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Abstract. Sun-induced chlorophyll a fluorescence (SIF) re-
trieved from satellites has shown potential as a remote sens-
ing proxy for gross primary productivity (GPP). However, to
fully exploit the potential of this signal, the robustness and
stability of the SIF–GPP relationship across vegetation types
and climates must be assessed. For this purpose, current stud-
ies have been limited by the availability of SIF datasets with
sufficient spatial resolution to disentangle the signal between
different vegetation cover types. To overcome this limita-
tion, this analysis uses GOME-2 (Global Ozone Monitor-
ing Experiment-2) SIF retrievals, downscaled to a resolution
of 0.05◦ (∼ 5 km) to explore the relationship between SIF
and FLUXCOM GPP (GPPFX), a data-driven dataset of pri-
mary productivity obtained by upscaling flux-tower measure-
ments. The high resolution of the downscaled SIF (SIFDS)
dataset allows the relationships to be broken down by vege-
tation cover for separate climate zones, thus enabling a con-
frontation between GPP and SIF at fine granularity. This
analysis first investigates the spatial and temporal relation-
ships between FLUXCOM GPP and downscaled SIF at a
global scale. A reasonably strong linear relationship is gen-
erally observed between SIFDS and GPPFX in all vegeta-
tion categories, and an analysis of covariance (ANCOVA)
shows that the spatial response is similar between certain
plant traits, with some distinction between herbaceous and
woody vegetation and notable exceptions, such as equato-
rial broadleaf forests. Geographical regions of non-linearity
suggest where SIFDS could potentially provide information
about ecosystem dynamics that are not represented in the
FLUXCOM GPP dataset. With the demonstration of down-

scaled SIF as a proxy for GPP, the response of SIFDS to short-
term fluctuations in several meteorological variables is anal-
ysed and the most significant short-term environmental driv-
ing and limiting meteorological variables determined. Vege-
tation groupings of similar SIF–meteorological response re-
inforce the vegetation categorisations suggested by the AN-
COVA. This comparative exploration of two of the most re-
cent products in carbon productivity estimation shows the
value in downscaling SIF data, provides an independent
probe of the FLUXCOM GPP model, enhances our under-
standing of the global SIF–GPP spatio-temporal relationship
with a particular focus on the role of vegetation cover, and
explores the similarity of the SIF and GPP responses to mete-
orological fluctuations. Additional analyses with alternative
SIF and GPP datasets support these conclusions.

1 Introduction

Accurately quantifying the gross primary productivity (GPP)
of vegetation systems across the globe is vital for modelling
the future trajectories of atmospheric carbon fluxes and mak-
ing projections regarding the Earth’s climate. Indeed one of
the largest sources of uncertainty in the carbon cycle is repre-
sented by the interaction between atmospheric carbon diox-
ide, climate and terrestrial ecosystem dynamics (Friedling-
stein et al., 2019; Anav et al., 2015). Photosynthesis drives
this interaction, with vegetation removing carbon from the
atmosphere and investing it in growth, cell maintenance and
respiration. In turn, photosynthesis is regulated by environ-
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mental conditions, and, as climates change, both the mean
weather and its variability will change, impacting the pro-
ductivity of vegetation systems (Seneviratne et al., 2012).

It is not possible to directly measure GPP at a global level;
however many techniques have been developed to derive pro-
ductivity at different scales using a range of data-driven or
model-based approaches. Light use efficiency (LUE) mod-
els, for example, estimate GPP as a function of the absorbed
photosynthetically active radiation (APAR); the efficiency of
utilising light in photosynthesis εLUE; and the effect of cli-
matic constraints, such as temperature (T ) and precipitation
(P ):

GPP= εLUE×APAR× f (T )× f (P ) (1)

(Ryu et al., 2019; Running et al., 2004; Zhang et al., 2017;
Lee et al., 2013; Pei et al., 2022).

A relevant assessment based on a process-oriented ensem-
ble, known as TRENDY (Sitch et al., 2015; Le Quéré et al.,
2018), provides a model-based estimation of global GPP
ranging between 83–172 PgC yr−1, with the wide range of
values highly dependent on the model assumptions. Eddy co-
variance sites, or flux towers, provide the most accurate ways
of measuring carbon fluxes at an ecosystem scale, through
the systematic observation of the net ecosystem exchange of
CO2. These measurements have been standardised and made
available thanks to the FLUXNET initiative that links dif-
ferent continental networks of eddy covariance towers (Bal-
docchi et al., 2001). The FLUXCOM project has upscaled
FLUXNET data to a global estimate of GPP using machine
learning methods to integrate site-level observations, satellite
remote sensing information and meteorological data (Tra-
montana et al., 2016). Whilst FLUXCOM is a large step for-
ward in estimating GPP at a global level, it is not without its
limitations and uncertainties. In fact, the various FLUXCOM
GPP estimates use an ensemble of different machine learn-
ing methods and data inputs, which result in a broad spread
of mean global GPP estimates among the ensemble members
of between 108–130 PgC yr−1. A comparative study between
FLUXCOM and TRENDY finds that for 70 % of the globe at
least the 9 out of 16 TRENDY models fall outside the FLUX-
COM range (Jung et al., 2020).

In recent years, sun-induced chlorophyll a fluorescence
(SIF), retrieved from space-based instruments, has grown in
use as a remotely sensed proxy for GPP, in addition to more
traditional remote proxies such as spectral vegetation indices
(Frankenberg et al., 2011a; Joiner et al., 2011; Porcar-Castell
et al., 2014). This fluorescent light – resulting from the re-
emission by leaves of incident photons at lower energy – is
considered to be the mechanism developed by plants to re-
spond near-instantaneously to rapid perturbations in the en-
vironmental conditions of light and temperature, with the
SIF yield also dependent on biophysical conditions such as
the concentration of the CO2-fixing enzyme Rubisco and
drought stress (Frankenberg and Berry, 2017; Ryu et al.,
2019). The SIF flux can similarly be expressed in terms of

the absorbed incident radiation and the efficiency with which
this radiation is converted into fluorescent radiation, εF:

SIF= εF× εesc×APAR, (2)

where the term εesc accounts for the efficiency of photons
to escape re-absorption and scattering by other leaves in the
canopy (Lee et al., 2013). Rearranging the equations for in-
stantaneous SIF and GPP fluxes,

GPP=
εLUE

εFxεesc
×SIF, (3)

we see that under conditions in which the various conver-
sion efficiencies remain constant, there is a linear relation-
ship between SIF and GPP. Whilst at small spatio-temporal
timescales, where leaf chemistry is particularly sensitive to
changes in absorbed photosynthetically active radiation and
the fraction of fluoresced photons escaping from the canopy,
there is evidence for the divergence of SIF and GPP from lin-
earity, it appears that the broader canopy-scale relationship
smooths over these non-linearities (Magney et al., 2020). In-
deed, there is a substantial body of evidence that shows that
SIF, measured from space-based instruments, is positively
correlated with leaf photochemistry, often exhibiting a gen-
erally linear relationship in both space and time and across
spatio-temporal scales (Zhang et al., 2016; Sun et al., 2018;
Magney et al., 2020). However, this SIF–GPP relationship
may exhibit some dependency on the vegetation type, for ex-
ample through the canopy structure that is affecting εesc, as
well as the leaf photochemical properties and external condi-
tions, for example climate drivers. Due to the relatively fast
response of SIF and close link to leaf photochemistry com-
pared to other remote indicators of greenness, such as NDVI
(normalised difference vegetation index), SIF has the poten-
tial to be an indicator of environmental stress for the plant
photosystem (Walther et al., 2019; Jiao et al., 2019).

There is currently no orbiting satellite designed explicitly
to directly measure SIF from space. The first that will do
so is the exploratory mission FLEX, scheduled for launch
in the coming years (Coppo et al., 2017). In the mean-
time, SIF has been retrieved from other instruments de-
signed for measuring the atmosphere greenhouse gas concen-
tration, namely GOSAT, SCIAMACHY, the Global Ozone
Monitoring Experiment-2 (GOME-2), the Orbiting Carbon
Observatory-2 (OCO-2) and the TROPOspheric Monitoring
Instrument (TROPOMI) (Guanter et al., 2012; Joiner et al.,
2012, 2013; Sun et al., 2018; Köhler et al., 2018b; Guanter
et al., 2021; Doughty et al., 2019). However, several issues
hamper the use of these data for the quantification of terres-
trial GPP. First, some instruments (GOSAT, OCO-2) sam-
ple the surface, leaving wide gaps between different satellite
overpasses. Second, the time series of observations is shorter
than desired for carbon science, especially for the more re-
cent instruments (e.g. OCO-2 and TROPOMI). Third, most
have a spatial resolution that is too coarse to isolate homoge-
neous vegetation patches of distinct land cover types.
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Efforts have been made to improve the resolution and cov-
erage of SIF datasets by combining SIF data with other high-
resolution remote sensing data (Gentine and Alemohammad,
2018; Li and Xiao, 2019; Zhang et al., 2018a; Yu et al., 2018;
Gensheimer et al., 2022). These approaches generally rely
on statistical inference, through machine learning methods.
A downscaling methodology, based on a light use efficiency
model, combines the GOME-2 data with several explanatory
biophysical variables in a process-oriented scheme. The re-
sulting dataset has a spatial resolution of 0.05◦ (5 km) and
is therefore at a scale relevant to studies of land cover at a
global scale (Duveiller et al., 2020; Duveiller and Cescatti,
2016). This model ensures that the downscaling method is
grounded in theory whilst also preserving the GOME-2 sig-
nal. Downscaling the SIF in this way results in a high-
resolution dataset with a reasonably long archive, improving
accuracy in the exploration of the SIF relationship with veg-
etation cover.

If downscaled sun-induced fluorescence is to be used as
a proxy for ecosystem productivity it is important to under-
stand the spatial and temporal relationships between SIF and
the current state-of-the-art GPP datasets at a global scale and
in particular understand how they deviate for differing vege-
tation covers and climate zones. To this end, this paper serves
several purposes. Firstly, the analysis provides a thorough
test of the utility of the downscaling method to reproduce
known SIF–GPP patterns, in particular through the spatio-
temporal correlation between downscaled SIF and FLUX-
COM GPP. Exploring variations in the FLUXCOM GPP
with an independent SIF dataset, often likewise regarded as
a proxy for GPP, helps to probe its strengths and limita-
tions through areas of coherence and divergence. Similarly,
comparisons with alternative SIF and GPP products such
as TROPOMI SIF (Guanter et al., 2021) and FluxSat GPP
(Joiner and Yoshida, 2021) are provided in the Appendix in
order to ensure the consistency and robustness of the con-
clusions. Second, as a global, high-resolution investigation
into the SIF–GPP relationship, the analysis allows us to learn
more about the differing spatial linear relationship between
SIF and GPP and their variation in nature with a particular
focus on similarities and differences between vegetation cov-
ers. This allows the determination of which vegetation cov-
ers have a similar SIF–GPP response and which vegetation
covers care should be taken of in the use of SIF as a proxy
for GPP. Finally, having established the spatio-temporal re-
lationship between the downscaled SIF and the FLUXCOM
GPP, the paper investigates the response of downscaled SIF
to fluctuations in several meteorological factors and in the
process determining the most significant driving and limiting
meteorological factors in monthly SIF fluctuations. By util-
ising the high resolution of the downscaled SIF, it is possible
to understand with improved confidence the extent to which
vegetation cover plays a role in these relationships using ded-
icated techniques (e.g. Álvaro Moreno-Martínez et al., 2018).

2 Data

2.1 Vegetation cover data

The data relating to the vegetation cover of each pixel are
derived from the Copernicus Climate Change Service (C3S)
via the climate data store platform, with the data created
by the ESA CCI programme (CCI, 2017; Defourny, 2019).
The land cover classes are converted to vegetation covers,
as used by dynamic global vegetation models, whilst aggre-
gating the data to a spatial resolution of 0.05◦. The follow-
ing vegetation covers are considered: grassland, GRA; crops,
CRO; evergreen broadleaf forest, EBF; deciduous broadleaf
forest, DBF; evergreen needleleaf forest, ENF; and decidu-
ous needleleaf forest, DNF. To ensure a high homogeneity in
the selected data, the dominant vegetation type must cover
at least 75% of a pixel and feature no change in the major-
ity land cover classification over the considered years, 2007–
2014.

2.2 Climate classification

The climate zone classification used in the analysis follows
the Köppen–Geiger climate classification scheme (Kottek
et al., 2006; Rubel and Kottek, 2010; Rubel et al., 2017). The
classification maps are representative of the period 1986–
2010, are available at a spatial resolution of 0.0833◦ and are
extrapolated via binomial interpolation to grid cells (referred
to hereon as pixels) of 0.05◦.

Four broad categories are considered from this scheme:
equatorial, arid, temperate and continental. Equatorial con-
tains “Group A” climate regions: areas where each month
is above 18 ◦C and with high precipitation. Arid regions
are “Group B” climates: areas defined by low precipitation.
Temperate regions are “Group C” climates: with the cold-
est month averaging 0–18 ◦C and at least 1 month averaging
more than 10 ◦C. Finally, continental regions are “Group D”
climates: at least 1 month must average below 0 ◦C and at
least 1 month above 10 ◦C. Figure 1 shows the spatial dis-
tribution of the global climate groupings and the dominant
vegetation cover of the pixels considered in the analysis.

2.3 Growing-season data

The Vegetation Index and Phenology (VIP) global dataset
from NASA’s Making Earth System Data Records for Use
in Research Environments (MEaSUREs) programme is used
to define the growing seasons at each grid cell for each year
(Didan, 2016). The datasets are created using surface re-
flectance data from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument. These data provide a
consistent NDVI and EVI (enhanced vegetation index) mea-
surement from which to characterise the vegetation phenol-
ogy. The Vegetation Index and Phenology (VIP) Phenology
NDVI (VIPPHEN) v004 dataset has a global spatial resolu-
tion of 0.05◦ and provides annual metrics on the start and
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Figure 1. The dominant Köppen–Geiger climate zone and vegetation cover corresponding to each of the pixels passing the full set of selection
requirements.

length of the growing season for each pixel for the years
2000–2014.

Whilst correlation between SIF and GPP has been ob-
served across all seasons, only the relationship between
downscaled SIF and FLUXCOM GPP during the growing
season of each pixel is considered in the present study (Mag-
ney et al., 2019). This removes the effect of winter periods,
when there is little primary productivity and when the re-
trieval of SIF can be problematic at northern latitudes. Off-
season, the relatively weak SIF signal and the quality require-
ments in the downscaling process result in a dataset with
gaps. Including these data in the analysis would likely re-
sult in distorted conclusions regarding average downscaled
SIF signals over the time period. Additionally, only the first
growing season of each year is considered in regions with
multiple growing seasons.

2.4 SIF data

Two SIF datasets are considered in this analysis, produced
via the downscaling method detailed in references Duveiller
and Cescatti (2016) and Duveiller et al. (2020). The two re-
trievals have a spectral wavelength around 740 nm and dif-
fer in the retrieval method for obtaining the input data from
the GOME-2 satellite; the first product developed by Joiner
et al. (2013) is referred to as SIFJJ in this document, whilst
the second, developed by Köhler et al. (2015), is referred to
as SIFPK. A correction factor to convert the instantaneous
SIF to the daily average is applied to both datasets to ensure
comparability with estimates at different acquisition times
(Frankenberg et al., 2011b; Köhler et al., 2018a). The down-
scaling method calibrates these input retrievals via a light use
efficiency model using high-resolution biophysical variables
from the MODIS instrument of the Terra and Aqua satellites.

The optimal combination of variables is identified in combi-
nation with OCO-2 data, and the downscaled dataset is found
to have a high level of spatio-temporal agreement with obser-
vations from the TROPOMI mission.

The resulting downscaled SIFPK and SIFJJ products have
a spatial resolution of 0.05◦ and a temporal separation of 8 d
(with measurements averaged over a sliding window of 16 d).
The datasets currently cover the time span 2007–2017, with
46 measurements each year (with the exception of the 2007
SIF dataset, containing 44). Duveiller et al. (2020) show that
the downscaled SIFJJ dataset is found to have a slightly
higher level of agreement with the OCO-2 validation data
than the downscaled SIFPK dataset and so is primarily used
in this paper and is henceforth referred to as “downscaled
SIF” (or SIFDS). The higher agreement likely results from
the spatial smoothing step of the downscaling process that
benefited the noisier SIFJJ more than the SIFPK.

To ensure high quality in the data and compatibility with
the other datasets, several requirements are placed on each
pixel in each year, further to the requirements detailed in Du-
veiller et al. (2020), Köhler et al. (2015) and Joiner et al.
(2013). There must be at least 10 instances of valid SIFDS ob-
servations of the pixel within the growing season with fewer
than 40% of the expected number of SIFDS values missing
or invalid. There must also be least 6 years of valid mea-
surements satisfying the requirements between 2007–2014.
The selections ensure that the SIF signal, which is relatively
weak compared to background noise and affected by cloud
coverage, is representative of the growing season as a whole
as well as excluding regions with short growing seasons
that may be more susceptible to fluctuations from unusual
weather conditions. Requiring multiple years of data passing
the quality requirements enables the investigation of tempo-
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ral trends whilst also ensuring that the measurements are rep-
resentative of each pixel.

In order to reduce spatial autocorrelation and the double
counting of interpolated pixels in other datasets, pixels con-
sidered in the analysis must be separated by a 2-pixel gap in
all directions (Ploton et al., 2020). Each pixel is matched with
the dominant vegetation cover and climate classification, as
well as FLUXCOM GPP and meteorological data, passing
the respective requirements. Figure 2 shows the mean down-
scaled SIF for the growing season of each pixel passing
the analysis selection requirements, averaged over the period
2007–2014.

2.5 GPP data

The gross primary productivity (GPP) dataset is provided
by the FLUXCOM project, measured as daily carbon up-
take [gC m−2 d−1] (Jung and FLUXCOM Team, 2016; Tra-
montana et al., 2016; Jung et al., 2020). In the “RS only”
setup used in this analysis and described in Tramontana
et al. (2016) and Jung et al. (2019), an ensemble of nine
machine learning methods merge carbon flux estimations
from FLUXNET eddy covariance towers with remote sens-
ing data taken or derived from the MODIS sensor to esti-
mate gross primary productivity across the terrestrial sur-
face. The remotely sensed data include the land surface tem-
perature, fraction of absorbed photosynthetic active radia-
tion, normalised difference vegetation index, normalised dif-
ference water index and land surface water index. The re-
sulting dataset, hereon referred to as “FLUXCOM GPP” (or
GPPFX), consists of a global estimate of GPP at a spatial res-
olution of 0.0833◦. These estimates occur in time steps of 8 d
(46 over the course of a year) and cover the downscaled SIF
data collection period up until the year 2016.

The GPP pixels are extrapolated via binomial interpolation
to 0.05◦ pixels in order to focus on the comparison with the
SIFDS pixels. Figure 2 shows the FLUXCOM GPP for the
growing season of each pixel passing the analysis selection
requirements, averaged over the period 2007–2014.

2.6 Meteorological data

ERA5 is the fifth-generation ECMWF reanalysis global cli-
mate and weather dataset, and the ERA5-Land dataset re-
plays the land component of the reanalysis to provide land
variables at an enhanced resolution at 0.1◦. The dataset is ex-
trapolated via binomial interpolation to 0.05◦ pixels in order
to focus on the comparison with the SIFDS pixels, with only
non-consecutive months considered in order to reduce tem-
poral autocorrelation.

Meteorological variables are obtained from the ERA5-
Land monthly reanalysis dataset (Muñoz Sabater, 2019b;
Muñoz Sabater et al., 2021). These include air temperature
(t2m [◦C], temperature of air at 2 m), surface net solar radia-
tion (ssr [J m−2], amount of solar radiation reaching the sur-

face of the Earth minus the amount reflected by the Earth’s
surface) and soil moisture (swvl1 [m3 m−3], volume of wa-
ter in soil layer 1, 0–7 cm, of the ECMWF Integrated Fore-
casting System). A variable that is not available is the mean
monthly vapour pressure deficit (VPD [kPa]), the difference
between the saturated vapour pressure and the actual vapour
pressure (Grossiord et al., 2020). This is important in reg-
ulating the stomatal conductance of plants and thus useful
to relate to both SIF and GPP. Due to non-linearity in the
vapour pressure–temperature response, the average saturated
vapour pressure of each month is calculated from the average
of the saturation vapour pressure at the mean daily maximum
and mean daily minimum air temperatures over the course of
the month, using the following formula (Allan and Pereira,
1998):

es =
[
e◦ (Tmax)+ e

◦ (Tmin)
]
/2,

where e◦(T ) = 0.061× exp17.27T/(T+237.3). (4)

The latter formula is also used in the calculation of the actual
vapour pressure from the dewpoint temperature. The mini-
mum and maximum air temperatures and the dewpoint tem-
perature are taken from the ERA5-Land hourly reanalysis
dataset (Muñoz Sabater, 2019a).

3 Methodology

The SIFDS–GPPFX spatio-temporal relationship at a global
scale is analysed via several diagnostics. Linear models
and analysis of covariance (ANCOVA) are employed to de-
termine the similarities and dissimilarities in the response
across different vegetation covers. Finally, the response of
SIFDS to fluctuations in meteorological conditions is inves-
tigated to assess the potential of this metric to diagnose the
impact of environmental drivers. For the analysis, each 0.05◦

vegetated pixel is described by a time series of downscaled
SIF, FLUXCOM GPP and meteorological values, taken over
the first growing season of each year between 2007 and 2014.
This same set of 135 000 global pixels is used in each analy-
sis of the current paper, with consideration given to the veg-
etation cover and climate zone of the pixels analysed.

Several sections of the analysis of the SIF–GPP spatio-
temporal relationship are repeated with the alternative
FluxSat GPP dataset (in place of the FLUXCOM GPP) and
the TROPOMI SIF dataset (in place of the downscaled SIF)
in order to ensure the robustness and consistency of the anal-
ysis. These analyses can be found in Appendix A3 and A4
respectively.

3.1 The spatio-temporal relationship of SIFDS and
GPPFX

Since the processes and drivers of variability in SIF and
GPP may differ in time and space, we designed an analyt-
ical framework to isolate the temporal components of the
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Figure 2. Mean downscaled SIF (a) and FLUXCOM GPP (b) over the growing season, corresponding to each of the pixels passing the full
set of selection requirements. The SIFDS fluxes and GPPFX estimations for each pixel are averaged over multiple years between 2007 and
2014.

SIFDS–GPPFX relationship at different temporal resolutions
(intra- and inter-annual) from the spatial variations. The spa-
tial component of the SIFDS–GPPFX correlation is isolated
by determining the multi-year mean SIFDS and mean GPPFX
for each pixel. Here “mean” refers to the mean daily value of
the downscaled SIF or FLUXCOM GPP over the first grow-
ing season. These values are converted to multi-year means
by averaging over the period 2007–2014. Pearson’s spatial
correlation coefficient, r , and a least-squares linear model
are calculated both at a global scale and over a local mov-
ing window of 2.5◦ for each climate–vegetation category,
with the latter requiring at least 10 pixels within the mov-

ing window to be assessed and reported. The temporal com-
ponent of the SIFDS–GPPFX correlation and linear model
is assessed at both the inter- and intra-annual scales. The
inter-annual correlation refers to the temporal relationship
between the mean growing-season SIFDS and GPPFX val-
ues between consecutive years at the same location. It should
be noted that a temporal degradation in the GOME-2 instru-
ments has been observed, potentially affecting the long-term
analysis of SIF trends and therefore the SIF–GPP relation-
ship, particularly from 2015 onwards (Zhang et al., 2018b).
Whilst this may have a slight impact on the analysis pre-
sented here – which uses data collected up until 2014 – we
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nevertheless consider the inter-annual comparison of SIFDS
and GPPFX worthwhile. Meanwhile, the intra-annual corre-
lation refers to the relationship between individual SIFDS and
GPPFX values made at 8 d time steps within a growing season
in order to determine the internal growing-season statistics.
A minimum of 10 observations within a growing season over
at least 6 years are required. The correlation and slope pa-
rameter of the least-squares linear relationship at each pixel
are calculated for each year considered and averaged over the
multi-year time period.

3.2 The spatial linear relationship between SIFDS and
GPPFX

The same process and data used to isolate and determine
the spatial component of the correlation are used to deter-
mine the global spatial linear relationships between SIFDS
and GPPFX. For this purpose, an area-weighted least-squares
linear model fits the global SIFDS–GPPFX distribution of pix-
els for each climate and vegetation cover. Whilst theoreti-
cally the leaf photosynthesis may be zero when the quan-
tity of emitted SIF radiation is zero, this does not neces-
sarily imply that the canopy-level SIF–GPP relationship ex-
tends linearly to zero as the canopy-level SIF–GPP relation-
ship smooths over known non-linearities at finer scales and
lower SIF yields (Magney et al., 2020). Additionally, forcing
the linear regression through the origin based on a prior ex-
pectation (in this case that SIF and GPP are simultaneously
zero) that lies outside the bounds of the considered data will
introduce a bias into the regression parameters. Therefore
the intercept of the SIFDS–GPPFX relationship is not forced
through zero to account for this variation, as well as potential
deviations from linearity in the sampled pixels.

3.3 Spatial analysis of covariance between SIFDS and
GPPFX

In order to assess and test similarities in the global SIFDS–
GPPFX response between vegetation covers, an ANCOVA
(analysis of covariance) is performed. ANCOVA compares
linear regressions between two or more groups whilst con-
trolling for a covariate to test the statistical significance of
the effects. In this specific case, the downscaled SIF covari-
ate is controlled for in a spatial linear regression with the
FLUXCOM GPP that differs between vegetation and climate
groups. A comparison of the regression slope and intercept
between pairs of vegetation cover groupings is conducted in
terms of the significance (through the p value) and the size of
the effect (through η2). The p value for the slope parameter is
the probability of obtaining an equal or more extreme differ-
ence in the regression slopes of two vegetation groups under
the null hypothesis that the vegetation cover has no effect.
The p value for the intercept additionally assumes the null
hypothesis for the regression slope. The size of the effect is
measured through η2 (0≤ η2

≤ 1), the sum of squares from

the nominal grouping of vegetation cover, SSveg, as a propor-
tion of the overall sum of squares for the linear relationship,
SSlm:

η2
= SSveg/SSlm . (5)

Therefore, η2 gives the proportion of the variance attributable
to the vegetation cover grouping and is conceptually similar
to the significance of the coefficient of determination, R2,
in linear relationships. The p value provides evidence for
whether the difference in SIFDS–GPPFX response is signif-
icant between vegetation covers, and η2 can be thought of as
the magnitude of that difference. For each climate grouping,
pairwise ANCOVA comparisons are made between vegeta-
tion covers for a sample of 400–1000 pixels.

3.4 Estimating global GPP with downscaled SIF

The derived global spatial linear SIFDS–GPPFX relationships
are used to project the downscaled GOME-2 SIF into an esti-
mate of gross primary productivity, GPPEst. This is also inter-
preted in terms of absolute and percentage differences from
the FLUXCOM GPP, with the percentage difference calcu-
lated as follows:

GPPdiff = 100× (GPPEst−GPPFX)/GPPFX . (6)

Mapping the differences between FLUXCOM GPP and
GPPEst, estimated using the downscaled SIF and SIFDS–
GPPFX relationships, enables the display of areas where the
global, category-dependent, linear relationships succeed or
fail in replicating the GPPFX from the local SIFDS observa-
tions. There are four different groupings of global linear rela-
tionships used in the breakdown. Firstly the GPP estimate de-
pends only on separate SIFDS–GPPFX relationships for each
Köppen–Geiger climate zone; secondly, the GPP estimate is
carried out separately for each vegetation cover, with no con-
sideration of the climate zone; third, both the climate zone
and vegetation cover are taken into account; and finally the
groupings used are suggested from the analysis of covari-
ance. The latter is also used to display an estimate of global
GPP based on the downscaled SIF, scaled by the FLUXCOM
GPP relationships.

3.5 The SIFDS response to meteorological fluctuations

The response of length-of-day-corrected downscaled SIF to
anomalies in a number of meteorological variables is anal-
ysed in order to determine similarities in response between
different vegetation covers and to understand the driving
meteorological factors for SIF fluctuations in different cli-
mate zones. A focus is given to meteorological extremes, in-
vestigated through the z score from the long-term monthly
mean. The study uses the same initial data as the investi-
gation into SIFDS–GPPFX response; however monthly aver-
ages of SIFDS are taken in order to make a comparison with
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the monthly averaged meteorological variables. The meteo-
rological factors considered are air temperature, solar radia-
tion, soil moisture and vapour pressure deficit. Additionally,
only non-consecutive months within a growing season are
included in order to reduce temporal autocorrelation.

For every pixel, the mean and standard deviation of SIFDS
and meteorological variables are calculated for each month
over the period 2007–2014. These individual monthly values
are re-expressed as a z score for each pixel – i.e. the differ-
ence from the 2007–2014 monthly mean, standardised by the
standard deviation. The FLUXCOM GPP is also included in
the analysis, though, as noted, the FLUXCOM GPP product
takes several remotely sensed climatic variables as input and
so is not independent of the meteorological drivers. The in-
clusion of the GPP product enables a comparison with SIFDS,
giving insight into whether the SIF behaves as may be ex-
pected of an independent proxy for GPP.

4 Results

4.1 The spatio-temporal correlation of SIFDS and
GPPFX

Pearson’s correlation coefficient, r , between the downscaled
SIF and FLUXCOM GPP is projected in Fig. 3 to display
areas of high and low temporal and local spatial correla-
tion, along with the slope parameter of a least-squares lin-
ear model between the two. Meanwhile, Fig. 4 displays the
global spatial and average global temporal correlations for
each vegetation cover and climate zone for comparative pur-
poses.

The first thing to note is that at a global scale, prior to
the breakdown into separate climate–vegetation cover cate-
gories, there is a reasonably strong correlation between the
downscaled SIF and the FLUXCOM GPP. Between differ-
ent climate–vegetation groupings, however, there is variety
in the strength of the correlation. Whilst the breakdown of
the relationship by either climate zone or vegetation cover
separately provides extra information in comparison to no
breakdown, greater variability is shown from a breakdown
by both categories simultaneously, highlighting the value of
the downscaled SIF dataset in assessing the relationship with
GPP across vegetation categories in different climates. The
slight variation in correlation across different vegetation cov-
ers suggests that, although there are more similarities than
differences, there is value in breaking down the relationship
by vegetation cover.

The spatial and temporal analyses show that downscaled
SIF functions as a reasonable spatial and temporal proxy for
GPP, across multiple timescales and vegetation covers. The
figures show that regions and vegetation–climate categories
with high correlation in one spatio-temporal analysis gen-
erally show high correlation in another analysis, suggesting
that spatial and temporal correlation in the SIFDS–GPPFX

datasets are actually interlinked. The highest correlations are
almost exclusively found between SIFDS and GPPFX within
the same growing season as a result of the strong effect of
seasonality in the key environmental drivers of primary pro-
ductivity, such as radiation, temperature and water availabil-
ity. Indeed, all vegetation–climate categories except for equa-
torial broadleaf forests exhibit r > 0.5, with all regions out-
side the tropics and the arid grasslands of central Australia
showing high correlation. Larger intra-annual slope param-
eters between SIFDS and GPPFX are similarly found in the
high-latitude regions which experience the largest seasonal-
ity.

The spatial correlation and the temporal trend between
years show similar features, though they are generally
weaker than the intra-annual correlation, with some regions
of tropical rainforest and continental forest in Russia display-
ing anti-correlation. There is also a wider distribution in the
strength of the SIFDS–GPPFX correlation. This is despite the
fact that the temporal analyses have a more granular level
of spatial detail, with each pixel more susceptible to fluctua-
tions. This is particularly true of the inter-annual comparison,
which uses fewer data points in the regression.

4.2 The spatial linear relationship between SIFDS and
GPPFX

Figure 5 shows the relative distribution and spatial linear
relationship between the mean growing-season FLUXCOM
GPP as a function of the respective mean values of the down-
scaled SIF during the growing season. The data are broken
down into separate categories depending on the Köppen–
Geiger climate grouping and dominant vegetation cover of
the pixel.

The significant substructure in the SIFDS–GPPFX distri-
bution and greater deviation from the linearity in the “ALL”
categories suggest that the SIFDS–GPPFX spatial relationship
response is dependent on both the climate and vegetation
covers. There is also some evidence that there is a slight trend
towards a reduction in the slope in cooler climates, though
this may result from factors other than the climate itself, for
example, differences in the spatial distribution of vegetation
between evergreen and deciduous types or between C3 and
C4 crops and grasses.

In all categories except EBF, the spatial correlations are
comparable to the relationship observed between FLUX-
COM GPP and SIF measurements from the OCO-2 instru-
ment, as seen in Sun et al. (2018), confirming the overall
value of the downscaled SIF product for this specific ex-
ercise. In the Sun et al. (2018) study, the following corre-
lation coefficients are exhibited (broken down by biome):
rGRA = 0.74; rCRO = 0.88; rEBF = 0.74; rDBF = 0.8; rNF =

0.84 (needleleaf). The differences from this study may result
from the selection criteria of the biomes, the singular group-
ing of vegetation covers across different climate zones and
the forcing of the linear relationship intercept through zero.
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Figure 3. Pearson’s correlation coefficient, r , (a, c, e) and the linear model slope parameter (b, d, f) for the following: (a, b) the intra-annual
temporal relationship between the downscaled SIF and FLUXCOM GPP over 8 d time steps within a growing season; (c, d) the inter-annual
temporal relationship between the mean annual downscaled SIF and mean annual FLUXCOM GPP; (e, f) the spatial relationship between
the mean annual downscaled SIF and mean annual FLUXCOM GPP, with the correlation determined for a given dominant vegetation cover
and climate zone over a 2.5◦ moving window.

In particular, the latter assumption of the SIF–GPP relation-
ship leads to higher correlation coefficients compared to al-
lowing the intercept to float. The observed linear relationship
is found to be stronger with the FluxSat GPP dataset, as dis-
played in Appendix A3.

We acknowledge that, in some categories, a linear model
may be too simplistic to represent the relationship between
SIFDS and GPPFX. This is more true for the woody plants,
which display some complexity in the SIFDS–GPPFX rela-
tionship, in contrast to herbaceous vegetation, which remains
highly linear, despite exhibiting a greater range in values.
The clearest deviation from linearity is found in highly pro-
ductive equatorial evergreen forests, where a wide range of
spatio-temporal variation in SIFDS is observed, while a con-
siderably smaller variability is reproduced in the modelled
GPPFX. This non-linearity is explored in more depth in the
Discussion.

Whilst at first glance the heatmap of temperate decidu-
ous broadleaf forests similarly hints at a plateau effect, the
figure can in fact be divided into two areas of high-SIFDS
and low-SIFDS data points corresponding to separate spa-

tial locations. The lower SIFDS values correspond to decid-
uous forests in southern Africa and South America, whilst
the higher SIFDS values occur in North America and Europe,
suggesting that there may not be global universality in the
SIFDS–GPPFX relationship or that different types of decidu-
ous broadleaf forests found in distinct regions could respond
differently, possibly based on differences in species composi-
tion. It should be noted that this distinction is not observed in
the TROPOMI SIF dataset for the year 2020 (Appendix A4).

4.3 Spatial analysis of covariance between SIFDS and
GPPFX

The results of the analysis of covariance between pairs of
vegetation covers within a climate zone are shown in Fig. 6
through the η2 for the slope and intercept of the linear rela-
tionship. It should be noted that the ANCOVA assumes lin-
earity between SIFDS and GPPFX, which is present in most
vegetation covers, with noted exceptions. Appendix A1 con-
tains the full table of results, whilst similar analyses compar-
ing the downscaled SIF–FluxSat GPP relationship and the
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Figure 4. Pearson’s correlation coefficient, r , between downscaled
SIF and FLUXCOM GPP for the spatial relationship, intra-annual
temporal relationship within a growing season and the inter-annual
temporal trend across years. For the spatial analysis, a single global
spatial correlation is calculated for each vegetation cover and cli-
mate zone, whilst the temporal relationships display the median
global correlation and 25% upper and lower quantiles for each
pixel, broken down by vegetation cover and climate zone.

TROPOMI SIF–FLUXCOM GPP relationship can be found
in Appendix A3 and A4 respectively.

The ANCOVA results in equatorial regions show that the
categorisation by vegetation class is not a significant fac-
tor in the slope dependence of SIFDS–GPPFX for all veg-
etation types except evergreen broadleaf forests, which, as
discussed, exhibits non-linearity in the SIFDS–GPPFX re-
lationship. Differing intercepts between the DBF and the
herbaceous vegetation covers, however, suggest that whilst
the SIFDS–GPPFX relationship scales in similar ways be-
tween vegetation covers, there may be differences in the
starting potential. Linear relationships in grass and cropland
are statistically indistinguishable, whilst around 10 % of the
sum of squares between DBF and CRO/GRA intercepts can
be attributed to the vegetation classification. In equatorial
broadleaf forests 12 %–19 % of the difference in the SIFDS–
GPPFX scaling can be attributed to the categorisation, and
therefore when using SIF as a proxy for productivity, EBF

should clearly be considered separately from other vegeta-
tion classes.

In arid climates the difference between the slopes of veg-
etation covers is significant in terms of the p value for all
except the ENF–CRO pair. However, there is little to dis-
tinguish the SIFDS–GPPFX scaling by vegetation categories,
with less than 2% of the sum of squares attributable to the
vegetation covers for all except GRA–DBF (7%). If the as-
sumptions are made that the vegetation categorisation has no
effect on the SIFDS–GPPFX slope and that the slopes can be
considered parallel between vegetation covers, then the in-
tercepts generally distinguish between the woody and non-
woody vegetation covers, with crossover in CRO–ENF. Be-
tween the ENF–DBF intercepts, 2% of the sum of squares
is attributable to the vegetation cover, whilst the propor-
tion is 8% for GRA–CRO. Mixing between herbaceous and
woody covers, on the other hand, the proportion of the sum of
squares attributable to the vegetation cover is between 21 %–
36 %, with the exception of ENF–CRO, in which the two
cover types are statistically almost indistinguishable.

In temperate regions the only major distinction in the gra-
dient of the SIFDS–GPPFX relationship between vegetation
covers is found in deciduous broadleaf forests (4 %–12 %).
As discussed in the previous section, temperate DBF is dom-
inated by two distinct Northern Hemisphere and Southern
Hemisphere clusters with differing SIFDS–GPPFX relation-
ships, which results in a distinct and separate linear relation-
ship. This feature is not observed in the TROPOMI SIF anal-
ysis. Regarding the other vegetation covers, assuming that
the categorisation is of little importance to the slope, account-
ing for≤ 2% of the sum of squares, and that the slopes could
be considered parallel between the vegetation covers, the dif-
ferences in the intercept are broadly divided along the lines
of woody and herbaceous species. The sum of squares at-
tributable to differences in the intercept are woody–woody,
9%; herbaceous–herbaceous, 13%; and woody–herbaceous,
27 %–68 %.

Finally, in continental climates, ENF and DNF species ex-
hibit a similar (< 1%) SIFDS–GPPFX scaling (though a much
larger difference attributable to the intercept 30%) and are
somewhat distinct from the other vegetation species (6 %–
11 %), with the exception of CRO–ENF (3%). This feature
in the slope of continental needleleaf forests is not observed
in the analysis that uses FluxSat GPP in place of the FLUX-
COM GPP. Within these other vegetation species, < 5% of
the difference in the SIFDS–GPPFX slope can be attributed
to the choice of vegetation cover, and, assuming the null hy-
pothesis for the slope, the intercept again distinguishes be-
tween the herbaceous plants (GRA–CRO, 3%) and mixed
herbaceous–woody (DBF–CRO, 21%; DBF–GRA, 30%).

Overall, when analysing the scaling of the SIFDS–GPPFX
response (i.e. the slope) between vegetation covers within a
climate zone, the ANCOVA suggests that there are large sim-
ilarities, with potential slight exceptions in temperate decid-
uous broadleaf forests and continental needleleaf forests and
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Figure 5. The spatial relationship between the mean growing-season downscaled SIF and FLUXCOM GPP, broken down into separate
Köppen–Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS–GPPFX bins,
relative to the highest-frequency bin in that category. A dashed black line representing a linear model in each category is overlaid and
compared to a dotted grey line representing a linear model produced without the breakdown into separate categories (i.e. ALL–ALL). The
linear model equation, correlation coefficient r , root mean square error (RMSE) and number of pixels are included.
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Figure 6. The η2 parameter of an analysis of covariance be-
tween pairs of vegetation covers in different Köppen–Geiger cli-
mate groupings, for the slope (left) and intercept (right) of the linear
relationship between downscaled SIF and FLUXCOM GPP. AN-
COVA is performed on the intercept under the assumption that the
difference between slopes is not significant. The η2 parameter is
comparable to the percentage of the difference in the slope or in-
tercept (the latter assuming equivalence of the slopes) attributable
to the difference in vegetation cover, with lower values signifying a
smaller difference between vegetation covers. A slightly bolder line
is used to separate the herbaceous species (CRO, GRA) from the
woody species (EBF, DBF, ENF, DNF).

the major exception of tropical evergreen forests. In terms
of the scaling of the SIFDS–GPPFX slope, these three veg-
etation covers may be treated as being reasonably distinct,
with at least around 5% and up to 20% of the difference
between slopes being attributable to the vegetation classifi-
cation. Amongst the other species where the slope does not
distinguish between vegetation covers so prominently (with
generally less than 3% of the slope variation attributable
to the vegetation categorisation), the intercept and therefore
the systematic difference between the linear relationships
loosely depend on whether the species is woody or herba-
ceous, with higher values for woody species. The difference
in the SIFDS–GPPFX response between cropland and grass-
land is particularly minor. A caveat must be made that there

are some exceptions to these generalisations, and there is no
statistically concrete global distinction between groupings of
vegetation covers.

The results demonstrate that within a climate grouping
there are broad similarities in the SIFDS–GPPFX response of
the considered vegetation classifications, excluding three key
exceptions. When accounting for differences in the intercept,
a loose possible grouping may be suggested of herbaceous
and woody vegetation within each climate zone, with the ex-
ceptions of equatorial EBF, temperate DBF and continental
forests (which can be fully distinguished when the difference
in the intercept is considered or split between broadleaf and
needleleaf if considering only the scaling). This reduces the
climate–vegetation categories for which we expect differing
SIFDS–GPPFX responses from 18 groups to 12 overall, with
around 3 distinct groups in each climate zone, depending on
the aggressiveness of the grouping.

4.4 Estimating the global spatial distribution of GPP
with downscaled SIF

The mean growing-season downscaled SIF can be projected
into an estimate of growing-season GPP using the global lin-
ear relationships for each climate and vegetation cover cate-
gory displayed in Fig. 5. The absolute and percentage differ-
ence of this estimated GPP, GPPEst, from the FLUXCOM
GPP is shown in Fig. 7, which displays areas where the
global, category-dependent, linear relationship shows posi-
tive or negative biases in replicating the GPPFX from the
local SIFDS observations. The maps are created using four
different versions of the global spatial linear relationships
between SIFDS and GPPFX. In the first instance, four sep-
arate linear relationships are derived for the four different
climate zones. In the second instance, six separate linear re-
lationships are derived for the six vegetation covers. In the
third instance the linear relationships are derived separately
for each climate zone and vegetation cover, with 18 separate
SIFDS–GPPFX relationships. Finally, separate linear relation-
ships are derived in each climate zone for each the different
vegetation groupings suggested by the results of the analysis
of covariance, with 12 groups overall.

The maps show that there is added value for GPP pre-
diction in breaking down the relationship into the differing
vegetation covers since the SIFDS–GPPFX relationship is not
climate and vegetation invariant. When only the Köppen–
Geiger climate grouping is used to classify the spatial SIFDS–
GPPFX relationships, there is a significantly greater differ-
ence between the FLUXCOM GPP and the GPP estimated
from the downscaled SIF compared to when vegetation cover
is taken into account. As may be expected, the vegetation
covers flagged as particularly distinguished in their spatio-
temporal SIFDS–GPPFX response, such as equatorial ever-
green forests and continental needleleaf forests, especially
suffer from this lack of a breakdown. When only the vege-
tation covers are considered and no climate grouping is pro-
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Figure 7. The absolute (left) and percentage (right) difference between the mean annual estimated primary production, GPPEst, and the
mean annual FLUXCOM GPP. GPPEst is estimated by projecting the downscaled SIF at each pixel using SIFDS–GPPFX relationships
derived within the following: top, each climate zone; upper middle, each vegetation cover; lower middle, each vegetation cover within each
climate zone; bottom, different climate–vegetation groupings suggested by the analysis of covariance.

posed, there is a smaller difference between the estimated
GPP and the FLUXCOM GPP than in the case of the climate
groupings alone, suggesting that differences between vege-
tation covers are more important in determining the SIFDS–
GPPFX relationship than the climate zone grouping. However
there are still noticeable differences compared to the rela-
tionships that include a breakdown by climate grouping, as
can be seen in the width of the inset histograms. The simi-
larity in the lower panels, where the SIFDS–GPPFX scaling
depends on the grouping suggested by the analysis of covari-
ance, compared to the unique vegetation covers in the middle
panels shows that whilst vegetation cover appears to be an
important parameter in classifying SIFDS–GPPFX relation-
ships, it is possible to combine vegetation groups in a way

that does not noticeably affect the SIFDS–GPPFX scaling. It
should be noted that vegetation cover here may be a proxy
for other variables, such as local conditions, soil type or a re-
fined climate grouping, and in this sense further investigation
in similar, localised conditions is required.

Figure 8 shows the global gross primary production esti-
mated from the downscaled SIF and the SIFDS–GPPFX re-
lationships between vegetation groupings suggested by the
ANCOVA results. It is particularly notable that in equato-
rial rainforests, the flat linear relationship derived between
SIFDS–GPPFX results in estimated GPP values with low vari-
ation.
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Figure 8. The global GPP estimated from the downscaled SIF and the SIFDS–GPPFX spatial linear relationships between vegetation group-
ings suggested from the results of the analysis of covariance.

4.5 The SIFDS response to meteorological fluctuations

Figure 9 shows the average z score of SIFDS with respect to
the z score of the four meteorological variables considered
in this study to be environmental drivers of primary produc-
tivity. Each bin contains multiple data points (at least five in
order to be displayed) with the SIFDS z score taken as the
average of the data points within the bin. The figure shows
how anomalies in monthly values of climate drivers – rela-
tive to the “average” conditions for that month – are related
to fluctuations in SIFDS. The panels are broken down into the
same categorisation as in the previous study, clearly showing
that in the various climates, vegetation covers respond differ-
ently and sometimes in opposing directions to climate drivers
depending on the limiting factor of photosynthesis (e.g. wa-
ter scarcity, low temperatures). An equivalent figure for the
FLUXCOM GPP can be found in Appendix A2.

Figure 10 shows the average SIFDS and GPPFX z scores as
a function of the corresponding z score of the four meteoro-
logical variables. The figure uses the exact data that are input
into Fig. 9 and categorises the temperature, VPD, soil mois-
ture and solar radiation z score of pixels from the long-term
monthly mean into 10 groups between −2.5 and +2.5. The
median corresponding SIFDS and GPPFX z scores, relative
to the long-term monthly mean of each pixel, are shown for
each meteorological variable. The results are broken down by
the Köppen–Geiger climate and vegetation cover groupings
discussed previously. The figure therefore shows the aver-
age SIFDS and GPPFX fluctuations that correspond to a given
fluctuation in each meteorological condition and can be used
to interpret the meteorological drivers that may result in fluc-
tuations in vegetation productivity.

The first point to note is that the link between SIFDS
and meteorological fluctuations is more significant in some
climate–vegetation cover categories than others. SIFDS from
grasslands and croplands responds in a very similar man-
ner across all climates but often differs from the response
of woody vegetation. SIFDS and GPPFX together respond in
a similar way to the meteorological fluctuations, with the
GPPFX generally more responsive, particularly in the case
of woody vegetation. This is likely caused by the inclusion
of meteorological information in the FLUXCOM GPP prod-
uct, resulting in a correlation and so over-sensitivity. Whilst
SIFDS may be less sensitive in general, unlike the FLUX-
COM model it also captures information relating to the phys-
iology of the plant, potentially bringing extra information
into consideration when determining vegetation response.

Clear and expected trends in the SIFDS data can be picked
out. For example, plants in cooler climates respond more
positively to higher temperature fluctuations and plants in
arid climates benefit significantly from soil moisture and re-
duced VPD (more humid conditions). Arid and continental
climates, which in general are often harsher environments for
plant life, exhibit a larger meteorological dependence than
equatorial and temperate ones, whilst herbaceous plants are
generally also more weather dependent. As the SIFDS re-
sponse is measured with respect to conditions in an average
month, the response often differs between Köppen–Geiger
climates; for example, DBF and ENF forests respond pos-
itively to VPD (drier air) in temperate and continental cli-
mates but negatively in tropical and arid climates.

The response of SIFDS to fluctuations in the meteorolog-
ical variables is not always of simple interpretation since
there may be co-limitation from multiple drivers linked by
complex correlation patterns. In Fig. 9, co-limitation is ob-
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Figure 9. The relationship between fluctuations in meteorological variables and the corresponding fluctuations in the measured downscaled
SIF. The fluctuations are measured relative to the monthly mean for each pixel and expressed as a z score. The four meteorological variables
are air temperature and net surface solar radiation (t2m and ssr, a) and vapour pressure deficit and soil moisture (VPD and swvl1, b). The
SIFDS response in each bin is the mean of all data points in each bin of the meteorological z score. The data are broken down into separate
Köppen–Geiger climate zones and land cover categories.

served where the direction of the SIFDS response lies along
the diagonal, for example the preference for both high tem-
peratures and high levels of radiation in temperate deciduous
broadleaf forests or for conditions of low VPD and high soil
moisture content in grassland and croplands. Co-dependence
between the atmospheric variables means that it is difficult to
directly explain fluctuations in SIFDS via individual meteo-
rological variables in isolation from the other meteorological
variables; for example, the correlation between warmer tem-
peratures and high VPD results in a similar SIFDS response
in cooler continental woody forests. Additionally, differences
and sub-patterns in the SIFDS meteorological response may
be complicated by the spatial distribution of plant species,
which is not captured by the broad Köppen–Geiger categori-

sation. For example equatorial EBF forests may be located in
wetter environments than equatorial DBF forests and there-
fore profit from differing fluctuations in the local climate, in
this case lower soil moisture and higher VPD.

Figure 10 shows that the strength of the relationship be-
tween the SIFDS fluctuations and the meteorological fluc-
tuations generally increases for more extreme deviations of
SIFDS. For example, in continental deciduous needleleaf
forests, a 2-standard-deviation increase in the temperature
(relative to the long-term mean for that month) corresponds
to an SIFDS that is an average of 0.8 standard deviations
higher than usual. In comparison, a smaller temperature fluc-
tuation of between 1 and 1.5 standard deviations above the
monthly mean temperature would correspond to a slightly

https://doi.org/10.5194/bg-19-4833-2022 Biogeosciences, 19, 4833–4864, 2022



4848 M. Pickering et al.: Sun-induced fluorescence as a proxy for primary productivity

Figure 10. The average fluctuation in the remotely sensed down-
scaled SIF and FLUXCOM GPP as a function of the fluctua-
tion in several meteorological variables. The fluctuations are de-
fined in terms of the z score of each variable, calculated for 10
different bins between −2.5 and 2.5, and the corresponding me-
dian SIFDS/GPPFX z score, relative to the long-term (2007–2014)
monthly mean for each pixel (each pixel may contribute multiple
months within the growing season). The meteorological variables
considered are from the Copernicus Climate Service (C3S) Climate
Data Store (CDS) and are surface net solar radiation (ssr), air tem-
perature (t2m), vapour pressure deficit (VPD) and soil moisture
(swvl1). The data are broken down into separate Köppen–Geiger
climate zones and land cover categories.

lower increase in the SIF (+0.3 standard deviations above the
monthly mean). The results therefore provide evidence that
not only do fluctuations in meteorological conditions corre-
spond to fluctuations in SIF but also more extreme fluctu-
ations often result in more extreme fluctuations in SIF. In
this context the study suggests that it may be possible to
use high-resolution SIF as a near-real-time measure of the
response of vegetation productivity to climate fluctuations,
as well as demonstrate where vegetation may be resistant to
certain fluctuations. For example, evergreen broadleaf forests
appear to show relatively little deviation in SIF up to rea-
sonably extreme weather fluctuations. It is important to note,
though, that “extreme fluctuations” here are measured rela-
tive to a location’s average climate variation, which may be
small in absolute terms compared to other categories. As the

climate categorisation considered in this study is relatively
broad, further research of using high-resolution SIF in spe-
cific ecosystems is required.

Finally, the results are used to determine the driving and
limiting climate variables on a global scale. Figure 11 shows
a map of the meteorological variable corresponding to the
highest and lowest average SIF fluctuation.

5 Discussion

5.1 The use of downscaled SIF as a proxy for GPP:
does it add value?

The study demonstrates the utility of the Duveiller et al.
(2020) downscaling method in providing a robust, high-
resolution SIF dataset that can be used as a proxy for gross
primary production. This method uses a light use efficiency
modelling-based approach to establish a relationship be-
tween SIF and higher-resolution remote sensing variables.
The resulting high-resolution SIFDS benefits the analysis in
enabling higher-quality selections in the vegetation classifi-
cation of pixels and therefore more precision when assess-
ing the different dynamics and patterns of the relationships
between SIFDS and GPPFX across different vegetation cov-
ers and climate regions. A high level of spatio-temporal
correlation is found across almost all climate and vegeta-
tion groupings, comparable to levels observed between non-
downscaled SIF and FLUXCOM GPP. Breaking down the
correlations into their separate constituent vegetation covers
shows diversity in the SIFDS–GPPFX relationship and there-
fore that there is some dependence on vegetation cover in the
relationship between canopy-level SIF and vegetation pro-
ductivity. For the most part, the downscaled SIF reproduces
the spatial patterns observed in the FLUXCOM GPP data,
for example in Fig. 2, and scales linearly, with a few notable
exceptions.

The clear response of SIFDS to meteorological fluctuations
in key climatic drivers shows that it is possible to observe the
temporal patterns and anomalies of vegetation productivity
and stress remotely, via satellite. This suggests the possibility
of using SIF in the near-real-time monitoring of vegetation
reaction to environmental conditions. As climates change it
becomes increasingly important to know how vegetation re-
sponds to both long-term trends in the climate and increas-
ingly frequent extreme weather events.

The reproduction of known SIF–GPP patterns using the
downscaled SIF demonstrates its utility as a high-resolution
proxy for primary productivity. In support of these conclu-
sions, Appendix A4 replicates the main analysis results with
the substitution of a single year of TROPOMI data in place of
the downscaled SIF, whilst Appendix A3 ensures the conclu-
sions are not unique based on the choice of the GPP dataset.
In this sense the analysis serves as a diagnostic benchmark
for the comparison of SIF and GPP datasets. The use of the
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Figure 11. The driving (a) and limiting (b) meteorological conditions displayed at a globe scale. The driving and limiting variables are those
that correspond to the largest upward and downward fluctuations respectively in downscaled SIF for each Köppen–Geiger climate–vegetation
grouping.

downscaling method on recent and future retrievals of SIF,
such as the high-resolution retrievals from the TROPOMI
satellite instrument, will enable further study on the relation-
ship between SIF and GPP. Furthermore, the current down-
scaled SIF dataset provides an archive at a comparable reso-
lution for the analysis of trends across longer timescales.

5.2 Areas of divergence between SIFDS and GPPFX

Figure 2 shows a clear divergence between the most produc-
tive areas in terms of FLUXCOM GPP, the equatorial rain-
forests of Brazil, central Africa and Indonesia, and the re-

gions with the highest levels of downscaled SIF, the crop-
lands of the mid-West, western Europe and South America.

Equatorial broadleaf forests are also areas with reduced
spatio-temporal correlation and scaling between SIFDS and
GPPFX, as seen in Fig. 3, with some areas anti-correlated.
Figure 5 shows that the high variance in downscaled SIF
is not matched by the similarly wide variation in FLUX-
COM GPP observed in other vegetation types, resulting in
a flat relationship. This may hint at saturation at high values
of GPPFX, whereby the observed SIFDS increases without a
corresponding increase in GPPFX at the same rate. Such a
plateau, particularly in evergreen broadleaf forests, could be
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driven by the saturation of the fraction of absorbed photo-
synthetically active radiation at high values of leaf area in-
dex or perhaps by constraints in the GPPFX model. Indeed
the largest uncertainty in the FLUXCOM dataset is found
in the tropics, an area with limited FLUXNET sites, and a
similarly low correlation has been observed between SIFDS
and GPPFX on a seasonal scale (Jung et al., 2020). A similar,
if slightly reduced, plateau in the spatial SIFDS–GPPFX re-
lationship in evergreen needleleaf forests supports evidence
of non-linearity in the temporal relationship found in Kim
et al. (2021), similarly attributed to GPPFX saturation (as
measured via an eddy covariance system) with absorbed pho-
tosynthetically active radiation.

The comparatively higher values of SIFDS in productive
farm belts support evidence, such as in Guanter et al. (2014),
that SIF-based crop productivity estimates are higher than
other GPP estimates. The distribution of C3 and C4 crops
may play a role here, as demonstrated by Zhang et al. (2017),
who find an underestimation of the FLUXCOM GPP in crop-
land areas in addition to an overestimation in tropical rain-
forests. It may therefore be the case that the downscaled SIF
is more sensitive to C3–C4 differences than the FLUXCOM
GPP model. Additionally, some studies, such as He et al.
(2020) and Li and Xiao (2022), show more linearity between
SIF and GPP in C4 crops compared to C3 crops, with GPP es-
timated by eddy covariance towers. Differences in crop cover
impacting the SIFDS–GPPFX scaling may also be seen in
Fig. 7. For example, in East Asia, there is an underestimate
of productivity based on the global SIFDS–GPPFX relation-
ship and local measurements of downscaled SIF, whilst there
is an overestimate in the Americas, Africa and Europe.

The divergences between SIFDS and GPPFX may partially
be attributed to the procedures used to collect and model the
input data; however the divergences also support growing ev-
idence of physiological reasons for the SIFDS–GPPFX dif-
ferences. This suggests that downscaled SIF could provide
added value to the FLUXCOM estimate of the GPP in cer-
tain regions where the characterisation of vegetation based
on fAPAR (fraction of absorbed photosynthetically active ra-
diation) and functional types in the machine learning frame-
work is not sufficient to capture the spatio-temporal pattern
of primary productivity.

5.3 The universality of the SIFDS–GPPFX relationship
across vegetation covers

Differences in the spatio-temporal SIFDS–GPPFX correla-
tion and linear relationship suggest that there is some de-
viation, on average, between vegetation covers. However,
there is also substantial variability within vegetation group-
ings, meaning that for all except the clearest outliers, it is
not possible to statistically distinguish between vegetation
categories based on these deviations alone. Equatorial ever-
green broadleaf forests clearly stand out as an outlier, with a
spatio-temporal SIFDS–GPPFX relationship that is divergent

from the other vegetation types and should be treated sep-
arately when projecting estimates of productivity from SIF,
until the reasons for this divergence are fully accounted for.
For the other vegetation covers with SIFDS–GPPFX relation-
ships that scale more linearly, there is no fixed η2 thresh-
old to categorically dictate when the vegetation categorisa-
tion plays an important role in distinguishing between the
SIFDS–GPPFX relationships. This is particularly true in cases
where the difference in the slope is small (η) but significant
(p value) whilst the difference in the intercept is large. Ad-
ditionally, the intercept in the linear relationship tends to be
slightly higher for woody trees compared to the herbaceous
species, and therefore a categorisation could be loosely di-
vided along this broad physiological plant trait.

The universality of the SIF–GPP relationship with respect
to vegetation groupings is in area of active debate (Turner
et al., 2021; Li and Xiao, 2022). Differences between vege-
tation covers likely result from differences in the canopy ar-
chitecture and physiology, in particular the leaf clustering,
chlorophyll content and maximum carboxylation capacity
(Verrelst et al., 2015). This is particularly true for differences
between herbaceous and woody vegetation, where for the lat-
ter, the lower photon escape probability from the canopy re-
sults in a lower intensity of SIF for a given productivity. Ad-
ditionally, as discussed previously, further disaggregation of
vegetation covers may be beneficial, for example in distin-
guishing between deciduous broadleaf forests in the North-
ern Hemisphere and Southern Hemisphere and between C3
and C4 vegetation. Indeed it may be the case that there are
more differences within certain vegetation covers than be-
tween vegetation covers, and this effect may depend on the
scale of the analysis. It is important to note, however, that
vegetation cover in the analysis may partially be a proxy for
other factors or regional variables, such as background cli-
mate conditions and soil properties (Reichstein et al., 2014).

Distinctions between vegetation covers in the SIFDS re-
sponse to meteorological fluctuations show the divide is
broadly along these lines of woody vs. non-woody vegetation
types. Herbaceous plants are more susceptible to changes
in water supply than woody species, universally preferring
high soil moisture and low vapour pressure deficit in all en-
vironments. For woody trees, vapour pressure deficit tends
to be more important than soil moisture and plays very lit-
tle role at all in the SIFDS response of tropical evergreen
broadleaf forests. This highlights the importance of using soil
moisture, in addition to VPD, in quantifying droughts and
in particular its impacts on herbaceous vegetation (Stocker
et al., 2018). Additionally, herbaceous species tend to re-
spond more strongly to meteorological fluctuations, with the
exception of needleleaf forests. Overall, the study shows that
it is possible to draw a distinction in the SIFDS–GPPFX and
SIFDS–meteorological relationships between vegetation cov-
ers. These are loosely divided between woody and herba-
ceous vegetation, with particular cases where further investi-
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gation is needed to fully understand the relationship dynam-
ics.

6 Conclusions

This exploratory analysis confronts two observation-based
products that inform about the spatio-temporal variability in
primary productivity at a global scale, highlighting areas of
coherence and divergence. Firstly, it demonstrates the utility
of the Duveiller et al. (2020) downscaling method in provid-
ing a high-resolution SIF dataset that can be used as a proxy
for gross primary production for specific vegetation covers.
Secondly, in highlighting areas of divergence, the study pro-
vides a remotely sensed, independent comparison of down-
scaled SIF with the FLUXCOM GPP model. The relatively
fine resolution of the downscaled SIF enables a global explo-
ration of the spatio-temporal relationship between SIFDS and
GPPFX at a level that distinguishes between differing veg-
etation cover types, enabling a categorisation of vegetation
covers based on the SIFDS–GPPFX response. For the most
part, the gradient of the spatial SIFDS–GPPFX response is
similar between differing vegetation types, with the excep-
tion of equatorial broadleaf forests and, potentially, slight
exceptions in continental needleleaf forests and temperate
deciduous broadleaf forests. However, the GPPFX system-
atic potential for a given SIFDS observation displays more
variation between species, with some divergence between
woody and non-woody plants. The study provides evidence
for the spatio-temporal correlation between downscaled SIF
and FLUXCOM GPP, with different climate and vegetation
covers exhibiting variability in the SIFDS–GPPFX relation-
ship. The temporal component of the SIFDS–GPPFX rela-
tionship is generally stronger than the spatial component, in
particular at an intra-annual scale. Regions of climate and
vegetation cover exhibiting high spatial correlation between
SIFDS and GPPFX also tend to exhibit higher temporal cor-
relation, suggesting that the mechanisms driving spatial and
temporal variability are similar. Vegetation in some climates,
such as tropical rainforests, shows divergence from linearity
in the SIFDS–GPPFX relationship. Here the downscaled SIF
data may provide additional, independent information to the
FLUXCOM model, particularly at high GPPFX values where
the model may be at risk of saturation of photosynthetically
active radiation.

The study also demonstrates the possibility of using near-
real-time satellite SIF measurements to study the response of
vegetation to meteorological anomalies over short (monthly)
timescales. Proving this technique at a global scale demon-
strates that high-resolution SIF responds to meteorological
fluctuations in a similar way to FLUXCOM GPP. As such it
has potential as a near-real-time indicator of vegetation sta-
tus that, unlike FLUXCOM GPP, is independent of meteo-
rological variables in aggregate. Whilst there is similarity in
the SIFDS–GPPFX response between vegetation covers, there

is more diversity between different vegetation covers in the
SIFDS response to meteorological fluctuations, particularly
between herbaceous species and woody trees.

The further collection of high-resolution SIF data via the
downscaling method of Duveiller et al. (2020) in addition to
satellites such as OCO-2 and the future FLEX mission will
continue to aid in the understanding of the relationship be-
tween SIF, environmental conditions and plant productivity,
as well as the variety of responses between vegetation covers.
The benefit will be to advance our understanding and estima-
tion of the Earth’s productivity, on both a local and a global
level.

Appendix A

A1 ANCOVA results for downscaled SIF and
FLUXCOM GPP

Table A1 contains the full results of the analysis of covari-
ance for the SIFDS–GPPFX relationship between pairs of land
covers. In each climate category, vegetation cover pairs with
the largest η2 for the slope are listed first, where the slope is
significant (p value< 0.05). If differences in the regression
slope are not significant (i.e. the slopes are considered to be
parallel), then the difference in the size of the effect of the in-
tercept is considered such that the lowest-ranked pairs within
a climate zone are the most similar in their SIFDS–GPPFX
response.

A2 FLUXCOM GPP response to meteorological
fluctuations

Figure A1 shows the relationship between fluctuations in me-
teorological variables and the corresponding fluctuations in
the FLUXCOM GPP.

A3 Comparison of downscaled SIF with FluxSat GPP

A3.1 FluxSat GPP data

The presented analysis is repeated with an alternative GPP
product to verify that the conclusions drawn regarding the
nature of the spatial SIF–GPP relationship are not unique
to the dataset. FluxSat is a global 0.05◦ GPP estimate de-
rived from the MODIS Nadir Bidirectional Reflectance Dis-
tribution Function (BRDF)-Adjusted Reflectances, input into
neural networks that upscale GPP estimated from FLUXNET
eddy covariance tower sites (Joiner and Yoshida, 2021).

The data are aggregated to 8 d time steps, and the growing-
season GPP is averaged over the period 2007–2014 in order
to ensure compatibility with the downscaled SIF data. The
pixels considered in the analysis are the same as those used
in the main paper, and the methodology used is the same.
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Table A1. Analysis of covariance between pairs of land covers (LC1 and LC2) in different Köppen–Geiger climate groupings. ANCOVA is
only performed on the intercept under the assumption that the difference between slopes is not significant.

Land cover Slope Intercept

Climate LC1 LC2 p value η2 p value η2

Equatorial EBF DBF 1.34× 10−95 0.19 < 1.00× 10−99 0.53
Equatorial EBF GRA 1.59× 10−77 0.17 < 1.00× 10−99 0.49
Equatorial EBF CRO 1.85× 10−55 0.12 < 1.00× 10−99 0.49
Equatorial DBF CRO 1.53× 10−01 < 0.01 3.91× 10−45 0.10
Equatorial DBF GRA 1.36× 10−01 < 0.01 1.37× 10−39 0.09
Equatorial GRA CRO 8.38× 10−01 < 0.01 5.09× 10−01 < 0.01

Arid GRA DBF 4.35× 10−28 0.07 < 1.00× 10−99 0.36
Arid CRO DBF 3.01× 10−10 0.02 6.88× 10−91 0.23
Arid DBF ENF 4.64× 10−06 0.02 1.75× 10−05 0.02
Arid GRA CRO 1.41× 10−04 0.01 3.14× 10−36 0.08
Arid GRA ENF 1.00× 10−03 0.01 6.46× 10−79 0.21
Arid ENF CRO 6.36× 10−01 < 0.01 4.27× 10−05 < 0.01

Temperate DBF ENF 4.09× 10−56 0.12 3.08× 10−08 0.02
Temperate DBF GRA 5.80× 10−39 0.08 < 1.00× 10−99 0.50
Temperate DBF CRO 2.36× 10−23 0.05 5.81× 10−86 0.18
Temperate EBF DBF 1.80× 10−19 0.04 < 1.00× 10−99 0.20
Temperate ENF GRA 1.77× 10−12 0.02 1.00× 10−99 0.56
Temperate ENF CRO 6.22× 10−08 0.02 < 1.00× 10−99 0.27
Temperate EBF ENF 2.33× 10−07 0.01 2.25× 10−42 0.09
Temperate EBF GRA 9.52× 10−01 < 0.01 1.00× 10−99 0.68
Temperate EBF CRO 9.14× 10−01 < 0.01 < 1.00× 10−99 0.47
Temperate GRA CRO 8.28× 10−01 < 0.01 1.55× 10−63 0.13

Continental DBF DNF 5.72× 10−54 0.11 1.71× 10−07 0.01
Continental DNF GRA 3.77× 10−49 0.10 < 1.00× 10−99 0.25
Continental DBF ENF 4.57× 10−43 0.09 9.59× 10−11 0.02
Continental ENF GRA 1.27× 10−34 0.07 < 1.00× 10−99 0.60
Continental DNF CRO 1.54× 10−26 0.06 9.95× 10−62 0.13
Continental DBF CRO 9.06× 10−23 0.05 < 1.00× 10−99 0.21
Continental ENF CRO 8.43× 10−15 0.03 < 1.00× 10−99 0.42
Continental DBF GRA 1.66× 10−11 0.02 < 1.00× 10−99 0.30
Continental GRA CRO 2.66× 10−09 0.02 4.24× 10−14 0.03
Continental ENF DNF 9.18× 10−05 0.01 < 1.00× 10−99 0.32

A3.2 FluxSat GPP distribution

Figure A2 shows the spatial distribution of the mean
growing-season FluxSat GPP and the difference from the
mean growing-season FLUXCOM GPP. The figure is com-
parable to that of downscaled SIF distribution, Fig. 2. The
figure shows that there is a significant difference between
FluxSat and FLUXCOM GPP across most of the world.

A3.3 Spatial relationship between downscaled SIF and
FluxSat GPP

Figure A3 shows the relative distribution and spatial linear
relationship between the mean growing-season FluxSat GPP

as a function of the respective mean values of the downscaled
SIF. The data are broken down into separate categories de-
pending on the Köppen–Geiger climate grouping and dom-
inant vegetation cover of the pixel. The figure shows that
spatial correlations for the downscaled SIF and FluxSat GPP
are generally higher than those of the downscaled SIF and
FLUXCOM GPP and so exhibit greater linearity.

A3.4 Spatial analysis of covariance between
downscaled SIF and FluxSat GPP

The ANCOVA is repeated for the downscaled SIF with
FluxSat GPP, and the η2 parameters for slope and intercept
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Figure A1. The relationship between fluctuations in meteorological variables and the corresponding fluctuations in the FLUXCOM GPP.
The fluctuations are measured relative to the monthly mean for each pixel and expressed as a z score. The four meteorological variables
are air temperature and net surface solar radiation (t2m and ssr, a) and vapour pressure deficit and soil moisture (VPD and swvl1, b). The
GPPFX response in each bin is the mean of all data points in each bin of the meteorological z score. The data are broken down into separate
Köppen–Geiger climate zones and land cover categories.

Figure A2. (a) The mean growing-season FluxSat GPP 2007–2014. (b) The difference (FluxSat−FLUXCOM) between mean FluxSat GPP
and mean FLUXCOM GPP (2007–2014).
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Figure A3. The spatial relationship between the mean growing-season downscaled SIF and FluxSat GPP, broken down into separate Köppen–
Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS–GPPFX bins, relative
to the highest-frequency bin in that category. A dashed black line representing a linear model in each category is overlaid and compared to
a dotted grey line representing a linear model produced without the breakdown into separate categories (i.e. ALL–ALL). The linear model
equation, correlation coefficient r , root mean square error (RMSE) and number of pixels are included.
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are displayed in Fig. A4 whilst the full results can be found
in Table A2.

The results support the analysis of covariance between
the downscaled SIF and the FLUXCOM GPP. The differ-
ence in the SIF–GPP scaling between vegetation covers is
relatively unimportant with the exceptions of equatorial ev-
ergreen broadleaf forests and temperate deciduous broadleaf
forests. Continental needleleaf forests are less of an excep-
tion when the FluxSat GPP is considered however. Indeed,
in general, the differences between vegetation covers are less
prominent with the FluxSat GPP. There is less difference in
the scaling of the SIF–GPP relationship between land cov-
ers than there is in the starting potential, with the signifi-
cance and the magnitude of effect of the choice of vegeta-
tion covers on the intercept being slightly greater in com-
parisons between a woody and a non-woody species than
within woody/non-woody groupings. This intercept is gen-
erally higher for woody vegetation.

A4 Comparison with TROPOMI SIF

A4.1 TROPOMI SIF data

As described in Duveiller et al. (2020), the downscaled SIF
dataset is independently validated with OCO-2 SIF observa-
tions, and, after bias correction, the resulting downscaled SIF
data show high spatio-temporal agreement with the first SIF
retrievals from the TROPOMI mission. Further comparison
of the length-of-day-corrected TROPOMI data with FLUX-
COM GPP is provided to support the specific analysis pre-
sented in this paper (Guanter et al., 2021).

The TROPOMI data are averaged to 8 d time steps with the
composite containing observations with a zenith angle below
40◦. The pixels considered in the analysis are the same as
those used in the main paper, with the requirements regard-
ing missing data points loosened to ensure coverage. Due to
the shorter time span of available data from TROPOMI, only
the 2020 dataset is analysed here. Additionally, the analy-
sis differs from that presented in the paper as the coverage of
the VIPPHEN phenology dataset does not extend to the years
covered by TROPOMI, and the growing season of 2014 – the
final VIPPHEN year available – is used to define the growing
season and compare SIF and GPP. Finally the comparison is
made with an extended FLUXCOM GPP dataset which may
contain methodological differences from that used in the pa-
per.

A4.2 TROPOMI SIF distribution

Figure A5 shows the spatial distribution of the mean
growing-season TROPOMI SIF and the difference from
the mean growing-season downscaled SIF. The figure is
comparable to that of downscaled SIF distribution, Fig. 2.
TROPOMI generally shows a lower SIF than the downscaled
values, with a mean difference of −0.077. These values are

Figure A4. The η2 parameter of an analysis of covariance be-
tween pairs of vegetation covers in different Köppen–Geiger cli-
mate groupings, for the slope (left) and intercept (right) of the lin-
ear relationship between downscaled SIF and FluxSat GPP. AN-
COVA is performed on the intercept under the assumption that the
difference between slopes is not significant. The η2 parameter is
comparable to the percentage of the difference in the slope or in-
tercept (the latter assuming equivalence of the slopes) attributable
to the difference in vegetation cover, with lower values signifying a
smaller difference between vegetation covers. A slightly bolder line
is used to separate the herbaceous species (CRO, GRA) from the
woody species (EBF, DBF, ENF, DNF).

relatively evenly distributed across the globe, with the ex-
ception of the tropics, which shows an excess in TROPOMI
compared to downscaled SIF.

A4.3 Intra-annual correlation between TROPOMI SIF
and FLUXCOM GPP

Figure A6 displays the intra-annual correlation between
TROPOMI SIF and FLUXCOM GPP, as well as the differ-
ence (TROPOMI− downscaled) when compared to the intra-
annual correlation between downscaled SIF and FLUXCOM
GPP. The figure shows that across the growing season, the
intra-annual correlation between TROPOMI SIF and FLUX-
COM GPP is very similar to that of the downscaled SIF and
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Table A2. Analysis of covariance between pairs of land covers (LC1 and LC2) in different Köppen–Geiger climate groupings for the
relationship between downscaled SIF and FluxSat GPP. ANCOVA is only performed on the intercept when the difference between slopes is
not considered significant.

Land cover Slope Intercept

Climate LC1 LC2 p value η2 p value η2

Equatorial EBF DBF 6.24× 10−11 0.02 < 1.00× 10−99 0.49
Equatorial EBF GRA 1.82× 10−46 0.10 < 1.00× 10−99 0.55
Equatorial EBF CRO 2.82× 10−48 0.10 < 1.00× 10−99 0.46
Equatorial DBF CRO 3.50× 10−15 0.03 2.15× 10−31 0.07
Equatorial DBF GRA 1.43× 10−07 0.01 1.23× 10−31 0.07
Equatorial GRA CRO 4.85× 10−09 0.02 5.15× 10−05 0.01

Arid GRA DBF 6.80× 10−06 0.01 5.25× 10−42 0.11
Arid CRO DBF 4.02× 10−01 < 0.01 2.19× 10−30 0.08
Arid DBF ENF 1.40× 10−02 0.01 1.25× 10−01 < 0.01
Arid GRA CRO 2.14× 10−08 0.02 2.84× 10−05 0.01
Arid GRA ENF 3.98× 10−16 0.04 5.99× 10−11 0.03
Arid ENF CRO 8.20× 10−05 0.01 2.61× 10−05 0.01

Temperate DBF ENF 4.00× 10−27 0.06 3.94× 10−17 0.04
Temperate DBF GRA < 1.00× 10−99 0.22 < 1.00× 10−99 0.37
Temperate DBF CRO 4.62× 10−57 0.12 < 1.00× 10−99 0.27
Temperate EBF DBF 6.07× 10−40 0.08 < 1.00× 10−99 0.21
Temperate ENF GRA 1.59× 10−06 0.01 < 1.00× 10−99 0.32
Temperate ENF CRO 3.47× 10−04 0.01 < 1.00× 10−99 0.22
Temperate EBF ENF 9.00× 10−03 < 0.01 < 1.00× 10−99 0.22
Temperate EBF GRA 3.42× 10−01 < 0.01 < 1.00× 10−99 0.62
Temperate EBF CRO 5.23× 10−01 < 0.01 < 1.00× 10−99 0.54
Temperate GRA CRO 8.66× 10−01 < 0.01 9.95× 10−01 < 0.01

Continental DBF DNF 3.00× 10−03 < 0.01 1.21× 10−24 0.05
Continental DNF GRA 1.92× 10−08 0.02 < 1.00× 10−99 0.27
Continental DBF ENF 2.96× 10−20 0.04 6.30× 10−02 < 0.01
Continental ENF GRA 1.79× 10−01 < 0.01 < 1.00× 10−99 0.42
Continental DNF CRO 4.35× 10−29 0.06 < 1.00× 10−99 0.37
Continental DBF CRO 4.96× 10−43 0.09 1.81× 10−55 0.12
Continental ENF CRO 8.07× 10−06 0.01 < 1.00× 10−99 0.48
Continental DBF GRA 2.11× 10−17 0.04 2.72× 10−44 0.09
Continental GRA CRO 1.07× 10−13 0.03 2.22× 10−12 0.02
Continental ENF DNF 5.12× 10−16 0.03 3.44× 10−81 0.17

GPP across a growing season, with the vast majority of points
showing a difference of less that 0.1. Significant differences
between the two SIF products are mostly observed in equa-
torial rainforests.

A4.4 Spatial relationship between TROPOMI SIF and
FLUXCOM GPP

Figure A7 shows the relative distribution and spatial lin-
ear relationship between the mean growing-season FLUX-
COM GPP as a function of the respective mean values of the
TROPOMI SIF. The data are broken down into separate cat-
egories depending on the Köppen–Geiger climate grouping

and dominant vegetation cover of the pixel. The figure shows
spatial correlations for the TROPOMI SIF and FLUXCOM
GPP that are broadly similar with those of the downscaled
SIF and FLUXCOM GPP.

A4.5 Spatial analysis of covariance between
TROPOMI SIF and FLUXCOM GPP

The ANCOVA is repeated for the TROPOMI SIF with
FLUXCOM GPP for the full year of 2020, and the η2 param-
eters for slope and intercept are displayed in Fig. A8 whilst
the full results can be found in Table A3.
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Figure A5. (a) The mean TROPOMI SIF in the 2020 growing season. (b) The difference (TROPOMI− downscaled) between mean
TROPOMI SIF (2020) and mean downscaled SIF (2007–2014).

Figure A6. (a) The intra-annual temporal correlation between TROPOMI SIF and FLUXCOM GPP in 2020. (b) The difference
(TROPOMI− downscaled) between TROPOMI SIF (2020) and downscaled SIF (2007–2014) in the intra-annual temporal correlation be-
tween SIF and FLUXCOM GPP.

The results support the main features of the analysis with
downscaled SIF seen in Fig. 6. The difference in the scaling
of the SIF–GPP relationship (i.e. the slope) between vegeta-
tion covers is relatively unimportant. There are, however, a
few exceptions, the most significant of which is evergreen
broadleaf forests in equatorial regions. The difference be-
tween deciduous broadleaf forests and other vegetation cov-
ers in temperate regions is no longer present, suggesting it
may be a feature of the downscaled SIF. There is a slight dis-
tinction that can be drawn between the scaling of continen-
tal needleleaf forests and other vegetation covers. In general,
there is a slight decrease in the differences between the veg-
etation covers in the TROPOMI SIF dataset.

Though the slopes are similar, a reasonable proportion of
the difference in the intercept of the linear relationship is at-
tributable to the difference in vegetation covers. This differ-
ence is broadly divided along the lines of herbaceous or non-
woody vegetation (CRO, GRA) and woody vegetation (EBF,
DBF, ENF, DNF). The intercept, which can be interpreted as
the starting potential of the SIF–GPP relationship, is gener-
ally higher for woody trees (i.e. more SIF is released for a
given GPP).
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Figure A7. The spatial relationship between the mean growing-season TROPOMI SIF and FLUXCOM GPP, broken down into separate
Köppen–Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS–GPPFX bins,
relative to the highest-frequency bin in that category. A dashed black line representing a linear model in each category is overlaid and
compared to a dotted grey line representing a linear model produced without the breakdown into separate categories (i.e. ALL–ALL). The
linear model equation, correlation coefficient r , root mean square error (RMSE) and number of pixels are included.
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Figure A8. The η2 parameter of an analysis of covariance between pairs of vegetation covers in different Köppen–Geiger climate groupings,
for the slope (left) and intercept (right) of the linear relationship between TROPOMI SIF and FLUXCOM GPP. ANCOVA is performed on
the intercept under the assumption that the difference between slopes is not significant. The η2 parameter is comparable to the percentage
of the difference in the slope or intercept (the latter assuming equivalence of the slopes) attributable to the difference in vegetation cover,
with lower values signifying a smaller difference between vegetation covers. A slightly bolder line is used to separate the herbaceous species
(CRO, GRA) from the woody species (EBF, DBF, ENF, DNF).
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Table A3. Analysis of covariance between pairs of land covers in different Köppen–Geiger climate groupings for the relationship between
TROPOMI SIF and FLUXCOM GPP. ANCOVA is only performed on the intercept when the difference between slopes is not considered
significant.

Land cover Slope Intercept

Climate LC1 LC2 p value η2 p value η2

Equatorial EBF DBF 1.13× 10−22 0.05 5.77× 10−65 0.14
Equatorial GRA EBF 2.68× 10−43 0.10 < 1.00× 10−99 0.59
Equatorial CRO EBF 1.26× 10−30 0.06 < 1.00× 10−99 0.54
Equatorial CRO DBF 7.52× 10−01 < 0.01 < 1.00× 10−99 0.30
Equatorial GRA DBF 1.09× 10−01 < 0.01 < 1.00× 10−99 0.42
Equatorial GRA CRO 9.00× 10−02 < 0.01 1.16× 10−08 0.02

Arid GRA DBF 5.00× 10−03 < 0.01 7.84× 10−88 0.22
Arid CRO DBF 1.58× 10−05 0.01 1.98× 10−68 0.18
Arid DBF ENF 8.00× 10−02 < 0.01 4.98× 10−16 0.06
Arid GRA CRO 1.90× 10−02 < 0.01 1.60× 10−27 0.06
Arid GRA ENF 2.85× 10−06 0.01 2.53× 10−39 0.11
Arid CRO ENF 1.34× 10−06 0.02 4.50× 10−01 < 0.01

Temperate DBF ENF 1.00× 10−03 < 0.01 9.40× 10−01 < 0.01
Temperate GRA DBF 4.20× 10−02 < 0.01 < 1.00× 10−99 0.58
Temperate CRO DBF 7.10× 10−02 < 0.01 < 1.00× 10−99 0.28
Temperate EBF DBF 1.60× 10−01 < 0.01 9.44× 10−01 < 0.01
Temperate GRA ENF 1.66× 10−13 0.03 < 1.00× 10−99 0.52
Temperate CRO ENF 2.30× 10−01 < 0.01 < 1.00× 10−99 0.27
Temperate EBF ENF 6.00× 10−03 < 0.01 6.58× 10−01 < 0.01
Temperate GRA EBF 3.53× 10−08 0.01 < 1.00× 10−99 0.58
Temperate CRO EBF 3.12× 10−01 < 0.01 < 1.00× 10−99 0.26
Temperate GRA CRO 4.58× 10−07 0.01 1.85× 10−44 0.09

Continental DBF DNF 2.03× 10−29 0.06 9.89× 10−10 0.02
Continental GRA DNF 4.91× 10−11 0.02 < 1.00× 10−99 0.46
Continental DBF ENF 5.96× 10−32 0.07 1.55× 10−04 0.01
Continental GRA ENF 3.91× 10−12 0.02 < 1.00× 10−99 0.58
Continental CRO DNF 6.18× 10−08 0.01 1.69× 10−96 0.20
Continental CRO DBF 1.61× 10−12 0.03 < 1.00× 10−99 0.30
Continental CRO ENF 1.16× 10−09 0.02 < 1.00× 10−99 0.35
Continental GRA DBF 2.58× 10−18 0.04 < 1.00× 10−99 0.31
Continental GRA CRO 6.82× 10−01 < 0.01 8.96× 10−05 0.01
Continental ENF DNF 9.00× 10−01 < 0.01 3.40× 10−44 0.09
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Data availability. The following public datasets are used in the
analysis:

– Vegetation cover data are provided by the Copernicus Climate
Change Service (C3S) via the climate data store platform,
with the data created by the ESA CCI programme (CCI, 2017;
Defourny, 2019),
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
satellite-land-cover (last access: 28 October 2019).

– Climate zone classification follows the Köppen–Geiger cli-
mate classification scheme (Kottek et al., 2006),
http://koeppen-geiger.vu-wien.ac.at/present.htm (last access: 8
August 2019).

– Growing seasons are defined by the Vegetation Index and Phe-
nology (VIP) global dataset from NASA’s Making Earth Sys-
tem Data Records for Use in Research Environments (MEa-
SUREs) programme (Didan, 2016),
https://lpdaac.usgs.gov/products/vipphen_ndviv004/ (last ac-
cess: 9 July 2019).

– Downscaled SIF data are provided by Duveiller et al. (2019),
https://data.jrc.ec.europa.eu/dataset/
21935ffc-b797-4bee-94da-8fec85b3f9e1 (last access: 22
October 2019).

– Gross primary productivity data are provided by the FLUX-
COM project (Jung and FLUXCOM Team, 2016),
https://www.bgc-jena.mpg.de/geodb/projects/FileDetails.php
(last access: 16 October 2019).

– Meteorological data are obtained from the ERA5-Land
monthly reanalysis dataset (Muñoz Sabater, 2019b),
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land (last access: 17 November 2020).

– TROPOMI SIF data are provided by the ESA TROPOSIF
project (ESA, 2019),
https://eo4society.esa.int/projects/
sentinel-5p-innovation-solar-induced-chlorophyll-fluorescence-sif/
(last access: 21 July 2022).

– FluxSat GPP data are obtained from the ORNL Distributed Ac-
tive Archive Center (Joiner and Yoshida, 2021)
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1835 (last ac-
cess: 21 July 2022).
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