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Abstract. Over the past decades, land ecosystems removed
from the atmosphere approximately one-third of anthro-
pogenic carbon emissions, highlighting the importance of
the evolution of the land carbon sink for projected climate
change. Nevertheless, the latest cumulative land carbon sink
projections from 11 Earth system models participating in the
Coupled Model Intercomparison Project phase 6 (CMIP6)
show an intermodel spread of 150 PgC (i.e., ∼ 15 years of
current anthropogenic emissions) for a policy-relevant sce-
nario, with mean global warming by the end of the century
below 2 ◦C relative to preindustrial conditions. We hypoth-
esize that this intermodel uncertainty originates from model
differences in the sensitivities of net biome production (NBP)
to atmospheric CO2 concentration (i), to air temperature (ii),
and to soil moisture (iii), as well as model differences in av-
erage conditions of air temperature (iv) and soil moisture (v).
Using multiple linear regression and a resampling technique,
we quantify the individual contributions of these five drivers
for explaining the cumulative NBP anomaly of each model
relative to the multi-model mean. We find that the intermodel
variability of the contributions of each driver relative to the
total NBP intermodel variability is 52.4 % for the sensitiv-
ity to temperature, 44.2 % for the sensitivity to soil mois-
ture, 44 % for the sensitivity to CO2, 26.2 % for the average
temperature, and 21.9 % for the average soil moisture. Fur-
thermore, the sensitivities of NBP to temperature and soil
moisture, particularly at tropical regions, contribute to ex-
plain 34 % to 65 % of the cumulative NBP deviations from
the ensemble mean of the two models with the lowest carbon
sink (ACCESS-ESM1-5 and UKESM1-0-LL) and of the two
models with the highest sink (CESM2 and NorESM2-LM),
highlighting the primary role of the response of NBP to in-
terannual climate variability. Overall, this study provides in-

sights on why each Earth system model projects either a low
or high land carbon sink globally and across regions relative
to the ensemble mean, which can focalize efforts to identify
the representation of processes that lead to intermodel uncer-
tainty.

1 Introduction

During recent decades, ecosystems on land have taken up
approximately one-third of anthropogenic carbon emissions
to the atmosphere and are predominantly responsible for the
year-to-year variations in the atmospheric carbon growth rate
(Friedlingstein et al., 2020). While carbon emissions have
been on the rise, land ecosystems have taken up more and
more carbon, which has resulted in this approximately con-
stant 30 % sink (Canadell et al., 2021). However, it remains
unclear as to what level this capacity of land to remove
carbon from the atmosphere can continue in the coming
decades, with evidence pointing towards a less effective sink
under increasing cumulative emissions (Gatti et al., 2021;
Hubau et al., 2020; Koch et al., 2021; Raupach et al., 2014;
IPCC, 2021). The future evolution of the land carbon sink is
crucial to project how much global warming and consequent
climate change the Earth will experience given a certain level
of greenhouse gas emissions. It is thus linked to policy ques-
tions such as how much more carbon can we emit to limit
global warming below the 2 or 1.5 ◦C thresholds decided in
the 2015 Paris Agreement.

The net carbon flux from the atmosphere to the land is de-
noted as net biome production (NBP), and it is given by the
carbon uptake of vegetation through photosynthesis (gross
primary production, GPP) minus the losses of carbon to the
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atmosphere through autotrophic respiration (RA) and het-
erotrophic respiration (RH), as well as from ecosystem dis-
turbances (DIS) such as fires. These fluxes are influenced by
both atmospheric CO2 concentration and climate conditions.
Rising atmospheric CO2 primarily favors higher GPP (fer-
tilization effect), while it can indirectly enhance RA due to
greater plant biomass and enhance RH due to higher micro-
bial decomposition of fresh carbon supplied by increased lit-
terfall and root-derived labile soil carbon, as well as higher
priming of old soil organic matter fueled by this increased
supply of labile soil carbon (Gao et al., 2020). Temperature
conditions can influence all fluxes, with warming notably
leading to an increase in respiration (Varney et al., 2020).
In addition, the relevance of water–carbon interactions for
the land carbon cycle has gained recognition in recent years
(Canadell et al., 2021; Gentine et al., 2019; Green et al.,
2019; Huang et al., 2020; Humphrey et al., 2018; Liu et al.,
2020; Novick et al., 2016; Peters et al., 2018; Stocker et al.,
2018). Observations indicate a high sensitivity of annual
NBP to anomalies in terrestrial water storage at the global
scale, which is underestimated by land surface models un-
coupled from the atmosphere (Humphrey et al., 2018; Peters
et al., 2018). Other factors such as incoming radiation and va-
por pressure deficit (air dryness) clearly influence GPP and
the land carbon sink (Fu et al., 2022; Grossiord et al., 2020;
Humphrey et al., 2021; Novick et al., 2016); nevertheless,
they are strongly correlated with temperature and soil mois-
ture on monthly or longer timescales. Overall, CO2 fertiliza-
tion increases global land NBP, while anthropogenic warm-
ing and associated climate change tend to reduce it (Arora
et al., 2020; Canadell et al., 2021). Importantly, the response
of NBP to interannual climate variability appears to be un-
derestimated by multiple Earth system models, potentially
implying a lower than expected capacity of land to remove
carbon from the atmosphere during this century (Fu et al.,
2022; Humphrey et al., 2018; Novick et al., 2016; Winkler
et al., 2021).

Projections of the land carbon sink from Earth system
models have shown a very substantial intermodel uncer-
tainty since early Coupled Model Intercomparison Projects
(CMIPs) (Bonan and Doney, 2018; Friedlingstein et al.,
2006), and this continues to be the case for the latest models
participating in CMIP6 (Arora et al., 2020; Canadell et al.,
2021). While uncertainty in the projections is dominated by
these intermodel differences, internal climate variability can
also play an important role (Tokarska et al., 2020). As mod-
els continue to evolve, land carbon cycle processes can be
represented differently across them, and some models may
represent processes that others do not, contributing to the
uncertainty. Phenology (Peano et al., 2021), water transport
through vegetation and water stress (Lawrence et al., 2019),
fire (Hantson et al., 2020), woody-plant mortality (De Kauwe
et al., 2022; McDowell et al., 2022), and nutrient limitation
(Davies-Barnard et al., 2020) are processes at the modeling
frontier. The representation of the nitrogen cycle in more

models was an important step forward going from CMIP5
to CMIP6 (Davies-Barnard et al., 2020). It is often the case
that land carbon uptake is reduced when including nitrogen
availability as a constraint (Arora et al., 2020; Canadell et al.,
2021). In addition, several studies have proposed observa-
tional constraints for projections of different land carbon sink
components and sensitivities (Cox et al., 2013; Liu et al.,
2019; Mystakidis et al., 2016, 2017; Schlund et al., 2020;
Varney et al., 2020). Despite this progress, land biogeochem-
ical feedbacks occurring under climate change remain a ma-
jor source of uncertainty for future carbon budgets.

The typical framework to study the evolution of the
land carbon cycle and associated intermodel uncertainty is
based on the carbon–concentration and carbon–climate feed-
back parameters (Arora et al., 2013, 2020; Friedlingstein
et al., 2006). These feedback parameters are estimated from
idealized simulations that increase atmospheric CO2 con-
centration 1 %yr−1 until 2 times (∼ 560 ppm) or 4 times
(∼ 1120 ppm) its pre-industrial value and distinguish be-
tween its radiative and biogeochemical effects. Using these
simulations, Arora et al. (2020) provide insights on why the
global land carbon feedback parameters differ among mod-
els by comparing their changes in vegetation and soil carbon
pools, their strength of the CO2 fertilization effect on GPP,
residence time, allocation, and changes in carbon use effi-
ciency globally. To complement these insights and further
our understanding of the drivers of intermodel uncertainty
in land carbon sink projections, we directly focus on local re-
sponses to CO2 concentration, temperature, and soil moisture
under the SSP126 low-emission scenario (peak concentration
of 471 ppm around 2075 and 446 ppm by 2100; Meinshausen
et al., 2020).

In this study we aim to advance our understanding of the
future evolution of the land carbon cycle, primarily for a
policy-relevant scenario where global warming is limited to
below 2 ◦C. Here we use an ensemble of Earth system models
participating in CMIP6, as detailed in Sect. 2. A global and
spatially explicit overview of the differences in NBP across
models is given in Sect. 3. Section 4 describes across the
model ensemble the following five proposed drivers of pro-
jected cumulative NBP: (i) sensitivity of NBP to CO2 con-
centration, (ii) sensitivity of NBP to air temperature, (iii) sen-
sitivity of NBP to soil moisture, (iv) long-term average tem-
perature, and (v) long-term average soil moisture. In Sect. 5
we quantify the contribution of each of these drivers for ex-
plaining the intermodel differences in cumulative NBP. Con-
cluding remarks are provided in Sect. 6.

2 Model simulations and characteristics

For the main analysis we employ all 11 models participat-
ing in CMIP6 that provide NBP, near-surface air temper-
ature, and layered soil moisture data for the SSP126 sce-
nario (Table S1 in the Supplement), which are publicly avail-
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able at https://esgf-node.llnl.gov/search/cmip6/, last access:
30 November 2022. Data from all models are regridded to
a common 2.5◦× 2.5◦ longitude–latitude grid using second-
order conservative remapping, and a land mask is applied
to increase model comparability. The SSP126 scenario is a
shared socio-economic pathway based on the world follow-
ing an ecological transition (Riahi et al., 2017), for which
global warming by the end of the century is projected to be
less than 2 ◦C relative to preindustrial conditions. In addition,
to estimate the sensitivity of NBP to CO2 concentration, we
employ the 1pctCO2-bgc simulations in which atmospheric
CO2 increases 1 % yr−1 and only its direct physiological ef-
fects on vegetation are considered, while neglecting the ra-
diative effects (Jones et al., 2016). Information from other
scenarios is used in some cases to complement the analysis.

An overview of the carbon cycle representation in the
models analyzed in this study is provided in Table S1. Ad-
ditional information about the models, except CMCC-ESM2
and EC-Earth3-Veg, is given by Arora et al. (2020). From
all 11 models analyzed here, ACCESS-ESM1-5 is the only
model that includes a phosphorous cycle in addition to ni-
trogen, whereas CanESM5, GFDL-ESM4, and IPSL-CM6A-
LR do not include a nitrogen cycle, and CNRM-ESM2-
1 only has an implicit representation of the nitrogen cy-
cle. Fire emissions are not represented in 4 of the 11 mod-
els, namely ACCESS-ESM1-5, CanESM5, IPSL-CM6A-
LR, and UKESM1-0-LL. Dynamic vegetation cover is only
modeled by EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-
LR, and UKESM1-0-LL. In addition, soil moisture storage
capacity and discretization of soil layers can be very dif-
ferent across models (Table S2 in the Supplement). To in-
crease comparability, here we compute soil moisture down
to a depth of 30 cm for every model by summing the mois-
ture of all corresponding layers. For cases when the 30 cm
depth threshold is within the boundaries of a model layer, we
assume that the moisture in the layer varies uniformly with
depth and account proportionally for the moisture until the
30 cm threshold.

3 Intermodel differences in NBP

The cumulative global land carbon sink projections from 11
Earth system models until the year 2100 show large differ-
ences, with an ensemble range of 56.3 to 206.6 PgC, a multi-
model mean estimate of 144.7 PgC, and an intermodel stan-
dard deviation of 47 PgC (Fig. 1). The intermodel spread
of 150.3 PgC corresponds to approximately 40 % of the re-
maining carbon budget to limit global warming below 2 ◦C
(with a 50 % likelihood) according to Table SPM.2 of IPCC
(2021). Even though these differences are rather large it is
important to note that they are smaller than those correspond-
ing to higher-emission scenarios such as SSP585, where the
range is approximately 100–700 PgC. Thus, uncertainty in-
creases as we move further away from the current state of

Figure 1. Intermodel differences in projected global land NBP for
scenario SSP126. Temporal evolution of projected global land cu-
mulative NBP from individual models. The average value is shown
for models with multiple realizations available. If a model does
not have information over Greenland, NBP is set to zero. Cu-
mulative global land NBP is estimated by multiplying the area-
weighted average NBP by the land surface area excluding Antarc-
tica (135.22× 106 km2).

the system to higher concentrations of greenhouse gases in
the atmosphere. Differences across models are considerably
larger than differences across realizations of individual mod-
els, which partly represent the internal variability of the sys-
tem (Fig. S1 in the Supplement).

Further insights on projected intermodel NBP differences
are obtained by decomposing them into differences in GPP,
autotrophic and heterotrophic respiration, and disturbances
(Fig. S2 in the Supplement). There is no clear correspon-
dence between models with higher global land GPP also hav-
ing higher NBP, given that the loss terms are also generally
higher. Moreover, the three models with the highest NBP
project relatively low GPP as well as low carbon use ef-
ficiency (i.e., CUE= (GPP−RA) / GPP), but heterotrophic
respiration and disturbance losses are also low. The CUE
ranges from 0.55 for CanESM5 to 0.41 for EC-Earth3-Veg
and ACCESS-ESM1-5. Models that exhibit a relatively high
CUE tend to also exhibit high heterotrophic respiration and
thus moderate NBP. Lastly, we note that EC-Earth3-Veg and
GFDL-ESM4 show the highest fluxes due to disturbances,
mainly from fire emissions. Although DIS is rather small
compared to GPP, RA, and RH, it is still large enough to
substantially influence intermodel differences in NBP.

The maps of cumulative NBP illustrate in more detail
the characteristics of the projections from individual models
(Fig. 2). Note that there can be models with similar global
land NBP as indicated in Fig. 1, even though the under-
lying spatial distribution is markedly different. Take MPI-
ESM1-2-LR and IPSL-CM6A-LR as an example; whereas
the tropics – particularly central Africa – are the main sink in
the MPI-ESM1-2-LR model, the northern mid and high lat-
itudes contribute most of the sink in IPSL-CM6A-LR. The
UKESM1-0-LL and CMCC-ESM2 models also show a very
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Figure 2. Intermodel differences in regional projected NBP. Maps of average projected NBP during 2015 to 2100 from individual models.
The intermodel standard deviation is shown at the bottom right.

contrasting spatial pattern of cumulative NBP, despite having
a relatively similar global land sink magnitude. The local in-
termodel standard deviation of projected NBP (bottom right
panel of Fig. 2) points towards the tropics and boreal forests
as the regions with higher discrepancies across models. In
addition, models also show marked differences in the magni-
tude of the detrended interannual variability of NBP (Fig. S3
in the Supplement). EC-Earth3-Veg and GFDL-ESM4 have
high interannual variability, as well as CMCC-ESM2 particu-
larly over the boreal forests, whereas CESM2 and NorESM2-
LM show the least variability.

4 Drivers of intermodel differences in NBP projections

Several factors can influence long-term NBP, with atmo-
spheric CO2 concentration, air temperature (T ), and soil
moisture (SM) playing a potentially important role. Here we
focus on the sensitivities of NBP to changes in these vari-
ables, as well as on the background conditions of T and SM
across the model ensemble. Background conditions of atmo-
spheric CO2 are prescribed and thus identical for all models.
Other aspects such as land cover, incoming radiation, air hu-
midity, carbon allocation, nutrient constraints, fire emissions,
and interactions between CO2 with T and SM can also be rel-

evant for NBP; however they are addressed only indirectly in
this study.

4.1 Sensitivity of NBP to atmospheric
CO2 concentration

The physiological effect of atmospheric CO2 concentration
on NBP is dominated by its fertilization effect on GPP, while
indirect CO2 effects on RA, RH, and DIS can also be sub-
stantial. Here we use the 1pctCO2-bgc simulations to esti-
mate the sensitivity of NBP to CO2 concentration at every
grid cell. These simulations do not have forced trends in tem-
perature and soil moisture as they only account for the bio-
geochemical effects of rising CO2. However, when comput-
ing the change in NBP in these simulations, it is important to
note that model differences can also arise from differences in
GPP, RA, RH, and DIS related to how these fluxes are asym-
metrically influenced in each model by interannual tempera-
ture and soil moisture variability.

The sensitivity of NBP to CO2 (sCO2) is computed as the
slope of the linear regression based on the 30 annual val-
ues available in the simulations in which CO2 concentration
ranges from approximately 375 to 500 ppm. Even though
some of these concentrations are outside the range of 400–
471 ppm spanned in the SSP126 scenario, the responses of
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Figure 3. Model agreement on the sensitivity of NBP to temperature and soil moisture. Shown is the ratio of the multi-model mean over
the multi-model standard deviation for (a) the correlation between detrended annual NBP and detrended annual warm-season temperature
and for (b) the correlation between detrended annual NBP and detrended annual warm-season soil moisture. Lighter colors indicate weaker
correlations and/or higher model disagreement. Regions with 2015–2100 average GPP below 100 gCm2 yr−1 are masked.

NBP and GPP to CO2 concentration are still mostly linear for
all models (Fig. S4 in the Supplement). If we were to limit
the sample to be within the SSP126 CO2 concentration range,
only 17 annual values would be available, which would re-
duce the confidence in the estimated regression slope. Count-
ing with a larger sample size reduces the potential confound-
ing effect of local temperature and soil moisture anomalies
from individual years. To further avoid this confounding ef-
fect from individual years, we compute the regression slope
100 times after resampling with replacement from the 30-
year time series. Finally, the median value of these regres-
sion slopes is used as the representative sensitivity from each
model. In the case of models with multiple 1pctCO2-bgc
simulations, the average value from all simulations is used.
Given that no data are available from NorESM2-LM for the
1pctCO2-bgc simulation, we here assume that its sCO2 is the
same as for CESM2 because both share the same land surface
model (CLM5).

Increasing atmospheric CO2 concentration mostly favors
an increase in NBP driven by enhanced photosynthesis, al-
though with substantial intermodel differences in sCO2 at the
tropics, boreal forests, North America, and eastern Australia
(Fig. S5 in the Supplement). ACCESS-ESM1-5 and CMCC-
ESM2 exhibit the lowest sCO2, whereas CNRM-ESM2-1
and CanESM5 exhibit the overall highest sCO2 (both models
do not include a nitrogen cycle). The high sCO2 of CanESM5
is concentrated at the tropics, whereas for CNRM-ESM2-1
it comes from the mid and high latitudes. Other noteworthy
features are the relatively high tropical sCO2 of CESM2 and
NorESM2-LM, as well as the relatively high sCO2 of GFDL-
ESM4 at high latitudes.

4.2 Sensitivity of NBP to temperature and soil moisture

Locally, annual warm or cold and wet or dry anomalies can
influence annual NBP. The interannual sensitivity of NBP is
therefore potentially indicative of the consequences of long-
term changes in T and SM on the land carbon sink. In addi-
tion, an asymmetry in the response of NBP to a warm (dry)

and cold (wet) anomaly of equal magnitude would influence
cumulative NBP even if there were no long-term changes
in T and SM. In this case too, a different sensitivity would
contribute to a difference in cumulative NBP. Thus, model
differences in the sensitivity of NBP to interannual variations
in T and SM can potentially explain differences in cumula-
tive NBP.

We estimate the sensitivity of NBP to temperature (sT) and
soil moisture (sSM) from the detrended time series of annual
mean NBP and detrended annual mean warm-season T and
SM values from 2015 to 2100 given by the SSP126 simu-
lations. Detrending the time series reduces the confounding
effect of rising CO2 concentrations in these simulations, al-
though potential alleviating effects of higher CO2 for NBP
when facing T and SM anomalies are implicit within sT
and sSM. The removed trends are computed using a locally
weighted scatterplot smoother (LOWESS) fit with a 30-year
window. In tropical latitudes (i.e., below 22.5◦ based on the
model grid), we consider all months of the year, whereas in
higher latitudes, we focus on the warmer months when vege-
tation is more active: March–October in the Northern Hemi-
sphere and September–April in the Southern Hemisphere.
We define sT and sSM as the covariance of NBP with T and
SM, as opposed to the regression slope, to also account for
intermodel differences in the interannual variability of T and
SM (this is not necessary for sCO2 given that the interannual
variability of CO2 is prescribed to be the same for all mod-
els). In addition to the covariance, we also compute the Pear-
son correlation to better describe the coupling of NBP with T

and SM in the models. In the case of models with multiple
simulations, the average covariance and average correlation
are used.

Anomalies in NBP and T are generally negatively corre-
lated (years with higher T lead to lower NBP) throughout
the world for most models, except at high latitudes, whereas
the opposite is the case for the correlation with SM (years
with higher SM lead to higher NBP) (Fig. 3). Nevertheless,
there are several regions where the correlations are weaker
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Figure 4. Temperature and soil moisture as drivers of the detrended interannual variability of NBP. (a) Area-weighted distribution from
all grid cells of the coefficient of determination (R2) between NBP with T (orange), SM (purple), and both T and SM from a stepwise
linear regression (gray). The circle indicates the median, the boxes span the interquartile range, and the whiskers the full range. (b) Model
agreement at each location where either T or SM is added first to the stepwise linear regression. Regions with 2015–2100 average GPP below
100 gCm2 yr−1 are omitted in panel (a) and masked in panel (b).

and/or model disagreement is higher as indicated by values
closer to zero of the multi-model mean over the standard
deviation, e.g., southeast Asia, China, central Europe, cen-
tral Africa (particularly for sSM), and throughout the boreal
forests. Maps of the correlations and covariances from in-
dividual models are provided in the Supplement (Figs. S6–
S9 in the Supplement). Some noteworthy features are the
highly negative correlation of NBP with T and the highly
positive correlation with SM over tropical South America for
the ACCESS-ESM1-5, UKESM1-0-LL, GFDL-ESM4, EC-
Earth3-Veg, and CanESM5 models; the highly positive co-
variance of NBP with SM over the boreal forests for CMCC-
ESM2 and EC-Earth3-Veg; and the negative covariance of
NBP with SM in southeast Asia, China, eastern North Amer-
ica, and southeast Brazil plus Uruguay for UKESM1-0-LL
and MPI-ESM1-2-LR.

Although positive T anomalies often coincide with nega-
tive SM anomalies, we find that for most models and across
most regions SM explains the detrended interannual variabil-
ity of NBP better than T , as indicated by the squared corre-
lations (Fig. 4a). Anomalies in SM explain 50 % of the vari-
ability in NBP over a quarter of the land area (excluding re-
gions with average GPP below 100 gCm2 yr−1) on average
across all models. Note that in general the interannual corre-
lation of NBP and SM, as well as of NBP and T , is higher
precisely where the interannual variability of NBP is higher
(Figs. S3, S6 and S7). In addition, to explain the detrended
interannual variability of NBP using both T and SM as pre-
dictors, we fit a stepwise linear regression. In this case the
explained NBP variability increases, reaching an ensemble
mean of 57 % over a quarter of the land area. Furthermore,
we find that over 78 % of the land area there is a model ma-
jority for which SM is added as the first predictor (Fig. 4b).
Notable exceptions are regions with large interannual NBP
variability such as parts of the Amazon, central Africa, and
southeast Asia, where T is added first for most models. How-
ever, note that there is no strong model agreement throughout

many regions. Results are consistent when using SM down
to 1 m depth instead of 30 cm (Fig. S10 in the Supplement).
Overall, these findings highlight the importance of explicitly
considering the sensitivity to SM, in addition to the sensitiv-
ity to T , as a driver of intermodel differences in NBP.

4.3 Average warm-season temperature and soil
moisture conditions

Projected long-term average T and SM also influence the
cumulative land carbon sink. NBP is reduced if conditions
are generally too hot, cold, dry, or wet relative to an optimal
state. Given that our focus is on cumulative NBP from 2015
to 2100 under the SSP126 scenario, we compute the average
warm-season T and SM over the same 86-year period and
scenario. We follow the same definition for the warm season
as described in Sect. 4.2.

Local intermodel differences in projected average T and
top 30 cm SM show a global mean standard deviation of
1.4 ◦C and 14.7 kgm−2 over land, with higher values at trop-
ical forests, the United States, and Tibet for T and at very
high latitudes for SM (Figs. S11 and S12 in the Supple-
ment). GFDL-ESM4, MPI-ESM1-2-LR, IPSL-CM6A-LR,
and EC-Earth3-Veg generally project lower temperatures,
whereas higher temperatures are projected by ACCESS-
ESM1-5 and UKESM1-0-LL in the tropics; by NorESM2-
LM, CMCC-ESM2, and CESM2 at mid latitudes; and by
CanESM5, CMCC-ESM2, IPSL-CM6A-LR, and CNRM-
ESM2-1 at high latitudes. NorESM2-LM and CESM2 are
clearly the models with the highest SM (both have CLM5
as their land surface model). On the other hand, MPI-ESM1-
2-LR, IPSL-CM6A-LR, CanESM5, and UKESM1-0-LL are
generally the driest models, as well as ACCESS-ESM1-5 in
the tropics.

Biogeosciences, 19, 5435–5448, 2022 https://doi.org/10.5194/bg-19-5435-2022
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Figure 5. Influence of model characteristics on projected cumulative NBP. Pearson correlation at each grid cell between cumulative NBP
projected by each Earth system model and their (a) sensitivity to CO2 concentration (sCO2), (b) sensitivity to temperature (sT), (c) sensitivity
to soil moisture (sSM), (d) long-term warm-season average temperature (T ), and (e) long-term warm-season average soil moisture (SM).
For panels (b) and (c), sT and sSM correspond either to the covariance or to the correlation of detrended annual anomalies of NBP with T

and SM, depending on which has the strongest absolute correlation with projected cumulative NBP. Regions with 2015–2100 average GPP
below 100 gCm2 yr−1 are masked.

5 Explaining intermodel differences in cumulative NBP

To assess the effect and relevance of each of the five pro-
posed drivers of intermodel differences in land carbon sink
projections, we compute at each grid cell their correlation
with cumulative NBP (Fig. 5). At each grid cell, for exam-
ple, we correlate the sCO2 values obtained for each of the
11 models with the corresponding 11 values of cumulative
NBP from each model. The dominant positive correlation for
sCO2 indicates that models with higher sCO2 tend to project
higher NBP, whereas the lack of correlation at some loca-
tions indicates that intermodel differences in NBP cannot be
explained by differences in the strength of sCO2, potentially
because of other NBP drivers. In addition, we find clear pos-
itive correlations of cumulative NBP with sT and negative
correlations with sSM over multiple regions important for
the land carbon sink, such as the Amazon, central Africa, In-
dia, China, eastern Australia, Europe, and the boreal forests.
This suggests that models that have higher (lower) NBP dur-
ing warmer (colder) than average years (i.e., higher sT) tend
to project higher cumulative NBP in these regions, as do
models that have higher (lower) NBP during drier (wetter)
than average years (i.e., lower sSM). In other words, mod-
els for which annual NBP drops less during hotter and drier
years yield higher cumulative NBP (recall Fig. 3). On the
other hand, there are also other typically wet regions such as
Indonesia and southeast South America where models that
have higher (lower) NBP during wetter (drier) than aver-
age years (i.e., higher sSM) tend to project higher cumula-
tive NBP. Additionally, we find that higher long-term average
warm-season T in some models over central Africa, eastern
Brazil, and the Amazon as well as central and western United
States is associated with lower cumulative NBP. Higher NBP
is favored over midwestern North America, the Amazon, Eu-

ropean boreal forests, and eastern Australia for models with
above average long-term mean warm-season SM.

To quantify the joint contributions of differences in sCO2,
sT, sSM, T , and SM for explaining the intermodel differ-
ences in projected cumulative NBP, we fit a multiple linear
regression at every grid cell. As noted in Sect. 4.2, for sT
and sSM we use both the covariance and the correlation of
detrended annual anomalies of NBP (NBPanom) with anoma-
lies of warm-season temperature (Tanom) and soil moisture
(SManom). Therefore, cumulative NBP of each model m is
estimated according to Eq. (1):

NBPm = b0+ b1× sCO2m

+ b2× cov(NBPanom,Tanom)m

+ b3× corr(NBPanom,Tanom)m

+ b4× cov(NBPanom,SManom)m

+ b5× corr(NBPanom,SManom)m

+ b6× Tm+ b7×SMm, (1)

where bi are the regression coefficients. Given that the num-
ber of predictor variables (7) is relatively high, and the sam-
ple size is relatively small (11 models), we are likely to obtain
a good fit for the regression even if random variables are used
instead of the proposed drivers. However, a regional spatial
coherence on the signs of bi would only arise if there is an
actual relation between NBP and the proposed drivers as seen
in Fig. 5.

Instead of fitting the regression given by Eq. (1) only once
at every grid cell using cumulative NBP from 2015 to 2100,
we created 200 different bootstrap time series of 86 years by
resampling with repetition from all projected years. Then for
each of these time series we compute the cumulative NBP
of individual models, as well as sT, sSM, T , and SM (not
sCO2 as it is estimated from the 1pctCO2-bgc simulations),
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and finally fit the regression. This bootstrap approach intro-
duces some uncertainty into our estimates of both the pro-
posed drivers (Eq. 1, right-hand side) and the cumulative
NBP (Eq. 1, left-hand side), which is further propagated into
an uncertainty in terms of the regression coefficients bi . In
this way we can provide a likely range for the contribution of
each driver to explain a given model’s anomalous behavior
relative to the ensemble mean cumulative NBP.

The regression estimates capture well the local intermodel
variability of cumulative NBP (Fig. S13 in the Supplement),
and the regression coefficients bi show regionally coherent
signs consistently across the bootstrap realizations (Fig. S14
in the Supplement), providing confidence in the robustness
of the results. The net aggregated outcome of the local mul-
tiple linear regressions (MLRs) (Eq. 1) shows good agree-
ment with average projected NBP from individual Earth sys-
tem models (ESMs) at regional and global scales (Fig. 6).
The average coefficient of determination (R2) across boot-
straps between the ESM and MLR aggregated estimates is
greater than 0.96 for both the global and regional estimates.
Thus, most of the intermodel spread in cumulative NBP
can be explained by the intermodel spread in the proposed
drivers. Nevertheless, there are some discrepancies between
the MLR estimate and the ESM projection of each model.
The MLR generally underestimates the ESM values in the
case of models projecting an above average land carbon sink,
and it overestimates them for models projecting a below aver-
age sink. Most noticeable is the MLR underestimation of the
land carbon sink modeled by NorESM2-LM, CESM2, and
CanESM5, as well as the overestimation for UKESM1-0-
LL, GFDL-ESM4, and CMCC-ESM2. The underestimation
for NorESM2-LM and CESM2 arises mainly in the tropics,
whereas for CanESM5 it also has a considerable contribu-
tion from high latitudes. In the case of UKESM1-0-LL the
overestimation from the regression predominantly occurs in
the tropics, whereas for GFDL-ESM4 the overestimation is
highest at mid latitudes. For CMCC-ESM2 there is a large
overestimation at high latitudes that is partially compensated
by an underestimation at the tropics. These differences are
likely due to nonlinear responses of NBP that are not cap-
tured by the multiple linear regression, due to potential in-
teractions between the drivers and/or due to missing relevant
drivers (e.g., differences in land cover, incoming radiation).

Given that the regression simulates well the projected NBP
by the Earth system models, the individual terms of Eq. (1)
(i.e., bi × driveri) can be used to quantify the contribution
of each proposed driver to explain intermodel differences.
The contributions of sT and sSM are obtained by lumping
together both the correlation and covariance terms. Figure 7
shows how much each driver contributes to explaining each
model’s anomaly in projected NBP relative to the ensemble
mean (see also Table S3 and Fig. S15 in the Supplement). For
example, 39 % of the below average land carbon sink pro-
jected by ACCESS-ESM1-5 is due to its low sCO2 mainly
outside the tropics (see Fig. S5), 51 % is due to its low sT

Figure 6. Comparison of average projected NBP from Earth sys-
tem models (ESMs) with the multiple linear regression (MLR) esti-
mate. Colored bars indicate the mean from the 200 bootstrap sam-
ples, while uncertainty bars span from the 5th to the 95th per-
centile. The spatial average is shown for global land, the tropics
(22.5◦ S–22.5◦ N), mid latitudes (22.5–47.5◦ N over North Amer-
ica, 22.5–55◦ N over Europe and Asia, and > 22.5◦ S), and high
latitudes (> 47.5◦ N over North America and > 55◦ N over Europe
and Asia). The land percentage comprised in each region is noted
next to the title: tropics represent 35.1 % of the considered global
land area, mid latitudes 44.8 %, and high latitudes 20.1 %.

mainly at the tropics (i.e., lower (higher) NBP during hot-
ter (colder) than average years compared to other models;
see Figs. S6 and S8), 20 % is due mainly to its high long-
term average tropical T (see Fig. S11), and 7 % is due to its
SM, whereas the contribution of sSM compensates the ex-
cess 17 % from the other drivers. UKESM1-0-LL also shows
a similar relative contribution of sT and T towards a low land
carbon sink mainly at the tropics. At the other end of the
spectrum, the two models with the highest average projected
NBP (CESM2 and NorESM2-LM) show a dominant contri-
bution of sSM at the tropics mainly due to low values in the
Amazon and high values in Indonesia (Figs. S7 and S9), as
well as a positive contribution due to high tropical sCO2 (see
Fig. S5) and high long-term SM at the tropics and mid lati-
tudes (see Fig. S12). Other noteworthy findings are the strong
contribution of sCO2 for CNRM-ESM2-1 (mid and high lat-
itudes) and for CanESM5 (tropics and mid latitudes) to their
above average land carbon sink projection; the less unfavor-
able consequences of hot temperature anomalies on tropi-
cal NBP for CMCC-ESM2 and MPI-ESM1-2-LR together
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Figure 7. Contributions of the drivers to explaining the anomaly in average projected NBP from individual models relative to the ensemble
mean. Estimates are based on the multiple linear regression. Colored bars indicate the mean from the 200 bootstrap samples, while uncertainty
bars span from the 5th to the 95th percentile. The spatial average is shown for global land, the tropics (22.5◦ S–22.5◦ N), mid latitudes
(22.5–47.5◦ N over North America, 22.5–55◦ N over Europe and Asia, and > 22.5◦ S), and high latitudes (> 47.5◦ N over North America
and > 55◦ N over Europe and Asia). The land percentage comprised in each region is noted next to the title: tropics represent 35.1 % of the
considered global land area, mid latitudes 44.8 %, and high latitudes 20.1 %.

with the relatively low long-term average tropical T of MPI-
ESM1-2-LR, which result in positive contributions to aver-
age NBP; and the very low average NBP of CMCC-ESM2
at high latitudes resulting from steep drops during years with
high T and low SM annual anomalies (sT and sSM contribu-
tions). These steep drops in annual NBP are associated with
high fire emissions at the boreal forests (Fig. S16 in the Sup-
plement), highlighting the importance of adequately repre-
senting this process in models given that it can explain much
of the differences in average projected NBP. In this study,
model differences in fire emissions are partly captured by dif-
ferences in sT and sSM. Lastly, we note that CMCC-ESM2,
GFDL-ESM4, and EC-Earth3-Veg show the largest uncer-
tainties, particularly in the contributions of sT and sSM. This
is related to high fire emissions from individual years which
can be in or out of the bootstrap samples, as well as to partial
shifts between bootstrap samples in the contributions of sT
and sSM due to collinearity.

In summary, the contributions of sT to explain the pro-
jected differences in NBP are the largest, closely followed by
the contributions of sSM and sCO2, whereas those of T and
SM are generally smaller and of similar magnitude. The over-
all intermodel standard deviation of global land projected
NBP based on the regression estimates is 3.46 gCm−2 yr−1

(equivalent to 40.2 PgC during the period 2015–2100), rela-
tive to which the intermodel standard deviations of the con-
tributions from the drivers are 52.4 % for sT, 44.2 % for sSM,
44 % for sCO2, 26.2 % for T , and 21.9 % for SM. These re-

sults highlight the importance of sSM and SM as drivers of
projected cumulative NBP, in addition to sT and T . Further-
more, the arguably high intermodel standard deviation values
for many of the drivers suggest that while constraining indi-
vidual drivers would help reduce the spread of the projected
land carbon sink, a large uncertainty would remain. For ex-
ample, if we are to assume sT and sSM to be locally equal
across all models, by summing the contributions from the
other drivers we find that the intermodel standard deviation
of NBP would still be 2.23 gCm−2 yr−1; i.e., 64.5 % of the
original spread. Assuming sCO2 to be locally equal across
models drops the NBP spread to 68.1 % and assuming both T

and SM to be locally equal across models drops it to 78.2 %.
Figure 8 presents a compact overview of the factors ex-

plaining intermodel differences in cumulative projected NBP.
We group sT with sSM to represent the sensitivity of NBP
to interannual climate variability, and T with SM to rep-
resent general background climate conditions. This reduces
any potential compensating effects in the contributions of sT,
sSM, T , and SM that could have resulted from the underlying
colinearities between these drivers. Differences in the sensi-
tivity of NBP to interannual climate variability play a key
role, explaining 54 % and 64 % of the projected anomaly rel-
ative to the ensemble mean for the two models with the high-
est land carbon sink, as well as 34 % and 65 % for the two
models with the lowest land carbon sink. We note here that
CESM2 and NorESM2-LM (models with the highest sink)
share the same land surface model, while ACCESS-ESM1-
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Figure 8. Summary of the contributions of the drivers to explain-
ing intermodel differences in projected global land cumulative NBP.
Bars indicate the grouped contributions of sCO2, sT plus sSM,
and T plus SM to the NBP anomaly estimate from the multiple
linear regression. Dots indicate the total NBP anomaly based on the
multiple linear regression (MLR) and from the actual model pro-
jections (ESMs). All values correspond to averages from the 200
bootstrap samples. Global land estimates are obtained by multiply-
ing the area-weighted averages by the land surface area excluding
Antarctica (135.22× 106 km2). From left to right the models are
ordered according to actual increasing projected land carbon sink.

5 and UKESM1-0-LL (models with the lowest sink) share
a similar atmospheric model component (HadGEM family).
Furthermore, the intermodel variability in the contributions
of the sensitivity of NBP to climate (sT+ sSM) corresponds
to 48.8 % of the total NBP intermodel variability, whereas
for the contributions of sCO2 it corresponds to 44 %, and for
the contributions of average climate conditions (T +SM) it
is 24.5 %. These insights are obtained based on the multi-
ple linear regression, so it is worth noting again that the re-
gression estimates do not fully match the actual differences
between models, with the clearest discrepancies in the under-
estimation of the sink for NorESM2-LM and the overestima-
tion for UKESM1-0-LL.

The insights derived from Fig. 8 are generally robust
against alternative choices on how the sensitivities (sCO2,
sT, and sSM) are defined. First, we replicate the analysis
using the sensitivity of GPP (instead of NBP) to CO2 as a
driver of intermodel uncertainty in land carbon sink projec-
tions (Fig. S17 in the Supplement). In this case, model dif-
ferences in sCO2 no longer include differences arising from
how RA, RH, and DIS are asymmetrically influenced in each
model by interannual temperature and soil moisture variabil-
ity, thus potentially reducing the colinearity of sCO2 with
sT+ sSM. However, this comes at the cost of neglecting
model differences in the effects of rising CO2 on RA, RH,
and DIS. Results show that the intermodel variability in the
contribution of sCO2 decreases from 44 % to 31.6 % of the
total NBP intermodel variability, whereas that of sT+ sSM
increases to 60.1 % and that of T+SM increases to 28.3 %,
while the mean absolute error of the multiple linear regres-

sion increases from 6.7 to 10.4 PgC. Using the sensitivity of
GPP (instead of NBP) to CO2 particularly worsens the abil-
ity of the multiple linear regression to accurately estimate
the projected land carbon sink of CanESM5, CNRM-ESM2-
1, and IPSL-CM6A-LR. Second, we replicate the analysis
when computing sT and sSM from the 1pctCO2-rad simu-
lations to remove potential alleviating effects of higher CO2
given that these simulations account for the radiative effects
of increasing CO2 but keep CO2 at the pre-industrial level
from a biogeochemical perspective (Fig. S18 in the Sup-
plement). Results are still consistent with those of Fig. 8
even though this case is less meaningful as sT and sSM are
computed under different CO2 and climate conditions than
those projected by scenario SSP126. Finally, results hardly
change when assuming a latitudinal threshold of 30◦, instead
of 22.5◦, beyond which annual mean warm-season temper-
ature and soil moisture are used to compute sT and sSM
(Fig. S19 in the Supplement).

6 Conclusions

In this study we focus on projections of the land carbon sink
for a policy-relevant scenario with warming below 2 ◦C by
the end of the century (i.e., SSP126). Even under this sce-
nario with a relative low concentration of greenhouse gases,
there is an intermodel spread of approximately 150 PgC in
cumulative NBP from 2015 to 2100 – equivalent to 15 years
of current anthropogenic emissions – which translates into
a 40 % uncertainty in the carbon budget remaining to stabi-
lize global temperature below the chosen threshold. We also
show that even when two models project a similar global land
carbon sink, there can be large and compensating regional
differences. Here we identify regions in which models differ
the most and assess which are the underlying model charac-
teristics explaining these differences in the cumulative land
carbon sink.

We accurately explain model differences in cumulative
NBP as a function of their differences in the sensitivity of
NBP to CO2, in the sensitivity of NBP to interannual temper-
ature and soil moisture variability, and in projected long-term
temperature and soil moisture during the warm season. We
detail differences in these five drivers across the model en-
semble and discuss how they influence the land carbon sink
projected by each model throughout the globe. In addition,
we find that the detrended interannual variability of projected
NBP is better explained by soil moisture than temperature
in most models and across most regions. A notable excep-
tion is the core of the Amazon, where temperature is more
important than soil moisture to explain the interannual vari-
ability of NBP in the models. Given the relevance of model
differences in the sensitivity of NBP to temperature and soil
moisture, it is increasingly important to further disentangle
their sensitivities to incoming radiation and to vapor pressure
deficit. This would bring us a step closer to identify the un-
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derlying mechanisms for the divergence across models from
a process perspective.

Our quantification of the factors explaining intermodel dif-
ferences in projected NBP highlights the primary role of the
response of the land carbon cycle to interannual temperature
and soil moisture variability, followed closely by the sensi-
tivity of NBP to CO2, and to a lesser degree by average cli-
mate conditions. This finding provides explicit evidence that
improving the representation of the local-scale sensitivity of
NBP to interannual climate variability has the potential to re-
duce uncertainty in long-term projections of the global land
carbon sink. A noteworthy aspect of this study is to explicitly
consider the role of soil moisture when explaining model dif-
ferences in projected cumulative NBP, as it provides valuable
information in addition to temperature. We highlight substan-
tial contributions mainly from model differences in the sensi-
tivity of NBP to interannual soil moisture variability, but also
from differences in long-term average soil moisture.

In the quest to better understand the future evolution of
the land carbon cycle, our detailed insights about why each
model projects either a relatively high or low cumulative
land carbon sink is a valuable starting point to reducing un-
certainty. For example, a high regional contribution of sSM
and/or sT to a model’s land sink anomaly indicates the need
to evaluate and improve potentially related processes such
as water stress on photosynthesis, the effect of temperature
and moisture on soil carbon loss due to microbial activity,
and the occurrence and magnitude of fire emissions. Further-
more, our findings emphasize the need for spatially explicit
observations of the sensitivity of the land carbon cycle to
changes in temperature, soil moisture, and CO2 concentra-
tion, among other variables. Fortunately, this is becoming in-
creasingly feasible thanks to progress in estimating carbon
fluxes through in situ observational networks, atmospheric
inversions, and remote sensing products. The insights from
this study together with those from novel observations are
set to pave the way towards more confident projections of
the evolution of the land carbon sink.
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