance by parameterizing the distribution and extent of
heterogeneity in, for example, organic amendments and clay
content and by establishing the degree of anaerobiosis asso-
ciated with organic hotspots and bulk soil separately.

The simultaneous underestimation of N2O and NO−3 in
model runs (Figs. 5d and S1) may have been due to an incom-
plete description of nitrate supply in the residue-amended
0–4 cm soil layer. In a separate incubation experiment us-
ing the same soil and experimental design and several of the
same treatments, Lashermes et al. (2022) found that adding
RC residue to the 0–4 cm soil layer induced a decrease in
the NO−3 content of the unamended 4–8 cm depth layer, in-
dicating that NO−3 removal in the upper, amended layer dur-
ing denitrification caused a diffusive mass transfer between
the two layers. In the current model framework, solute trans-
port is only possible by convection (driven by water flow)
and does not include diffusion driven by concentration gra-
dients. Under field conditions, this spatial-scale infiltration is
the main mechanism for solute transport between compart-
ments, but for a period after organic amendments, diffusive
NO−3 supply from the bulk soil can be the most important
source of electron acceptor for denitrification, as observed in
earlier incubation studies (Nielsen et al., 1996; Petersen et
al., 1996). The current solute transport process may thus not
be sufficient to properly simulate N2O production on small
scales, especially under low flow rates or for short travel dis-

tances where diffusive flux becomes increasingly important
(Flury and Gimmi, 2018).

The differences in the posterior parameter distributions
provided information about the simulation of C and N
processes between treatments. For example, the microbial
biomass C/N ratio (cnm) was constrained within 10 in most
treatments, consistent with observations that, on average, the
C/N ratio of the soil microbial biomass varies between 6 and
10 (Xu et al., 2013) and does not easily change with litter
quality (Spohn, 2015). Fungal cells typically have a C/N
ratio ranging from 10 to 15, while bacteria range from 3.5
to 7 (Paul, 2007). In some treatments associated with extra
NO−3 input and high N2O emissions, however, the microbial
C/N ratios in accepted runs exhibited relatively high values
closer to the soil–residue-mixture C/N ratio. According to
Eqs. (6.7) and (6.8) in Table S2, a relatively high cnm coin-
cides with simulations of low humification (i.e., less labile C
and N converted to recalcitrant matter), as well as intense N
mineralization (i.e., more organic N in litter pools converted
to NH+4 ). At the same time, the relatively low values of esti-
mated Michaelis constant dhrateNxOy suggested a high micro-
bial affinity for soluble nitrogen oxides. These trends all pro-
mote N availability for denitrification, and we propose with
reference to Lashermes et al. (2022) that C/N ratios above
10 were related to an inaccurate assumption that there was
no diffusive supply of NO−3 from the 4–8 cm soil layer. In-
cluding solute diffusion in the model may be able to change
the posterior distributions of both parameters by better mim-
icking the mineral N supply.

Compared to control soils, C and N dynamics in residue-
amended soil, especially at the high moisture level (Fig. 5a),
were difficult to simulate. In the experiment, rapid organic
matter turnover in the residue-soil mixture was possibly
caused by a high concentration of decomposer microorgan-
isms associated with residue fragments. As discussed above,
the rapid decay of organic matter (kl1, kl2) and high CO2 for-
mation rate (fe,l1, fe,l2) in the calibrated parameters in these
amended treatments reflected the need to mobilize N for ni-
trification and denitrification processes to simulate observed
N2O emissions from amended soils.

We also noted that the model deviations for N2O flux were
not caused by the spatial resolution of the vertical soil pro-
file, which has been a problem in some studies (e.g., Xing
et al., 2011), as model performance concerning N2O predic-
tion was not improved in the multi-layer model (Table S6)
where the one-layer soil profile had been sub-divided into
five layers for simulations. This was not surprising since
structural uncertainty was not addressed in this way; for ex-
ample, increasing the number of layers would not reflect the
microscale processes associated with crop residue fragments
and soil aggregates, nor would it address the missing descrip-
tion of solute diffusion between interfaces.
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4.3 Treatment effects

We only investigated how the model responded to the spe-
cific change for two soil moisture and NO−3 levels, but the
results we obtained after calibrating the model against mul-
tiple treatments indicated that it is difficult to predict N2O
emissions under varying soil environmental conditions using
a common model parameterization (Fig. 7). In the multiple
treatment calibration, similar cumulative N2O fluxes were
simulated for treatments with the same NO−3 level regardless
of the soil moisture level, which was different from obser-
vations. For instance, in the experiment with RC treatments,
higher N2O fluxes were associated with the higher WFPS
level (60 %) rather than with the higher NO−3 level but with a
strong interaction between the two factors (Taghizadeh-Toosi
et al., 2021). However, single-treatment calibration showed
more success to simulate the effects of different soil moisture
levels on N2O fluxes. In a recent study, Grosz et al. (2021)
also found it difficult to describe treatments in incubation
studies with three N2O models (DNDC, CoupModel, and
DeNi) that responded to controlling factors in the same di-
rection as measurements with frequencies from only 19 % to
67 %. In CoupModel, soil moisture effects have indirect ef-
fects on denitrification through decomposition, nitrification,
and gas diffusion processes in which the soil moisture re-
sponse function and its association with anaerobic condi-
tions were accounted for. Hence, soil moisture may have had
fewer or delayed effects on the N2O emissions in model ap-
plications than in soil incubations with non-uniform distri-
bution of moisture and C and N sources. The model devia-
tions in our study, obtained by calibration of multiple treat-
ments, suggested that potential limitations in model assump-
tions or the description of mechanisms were more important
for unsatisfactory model responses than parameterization. It
should be noted, however, that only two moisture levels were
included in the experimental setup, and in the absence of
a more detailed moisture gradient, we were unable to draw
more concrete conclusions about the model’s performance in
simulating soil moisture effects.

On the other hand, with the same type of residue amend-
ment, treatments with higher cumulative N2O fluxes – either
high soil moisture level or high N input – were better simu-
lated by the model (Fig. 7a). This can be understood from the
characteristics of the calibration dataset and selection crite-
ria. The high flux samples represented only a minor fraction
of the total samples (i.e., 40 sampling points) in each group
but were higher than the rest of them by orders of magnitude
(Fig. 5a). The application of the ME criterion mainly con-
strained model deviations for the high fluxes in each dataset
and less so for minor fluxes. It may be argued that this limita-
tion could be improved by applying more stringent additional
criteria such as R2. However, this would reduce the accep-
tance rate or even refuse all posterior runs. Interestingly, Vez-
zaro et al. (2012) obtained similar results in a GLUE context
by using the Nash–Sutcliffe-based likelihood and stormwater

measurements with large internal variability, and they con-
cluded that the choice of selection criteria should be based
not only on their mathematical features but also by looking
at the characteristics of the available data.

4.4 Improving modeling practice and experimental
design

Some reasons for deviations between model simulations and
experimental results were already discussed, but possibly
other microbial and physiochemical processes are also not
well described by current modeling practices. For example,
enzymatic processes accounting for N2O production and re-
duction could change progressively during incubation, which
is not reflected in fixed parameter values, as in this study.
Khalil et al. (2005), coupling model and soil batch exper-
iments, demonstrated the importance of an increase in the
ability of denitrifiers to reduce N2O for correct simulation
of N2O dynamics and variations in N2O / (N2O+N2) ratios,
especially when anaerobic conditions lasted more than 1 d.
Microbial biomass and enzyme production can also vary un-
der field conditions. Davidson et al. (2012) found that allow-
ing model parameters to vary seasonally was more effective
for modeling field data than calibrating parameters fixed at
constant values to the entire annual dataset.

In view of these reports, we tried to test the sensitivity of
simulated N2O emissions to dynamic parameters using the
default setup as a benchmark. Two parameters, deffNO and
deffN2O, were selected to simulate an increase with time in
the ability of denitrifiers to produce and reduce N2O, respec-
tively, by assigning different values before and after day 3.
The results (Fig. S7) show that the time course of N2O emis-
sions could be manipulated, with an intensification of the
N2O reduction activity over time changing the timing of an
emission peak. It indicates that the use of fixed model pa-
rameters for short-term incubation experiments could lead to
systematic errors if biotic properties such as the activity of
enzymes or the affinity for a substrate of soil microbes vary
significantly.

The rapid N mineralization in RC treatments during the
early stage of incubation (Fig. 5c) may have been associated
with disturbances in the experimental setup (see Sect. 4.2),
which is beyond the description of the model framework.
We conducted a simple sensitivity test with initial NH+4 con-
tent on treatment 4 using default parameters and one cali-
brated parameter combination from the posterior ensemble.
We found that by setting the initial NH+4 content to differ-
ent values between the observations on day 0 (value taken
from the corresponding control) and day 1 to account for
the rapid mineralization of WSN, simulated N2O in the early
stage could be enhanced (Fig. S8), and the impact was linked
to parameter values. When using process-based models to
simulate such systems, the measurements taken shortly af-
ter experiment initialization can be more suitable model in-
puts compared to the values from the starting point, and thus
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frequent measurements in the early stage of experiments are
required.

We also found that our capacity to evaluate model perfor-
mance was limited by the data available for model estimation
and calibration. Firstly, some model parameters were not as-
sessed in the incubation experiment (e.g., soil and residue
labile C content and microbial biomass), and their values
were either estimated or determined by calibration. Proximal
chemical analysis related to these properties of soil samples
could help reduce model uncertainties. Secondly, the quality
and temporal resolution of the measurements of controlling
factors such as NO−3 and NH+4 were limited. We used mean
values of recalculated measurements to compare with model
simulations, in which any measurement error was included
in parameter ranges. Having explicit measurements in each
layer (i.e., soil–residue mixture and bulk soil layer) of in-
cubated soil cores and having higher measurement frequen-
cies of mineral N and gas emissions within the first 24 h of
the experiment are promising tools to improve the reliabil-
ity of experimental data for modeling. Thirdly, in soil N2O
modeling, measuring more ancillary variables regarding N
cycling (e.g., N2, NO) and using state-of-the-art techniques
(e.g., 15N gas flux methods) could help test the validity of
model principles (Grosz et al., 2021). Although collecting all
data types discussed here is not always possible or practical,
we consider that reporting ancillary model outputs regarding
N cycle processes even in the absence of observations, partic-
ularly the denitrification products, soil oxygen content, and
anaerobic fraction, will aid model evaluation efforts, which
was not done very often in previous studies. Accordingly,
closer collaboration between modelers and experimentalists
is essential to increase mutual understanding, enforce better
modeling practices, and find new knowledge by merging data
and modeling.

5 Conclusions

The current setup of CoupModel, when applied to results
from an incubation study, indicated that parameters associ-
ated with the decomposition of SOM and denitrifier growth
were important in regulating soil respiration and mineral N
dynamics. A high level of parameter interaction and equi-
finality issues that exist in simulating N2O emissions has
brought us challenges in quantifying parameter sensitivities
and improve parameter constraints.

The parameters showing posterior distributions that dif-
fered from the prior distributions revealed specific mod-
eled microbial processes between treatments and may be
used as references behind observations. For example, in the
treatments with NO−3 addition, the relatively low values of
dhrateNxOy in the posterior distribution suggested a high mi-
crobial affinity for soluble nitrogen oxides, accelerating mi-
crobial denitrification. More intense SOM decomposition

was simulated in residue treatments compared to the “con-
trol” simulations.

The uncertainty analysis demonstrated that a model bias
towards underestimating high-range daily and cumulative
N2O fluxes was likely associated with a simplified descrip-
tion of microbial processes in mineral N dynamics. While
the simulated soil respiration response to soil moisture was
generally in line with the direction of measurement, the mod-
eled N2O emissions were not as sensitive to the WFPS as the
measured data, but further assessment of this requires exper-
imental data with more moisture levels. We discussed po-
tential model structure uncertainties based on current model
outcomes (i.e., the prediction bias, oxygen profiles, N2O
sources, and moisture effects) and the emerging knowledge
in recent experimental studies. Several suggestions for model
improvement were described, including the use of new pa-
rameters and equations to represent microscale heterogene-
ity, as well as a re-examination of the effects of soil moisture
on denitrification processes with the assistance of more ex-
perimental data. Under the current modeling framework, al-
lowing for dynamic microbial parameters in calibration and
careful consideration of initial mineral N conditions may as-
sist in better model representation of microbial and physio-
chemical processes in the context of incubation experiments,
as well as N application in field conditions.

Generally, we conclude that modeling N2O emissions in
controlled experiments is useful to identify the need for prior
knowledge in both basic (e.g., decomposability of SOM) and
elaborate (e.g., denitrifier growth) aspects of the process-
based model for reducing the uncertainty of N2O flux es-
timates. Moreover, we identified potential model deviations
from observations and discussed future steps that may be re-
quired to assess their sources. We believe there is a need to re-
visit basic model assumptions and improve the experimental
design that enables more effective modeling practices, model
evaluation, and comparison.
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