

Supplement of

Spatio-temporal distribution, photoreactivity and environmental control of dissolved organic matter in the sea-surface microlayer of the eastern marginal seas of China

Lin Yang et al.

Correspondence to: Jing Zhang (zhangjouc@ouc.edu.cn) and Gui-Peng Yang (gpyang@ouc.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Fig. S1. Absorption spectra averaged by seawater samples between 230 to 500 nm in the SSW and SML during spring (a), winter (b), and summer (d).

Fig. S2. Representative fluorescence excitation-emission matrix spectra (EEM) contours from samples
in the SML and the SSW of the East China Sea (ECS) and the Yellow Sea (YS) during spring, summer,
winter, and spring. The fluorescence intensities were quantified using Raman units (RU).

23

24 Fig. S3. Distributions of temperature, salinity, CDOM, DOC, Chl-a, four fluorescence components, 25 S275-295, SR and SUVA254 in the subsurface water during spring, summer, and winter. (a) Temperature, b) Salinity, c) a(254), d) DOC, e) Chl-a, f) C1, g) C2, h) C3, i) C4, j) S275-295, k) SR and l) SUVA254)

34 Fig. S4. Distributions of concentrations CDOM, DOC, chl-a and four fluorescence components in the

b

four fluorescence components.

Fig. S7. The Screen Sampler.

55 **Table S1** Correlation coefficients between CDOM optical properties, DOC, salinity, Chl-*a*, DO, and cell

56 in the SSW in the ECS and the YS during spring, summer, and winter.

57 Spring

	a(254)	DOC	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀	S _R	C1	C2	C3	C4	SUVA ₂₅₄	Chl-a	DO	Cell
DOC	.679**												
S ₂₇₅₋₂₉₅	-0.221	0.157											
S ₃₅₀₋₄₀₀	0.207	0.218	.808**										
S _R	315**	-0.258	421**	677**									
C1	.883**	.327*	-0.092	.368**	327**								
C2	.615**	0.199	0.003	.331**	-0.195	.722**							
C3	.846**	.375**	-0.071	.361**	337**	.980**	.677**						
C4	.813**	.337*	-0.166	0.215	277*	.708**	.678**	.674**					
SUVA ₂₅₄	.698**	-0.032	-0.13	0.214	307*	.598**	0.223	.573**	.458**				
Chl-a	0.177	0.163	-0.045	0.054	-0.134	0.159	0.125	0.16	0.201	0.182			
DO	.683**	.512**	-0.045	0.103	-0.235	.436**	.288*	.433**	.391**	.457**	.556**		
Cell	-0.192	-0.25	-0.073	-0.036	-0.083	-0.184	-0.248	-0.191	-0.115	0.037	0.103	-0.042	
Salinity	821**	327*	0.158	-0.235	.263*	916**	538**	893**	502**	691**	-0.175	433**	0.133
58													
59	Summer												
	a(254)	DOC	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀	S _R	C1	C2	C3	C4 5	SUVA ₂₅₄	Chl-a D	O Ca	ell
DOC	.661**												
S ₂₇₅₋₂₉₅	0.075	0.14											
S ₃₅₀₋₄₀₀	-0.066	-0.058	.475**										
S_R	-0.213	-0.148	409**	448**									
C1	.571**	.433**	-0.091	-0.067	-0.117								
C2	-0.009	0.215	0.014	0.178	-0.123	.569**							
C3	733**	492**	-0.019	-0.062	-0.155	941**	474**						
	.,		0.01	0.002	0.100	• • • • • •		**					

SUVA ₂₅₄	.779**	0.13	-0.007	-0.026	-0.177	.459**	-0.084	.597**	.512**				
Chl-a	0.234	0.002	-0.113	0.004	0.04	.525**	0.182	.554**	0.234	.337**			
DO	.641**	.551**	0.118	0.009	-0.222	0.238	-0.058	.303*	.297*	.418**	246*		
Cell	254*	261*	-0.193	-0.096	0.035	0.034	0.001	-0.035	0.012	-0.13	0.153	343**	
Salinity	505**	-0.166	0.158	0.109	0.069	551**	-0.047	639**	377**	609**	735**	-0.065	0.001
60													
61	Winter												
	a(254)	DOC	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀	S _R	C1	C2	C3	C4	SUVA ₂₅₄	Chl-a	DO	
DOC	.536**												
S ₂₇₅₋₂₉₅	-0.204	-0.007											
S ₃₅₀₋₄₀₀	.270*	0.057	-0.06										
S _R	292*	-0.15	.538**	567**									
C1	.750**	.278*	-0.179	.286*	330**								
C2	-0.084	-0.075	0.027	0.041	-0.02	.347**							
C3	.886**	.358**	-0.206	.279*	312**	.950**	0.127						
C4	.777**	0.221	260*	.337**	297*	.745**	0.204	.822**					
SUVA ₂₅₄	.834**	0.016	-0.232	.317**	258*	.718**	-0.093	.827**	.795**				
Chl-a	.333**	.353**	0.084	243*	0.109	0.121	-0.049	0.199	.252*	0.126			
DO	.884**	.581**	-0.092	0.119	-0.139	.649**	-0.194	.779**	.516**	.675**	.380**		
Salinity	716**	254*	0.099	-0.224	.240*	837**	0.078	852**	567**	724**	-0.092	723**	
62													

63 ** Correlation is significant at the 0.01 level (two-tailed)

64 * Correlation is significant at the 0.05 level (two-tailed)

70 Table S2 Correlation coefficients between CDOM optical properties, DOC, salinity, Chl-a, DO, and

71 nutrients in the SML in the ECS and the YS during spring, summer, and winter.

	a(254)	DOC	SUVA ₂₅₄	Chl-a	S ₂₇₅₋₂₉₅	$S_{350-400}$	\mathbf{S}_{R}	PO_4^-	NO ₃ -	NO ₂ -
DOC	0.706**									
SUVA ₂₅₄	0.051	-0.530*								
Chl-a	0.662**	0.241	0.208							
S ₂₇₅₋₂₉₅	-0.19	-0.325	0.251	0.063						
S ₃₅₀₋₄₀₀	-0.036	-0.19	0.233	0.144	0.938**					
S _R	-0.33	-0.205	-0.02	-0.251	-0.465*	-0.730**				
PO ₄ -	-0.005	-0.108	0.324	0.322	0.238	0.281	-0.241			
NO ₃ -	0.714**	0.259	0.066	0.963**	-0.07	-0.006	-0.176	0.24		
NO ₂ -	0.232	0.068	-0.129	.542*	0.101	0.075	-0.111	0.346	0.976**	
SiO ₃ ²⁻	-0.269	-0.125	-0.126	-0.149	-0.303	-0.252	0.071	0.229	-0.086	-0.137

72 Spring

73

74 Summer

	a(254)	DOC	SUVA ₂₅₄	Chl-a	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀	S _R	PO ₄ -	NO ₃ -
DOC	0.756**								
SUVA ₂₅₄	-0.537**	-0.746**							
Chl-a	0.089	0.061	-0.233						
S ₂₇₅₋₂₉₅	0.17	0.102	-0.336*	0.046					
S ₃₅₀₋₄₀₀	-0.175	-0.202	0.244	-0.067	0.154				
S _R	0.134	0.227	-0.098	-0.182	-0.315*	-0.708**			
PO ₄ -	0.193	0.375**	-0.232	0.242	-0.096	-0.084	0.024		
NO ₃ -	0.306*	0.097	-0.104	0.579**	0.042	-0.052	-0.17	0.456**	
NO ₂ -	0.195	0.125	-0.137	0.501**	0.063	-0.075	-0.115	0.647**	0.838**

75

76 Winter

	a(254)	DOC	SUVA ₂₅₄	S ₂₇₅₋₂₉₅	S ₃₅₀₋₄₀₀
DOC	0.897**				
SUVA ₂₅₄	0.14	-0.272	1		
S ₂₇₅₋₂₉₅	0.14	0.245	-0.283*		
S ₃₅₀₋₄₀₀	-0.26	-0.298*	0.17	-0.778**	
S_R	0.044	0.216	-0.417**	0.968**	-0.728**

77