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Abstract. Phytoplankton growth, and hence biomass, re-
sponds to variations in light and nutrient availability in the
near-surface ocean. A wide variety of models have been de-
veloped to capture variable chlorophyll : carbon ratios due to
photoacclimation, i.e. the dynamic physiological response of
phytoplankton to varying light and nutrient availability. Al-
though photoacclimation models have been developed and
tested mostly against laboratory results, their application and
testing against the observed flexible response of phytoplank-
ton communities remains limited. Hence, the biogeochem-
ical implications of photoacclimation in combination with
ocean circulation have yet to be fully explored. We com-
pare modelled chlorophyll and primary production from an
inflexible phytoplankton functional type model (InFlexPFT),
which assumes fixed carbon (C) : nitrogen (N) : chlorophyll
(Chl) ratios, to that from a recently developed flexible phy-
toplankton functional type model (FlexPFT), which incor-
porates photoacclimation and variable C : N : Chl ratios. We
couple each plankton model with a 3-D eddy-resolving ocean
circulation model of the North Pacific and evaluate their re-
spective performance versus observations (e.g. satellite im-
agery and vertical profiles of in situ observations) of Chl
and primary production. These two models yield differ-
ent horizontal and vertical distributions of Chl and primary
production. The FlexPFT reproduces observed subsurface
Chl maxima in the subtropical gyre, although it overesti-
mates Chl concentrations. In the subtropical gyre (where
light is sufficient), even at low nutrient concentrations, the
FlexPFT yields higher chlorophyll concentrations and faster

growth rates, which result in higher primary production in
the subsurface, compared to the InFlexPFT. Compared to
the FlexPFT, the InFlexPFT yields slower growth rates and
lower Chl and primary production. In the subpolar gyre,
the FlexPFT also predicts faster growth rates near the sur-
face, where light and nutrient conditions are most favourable.
Compared to the InFlexPFT, the key differences that allow
the FlexPFT to better reproduce the observed patterns are
its assumption of variable, rather than fixed, C : N : Chl ra-
tios and interdependent, rather than strictly multiplicative, ef-
fects of light limitation (photoacclimation) and nutrient lim-
itation (uptake). Our results suggest that incorporating these
processes has the potential to improve chlorophyll and pri-
mary production patterns in the near-surface ocean in future
biogeochemical models.

1 Introduction

Marine phytoplankton carry out approximately half of global
primary production (Field et al., 1998) and sustain the ma-
rine food web. Much effort has therefore been expended to
understand and develop predictive models of phytoplankton
growth and associated marine ecosystem processes and bio-
geochemistry. Phytoplankton models have, for decades, been
constructed by combining various empirically based formu-
lations for different physiological processes, such as photo-
synthesis as a function of irradiance, growth as a function of
nutrient availability, and the regulation of chlorophyll (Chl)
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content and cellular composition, which is termed photoac-
climation (e.g. Platt and Jassby, 1976; Droop, 1983; Geider
et al., 1998; Baklouti et al., 2006). Various formulations, typ-
ically for the response of a single key process (e.g. nutrient
uptake or growth rate) to one or a few key environmental
variables (e.g. nutrient concentration, light intensity, temper-
ature), have been derived from laboratory experiments and in
situ observations. Global ocean biogeochemical models re-
quire that multiple processes are combined with sufficient
generality to allow them to be applied over a wide range
of environmental conditions. This formidable challenge can
be approached in various ways, which are still debated (e.g.
Flynn, 2003, 2010; Franks, 2009; Anderson, 2010; D’Alelio
et al., 2016). For example, some models include numerous
phytoplankton and zooplankton types (Ward et al., 2013);
others resolve complexity selectively for specific trophic lev-
els (Follows et al., 2007; Göthlich and Oschlies, 2012); and
others incorporate physiological trade-offs into ecological
parameterizations (Smith et al., 2016; Pahlow et al., 2020).

Most phytoplankton models used in global ocean biogeo-
chemical models (e.g. Follows et al., 2007; Totterdell, 2019)
apply the Monod equation (Monod, 1949) for phytoplank-
ton growth as a function of ambient nutrient concentration
and assume a fixed stoichiometry between carbon and nu-
trients in phytoplankton and organic matter (Redfield et al.,
1963). However, the actual elemental composition of phy-
toplankton and organic matter varies depending on the en-
vironmental conditions (e.g. Smith et al., 1992; Martiny et
al., 2013; Garcia et al., 2018b; Liefer et al., 2019). In gen-
eral, phytoplankton can sustain relatively high growth rates
even when nutrient uptake rates are severely substrate limited
by producing biomass containing less of whichever of the
required elements are in short supply (Flynn, 2010). Phyto-
plankton grow with carbon, C : nitrogen, N ratios higher than
the Redfield ratio when N is limiting and lower than the Red-
field ratio when light is limiting (e.g. Goldman et al., 1979;
Falkowski et al., 1985; Smith et al., 1992). The inability of
the Monod equation to adequately describe laboratory exper-
iments and in situ observations of the dependence of growth
rate on nutrient concentration led to the development of the
Droop quota model (Droop, 1968, 1983). The Droop quota
model for growth explicitly accounts for flexible stoichiom-
etry by including independent state variables for carbon and
nutrient biomasses along with separate functions for acquir-
ing each element (Caperon, 1968; Droop, 1968). Because the
flexible stoichiometry of phytoplankton links phytoplankton
growth to biogeochemical cycles, the model has been applied
to one-dimensional (1-D) and three-dimensional (3-D) ocean
biogeochemical models, and has proved useful for account-
ing for observations of the composition of phytoplankton and
organic matter (e.g. Moore et al., 2001; Vichi et al., 2007;
Ayata et al., 2013; Ward et al., 2013). However, the appli-
cation of such detailed models at the global scale has been
restricted by both practical considerations of their computa-
tional requirements and scientific concerns about increased

complexity (e.g. a greater number of parameter values and
processes) relative to simpler fixed-stoichiometry models.

Recently, as a potential solution to this problem, Smith et
al. (2016) derived a computationally efficient instantaneous
acclimation (IA) approach, which represents a flexible phy-
toplankton composition, similar to the Droop quota model,
but without introducing additional state variables for each
element or pigment considered. This “flexible phytoplank-
ton functional type” (FlexPFT) model accounts for the accli-
mative response to changing light and nutrient conditions in
terms of two trade-offs for the allocation of intracellular re-
sponse: (i) carbon versus nitrogen assimilation (Pahlow and
Oschlies, 2013) and (ii) affinity for nutrient versus maximum
uptake rate (Pahlow, 2005; Smith et al., 2009). Smith et al.
(2016) applied the FlexPFT model in a 0-D setup and as-
sessed its performance in terms of phytoplankton seasonal-
ity, including variable composition in response to changing
light and nutrient conditions, at two observation sites (sta-
tion K2 (47◦ N, 160◦ E) and station S1 (30◦ N, 145◦ E)) in
the North Pacific. Ward (2017) further tested this approach
and suggested that it has promise for incorporating flexi-
ble stoichiometry into global ocean biogeochemical mod-
els. Kerimoglu et al. (2021) further assessed the performance
of the IA approach, as compared to the typical assump-
tion of fixed stoichiometry, in an idealized setup capturing
typical seasonal variations of environmental conditions in a
1-D water column, accounting for the coupling of phyto-
plankton growth and biogeochemistry with physical trans-
port by advection and diffusion. Anugerahanti et al. (2021)
assessed the performance of the IA approach favourably
compared to a suite of models of differing complexity, based
on comparisons of 1-D model performance against extensive
time-series observations from subtropical stations: ALOHA
(A Long term Oligotrophic Habitat Assessment; 22.45◦ N,
158◦W) in the North Pacific and BATS (Bermuda Atlantic
Time Series; 31.67◦ N, 64.167◦W) in the North Atlantic.
Masuda et al. (2021) applied the FlexPFT model in a global
3-D setup and showed that it could reproduce the global dis-
tribution of observed subsurface chlorophyll maxima (SCM).
However, for 3-D applications, especially with global ocean
biogeochemical models and earth system models, the chal-
lenge remains to reproduce the large-scale ocean conditions
with computational efficiency and minimal tuning of model
parameters (e.g. Masuda et al., 2021; Matsumoto et al.,
2021). In this context, only limited tests have so far been
conducted against oceanic observations. Here we explore the
biogeochemical implications of the IA approach and the eco-
physiological assumptions underlying the FlexPFT model in
combination with large-scale ocean circulation.

Most biogeochemical models have a similar structure,
with nitrogen as the main currency for a simplified food web,
which generally includes phytoplankton and zooplankton,
and a regeneration network with detritus, dissolved organic
nitrogen, and various nutrients (e.g. Fasham et al., 1990).
Whereas the more complex biogeochemical models have be-

Biogeosciences, 19, 4865–4882, 2022 https://doi.org/10.5194/bg-19-4865-2022



Y. Sasai et al.: Impacts of the physiological flexibility of phytoplankton 4867

come more common (e.g. Follows et al., 2007; Totterdell,
2019), simple phytoplankton growth (fixed stoichiometry
without photoacclimation) models are still applied widely.
In this study, we focus on the acclimative growth response of
phytoplankton as incorporated into these models. To evalu-
ate the performance and implications of this acclimative re-
sponse of phytoplankton growth to varying light and nutrient
conditions across the North Pacific Ocean, we compare mod-
elled chlorophyll and primary production from an “inflexible
phytoplankton functional type” (InFlexPFT) model, which
assumes fixed C : N : Chl ratios (fixed stoichiometry), to a re-
cently developed phytoplankton model (FlexPFT, Smith et
al., 2016) which incorporates photoacclimation and variable
C : N : Chl ratios. We apply these two phytoplankton models
in a 3-D eddy-resolving ocean circulation model of the North
Pacific to assess each model’s performance compared to ob-
servations of chlorophyll and primary production.

2 Methods and materials

2.1 The coupled physical-biological model

We used a coupled physical-biological model of the North
Pacific, consisting of a physical ocean model, which is
an eddy-resolving (1/10◦) OFES2 (Ocean general circu-
lation model For the Earth Simulator) that includes sea
ice (Masumoto et al., 2004; Komori et al., 2005; Sasaki et
al., 2020), coupled with a simple nitrogen-based Nitrate–
Phytoplankton–Zooplankton–Detritus (NPZD) pelagic
model (Sasai et al., 2006, 2010, 2016). The OFES2 domain
extends from 20◦ S in the South Pacific to 68◦ N in the
North Pacific and from 100◦ E to 70◦W. The OFES2 has
1/10◦ horizontal resolution with 105 vertical levels ranging
from 5 m thickness at the surface to 300 m thickness at the
maximum depth of 7500 m. The physical fields were spun up
for 50 years under climatological forcing data (wind stresses,
heat flux, and freshwater flux) from the Japanese 55-year
Reanalysis (JRA55-do) (Tsujino et al., 2018) and from the
initial conditions of the observed climatological fields of
temperature and salinity (World Ocean Atlas 2009, WOA09)
(Antonov et al., 2010; Locarnini et al., 2010) without motion
for 50 years. After 50 years of spin-up integration, the
OFES2 was forced by 3-hourly JRA55-do from 1958 to
1979. The last day of 1979 was used for the initial physical
fields when performing the coupled physical-biological
model simulation.

In the OFES2, an advection–diffusion equation, Eq. (A1)
(Appendix A), is used to calculate the evolution of
four biological tracer concentrations (nitrogen-based
units, mmol N m−3): nitrogen, N; phytoplankton, P; zoo-
plankton, Z; and detritus, D. The source and sink terms
represent the biological activity (Eqs. A2–A5) as described
by Sasai et al. (2006), Sasai et al. (2010), and Sasai et al.
(2016). In this study, to examine how the physiological flex-

ibility of phytoplankton impacts the modelled chlorophyll
and primary production (PP), two phytoplankton models
(InFlexPFT and FlexPFT) are applied for the phytoplankton
growth term, µP , in Eq. (A2). The remaining biological
activity equations and biological parameters (e.g. grazing,
mortalities of P and Z, and decomposition of D) are the same
for both models (Appendix A) because we focus on the phy-
toplankton growth response and ignore other processes (e.g.
interactions between grazers and phytoplanktons, export
and recycling). The initial N (mmol N m−3) field is taken
from the observed annual climatological values of WOA09
(Garcia et al., 2010). The initial N concentration ranges from
5 to 20 (mmol N m−3) in the subpolar surface and from 0.1
to 5 (mmol N m−3) in the subtropical surface. The initial
phytoplankton and zooplankton concentrations are set to
0.2 mmol N m−3 at the sea surface and decrease exponen-
tially with an e-folding scale depth of 100 m. Detritus is
initialized to 0.1 mmol N m−3 everywhere. These initial P, Z,
and D values are taken from Sasai et al. (2006, 2010, 2016).
Two NPZD models are incorporated with the physical fields
in the OFES2 after the last day of 1979. The two coupled
physical-biological models are forced by 3-hourly JRA55-do
from 1980 to 2019.

2.2 Formulations of phytoplankton growth in the
biological model

Here, we briefly describe the two phytoplankton growth
rate equations, InFlexPFT and FlexPFT, used in this study,
which appear in the first term of the right-hand side, µP , in
Eq. (A2). In both models, the phytoplankton growth rate, µ
(d−1), depends on the irradiance, I, which is the intensity of
photosynthetically active radiation calculated from the daily
mean short-wave radiation (W m−2) of JRA55-do, the nitro-
gen, N (mmol N m−3), and the temperature, T (◦C). The phy-
toplankton growth rate equation is expressed by multiplying
the N uptake, I limitation, and T limitation. N and T are taken
from the coupled physical-biological models’ output. The In-
FlexPFT for growth rate, µIFL (N,I,T ) (d−1), is based on
the optimal uptake kinetics equation (Smith et al., 2009):

µIFL(N,I,T )= µmax

 N

N +
(
V̂0
Â0

)
+ 2

√
V̂0N

Â0

S(I,T )F (T ), (1)

where µmax is the potential maximum growth rate (d−1), V̂0
is the potential maximum uptake rate for N (d−1), and Â0 is
the potential maximum affinity for N (m3 (mmol N)−1 d−1),
following the optimal uptake equation (Table 1). Compared
to the Monod equation for growth as a function of am-
bient nutrient concentration, as typically applied in fixed-
composition models, this equation yields a similar response
but with a slightly flatter shape (Smith et al., 2009). S(I,T )
specifies the dependence on I (Pahlow et al., 2013), and F(T )
is the Arrhenius-type temperature dependence. S(I,T ) and
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F(T ) are respectively defined as

S(I,T )= 1− exp

{
−αθ̂I

µmaxF(T )

}
(2)

F(T )= exp
{
−Ea

R

[
1

T + 298
−

1
Tref+ 298

]}
. (3)

Here, α is the Chl-specific initial slope of growth versus
light intensity (dimensionless, Table 1), and θ̂ is the Chl : C
ratio (g chl (mol C)−1) of the chloroplast, as described by
Pahlow et al. (2013). In the InFlexPFT, the Chl : C ratio is
set to a constant value (θ̂ = 0.6), assuming fixed stoichiom-
etry without photoacclimation. Ea is the activation energy
(4.8× 104 J mol−1), which is set to a constant value corre-
sponding to a doubling of growth rate for a 10 ◦C increase in
temperature (i.e. Q10 = 2.0), which is a typical empirically
based value for the temperature sensitivity of phytoplankton
growth rates (Eppley, 1972; Bissinger et al., 2008), R is the
gas constant (8.3145 J (mol K)−1), and Tref is the reference
temperature (taken as 20 ◦C).

The FlexPFT assumes a photoacclimation theory based
optimal resources allocation trade-off between light and nu-
trients (Pahlow et al., 2013; Smith et al., 2016). The growth
rate, µFL(N,I,T ) (d−1) (Smith et al., 2016), is

µFL(N,I,T )= µmax

(
1−

Qs

Q(N,I,T )

− fV (N,I,T )

)
S(I,T )F (T ), (4)

where Qs is the structural minimum cell quota (mol N
(mol C)−1), given as a fixed parameter (=Q0/2, where
Q0(= 0.039) is the minimum cell quota, Edwards et al.,
2012); Q is the nitrogen cell quota, i.e. the intracellular N
content per unit carbon biomass (mol N (mol C)−1) as a func-
tion of I, N, and T; and fV is the fractional allocation of
intracellular resources to nutrient uptake (dimensionless) as
defined by Pahlow et al. (2013). The cell quota, Q(N,I,T ),
is

Q(N,I,T )=Qs

1+

√
1+

[
Qs

(
µmaxS(I,T )F (T )

V̂ N (N,T )
+ ζN

)]−1
 , (5)

where V̂ N (N,T ) is the potential nutrient uptake rate
(mol N (mol C)−1 d−1), and ζN is the energetic respiratory
cost of assimilating inorganic nitrogen (0.6 mol C (mol N)−1,
Pahlow and Oschlies, 2013). The potential nutrient uptake
rate, V̂ N (N,T ), is

V̂ N (N,T )=
V̂0N

N +
(
V̂0
Â0

)
+ 2

√(
V̂0N

Â0

) . (6)

The fractional allocation of intracellular resources to nutri-
ent uptake, fV (N,I,T ), as defined by Pahlow et al. (2013)

is

fV (N,I,T )=
µmaxS(I,T )F (T )

V̂ N (N,T )

[
− 1

+

√
1+

[
Qs

(
µmaxS(I,T )F (T )

V̂ N (N,T )
+ ζN

)]−1]
. (7)

The differences between the two models are the trade-off
between light and nutrient acquisition (Eqs. 5, and 7) and
the variable Chl : C ratio (θ̂ ) in the light limitation term of
Eq. 2, which are only included in the FlexPFT (Eq. 4) to
account for the flexible response of phytoplankton growth
to changing light and nutrient conditions (Eqs. 2, 5, 6, and
7). The optimal value of the Chl : C ratio in the FlexPFT is
applied when the irradiance I exceeds the threshold irradi-
ance, below which the respiratory cost outweighs the ben-
efits of producing chlorophyll (Pahlow et al., 2013; Smith
et al., 2016). The InFlexPFT has the same nutrient uptake
response as the FlexPFT (Eqs. 1 and 6), and the Chl : C ra-
tio in the light limitation term (Eq. 2) is set to a constant
value. The same temperature dependence, F(T ), is assumed
in both models (Eq. 3). The parameter values µmax, V̂0, Â0,
and α (Table 1) used in Eqs. 1 to 7 for the phytoplankton
growth rate were tuned, separately for each coupled model,
to confirm the reproducibility of the climatological seasonal
variability of observed N and the Chl patterns in the near-
surface of the North Pacific. In this study, we have chosen to
apply different parameter values, based on the separate tun-
ing of each coupled model (Table 1), in order to make a fair
comparison of each model’s ability to reproduce the climato-
logical seasonal and spatial variability of N and Chl. Apply-
ing the same parameter values for both models would not be
meaningful, given their different meanings within the differ-
ent growth equations. For example, the potential maximum
growth rate, µmax, is 1.5 (d−1) for the InFlexPFT, compared
to 2.2 (d−1) for the FlexPFT. Increasing the potential maxi-
mum growth rate decreases the surface N concentration in the
subpolar gyre, to the point of depleting nutrients during sum-
mer, while increasing the surface Chl concentration across
the whole gyre.

Compared to the InFlexPFT, the FlexPFT model yields
different growth rates because it instantaneously optimizes
both the allocation factor, fV (N,I,T ) (Eq. 7), and the
Chl : C ratio of the chloroplast, θ̂ , which appears in the light
limitation term, S(I,T ) (Eq. 2). Therefore, it is possible
to understand the modelled patterns of Chl (mg m−3) and
PP (mgC m−3 d−1) over the North Pacific Ocean by com-
paring the models in terms of their expressions for growth
rate, µ, as a function of I, N, and T. Results are pre-
sented for simulated years 2000 to 2019 with verifiable ob-
servation data. For the InFlexPFT, the Chl concentration
(mg m−3) is P (mmol N m−3)× the constant Chl : N ratio
(1.59 g Chl (mol N)−1), and PP (mgC m−3 d−1) is µIFLP

(mmol N m−3 d−1, Eq. 1)× the fixed C : N ratio (Redfield
ratio= 106 : 16 mol C (mol N)−1). In the FlexPFT, the Chl
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Table 1. Parameters of the InFlexPFT and FlexPFT models

Parameter Symbol InFlexPFT FlexPFT Unit

Potential maximum growth rate µmax 1.5 2.2 d−1

Potential maximum uptake rate for N V̂0 1.0 1.0 d−1

Potential maximum affinity for N Â0 2.0 1.0 m3 (mmol N)−1 d−1

Chl-specific initial slope of growth α 2.0 2.0 Dimensionless

concentration (mg m−3, = P × θ̂/Q) is the phytoplankton
concentration P (mmol N m−3)× the variable Chl : N ratio
(g Chl (mol N)−1, θ̂/Q), and the primary production, PP
(mgC m−3 d−1), is µFLP (mmol N m−3 d−1, Eq. 4)× the
variable C : N ratio (mol C (mol N)−1), 1/Q) (Eq. 5 and
Smith et al., 2016).

2.3 Observational data

The average model results for the last 20 years (2000–2019)
were compared with satellite data, in situ observations, and
the climatological data (Chl, nitrate, and temperature) to in-
vestigate the large-scale variation over the North Pacific. Al-
though the model and observation periods differ somewhat,
using the satellite and in situ observation data observed dur-
ing the simulation period (the 2000s), we compare whether
the horizontal and vertical patterns of climatological seasonal
variations can reproduce the patterns captured by the satellite
and the snapshot observations. We focused especially on the
Chl and PP patterns, which strongly reflect effects of the dif-
ferent assumptions about how growth rates depend on light
and nutrients. Sea-surface Chl satellite imagery is derived
from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) aboard Aqua (https://oceancolor.gsfc.nasa.gov/
data/10.5067/AQUA/MODIS/L3M/CHL/2022/, last access:
1 March 2022) using the seasonal climatological data (av-
eraged from 2003 to 2019) of the level-3 global browser.
Ship-observed Chl data along the two sections (north–south
and east–west) in the North Pacific are available from the
websites of the Japan Meteorological Agency, JMA (https:
//www.data.jma.go.jp, last access: 1 March 2022), and the
Japan Oceanographic Data Center, JODC (https://www.jodc.
go.jp, last access: 1 March 2022), respectively. Along the
north–south section (165◦ E) in the western North Pacific,
JMA research vessels have observed regularly from 2005
to the present. Along the east–west section (around 35◦ N)
in the central North Pacific, observations were conducted in
summer 2002 to 2003 and published by the JODC. Seasonal
climatological nitrate and temperature distributions are ac-
quired from the World Ocean Atlas 2018 (WOA18) (Garcia
et al., 2018a; Locarnini et al., 2018). The PP data sets are
available at three time-series stations: stations K2 (47◦ N,
160◦ E) and S1 (30◦ N, 145◦ E) in the western North Pa-
cific, as implemented by the K2S1 project (Matsumoto et al.,
2014, 2016; Honda et al., 2017) (https://www.jamstec.go.jp/

egcr/e/oal/k2s1.html, last access: 1 March 2022), and station
ALOHA (22.45◦ N, 158◦W) in the central North Pacific, as
operated under the Hawaii Ocean Time series (HOT) pro-
gram (Karl et al., 1996, 2021) (https://hahana.soest.hawaii.
edu/hot/, last access: 1 March 2022).

3 Results

This section assesses the models’ performance and exam-
ines the impact of physiological flexibility on the mod-
elled Chl and PP by comparing the results of two cou-
pled physical-biological (InFlexPFT and FlexPFT) models
against MODIS-Aqua imagery and vertical profiles of in situ
observations (JMA and JODC ship observation lines). Mod-
elled phytoplankton is controlled by various ecological pro-
cesses (e.g. grazing, mortality, export, and recycling), but in
this study, we focus on the implications of specific assump-
tions about how the phytoplankton growth rate depends on
light, nutrients, and temperature. The eddy-resolving ocean
circulation model (OFES2) has fine horizontal resolution
(1/10◦, about 10 km) and reproduces the western bound-
ary current, the Kuroshio, the observed variability in the
Kuroshio Extension region between the subtropical and sub-
polar gyres, mesoscale eddies, and upwelling events (e.g.
Masumoto et al., 2004; Sasai et al., 2010; Sasaki et al., 2020).
In addition, the seasonal variability of the T and N fields in
the near-surface over the North Pacific are also well repro-
duced (not shown). These physical processes directly or indi-
rectly affect the nutrient and light environments and biogeo-
chemical processes (e.g. Oschiles, 2002; Gruber et al., 2011;
Levy et al., 2014; Sasai et al., 2010, 2019), and are important
for supplying the nutrients needed by phytoplankton, espe-
cially in the coastal upwelling regions and the oligotrophic
subtropical gyre. Here we focus on the different assumptions
about how phytoplankton growth rate depends on ambient
nitrogen concentration and light intensity. First, the repro-
ducibility of the seasonal and horizontal Chl distributions is
described. As the Chl concentration in the FlexPFT is cal-
culated from P × θ̂/Q, and reflects the changes in θ̂ and Q,
we examine how variations in C : N : Chl ratios impact the
surface Chl pattern. Next, we compare the results of the two
coupled physical-biological models in terms of Chl and PP
along two vertical transects (north–south and east–west, re-
spectively) in the North Pacific, and discuss the reasons for
the differences, especially the role of photoacclimation in the
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formation of SCM and the role of the growth rate in the vari-
able C : N : Chl ratios of phytoplankton. Finally, the differ-
ence in the PP calculated by these two models over the North
Pacific and the comparison with the limited PP vertical pro-
files are discussed. The extent to which the different growth
rates (InFlexPFT vs. FlexPFT) affect the estimated PP is de-
scribed.

3.1 Comparison of surface Chl patterns

Figure 1 shows the surface Chl distributions as simu-
lated over the North Pacific by the two models, which
are compared with MODIS-Aqua imagery to assess the
two models’ performance. Overall, using an eddy-resolving
(1/10◦) OFES2, the two models reproduce the climatolog-
ical seasonal variations of the surface Chl pattern between
the subtropical (< 0.2 mg m−3, blue shaded) and subpolar
(> 0.2 mg m−3, green and yellow shaded) gyres, as cap-
tured by the MODIS-Aqua imagery. In particular, the con-
trast between the two gyres and the coastal upwelling re-
gion is seen more clearly when using the OFES2 than lower-
resolution (e.g. 1◦, about 100 km) models (e.g. Moore et
al., 2001; Vichi et al., 2007; Follows et al., 2007; Göthlich
and Oschlies, 2012). In addition, both models reproduce the
boundary (0.2 mg m−3) between the subtropical and subpo-
lar gyres, its seasonal variations, and the high concentrations
(> 0.4 mg m−3) in the coastal upwelling regions (California
coast) seen in the MODIS-Aqua imagery. Compared to the
InFlexPFT, the FlexPFT model produces greater variations
and steeper horizontal gradients of Chl concentration. Espe-
cially in the open ocean north of 30◦ N, coastal upwelling
regions off the western coast of North America, the Sea of
Okhotsk, and the Bering Sea, the FlexPFT produces higher
surface Chl (> 0.4 mg m−3) than the InFlexPFT, but it un-
derestimates Chl in the subtropical gyre (south of 30◦ N,
< 0.1 mg m−3). The FlexPFT also reproduces greater sea-
sonal variation of surface Chl in the subpolar gyre, similar to
the pattern in the MODIS-Aqua imagery. On the other hand,
in the subtropical gyre, the InFlexPFT is more similar to the
MODIS-Aqua imagery. These differences in the spatial and
seasonal distributions of surface Chl result from the differ-
ent phytoplankton growth rate equations (Eqs. 1 and 4). The
Chl : N ratio is calculated from θ̂ (photoacclimation) and Q
(nitrogen cell quota, Eq. 5), and the models differ in that the
FlexPFT has a variable Chl : N ratio (0.1–3.0) whereas the In-
FlexPFT has a fixed Chl : N ratio of 1.59. In the subtropical
gyre, the FlexPFT’s Chl : N ratio is low (< 0.6), and the Chl
concentration is underestimated compared with the MODIS-
Aqua imagery. In the subpolar gyre and coastal upwelling re-
gions, the FlexPFT’s Chl : N ratio is high (> 1.0), and the Chl
concentration is close to that in the MODIS-Aqua imagery.

3.2 Comparison of vertical distributions of Chl and PP
along the two transect lines

The limited data available from observations made by re-
search vessels do capture key spatial and temporal distribu-
tions. Here, the reproducibility of the vertical distribution of
Chl along two observation lines over the North Pacific Ocean
– a north–south section along 165◦ E shown in Fig. 2, and an
east-west section around 35◦ N shown in Fig. 3 – is discussed
for each model. In particular, we focus on the SCM formed
in summer, and discuss the effects of different assumptions
about how the phytoplankton growth rate (Eqs. 1 and 4) de-
pends on N concentration and light intensity, I, as well as
their effects in combination with the temperature, T (Figs. 4,
5, 6, and 7).

JMA research vessels have made observations on the
north–south line along 165◦ E regularly since 1997, with
good seasonal coverage. The best data coverage for vertical
Chl profiles is available for the summer of 2006. The ob-
served SCM (> 0.1 mg m−3) depth varies from 50 m near the
Equator to 150 m in subtropical regions, and the FlexPFT
clearly reproduces the observed pattern of SCM near the
nutricline (close to 1 mmol N m−3) along the 165◦ E line
(Fig. 2), with simulated values close to the observed SCM
(Fig. 2a and c). However, the FlexPFT underestimates near-
surface Chl (< 0.02 mg m−3, dark blue shaded). By contrast,
the InFlexPFT (Fig. 2b) cannot reproduce the observed SCM,
even though its modelled distributions of N and T are simi-
lar to the corresponding observations (Fig. 2d, e, f, g, and
h). The N and T distributions reproduced in the OFES2 are
mainly controlled by the physical processes, and the differ-
ence in vertical Chl distributions is influenced by the differ-
ence in the response of the phytoplankton growth to the light
and nutrient conditions (Eqs. 1 and 4). The FlexPFT, which
incorporates the photoacclimation and the trade-off between
light and nutrient acquisition, reproduces the observed verti-
cal Chl distributions much better than the InFlexPFT, espe-
cially the depth and structure of SCM.

The vertical distribution of Chl also varies with longitude
along the east–west transect around the boundary (35◦ N)
between the subpolar and subtropical gyres (Fig. 3). The
limited JODC Chl observations (summer 2001–2002) span
the east and west of the North Pacific. The observed SCM
(> 0.1 mg m−3) appear between 50 and 150 m depth and
deepens to the east (Fig. 3a), following the distribution of nu-
tricline depths (close to 1 mmol N m−3) (Fig. 3d). Compared
to the north–south transect, here the near-surface T gradient
is not as steep (Figs. 2 and 3), with T near the surface de-
creasing from the centre to the east and west (Fig. 3g). The
model reproduces the observed T distribution, and the mod-
elled N distribution is similar to the observed data (Fig. 3e, f,
and h). The FlexPFT clearly reproduces the observed SCM
around the nutricline depth (Fig. 3c and f) from east to west,
whereas the InFlex does not (Fig. 3b). On the eastern side of
the North Pacific, both models have a deep nutricline depth,
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Figure 1. Climatological seasonal variations of surface Chl concentration (mg m−3) from (a)–(d) MODIS-Aqua imagery and (e)–(i) two
models. MODIS-Aqua imagery is averaged from 2003 to 2019 for each season. The results from each model are the season average for the
period 2000–2019 for the 20 m layer closest to the surface. White circles and crosses in (c), (g), and (k) show two observation lines (the
circles are the locations of the JMA data and the crosses are the locations of the JODC data). The three stars in (d), (h), and (l) show the
stations that provide observed time series (station K2, station S1, and station ALOHA).

Figure 2. Comparison of the vertical distributions of (a)–(c) summer (June, July and August) Chl concentration (mg m−3), (d)–(f) summer
N concentration (mmol N m−3), and (g)–(h) summer T (◦C) along 165◦ E (north–south section; white circles in Fig. 1). Panel (a) shows in
situ observation data from the summer of 2006 taken by the JMA research vessel. Panels (d) and (g) show data for the climatological summer
from WOA18. Panels (b), (c), (e), (f), and (h) show the models’ average values for the summer during the 2000–2019 period. The white area
in (a) represents missing data.
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Figure 3. Comparison of the vertical distributions of (a)–(c) summer (June, July and August) Chl concentration (mg m−3), (d)–(f) summer
N concentration (mmol N m−3), and (g)–(h) summer T (◦C) along the location of the white crosses (east–west section) in Fig. 1. Panel
(a) shows in situ observation data collected by the JODC in the summer in 2001–2002. Panels (d) and (g) show data for the climatological
summer from WOA18. (b), (c), (e), (f), and (h) show the models’ average values for the summer during the 2000–2019 period. The white
area in (a) represents missing data.

and the FlexPFT underestimates the observed Chl (Fig. 3a
and c) and N (Fig. 3d and f).

To clarify the mechanistic reasons for differences in
the vertical distributions of Chl between the two models
(Figs. 2 and 3), the vertical distributions of the models’ PP
(mgC m−3 d−1), the related phytoplankton growth rate (d−1)
from Eqs. (1) and (4), and the variable C : N ratio (the recip-
rocal of the N to C ratio of phytoplankton, 1/Q, Eq. 5) in
the FlexPFT are shown in Figs. 4 and 5. The PP was calcu-
lated from the phytoplankton growth rate and the C : N ratio,
which is variable for the FlexPFT (Figs. 4e and 5e), whereas
it is constant for the InFlexPFT. In summer (Figs. 2 and 3),
the SCM are clearly formed in the subsurface layer, except
for the subpolar gyre (north of 40◦ N). The vertical distri-
butions of the PP and phytoplankton growth rate form max-
ima along the nutricline depth. Both models predict high PP
(> 10 mgC m−3 d−1) near the surface in the subpolar regions
along 165◦ E, along with minimal PP (< 1 mgC m−3 d−1)
near the bottom of the euphotic layer, which is close to
100 m depth (Fig. 4a and b). Overall, compared to the In-
FlexPFT, the FlexPFT produces greater PP, with profiles ex-
tending deeper into the subsurface (100 m depth) to the south
of 30◦ N. Both models produce fast growth rates in the sub-
polar surface layers (> 0.5 d−1) and the subtropical subsur-
face layers (> 0.2 d−1) (Fig. 4c and d). Especially in the sub-
tropical subsurface layers, the FlexPFT predicts much faster
growth than the InFlexPFT, and this difference in phyto-
plankton growth rate is reflected in the vertical distributions
of Chl (Fig. 2b and c) and PP (Fig. 4a and b). The vari-
able C : N ratio in the FlexPFT (Fig. 4e) also contributes sub-

stantially to its greater PP values (Fig. 4d) compared to the
constant C : N ratio in the InFlexPFT (Fig. 4c). In Fig. 4e,
the C : N ratio in the FlexPFT is high (> 20) near the sur-
face around the Equator and subtropical regions, and near
the Redfield ratio (106 : 16= 6.625) elsewhere in the subpo-
lar region and below the euphotic layer (below 100 m depth).
Our results show that, compared to the assumption of con-
stant C : N : Chl ratios, as done in the InFlexPFT, accounting
explicitly for variable C : N ratios (4.0 to 25.0 in Fig. 4e) and
the acclimated growth response of phytoplankton, as done in
the FlexPFT, yields substantially better reproduction of the
Chl and PP profiles within the euphotic layer.

As in Fig. 4, the vertical distributions of modelled PP
(mgC m−3), the related phytoplankton growth rate (d−1)
from Eqs. (1) and (4), and the variable C : N ratio in the
FlexPFT (Eq. 5) are shown in Fig. 5, but for the east–west
section. Both models predict high PP (> 8 mgC m−3 d−1)
between 50 and 100 m, with shallower distributions on the
west side and deeper ones toward the east (Fig. 5a and b).
Compared to the InFlexPFT, the FlexPFT predicts higher
PP (> 10 mgC m−3 d−1), especially in the subsurface (near
50 m depth). Although both models predict faster growth
on the west side (> 0.5 d−1), decreasing towards the east
(< 0.2 d−1), their patterns differ (Fig. 5c and d). In the In-
FlexPFT, the phytoplankton growth rate is fastest near the
surface and decreases with depth. On the other hand, the
FlexPFT predicts increasing growth rate with depth from the
surface to intermediate depths. Both models produce sub-
surface maxima in PP (Fig. 5a and b), with a stronger pat-
tern for the FlexPFT model. The FlexPFT predicts an even
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Figure 4. Comparison of the vertical distributions of (a)–(b) sum-
mer primary production (mg C m−3 d−1) and (c)–(d) summer phy-
toplankton growth rate (d−1) between the two models, and (e) the
vertical distribution of the summer C : N ratio in the FlexPFT along
165◦ E (north–south section; shown by white circles in in Fig. 1).
These figures show the average values for the summer during the
2000–2019 period.

stronger subsurface maximum in the vertical distribution of
Chl (Fig. 3c). This results from the FlexPFT’s combination
of photoacclimation and variable C : N ratio, which is consis-
tently high (> 10) in the euphotic layer (0–100 m) (Fig. 5e).
Below the euphotic layer and to the west side, the FlexPFT’s
C : N ratio approaches the Redfield ratio (106 : 16= 6.625),
and therefore the modelled Chl and PP differ less between
the two models.

To examine the interdependent impacts of N concentra-
tion and light intensity, I, on the phytoplankton growth rate
in the FlexPFT, as compared with their simple multiplicative
dependencies in the InFlexPFT, Figs. 6 and 7 show scatter
diagrams of modelled phytoplankton growth rate and vari-
able C : N ratio (1/Q) versus N concentration (mmol N m−3)
at the three locations indicated along 165◦ E in Fig. 4 and
around 35◦ N in Fig. 5. The different depths (0, 50, and
100 m) correspond to different light intensities at each lo-
cation (strong at the surface and weaker at 100 m depth).

Figure 5. Comparison of the vertical distributions of (a)–(b) sum-
mer primary production (mg C m−3 d−1) and (c)–(d) summer phy-
toplankton growth rate (d−1) between the two models, and (e) the
vertical distribution of summer C : N ratio in the FlexPFT, along the
location of white crosses (east–west section) in Fig. 1. These fig-
ures show the average values for the summer during the 2000–2019
period.

Compared to the InFlexPFT, the FlexPFT maintains faster
growth, as either light or nutrients become limiting every-
where. The phytoplankton growth rate equations (Eqs. 1 and
4) also depend on the temperature, T (Eq. 3), as shown by
the colours. The explicitly formulated temperature depen-
dence of the growth rate is the same in both models. In gen-
eral, I and T both depend on latitude, and both decrease with
increasing depth. At 25◦ N latitude (Fig. 6a and d), in the
subtropical gyre, both models predict phytoplankton growth
rates exceeding 0.2 (d−1) near the surface, despite the low N
concentrations (< 0.1 mmol N m−3), as high I and T enhance
the growth rate. Compared to the InFlexPFT, the FlexPFT
maintains faster growth rates at the surface and 50 m because
it dynamically allocates intracellular resources to cope with
variations in N concentration and I (Smith et al., 2016, and
Eq. 4). At the boundary between the subtropical and subpolar
gyres, which lies approximately between 35 and 40◦ N lati-
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Figure 6. (a)–(f) Monthly mean phytoplankton growth rate (d−1) in summer in 2000–2019 from Fig. 4c and d versus summer monthly mean
N concentration (mmol N m−3) from Fig. 2e and f for each depth (circles: surface, crosses: 50 m depth, triangles: 100 m depth in Fig. 4c
and d) and each model, and (g)–(i) summer monthly mean C : N ratio versus summer monthly mean N concentration in the FlexPFT model.
The colour in each figure represents the summer monthly mean T (◦C) in Fig. 2h. Dashed lines in (g), (h), and (i) represent a constant C : N
(106 : 16= 6.625) ratio value.

tude, the two models predict clearly different patterns of phy-
toplankton growth rate compared to those at 25◦ N (Fig. 6b,
c, e, and f). At the gyre boundary and in the subarctic, both
models tend to produce faster growth rates at 50 m, where the
availability of light and nutrients is better balanced to support
phytoplankton growth, compared to the surface and 100 m
depth. Compared to temperature, nutrient and light limita-
tion exert greater control over the modelled growth rates with
both models, but more so for the FlexPFT. Nutrient limita-
tion is the strongest determinant of growth rates at the sur-
face and intermediate (50 m) depth, whereas light limitation
strongly suppresses growth rates (and their range of variabil-
ity) at 100 m depth.

Similar to Fig. 6, Fig. 7 shows modelled phytoplankton
growth rates at three selected locations along the 35◦ N lati-
tude transect (Fig. 5). The two locations (160◦ E, 36◦ N, and
170◦ E, 34◦ N) on the west side of the North Pacific are close
to (165◦ E, 35◦ N) in Fig. 6, and have similar characteristics.
At these locations, near the boundary of the subtropical and
subpolar gyres, the nutricline depth is shallower than on the
eastern side. The InFlexPFT at the surface and 50 m depth
shows two curves of phytoplankton growth rate versus N

concentration, I, and T (Fig. 7a and b), similar to Fig. 6b.
Again, the InFlexPFT predicts the fastest growth rates at
the high T (> 20◦C), despite low N concentrations. On the
other hand, the FlexPFT’s growth rates are more clearly re-
lated to the ambient N concentration and have a less appar-
ent relationship to T, despite assuming the same T depen-
dence in both models (Fig. 7d and e). As in Fig. 6, compared
to the InFlexPFT, the FlexPFT predicts faster phytoplankton
growth rates, with maximal growth at intermediate N con-
centrations (despite the lower T compared to the surface),
and a wider variation of growth rate. At the eastern-most lo-
cation (170◦W, 30◦ N), as shown in the right-most column of
Fig. 7c and f, the patterns are more similar to those for the
subtropical area shown in the left-most column of Fig. 6a
and d, albeit with somewhat greater variability of growth
rate for both models near the surface, where temperatures
are high and nutrients scarce. Just as at the subtropical loca-
tion (25◦ N latitude) shown in the left-most column of Fig. 6,
the InFlexPFT also exhibits a stronger apparent temperature
sensitivity (and hence a wider range of growth rates) than
the FlexPFT at this location, but only near the surface here.
Neither model shows a strong apparent relationship between
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Figure 7. (a)–(f) Monthly mean growth rate (d−1) in summer in 2000–2019 from Fig. 5c and d versus summer monthly mean N concentration
(mmol N m−3) from Fig. 3e and f for each depth (circles: surface, crosses: 50 m depth, triangles: 100 m depth in Fig. 5c and d) and each
model, and (g)–(i) summer monthly mean C : N ratio versus summer monthly mean N concentration in the FlexPFT model. The colour in each
figure represents the summer monthly mean T (◦C) in Fig. 3h. Dashed lines in (g), (h), and (i) represent a constant C : N (106 : 16= 6.625)
ratio value.

growth rate and N concentration at this location, indicating
that light, nutrients, and temperature all substantially limit
the growth here.

Compared to the InFlexPFT, the FlexPFT produces higher
PP because its variable C : N ratio (4.0 to 25.0) substantially
exceeds the Redfield ratio (106 : 16= 6.625), with a con-
sistent increase in C : N ratio from intermediate depths to
the surface obtained everywhere (Figs. 6 and 7). At 35 and
40◦ N, where the phytoplankton growth rate reaches its maxi-
mal values, the C : N ratios are between 10 and 15 (Figs. 6h, i,
7g, and h), which enhances PP (Figs. 4b and 5b). Along the
east–west transect as well (Fig. 7), the FlexPFT again pre-
dicts maximal C : N ratios near the surface (> 20), where nu-
trient concentrations are lowest and light (and temperature)
levels are highest, with a similar range of C : N ratios to that
obtained along the north–south transect (Fig. 6). On the west
side, the C : N ratio in the FlexPFT (Fig. 7g and h) exceeds
the Redfield ratio (> 6.625) except below the euphotic layer,
and growth rates are maximal at intermediate nutrient con-
centrations and light intensities. On the other hand, on the
east side, where ambient nutrient concentrations are consis-
tently low despite the high C : N ratio in the FlexPFT (> 20 in

Fig. 7i), modelled growth rates differ little between the two
models.

Overall, at the surface and 50 m depth, the modelled pat-
terns of growth rate versus N concentration are more clearly
separated with the FlexPFT model, which produces a steeper
and more consistent increase in growth rate from low to inter-
mediate N concentrations compared to the InFlexPFT. These
variations in the locally realized maximum growth rate result
from the FlexPFT’s growth optimization scheme, which re-
allocates intracellular resources, resulting in an interdepen-
dent response to I and N availability (Fig. 3 of Smith et al.,
2016, and Eq. 4). By contrast, the InFlexPFT’s simple mul-
tiplicative dependencies on I and N concentration result in a
steeper decrease in growth rate as either resource becomes
limiting. Despite the assumption of the same inherent T sen-
sitivity in both models, the optimal resource allocation thus
results in a weaker apparent relationship between modelled
growth rates and ambient T in the FlexPFT model, which pre-
dicts the fastest growth rates at intermediate N concentrations
despite the lower T than at the surface. By contrast, the In-
FlexPFT model, because of its weaker dependence on nutri-
ent concentration and light, predicts the fastest growth rates

https://doi.org/10.5194/bg-19-4865-2022 Biogeosciences, 19, 4865–4882, 2022



4876 Y. Sasai et al.: Impacts of the physiological flexibility of phytoplankton

at the highest temperatures, along with a stronger apparent
relationship between growth rate and ambient temperature.

3.3 Vertical profiles of PP at three stations and PP
patterns

Figure 8 shows a direct comparison of the modelled daily
mean and observed vertical profiles of PP for three time-
series stations in the North Pacific: station K2 in the west-
ern subpolar gyre and stations S1 and ALOHA in the west-
ern and eastern subtropical gyres, respectively. At station K2,
observed PP is more variable above 25 m depth and less vari-
able below 25 m depth (Fig. 8a). Overall, compared to the
FlexPFT (8 to 50 mg C m−3 d−1), the InFlexPFT predicts less
temporal variability of PP (5 to 15 mg C m−3 d−1), except
below 50 m depth at station K2, where the FlexPFT predicts
faster growth than the InFlexPFT (Fig. 4c and d). At station
S1, the temporal variation of observed PP is greater above
50 m depth, with less variability below 50 m depth (Fig. 8b).
Compared to station K2 (subpolar gyre), the highest PP oc-
curs deeper at station S1 (subtropical gyre), where light lim-
itation is more substantial, which suggests that PP could be
enhanced by an increase in light levels, despite the relatively
low N concentrations. Compared to the InFlexPFT (1 to 8 mg
C m−3 d−1), the FlexPFT shows greater temporal variation of
PP above 75 m depth (3 to 50 mg C m−3 d−1). This difference
depends on whether the phytoplankton growth ratio calcu-
lated by the model reflects the optimal N and light environ-
ment (FlexPFT) or not (InFlexPFT). Unlike the two stations
in the western North Pacific, at station ALOHA, both mod-
els underestimate the observed PP (Fig. 8c). The observed
PP from the surface to 100 m depth is large, and the PP near
the surface is about the same as at the western station S1.
The FlexPFT underestimates the mean PP (2 mg C m−3 d−1),
but the temporal variation (1 to 10 mg C m−3 d−1) is closer
to the observed variability than that obtained with the In-
FlexPFT (< 1 mg C m−3 d−1). Overall, compared to the In-
FlexPFT, the FlexPFT agrees better with the observed verti-
cal PP profiles and their temporal variability.

The vertical distribution of PP differs along the two tran-
sect lines (north–south and east–west, respectively) (Figs. 4
and 5). To investigate the models’ PP variations within the
euphotic layer, Fig. 9 shows the seasonal variations of ver-
tically integrated PP from the surface to 100 m depth for
the two models. The InFlexPFT produces weak seasonal-
ity for PP (Fig. 9a, b, c, and d), with maximal values in
spring (> 800 mg C m−2 d−1) at the boundary between the
subtropical and subpolar gyres (Fig.9b), because the spring
bloom occurs both horizontally and vertically (e.g. Fig. 1f).
At the gyre boundary, in addition to the surface, primary
production is greater compared to other regions. In this re-
gion, the nutricline depth (close to the base of the euphotic
layer) and the light intensity are optimal for spring produc-
tion. Along the east–west transect, from 30 to 40◦ N, PP
varies with N concentration, which is high on the west side

Figure 8. Comparison of vertical primary production
(mg C m−3 d−1) between observed station data and data from
the two models at (a) station K2 (47◦ N, 160◦ E), (b) station S1
(30◦ N, 145◦ E), and (c) station ALOHA (22.45◦ N, 158◦W) in
Fig. 1. The observed data (crosses) are from 2010–2019 for station
K2, 2010–2013 for station S1, and 2000–2019 for station ALOHA.
The mean (solid line), maximum (dashed line), and minimum
(dotted line) primary production in 2000–2019 are shown for the
two models. Blue lines are for InFlexPFT and red lines are for
FlexPFT. The stations are shown as three stars in Fig. 1.

and low on the east side (Fig. 3d, e, and f). In summer and
fall, when the N concentration in the subtropical gyre de-
creases in the euphotic layer, even where the light intensity,
I, is sufficient, N availability limits the phytoplankton growth
rate (Eq. 1), so that PP (< 400 mg C m−2 d−1) does not in-
crease (Fig. 9c and d). On the other hand, in the subpolar
gyre, PP (> 400 mg C m−2 d−1) increases with N in win-
ter, summer, and fall (Fig. 9a, c, and d). In the coastal up-
welling regions, N supplied from below the euphotic layer
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Figure 9. Climatological seasonal variations of primary produc-
tion vertically integrated from the surface to 100 m depth (mg
C m−3 d−1) from (a)–(d) the InFlexPFT and (e)–(h) the FlexPFT.
The two models are averaged from 2000 to 2019 for each season.

sustains a higher PP (> 800 mg C m−2 d−1) compared to the
open ocean. The FlexPFT predicts wider seasonal variations
of PP across the North Pacific (Fig. 9e, f, g, and h), which are
especially noticeable at the boundary between the subtrop-
ical and subpolar gyres, along the Kuroshio Current flow-
ing south of Japan, and in the coastal upwelling region off
California. Compared with the seasonal variations of PP in
the InFlexPFT, the FlexPFT’s growth rate and the variable
C : N ratio have a great influence on the spatiotemporal vari-
ations of PP (Figs. 4, 5, and 8). The FlexPFT’s springtime PP
reaches twice (> 1600 mg C m−2 d−1) that of the InFlexPFT
(Fig. 9b and f). In the subtropical gyre, where the light in-
tensity in the euphotic layer is sufficient for phytoplankton
growth (Eq. 4), the N concentration in winter is higher than
in summer and fall, and as a result, PP values are relatively
high (> 800 mg C m−2 d−1), although still lower than during
spring (Fig. 9e). In the subpolar gyre, where N concentra-
tions are high, PP increases (> 1000 mg C m−2 d−1) within
the euphotic layer as the light environment improves from
winter to summer (Fig. 9g and h). In the coastal upwelling
regions and the Kuroshio Extension, the FlexPFT, because
of its optimal resource allocation, predicts much greater PP
(> 1600 mg C m−2 d−1) than the InFlexPFT.

The difference in phytoplankton growth rate between the
two models is also reflected in the spatiotemporal distribution

of PP (Figs. 8 and 9), similar to the Chl distribution (Figs. 1,
2, and 3). These differences are greatest in the boundary re-
gion between the subpolar and subtropical gyres, the subpo-
lar gyre, and the coastal upwelling region. Compared to the
observed time series stations, the FlexPFT reproduces greater
temporal variations than the InFlexPFT, which is more con-
sistent with the observed variability. These results indicate
that the FlexPFT (which incorporates photoacclimation and
variable C : N : Chl ratios) better captures seasonal changes
within the euphotic layer and near the nutricline than the In-
FlexPFT. From Fig. 9, the estimated primary production in
the North Pacific basin (20–60◦ N, 130◦ E–110◦W) with the
FlexPFT is 5.0–5.6 PgC yr−1 and that with the InFlexPFT is
2.3–2.5 PgC yr−1 over the simulated period of 2000–2019, so
the FlexPFT’s estimate is about twice that of the InFlexPFT.
Although not directly comparable to our estimates, the global
primary production as estimated by the satellite and global
biogeochemical models remains large: 38.8–42.1 PgC yr−1

over the period of 1998–2018 (Kulk et al., 2020) and 38–
79 PgC yr−1 (Carr et al., 2006).

4 Discussion

These spatial and seasonal differences in modelled chloro-
phyll and primary production patterns result from the dif-
ferent underlying assumptions about how phytoplankton re-
spond to changing conditions. As found in previous studies
(Anugerahanti et al., 2021; Kerimoglu et al., 2021; Masuda
et al., 2021), our results show that photoacclimation and vari-
able C : N : Chl ratios, as represented by the FlexPFT, are im-
portant for capturing observed distributions of PP and, es-
pecially, the SCM. Capturing the unimodal distribution of
Chl : C ratio with depth is particularly important for repro-
ducing the latter (Chen and Smith, 2018; Kerimoglu et al.,
2021).

As a characteristic vertical profile, the SCM vary season-
ally and across ocean regions (Cullen, 1982), driven by dif-
ferent light attenuation levels and nutricline depths. Various
mechanisms are known and purported to contribute to SCM
formation, as reviewed by Cullen (2015). These mechanisms
include variations in phytoplankton growth rate along the
vertical gradients of light and nutrient availability, physio-
logically controlled behaviours such as swimming or buoy-
ancy regulation, and photoacclimation of pigment content.
It is impossible to capture the vertical profiles of Chl with
satellite observations, and it is therefore important to verify
the SCM field reproduced by the model using in situ obser-
vations (e.g. Shulenberger and Reid, 1981; Furuya, 1990).
Using a 3-D biogeochemical ocean model coupled with the
same FlexPFT model, Masuda et al. (2021) showed that the
observed global-scale SCM distribution can be reproduced
by incorporating photoacclimation in response to varying nu-
trient and light conditions. Various mechanisms likely con-
tribute differently in different oceanic regimes, and other
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mechanisms are important for reproducing specific features
of SCM (e.g. Moeller et al., 2019; Wirtz and Smith, 2020).
Moeller et al. (2019) proposed a new mechanism for SCM
formation: light-dependent grazing by microzooplankton re-
duces phytoplankton biomass near the surface but allows ac-
cumulation at depth. Furthermore, vertical migration by phy-
toplankton can explain the occurrence of SCM consistently
above the nutricline depth, which photoacclimation alone
cannot (Wirtz and Smith, 2020). Wirtz et al. (2022) also sug-
gested that phytoplankton vertical migration fuels up to 40 %
(> 28 tg yr−1 N) of new production and directly contributes
25 % of the total oceanic net primary production, which their
modelling study estimated at 56 PgC yr−1.

Observed elemental ratios of phytoplankton and partic-
ulate organic matter in surface layers deviate substantially
from the Redfield ratio (e.g. Goldman et al., 1979; Garcia et
al., 2018b; Liefer et al., 2019). Molar C : N ratios of phyto-
plankton vary from 4 to 60 (mol C : mol N) between phylo-
genetic groups. However, our current implementation of the
FlexPFT model includes only one phytoplankton type, which
varies its C : N ratio as it acclimates to the varying light, nutri-
ent, and temperature levels. Sauterey and Ward (2022) found
that nitrogen and temperature mostly determined variations
in the C : N ratio of phytoplankton, with variable contribu-
tions from other factors across the North Atlantic. By con-
trast, upon applying the FlexPFT model to the North Pacific,
we find that nitrogen and light levels are the primary determi-
nants of C : N : Chl ratios, with temperature playing a lesser
role. Accurate modelling of Chl and PP patterns requires that
these dependencies are accounted for in order to resolve the
variable elemental composition and pigment content of phy-
toplankton. This may be important with respect to food qual-
ity effects (e.g. Kwiatkowski et al., 2018; Matsumoto et al.,
2020). That is, variations in the C : N ratio of phytoplankton
are likely to impact trophic transfer and production by higher
trophic levels. Although we do not address this here, it could
make a good suggestion for future work.

5 Conclusions

We have focused on different formulations for the phy-
toplankton growth response as represented in the biogeo-
chemical models, and investigated the acclimation of phy-
toplankton growth to changing light, nutrient, and temper-
ature conditions over the North Pacific using two physical-
biological models. We compared modelled Chl and primary
production from a recently developed phytoplankton model,
FlexPFT (Smith et al., 2016), which incorporates photoac-
climation and variable C : N : Chl ratios for changing light
and nutrient conditions, to those from the InFlexPFT, which
lacks photoacclimation and assumes constant C : N : Chl ra-
tios (fixed stoichiometry). Our comparison of model results
against summertime observations from the North Pacific re-
vealed that, compared to the InFlexPFT, the incorporation of

photoacclimation and variable C : N : Chl ratios for changing
light, nutrient, and temperature conditions in the FlexPFT
yields improved reproduction of observed Chl and primary
production distributions in the near-surface ocean. The as-
sumption of instantaneous acclimation (IA) allowed compu-
tationally efficient modelling of flexible phytoplankton com-
position and growth response in our basin-scale model, and
IA is likely to be of even greater benefit for global-scale bio-
geochemical models. In the future, we plan to assess model
performance for other seasons, years, and decadal variations,
and to apply this approach in a global ocean biogeochem-
ical model in order to examine the response of Chl and
primary production to climate change. In addition, we will
proceed with research on introducing flexible physiology to
the growth of multiple phytoplankton, associated food qual-
ity effects on predation by zooplankton, and the uncertainty
of other biological processes, such as nitrification, grazing,
mortality, export, and recycling.

Appendix A: NPZD model

The NPZD model in the OFES2 is defined as nitrogen, N,
phytoplankton, P, zooplankton, Z, and detritus, D, based on
Sasai et al. (2006, 2010, 2016). The evolution of the biolog-
ical tracer concentration, Bi , is governed by an advective–
diffusive–reactive equation:

∂Bi

∂t
=−∇ · (uBi)+Kh∇

2Bi +
∂

∂z

(
Kz
∂Bi

∂z

)
+ sms(Bi) , (A1)

where u is the velocity vector of OFES2,Kh is the lateral dif-
fusion coefficient and Kz is the vertical diffusion coefficient
in the OFES2, and sms(Bi) is the source-minus-sink (sms)
term due to the biological activity rate (mmol N m−3 d−1) in
the NPZD model. For the individual tracers (P, Z, D, and N),
the sms terms are given by

sms(P )= µP − rPP − δPP 2
− λµP −G(P )Z, (A2)

sms(Z)=G(P )Z− (γ1− γ2)G(P )Z

− (1− γ1)G(P )Z− δZZ
2, (A3)

sms(D)= δPP 2
+ (1− γ1)G(P )Z+ δZZ

2

− δDD−
∂

∂z
(WsD), (A4)

sms(N)=−µP + rPP + λµP

+ (γ1− γ2)G(P )Z+ δDD, (A5)

where the five terms on the right-hand side of the equation
for sms(P ) are the phytoplankton growth rate, µ (which is
µIFL(N,I,T ) or µFL(N,I,T ), see Sect. 2.2), the respiration
of P (rP is the respiration rate for P, 0.12 d−1), the mortality
of P (δP is the mortality rate for P, 0.24 d−1), the extracellular
excretion of P (λ is the extracellular excretion rate of P, 0.135,
no dim. (no dimension)), and the grazing of P by Z (G(P ) is
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the grazing rate equation of Sasai et al., 2016).

G(P )= GRmaxZ(1− exp(λP (P 2Z−P))) , (A6)

where GRmax is the maximum grazing rate (1.4 d−1),
λP is the zooplankton Ivlev constant (1.4 mmol N m−3),
and P 2Z is the zooplankton threshold value for grazing
(0.04 mmol N m−3). In this study, we adopt two differ-
ent formulations of phytoplankton growth (InFlexPFT and
FlexPFT, see Sect. 2.2), µ, in the first term on the right-
hand side of Eq. (A2). The four terms of the equation for
sms(Z) are the grazing of P by Z, the excretion of Z (γ1 is
the assimilation efficiency of Z (0.7, dimensionless) and γ2 is
the growth efficiency of Z (0.3, dimensionless)), the egestion
of Z, and the mortality of Z (δZ is the mortality rate for Z,
0.12 d−1). The six terms of the equation for sms(D) are the
mortality of P, the egestion of Z, the mortality of Z, the de-
composition from D to N (δD is the decomposition rate from
D to N, 0.3 d−1), and the sinking of D (Ws is the sinking ve-
locity, which is 30 m d−1 in the upper 1000 m and 300 m d−1

below 1000 m). The five terms of the equation for sms(N) are
the phytoplankton growth, the respiration of P, the extracellu-
lar excretion of P, the excretion of Z, and the decomposition
from D to N. More details about the biological parameters
are described in Sasai et al. (2006), Sasai et al. (2010), and
Sasai et al. (2016).

Data availability. The OFES2-coupled NPZD model simula-
tions are available upon request. Observed data used in
this study are available at the following sites: the surface
Chl satellite imagery of MODIS-Aqua data is available for
download at https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/
MODIS/L3M/CHL/2022/ (NASA Goddard Space Flight Center,
2022); the vertical observed Chl data are available for download
at the Japan Meteorological Agency (https://www.data.jma.go.jp,
Japan Meteorological Agency, 2022) and the Japan Oceanographic
Data Center (https://www.jodc.go.jp, Hydrographic and Oceanog-
raphy Department, Japan Coast Guard, 2022); and WOA09 and
WOA18 are available at https://www.ncei.noaa.gov (last access: 1
March 2022, Antonov et al., 2010; Garcia et al., 2010; Locarnini
et al., 2010; Garcia et al., 2018a; Locarnini et al., 2018). The pri-
mary production data sets at stations K2 and S1 and station ALOHA
are available for download at https://www.jamstec.go.jp/egcr/e/oal/
k2s1.html (last access: 1 March 2022, Matsumoto et al., 2014, 2016;
Honda et al., 2017) and https://hahana.soest.hawaii.edu/hot/ (last
access: 1 March 2022, Karl et al., 1996, 2021), respectively.
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