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Abstract. One of the major undetermined problems in evap-
oration (ET) retrieval using thermal infrared remote sensing
is the lack of a physically based ground heat flux (G) model
and its integration within the surface energy balance (SEB)
equation. Here, we present a novel approach based on cou-
pling a thermal inertia (TI)-based mechanistic G model with
an analytical surface energy balance model, Surface Temper-
ature Initiated Closure (STIC, version STIC1.2). The coupled
model is named STIC-TI. The model is driven by noon–night
(13:30 and 01:30 local time) land surface temperature, sur-
face albedo, and a vegetation index from MODIS Aqua in
conjunction with a clear-sky net radiation sub-model and an-
cillary meteorological information. SEB flux estimates from
STIC-TI were evaluated with respect to the in situ fluxes
from eddy covariance measurements in diverse ecosystems
of contrasting aridity in both the Northern Hemisphere and
Southern Hemisphere. Sensitivity analysis revealed substan-
tial sensitivity of STIC-TI-derived fluxes due to the land sur-

face temperature uncertainty. An evaluation of noontime G
(Gi) estimates showed 12 %–21 % error across six flux tower
sites, and a comparison between STIC-TI versus empirical
G models also revealed the substantially better performance
of the former. While the instantaneous noontime net radi-
ation (RNi) and latent heat flux (LEi) were overestimated
(15 % and 25 %), sensible heat flux (Hi) was underestimated
(22 %). Overestimation (underestimation) of LEi (Hi) was
associated with the overestimation of net available energy
(RNi−Gi) and use of unclosed surface energy balance flux
measurements in LEi (Hi) validation. The mean percent de-
viations in Gi and Hi estimates were found to be strongly
correlated with satellite day–night view angle difference in
parabolic and linear pattern, and a relatively weak correlation
was found between day–night view angle difference versus
LEi deviation. Findings from this parameter-sparse coupled
G–ET model can make a valuable contribution to mapping
and monitoring the spatiotemporal variability of ecosystem
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water stress and evaporation using noon–night thermal in-
frared observations from future Earth observation satellite
missions such as TRISHNA, LSTM, and SBG.

1 Introduction

One of the outstanding challenges in evaporation (ET) esti-
mation through surface energy balance (SEB) models con-
cerns an accurate characterization of ground heat flux in the
open canopy architecture with mixed vegetation such as sa-
vanna or in ecosystems with low mean fractional vegetation
cover, prevailing water stress, and strong seasonality in soil
moisture. Ground heat flux (G) is an intrinsic component
of SEB (Sauer and Horton, 2005), affecting the net avail-
able energy for ET (the equivalent water depth of latent heat
flux, LE) and sensible heat flux (H ). It represents an en-
ergy flow path that couples the surface with the atmosphere
and has important implications for the underlying thermal
regime (Sauer and Horton, 2005). Depending on the vege-
tation fraction and water stress, the magnitude of instanta-
neousG varies greatly across different ecosystems. In the hu-
mid ecosystems with predominantly dense canopies and high
mean fractional vegetation cover, G contributes a small pro-
portion to the surface energy balance. Dense canopy cover
leads to less transmission of radiative fluxes through mul-
tiple layers of canopies, which results in low warming of
the soil floor. Due to persistently high soil water content,
humid ecosystems generally show low diurnal and seasonal
variability in G. In contrast, the magnitude of G is sub-
stantially large in arid and semi-arid ecosystems with sparse
and open canopy and soil moisture deficits. Due to the pre-
vailing feedback between the physics of ground heat flux,
land–atmosphere interactions, and vegetation ecophysiology,
evaporation modeling in the complex ecosystems remains a
challenging task (Wang et al., 2013; Kiptala et al., 2013).
This paper addresses the challenge of simultaneous estima-
tion of G and ET by combining thermal remote sensing ob-
servations with a mechanistic G model and a SEB model.

SEB models mainly emphasize estimating sensible heat
flux by resolving the aerodynamic conductance (gA) and
computing LE as a residual SEB component as follows.

LE = RN−G−H (1)

RN is the net radiation. The proportion of RN that is parti-
tioned into G depends upon soil properties like its albedo,
soil moisture, and soil thermal properties such as thermal
conductivity and heat capacity, which vary with mineral, or-
ganic, and soil water fractions. SEB models use land surface
temperature (LST or TS) as an important lower boundary
condition for estimating H and LE. Due to the extraordinar-
ily high sensitivity of TS to evaporative cooling and soil water
content variations, thermal infrared (TIR) remote sensing is
extensively used in large-scale evaporation diagnostics (Kus-
tas and Anderson, 2009; Mallick et al., 2014, 2015a, 2018a;

Cammalleri and Vogt, 2015; Anderson et al., 2012). Evapora-
tion estimation through SEB models commonly employs em-
pirical sub-models of G in a stand-alone mode. Despite the
utility of mechanisticGmodels being demonstrated in differ-
ent studies (Verhoef, 2004; Murray and Verhoef, 2007; Ver-
hoef et al., 2012), no TIR-based evaporation study attempted
to couple a mechanistic G model with a SEB model.

The SEB models for ET estimation driven by remote sens-
ing observations generally use linear and nonlinear relation-
ships for estimating G, and such methods generally employ
RN, TS, albedo (αR), and NDVI (e.g., Bastiaanssen et al.,
1998; Friedl et al., 2002; Santanello and Friedl, 2003). While
the inclusion of TS and albedo serves as a proxy for soil
moisture and surface characteristic effects in G, inclusion
of NDVI provides a scaling of the G–RN ratio for differ-
ent fractional vegetation covers. Unfortunately, the empirical
approaches do not include any information on soil tempera-
ture or daily temperature amplitude. These empirical models
also lack universal consensus. Setting G as a fraction of RN
does not solve the energy balance equation and disregards
the role of thermal inertia of the land surface (Mallick et al.,
2015b). This could introduce substantial uncertainty in LE
estimation because G effectively couples the surface energy
balance with energy transfer processes in the soil thermal
regime. It provides physical feedback to LE through the ef-
fects of soil moisture, temperature, and conductivity (thermal
and hydraulic) (Sauer and Horton, 2005). Such feedbacks are
most critical in the arid and semi-arid ecosystems, where LE
is significantly constrained by the soil moisture dry-down.
The limits imposed on LE by the water stress consequently
result in greater partitioning of the net available energy (i.e.,
RN−G) into H and G (Castelli et al., 1999).

When LE is reduced due to soil moisture dry-down, both
G and TS tend to show rapid intra-seasonal rise. Therefore,
the surface energy balance equation could be linked with the
mechanistic G model, TS harmonics (Verhoef, 2004), and
soil moisture availability. Realizing the importance of direct
estimates of G in LE, and invigorated by the advent of TIR
remote sensing, Verhoef et al. (2012) demonstrated the po-
tential of a TI-based mechanistic model (Murray and Ver-
hoef, 2007) (MV2007 hereafter) for spatiotemporal G esti-
mates in semi-arid ecosystems of Africa. Some studies also
emphasized the importance of using noontime and nighttime
TS and RN for estimating G (Mallick et al., 2015b; Bennet
et al., 2008; Tsuang, 2005). The method of MV2007 has so
far been tested in a stand-alone mode, and no remote sensing
method has so far been attempted to combine such a mech-
anistic G model (e.g., the MV2007-TI model) with a SEB
model for coupled energy–water flux estimation and valida-
tion.

By integrating TS into a combined structure of the
Penman–Monteith (PM) and Shuttleworth–Wallace (SW)
models, an analytical SEB model was proposed by Mallick
et al. (2014, 2015a, 2016). The model, Surface Temperature
Initiated Closure (STIC), is based on finding an analytical
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solution for aerodynamic and canopy–surface conductance
(gA and gS), where the expressions of the conductances were
constrained by an aggregated water stress factor. By physi-
cally linking water stress (TS-derived) with gA and gS, STIC
established direct feedback between TS, H , and LE and si-
multaneously overcame the need for empirical parameteri-
zation to estimate the conductances (Mallick et al., 2016,
2018a). Different versions of STIC have been extensively
validated in different ecological transects (tropical rainfor-
est to woody savanna) and aridity gradients (humid to arid)
(Trebs et al., 2021; Bai et al., 2021; Mallick et al., 2015a,
2016, 2018a, b; Bhattarai et al., 2018, 2019). Based on the
conclusions of Verhoef et al. (2012), Mallick et al. (2014,
2015a, b, 2016, 2018a, b, 2022), Bhattarai et al. (2018, 2019),
and Bai et al. (2021), there is a need to address some of
the challenges in SEB modeling, which are (i) accurate es-
timation of G and ET in sparse vegetation, (ii) testing of
the utility of coupling a TI-based G model with an analyt-
ical SEB model for accurately estimating G and ET, and
(iii) detailed evaluation of a coupled G–SEB model at the
ecosystem scale. Realizing the significance of the mechanis-
tic G model (MV2007) and the advantage of the analytical
STIC model and to mitigate some of the overarching gaps in
SEB modeling in sparsely vegetated open canopy systems,
this study presents the first-ever coupled implementation of
MV2007G with the most recent version of STIC (STIC1.2).
We name this new coupled model STIC-TI, and it requires
noon–night TS and associated remotely sensed land surface
variables as inputs. We performed subsequent evaluation of
STIC-TI in nine terrestrial ecosystems in arid, semi-arid,
and sub-humid climates in India, the United States of Amer-
ica (USA) (Northern Hemisphere), and Australia (Southern
Hemisphere) at the eddy covariance flux tower sites. The cur-
rent study addresses the following research questions and ob-
jectives.

i. What is the performance of STIC-TI G estimates when
compared with conventionally used empirical G mod-
els in ecosystems with low mean fractional vegetation
cover (fc) (≤ 0.5) and with larger soil exposure to radi-
ation, for example, in savanna?

ii. How do the estimates from STIC-TI LE and H fluxes
compare with LE and H observations in diverse ter-
restrial ecosystems that represent a varied range of fc
(0.25–0.5) covering cropland, savanna, and mulga veg-
etation (woodlands and open forests dominated by the
mulga tree – Acacia aneura) spread across arid, semi-
arid, sub-humid, and humid climates over a vast range
of rainfall (250 to 1730 mm), temperature (−4 to 46 ◦C),
and soil regimes?

iii. What is the seasonal variability of G and evaporative
fraction from the STIC-TI model in a wide range of
ecosystems having contrasting aridity and vegetation
cover?

It is important to mention that assessing the performance of
STIC-TI LE and H with respect to other SEB models is not
within the scope of the present study. The prime focus of the
current study is to assess the sensitivity of STIC-TI, temporal
variability of the retrieved SEB fluxes, and cross-site valida-
tion of the individual SEB components.

A list of the variables, their symbols, and the correspond-
ing units is given in Appendix A.

2 Study area and datasets

2.1 Study site characteristics

The present study was conducted using data from nine flux
tower sites (four sites in India; three sites in Australia; two
sites in the USA) equipped with eddy covariance (EC) mea-
surement systems. The distribution of the flux tower sites
considered for the present study are shown in Fig. 1 below.
The sites cover a wide range of climates, vegetation types, a
low fractional vegetation cover (fc) of around 0.5, and con-
trasting aridities (Table 1). In India, a network of EC tow-
ers was set up under the Indo-UK INCOMPASS (INterac-
tion of Convective Organization and Monsoon Precipitation,
Atmosphere, Surface and Sea) program (Turner et al., 2019)
at Jaisalmer (IND-Jai) in Rajasthan state, Nawagam (IND-
Naw) in Gujarat state, and Samastipur (IND-Sam) in Bihar
state and under the Newton Bhabha program (Morisson et
al., 2019a, b) at Dharwad (IND-Dha) in Karnataka state. The
flux footprint for EC towers in India varied from 500 m to
1 km (Bhat et al., 2019). In the present study, about 90 % of
the fluxes came from an area within 500 m to 1 km of the EC
tower. Therefore, the relative contribution of vegetated land
surface area to the fluxes is close to 90 % (Schmid, 2002;
Vesala et al., 2008). The remaining percentage of fluxes orig-
inated from an area beyond the flux footprint. The mean an-
nual fc was found to vary from 0.25 to 0.52, with a standard
deviation (SD) ranging from 0.1 to 0.16.

The IND-Jai site represents the arid western zone over
desert plains of the natural grassland ecosystem. The region
receives very low rainfall (100–300 mm) during monsoon
and experiences a wide range in air temperature, high solar
radiation, wind speed, and high evaporative demand (Raja et
al., 2015). The IND-Naw site represents a semi-arid agroe-
cosystem in the middle Gujarat agroclimatic zone of north-
western India and has a pre-dominant rice–wheat cropping
system. The IND-Sam site has a sub-humid climate of the
northwestern alluvial plain zone in the Indo-Gangetic Plain
(IGP) situated in eastern India, and this site also follows
rice–wheat crop rotation. IND-Dha represents the humid sub-
tropical climate of the transition zone in southern India, and
this site is comprised of crops.

In the USA, two EC tower sites were located at Tonzi
Ranch (US-Ton) and Vaira Ranch (US-Var), in the lower
foothills of the Sierra Nevada. Both EC stations are part
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Figure 1. Locations of the flux tower sites in India, Australia, and the USA overlaid on a climate-type map. Image source: Peel et al. (2017).

of the AMERIFLUX Management Project (https://ameriflux.
lbl.gov/, last access: 3 December 2022). US-Ton is classified
as an oak savanna woodland. While the overstorey is dom-
inated by blue oak trees (40 % of the total vegetation) with
intermittent grey pine trees (3 trees ha−1), the understorey
species include a variety of grasses and herbs. The mean an-
nual rainfall at this site is 559 mm. US-Var is a grassland-
dominated site, and the growing season is confined to the wet
season only, typically from October to early May. The mean
annual rainfall at this site is 559 mm. The mean annual fc
was found to vary from 0.18 to 0.26, and SD is of the order
of 0.06 to 0.07.

In Australia, three EC tower sites were located at
Howard Springs (AU-How), Alice Springs Mulga (AU-
ASM), and Adelaide River (AU-Ade) in the Northern Ter-
ritory as part of the OzFlux network (Beringer et al.,
2016) and the Terrestrial Ecosystem Research Network
(TERN), which is supported by the National Collaborative
Infrastructure Strategy (NCRIS) (http://www.ozflux.org.au/
monitoringsites/index.html, last access: 3 December 2022).
AU-How is situated in the Black Jungle Conservation Re-
serve representing an open woodland savanna, and the mean
annual rainfall is 1750 mm. The AU-ASM is located at Pine
Hill cattle station near Alice Springs. The woodland is char-
acterized by a mulga canopy, and mean annual rainfall is
306 mm. AU-Ade represents savanna with a mean annual
rainfall of 1730 mm. The mean annual fc varied from 0.21 to
0.48 with an SD range of 0.08–0.17. A description of Aus-
tralian flux sites is given in Beringer et al. (2016). Average
heights of vegetation are 1.15 m at IND-Naw, 1 m at IND-

Jai, 1.23 m at IND-Sam, 1.5 m at IND-Dha, 6.5 m at AU-
ASM, 15 m at AU-How, 7 m at AU-Ade, 10 m at US-Ton,
and ≤ 0.5 m at US-Var.

2.2 Datasets

2.2.1 Micrometeorological data at flux tower sites

Standardized, controlled, and harmonized SEB flux and me-
teorological data from nine EC towers were used in the
present analysis. In Australia, H and LE were measured
through the EC systems and RN was measured through net
radiometers at varying heights of 15 m (AU-Ade), 23 m (AU-
How), and 11.6 m (AU-ASM), respectively. In India, the EC
measurement height was maintained approximately at 8 m
above the surface, except at IND-Dha, where it was installed
at a height of 4.2 m. In the USA, the SEB measurements were
carried out at tower heights of 23 m at US-Ton and 2 m US-
Var. A summary of the instrumentation is given in Table A2
of Appendix A. All the flux tower sites were equipped with
a range of meteorological instrumentation which measured
diurnal air temperature (TA) and relative humidity (RH), four
components of the net radiation (RN, consisting of down-
welling and upwelling shortwave and longwave radiation:
SW↓, SW↑, LW↑ and LW↓, respectively) above the veg-
etated canopy. In addition, the diurnal soil heat flux (G) and
soil temperature (TST) were measured at all three Australian
sites and both US sites. In India, the diurnal soil heat flux was
measured only at IND-Dha.
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Table 1. An overview of the eddy covariance flux tower site characteristics used in the present study.

Hemisphere Sites Latitude
(◦ N),
longitude
(◦ E)

Climate and
vegetation

Mean fc
(SD)

Soil texture TA
range
(◦C)

Mean
annual P
(mm)

Observation
period

Northern Jaisalmer
(IND-Jai)

26.99,
71.34

Arid
grassland

0.25(±0.1) Loamy fine sand
to coarse sand

8–40 250 2017–2018

Nawagam
(IND-Naw)

22.80,
72.57

Semi-arid
cropland

0.41(±0.13) Sandy loam 9–39 700 2017–2018

Samastipur
(IND-Sam)

26.00,
85.67

Humid
subtropical
cropland

0.52(±0.16) Sandy loam to loam 10–39 1000 2017–2018

Dharwad
(IND-Dha)

15.50,
74.99

Tropical
savanna

0.36(±0.11) Shallow to medium
black clay and red
sandy loam soils

12–40 650 2016–2018

Tonzi
Ranch
(US-Ton)

38.43,
−120.96

Woody
savanna

0.18(±0.06) Red sandy clay
loam

0–40 559 2011–2019

Vaira
Ranch
(US-Var)

38.41,
−120.95

Arid
grassland

0.26(±0.07) Rocky silt loam 0–40 559 2011–2019

Southern Alice
Springs
Mulga
(AU-ASM)

−22.28,
133.24

Semi-arid
mulga

0.21(±0.09) Loamy sand (−4)–40 305 2011–2014

Howard
Springs
(AU-How)

−12.49,
131.15

Tropical
savanna

0.48(±0.17) Red kandasol 19–34 1700 2011–2014

Adelaide
River
(AU-Ade)

−13.07,
131.11

Savanna 0.42(±0.08) Yellow hydrosol,
shallow, loamy
sand with coarse
gravel

16–37 1730 2007–2009

TA: air temperature during the observation period. P : rainfall (mm) measured using the rain gauge at the flux tower site during the study period. IND is for India, AU is for Australia,
and US is for the United States. SD is the standard deviation of the annual mean fc which is computed from the NDVI as mentioned in Sect. 3.1.

For the Indian sites, the raw EC measurements of the tur-
bulent wind vectors (u, v, and w, for horizontal, meridional,
and vertical, respectively), sonic temperature (T ), and CO2
and water vapor mass density were recorded at a sampling
rate of 20 Hz. Raw EC data were post-processed to obtain
level-3 quality-controlled and harmonized surface fluxes at
30 min flux-averaging intervals using the EddyPRO® Flux
Calculation software (LI-COR Biosciences, Lincoln, Ne-
braska, USA) using the data-handling protocol described
by Bhat et al. (2019). The EC data from the OzFlux sites
were averaged over 30 min recorded by the logger and pro-
cessed through levels using the PyFluxPro standard soft-
ware processing scripts as mentioned in Isaac et al. (2017).
Level 3 (L3) used in this paper was produced using PyFlux-
Pro (Isaac et al., 2017) employing Dynamic INtegrated
Gap filling and partitioning for the Ozflux (DINGO) sys-
tem as described in Donohue et al. (2014) and Beringer

et al. (2016). The quality-checked EC data at 30 min inter-
vals for the two AMERIFLUX sites US-Ton and US-Var
were acquired from https://doi.org/10.17190/AMF/1245971
and https://doi.org/10.17190/AMF/1245984, respectively.

2.2.2 Remote sensing data

Optical and thermal remote sensing observations available
from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) (Didan, 2015) onboard the Aqua platform
were used in the present study (Table 2) for estimating
G and its associated SEB fluxes. These include 8 d land
surface temperature (LST or TS) at 13:30 and 01:30, sur-
face emissivity (εs) (MYD11A2), daily surface albedo (αR)
(MCD43A3), and 16 d NDVI (MYD13A2). The overpass
times of MODIS Aqua are at 13:30 and 01:30. The 8 d av-
erage values of clear-sky TS available from MYD11A2 data
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were used (source: https://vip.arizona.edu/documents/viplab/
MYD11A2.pdf, last access: 3 December 2022) for all nine
flux tower sites. Since the MYD21A2 LST product is known
to provide better accuracy (1–1.5 K) (Hulley et al., 2016) as
compared with the MYD11A2 LST over semi-arid and arid
ecosystems, the former was also used in STIC-TI to compare
LE and H estimates (see Table 5 in Sect. 4.4) with the es-
timates of the MYD11A2 LST over the arid and semi-arid
sites (IND-Jai, IND-Naw, US-Ton). The noon–night pair of
thermal remote sensing observations from Aqua are close to
the times of occurrences of maximum and minimum soil sur-
face temperature (see Fig. 2) and are therefore ideal for soil
heat flux modeling using thermal inertia. The MODIS Terra
overpass times are at 11:00 and 23:00 and are far from the
times of occurrences of minimum–maximum soil tempera-
tures. Therefore, MODIS Aqua acquisition times were used
in the present study.

3 Methodology

3.1 Coupled soil heat flux–SEB model

In this paper, we modified a thermal inertia (TI)-based soil
heat flux (G) model using noon–night thermal remote sens-
ing observations and thereafter coupled the TI-based G with
STIC1.2. A clear-sky net radiation (RN) model was also in-
troduced into this coupled model, and the RN estimation
algorithm is described in Appendix B. The estimation of
G by modifying the MV2007-TI approach and its coupling
with STIC1.2 is the most novel component of the modeling
scheme, and it is therefore described in the main body of the
paper (Sect. 3.1.1). Such a coupling enabled the implementa-
tion of a mechanistic G model along with an analytical SEB
model using optical–thermal remote sensing data. The cou-
pled model is hereafter referred to as STIC-TI.

3.1.1 MV2007 soil heat flux model based on TI

The functional form for estimating instantaneousG (Gi here-
after) (Eq. 2 below) is based on the harmonic analysis of soil
surface temperature and is described in detail by Murray and
Verhoef (2007) and Maltese et al. (2013).

Gi = 0

[
(1− 0.5fC)

( k∑
n=1

A
√
nωsin

(
nωt

+ φ′n+
π

4
−
π1t

12

))]
= 0JS (2)

Gi is the soil heat flux at the surface at a particular instance
(W m−2); 0 is the soil thermal inertia (J m−2 K−1 s−0.5), k is
the total number of harmonics used, A is the amplitude (◦C)
of the nth soil surface temperature (TST) harmonic, ω is the
angular frequency (rad s−1), t is the time (s), φ′n is the phase
shift of the nth soil surface temperature harmonic (rad), JS is

the summation of harmonic terms of soil surface temperature
(K), and 1t (s) is the time offset between the canopy com-
posite temperature and the below-canopy soil surface tem-
perature. Here, we represent Gi and A as ecosystem-scale
(≤ 1 km) soil heat flux and surface soil temperature ampli-
tude (averaged from the soil surface to 10 cm depth), respec-
tively, and assume it to be valid for a different vegetated land-
scape.

Since we have considered a single pair (noon–night corre-
sponding to 13:30 and 01:30) of MODIS Aqua LST data in
the present study, the phase shift (φ′n) is taken as 0, and the
number of harmonics is taken as 1 (k = 1) for estimating Gi.
Thus, Eq. (2) is modified as follows,

Gi = 0

[
(1− 0.5fC)

(
A
√
ωsin

(
ωt +

π

4
−
π1t

12

))]
= 0JS (3)

with the two boundary values (i.e.,1t = 1.5 h for fc = 1 and
1t = 0 for fc = 0, fc being the vegetation fraction), and a
linear approach is proposed here to describe the time offset
1t as a function of fc (Maltese et al., 2013). For a given day,
fc was derived by normalizing NDVI with the upper–lower
limits of the annual NDVI cycle.

1t = 1.5fc (4)

Scaling function for estimating ecosystem-scale surface
soil temperature amplitude (A)

Estimating ecosystem-scale A involves two steps, (a) com-
puting point-scale soil surface temperature amplitude (from
the surface to 0.1 m depth) (TSTA hereafter) from the avail-
able measurements of soil surface temperature and (b) link-
ing TSTA with remote sensing variables to develop scal-
ing functions for A. Point-scale soil temperature measured
at different depths within the top 10 cm soil layer at AU-
ASM, US-Ton, and US-Var was averaged and considered to
be a representative surface soil temperature (0–10 cm). For
Ind-Dha and AU-Ade, single-depth (10 cm) soil temperature
measurement was used. Studies also showed that LST carries
some signal beneath the skin of the surface (Johnston et al.,
2022).

Several studies suggested a theoretical sinusoidal trajec-
tory of soil surface and sub-surface temperatures (Gao et al.,
2010), where the amplitude is maximum at the surface, and it
gradually decreases with depth to become 37 % of the surface
amplitude until the damping depth (Hillel, 1982). However,
at deeper depths, soil temperatures remain constant with time
and do not show many fluctuations as compared with surface
or near-surface soil temperatures. This invariant soil temper-
ature is called deep soil temperature (Mihailovic et al., 1999).
However, the diurnal surface soil temperature measurements
(within the top 0.1 m depth) across different flux tower sites
showed a sinusoidal–exponential behavior, i.e., a sinusoidal
pattern from sunrise until the afternoon and an exponential
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Table 2. A summary of MODIS Aqua optical and thermal remote sensing products used in the present study.

Data type Product ID
(version)

Variables used Spatial
resolution

(m)

Temporal
resolution

Purpose Inputs to equa-
tion numbers

LST and
emissivity

MYD11A2
(V006)
MYD21A2
(V006)

TS (13:30 and
01:30) and εs

923 8 d For estimating RNi,
Gi, LEi , and Hi

(5), (13), (C6),
(C7), (B8)

Surface
albedo

MCD43A3
(V006)

αR 462 8 d composite
from daily

For estimating RNi
and Gi

(5), (B3)

Vegetation
index

MYD13Q1
(V006)

NDVI 250 16 d For estimating Gi (4)

Figure 2. An illustrative example of the typical diurnal variation of
observed soil temperature (TST) (from the surface to 0.1 m depth)
at OzFlux sites and timings of MODIS AQUA observations. Here,
TSTmax and TSTmin are maximum and minimum point-scale ob-
served soil surface temperatures.

pattern from afternoon through sunset to the next sunrise. An
illustrative example of the theoretical and observed trajecto-
ries of surface soil temperature is shown in Fig. 2. This diur-
nal surface soil temperature variation has a single harmonic
component (Gao et al., 2010). To compute TSTA, a theoreti-
cal half-curve of the sinusoidal pattern is assumed and was
derived from measurements as exemplified in Fig. 2.

It is evident from Fig. 2 that TSTmin represents the min-
imum surface soil temperature occurring 1–1.5 h after sun-
rise, and TSTmax occurs during 12:30–15:00 local time. The
in situ measured TST on completely clear-sky days at OzFlux
sites was used to extract TSTmax and TSTmin, and TSTA was
derived as TSTmax–TSTmin from the theoretical half-curve of
the sinusoidal pattern.
TSTA is generally influenced by several land surface char-

acteristics such as surface temperature and surface albedo
of the soil–canopy complex, surface heat capacities, frac-

tional canopy cover, and thermal conductivity. TS and αR are
the major thermal and reflective land surface properties that
have strong synergy with surface soil temperature dynamics.
Hence, we have used bivariate regression analysis to develop
a scaling function for estimating ecosystem-scale TSTA (top
to 0.1 m depth). The bivariate regression is based on the dif-
ference of noon (d) and night (n) TS data and αR (Duan et
al., 2013; Tian et al., 2014) from MODIS Aqua. The scal-
ing function given in Eq. (5) estimates ecosystem-scale TSTA
(symbolized as “A” in Eq. 5) from the surface to 0.1 m soil
depth:

A= B1 (TSd− TSn)+B2 (αR)+B3 (5)

Here,B1,B2, andB3 are coefficients of the regression model.
TSd and TSn are noontime and nighttime LST, respectively.
The results of this regression analysis are elaborated on in
Sect. 4.1.

Estimating 0

0 is the key variable for estimating Gi using Eq. (2).
MV2007 adopted the concept of normalized thermal conduc-
tivity (Johansen, 1975) and developed a physical method to
estimate 0 as follows:

0 = e

[
ϒ ′
(

1−S(ϒ
′
−δ)

r

)]
(τ∗− τ0)+ τ0 (6)

where τ∗ and τ0 are the thermal inertia for saturated
and air-dry soil (J m−2 K−1 s−0.5), τ0 =D1θ∗+D2; τ∗ =
D3(θ

−1.29
∗ ), ϒ ′ (unitless) is a parameter depending on

the soil texture (Murray and Verhoef, 2007; Minasny and
Hartemink, 2011; Anderson et al., 2007), Sr (m3 m−3) is rel-
ative saturation and is equal to (θ/θ∗), and δ (unitless) is
the shape parameter which is dependent on the soil texture.
θ∗ (m3 m−3) is the soil porosity (equal to the saturated soil
moisture content when the soil moisture suction is zero), θ
(cm3 cm−3) is the volumetric soil moisture, and D1, D2, and
D3 are coefficients which were derived from a large num-
ber of experimental data. The reported global values of D1,
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D2, and D3 were taken as −1062.4, 1010.8, and 788.2, re-
spectively (Maltese et al., 2013). The values for θ∗ and the
shape parameter for soil textures across the study sites were
specified according to Van Genuchten (1980). The details are
mentioned in Table E1 of Appendix E.

In the present study, the relative soil moisture saturation,
Sr(θ/θ∗), is represented in terms of an aggregated moisture
availability (M) of the canopy–soil complex through a linear
function (Eq. 12). In the case of zero canopy cover,M repre-
sents the soil moisture availability from the surface to 0.1 m
depth. In the sparse and open canopy, rates of moisture avail-
ability from soil to root and root to canopy were assumed to
be the same.

Theoretically, M is expressed as the available soil mois-
ture fraction between field capacity (θfc) and the permanent
wilting (θwp) point as given in Eq. (7) below.

M =
θ − θwp

θfc− θwp
(7)

where θfc (m3 m−3) is the volumetric soil moisture at the field
capacity (at a suction of 330 hPa), and θwp (m3 m−3) is the
volumetric soil moisture at the permanent wilting point (at
a suction of 15 000 hPa). Since θfc, θ∗, and θwp are charac-
teristic volumetric soil moisture contents corresponding to
specific suctions and depend on the soil texture, dividing the
numerator and denominator in Eq. (7) by θ∗ gives the follow-
ing expression:

M =

θ
θ∗
−
θwp
θ∗

θfc
θ∗
−
θwp
θ∗

(8)

Due to their dependence on soil texture, the ratios (θfc/θ∗)
and (θwp/θ∗) are treated as constants. These are represented
as C and C′ in the later equations (Eqs. 9, 10, and 11). The
constants C and C′ vary from 0.3 to 0.8 and from 0.1 to 0.4
(Murray and Verhoef, 2007; Minasny and Hartemink, 2011;
Anderson et al., 2007), respectively, over different soil tex-
tures.

M =

θ
θ∗
−C′

C−C′
(9)

M
(
C−C′

)
=

(
θ

θ∗

)
−C′ (10)

By replacing Sr in Eq. (6) as θ/θ∗ and by rearranging
Eq. (10), the following linear function is obtained.

Sr =
θ

θ∗
=M

(
C−C′

)
+C′ =M ′ (11)

Thus, the modified equation to calculate 0 is given by
Eq. (12) as follows:

0 = e

[
ϒ ′
(

1−M ′
(ϒ ′−δ)

)]
(τ∗− τ0)+ τ0 (12)

By substituting the values obtained from Eqs. (4), (5), and
(12) into Eq. (3), we obtained the instantaneous ecosystem-
scale Gi corresponding to the MODIS Aqua noontime
overpass. The intrinsic link between Gi estimates through
MV2007-TI and the SEB scheme in STIC1.2 is made
through M , where the computation of M follows the pro-
cedure as described in Mallick et al. (2016, 2018a, b) and
Bhattarai et al. (2018) (description in Appendix C).

Estimating M

In STIC1.2, an aggregated moisture availability (M) of the
canopy–soil complex is expressed as the ratio of the “va-
por pressure difference” between the aerodynamic rough-
ness height of the canopy (i.e., source/sink height) and air to
the “vapor pressure deficit” between aerodynamic roughness
height and the atmosphere:

M =
(e0− eA)(
e∗0 − eA

) = (e0− eA)

κ
(
e∗S− eA

) = s1 (T0D− TD)

κs2 (TS− TD)
(13)

where e0 and e∗0 are the actual and saturation vapor pres-
sure at the source/sink height, eA is the atmospheric va-
por pressure, e∗S is the saturation vapor pressure at the sur-
face, T0D is the dew-point temperature at the source/sink
height, TS is the LST, TD is the air dew-point temperature,
s1 and s2 are the psychrometric slopes of the saturation va-
por pressure and temperature between the (T0D− TD) ver-
sus (e0− eA) and (TS− TD) versus (e∗S− eA) relationship,
and κ is the ratio between (e∗0 − eA) and (e∗S− eA). To solve
Eq. (13), estimation of T0D is necessary. An initial estimate of
T0D(T0D = [(e

∗

S− eA)− s3TS+ s1TD]/(s1− s3)) and M was
obtained following Venturini et al. (2008), where s1 and s3
were approximated in TD and TS, respectively. However,
Eq. (13) cannot be solved directly because there are two un-
knowns in one equation. However, since T0D also depends
on LE (Mallick et al., 2016, 2018a), an iterative update of
T0D (and M) was carried out by expressing T0D as a func-
tion of LE(T0D = TD+ (γLE/ρcpgAs1)), which is described
in detail by Mallick et al. (2016, 2018a) and Bhattarai et
al. (2018). In the numerical iteration, s1 was not updated to
avoid numerical instability, and it was expressed as a func-
tion of TD.

3.1.2 STIC-TI: coupling the modified MV2007-TI and
STIC 1.2

The initiation of the coupling between MV2007-TI and
STIC1.2 was executed by linkingGi estimates from the mod-
ified MV2007-TI with M estimates from STIC1.2. Having
the initial estimates of M (through Eq. 13), an initial estima-
tion of Gi was made from Eq. (2), where Sr in Eq. (11) was
replaced with the initial estimates of M ′. From the initial es-
timates of Gi (Eq. 2) and RNi (equations in Appendix B),
initial estimates of LEi and Hi were obtained through the
Penman–Monteith energy balance (PMEB) equation. Ana-
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lytical expressions of the conductances for estimating H

and LE through the PMEB equation were obtained by
solving the state equations as described in the Appendix.
The process was then iterated by updating T0D[T0D = TD+

(γLE/ρcpgAs1)] and M in every time step (as mentioned
in Mallick et al., 2016, 2018a) and re-estimating Gi (using
Eq. 3), net available energy (RNi−Gi), conductances, LEi
and Hi until stable estimates of LEi were obtained. The con-
ceptual block diagram and algorithm flow of STIC-TI are
shown in Fig. 3a and b, respectively.

Examples of the iterative stabilization of Gi and LEi for
the Indian, Australian, and US ecosystems of India are shown
in Fig. 4. The iterative stabilization of Gi and LEi was ob-
tained between 8 and 25 iterations for all the sites.

The noteworthy features of STIC-TI are (1) estimating
G by modifying the mechanistic MV2007-TI model using
noon and midnight TS information from thermal remote sens-
ing observations available through a polar-orbiting satellite
platform (e.g., MODIS Aqua), (2) coupling the mechanistic
MV2007-TI G model with STIC1.2 to simultaneously esti-
mate surface moisture availability (M), G, and SEB fluxes,
(3) introducing water stress information in G (through M)
to better constrain the aerodynamic and canopy–surface con-
ductances as well as the SEB fluxes, and (4) derivation of the
amplitude of ecosystem-scale surface soil temperature (from
the topsoil to 0.1 m soil depth).

3.1.3 Generation of remote sensing inputs

Two of the key variables in SEB modeling are TS and εs.
These two variables were retrieved at 923 m spatial res-
olution from MODIS Aqua noon–night TIR observations
(MYD11A2) in bands 11.03 and 12.02 µm using a general-
ized split-window algorithm (Wan and Li, 1997). For optimal
retrieval, tractable sub-ranges of atmospheric column water
vapor and lower-boundary air surface temperature were used.
Land surface emissivity was estimated from land cover types
and anisotropy factors. The MYD21A2 LST product was
generated using the temperature–emissivity separation (TES)
algorithm (Hulley et al., 2016) and an improved water vapor
scaling method to remove the atmospheric effects. Albedo
was estimated from the MODIS (MCD43A2 Version 6.0)
Bidirectional Reflectance Distribution Function and Albedo
(BRDF/Albedo) daily dataset (Schaaf et al., 2002) at 462 m
spatial resolution. Actual albedo is a value which is interpo-
lated between white-sky and black-sky albedo as a function
of fractional diffuse skylight (which is a function of aerosol
optical depth). NDVI was obtained from the level-3 MODIS
vegetation index product (MYD13Q1, version 6.1), which is
generated every 16 d at 250 m (m) spatial resolution. All the
input remote sensing variables mentioned in Table 2 were re-
sampled to the spatial resolution of the MYD11A2 product
(923 m).

3.2 Sensitivity and statistical analysis

The accuracy of STIC-TI heavily depends on the accuracy of
TS, NDVI, and αR due to the dual role of TS in estimating
M and Gi, the role of NDVI in Gi, and the combined role
of TS and αR in estimating RNi. Therefore, one-dimensional
sensitivity analysis was conducted to assess the impacts of
uncertainty in TS, NDVI and αR on Gi, Hi and LEi. The sen-
sitivity was assessed by varying noontime TS by±0.5,±1.0,
and±1.5 K (keeping nighttime TS constant so that amplitude
can vary automatically), varying NDVI by ±0.05, ±0.10,
and±0.15, and varying albedo by±0.02,±0.05, and±0.10,
respectively. SEB fluxes were computed by using TS, NDVI,
and αR for three different periods of the year in all eight
ecosystems. Sensitivity analyses were conducted by increas-
ing and decreasing systematically TS, NDVI, and αR from
its central value while keeping the other variables and pa-
rameters constant. This procedure was selected because the
fluxes and intermediate outputs of the STIC-TI model reflect
an integrated effect due to uncertainty in TS. In the first run,
SEB fluxes were computed using in situ TS measurements
obtained from the flux tower outgoing longwave radiation
measurements. Then TS was increased and decreased at a
constant interval and a new set of fluxes was estimated. In
the similar way, αR and NDVI were increased and decreased
at constant intervals, and a new set of fluxes was computed.
The sensitivity of STIC-TI was assessed by Eq. (14).

Sensitivity=
Ei0−EiM

Oi
· 100 (14)

Ei0 is the estimated (original) model output, and EiM is the
estimated (modified) output obtained by changing the vari-
able whose sensitivity is to be tested. Oi is the actual mea-
surements. Apart from the sensitivity analysis, the follow-
ing set of statistical metrics was used to assess model perfor-
mances.

R2
=


n∑
i=1
(Ei−E)(Oi−O)√

n∑
i=1
(Ei−E)2

√
n∑
i=1
(Oi−O)2


2

(15)

RMSE=

√√√√ n∑
i=1

(Ei−Oi)

n

2
(16)

BIAS=

n∑
i=1
(Ei−Oi)

n
(17)

MAPD=
100
n

n∑
i=1

∣∣∣∣Ei−Oi

Oi

∣∣∣∣ (18)

KGE= 1−

√√√√
(r − 1)2+

(
σE

σo
− 1

)2

+

(
E

O
− 1

)2

(19)
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Figure 3. (a) Conceptual diagram of the STIC-TI model showing different input variables and model outputs and (b) algorithmic flow for
estimating G and associated SEB fluxes through STIC-TI.

R2 is the coefficient of determination, RMSE is the root-
mean-square error, BIAS is the mean bias, MAPD is the
mean absolute percent deviation, KGE is the Kling–Gupta
efficiency, n is the total number of data pairs, and the bar indi-
cates the mean value of the measured variable and the model
estimates of the same variable. Ei and Oi are the model-
estimated and model-measured SEB fluxes, r is the Pearson
correlation coefficient, O is the average of the measured val-
ues, E is the average of the estimated values, σo is the stan-
dard deviation of observation values, and σE is the standard
deviation of the estimated values. The KGE has been widely
used for calibration and evaluation of hydrological models
in recent years, and it combines the three components of the
Nash–Sutcliffe efficiency (NSE) of model errors (i.e., corre-
lation, bias, ratio of variances or coefficients of variation) in

a more balanced way, but it has not been widely used for an-
alyzing the ET model performances. KGE= 1 indicates per-
fect agreement between modeled estimates and observations.
The performance of a model is considered “poor” for KGE
between 0 and 0.5, and models with negative KGE values are
considered “not satisfactory”.

4 Results

4.1 Ecosystem-scale surface soil temperature
amplitude (A)

The scaling functions developed to estimate ecosystem-scale
(1 km) surface soil temperature amplitude (A) from point-
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Figure 4. Illustrative examples of iterative stabilization of STIC-TI Gi (yellow marker line) and LEi (grey marker line) in (a) IND-Jai,
(b) AU-ASM, and (c) US-Ton.

scale TSTA were used to estimate Gi. However, before the
development of the scaling functions, analysis was carried
out to investigate the relationship of soil temperature am-
plitude between the two different spatial scales. The scat-
terplot (Fig. 5a) of the noon–night LST difference (1Ts)
versus TSTA for different albedo classes showed a linear in-
crease in 1Ts with increasing TSTA. However, some diver-
gence of data points within the cluster was also noticed,
which could be associated with different albedo (αR) lev-
els. A bivariate linear function was fitted between TSTA as
a predictand (Y ) versus 1Ts (Tsd− Tsn) and αR as predic-
tors (X1 and X2, respectively). The function was found to be
Y = 0.59X1− 51.3X2+ 8.66 by combining the data of nine
ecosystems (r = 0.86). The coefficients in the above expres-
sions correspond to B1 (0.59), B2 (51.3), and B3 (8.66) of
Eq. (5). The estimated amplitude from these ecosystem-scale
predictors and scaling functions was treated as an ecosystem-
scale surface soil temperature amplitude (A).

Validation of ecosystem-scale estimates of A from the
above functions over different sites is shown in Fig. 5b
with respect to TSTA for the independent datasets. The es-
timated A was found to have an MAPD of 19.9 %, negative
bias, and R2

= 0.90 over different ecosystems. The tempo-
ral variation of estimated A and TSTA is shown in Fig. D1
in Appendix D. Further analysis was carried out to investi-
gate the bias in A at three fractional vegetation cover (fc)
classes (fc < 0.3; 0.3≤ f fc ≤ 0.5; fc > 0.5) representing
bare soil (class 1), 30 %–50 % canopy cover (class 2), and
more than 50 % canopy cover (class 3), respectively. While
negative bias was noted for class 1 and class 3 (−0.54 and

−0.83 ◦C), the bias was positive (0.49 ◦C) in the intermedi-
ate fc, which represents sparse and patchy canopy cover. The
signals of surface albedo, emissivity, and temperature of soil
surface and canopy are relatively pure in class 1 and class 3
as compared with class 2, where the surface signal carries
more heterogeneity. Given that TSTA is computed from the
in situ measurements, it is likely to carry more heterogene-
ity in class 2 as compared with the other two classes. The
land surface emissivity in MYD11A2 was estimated from
land cover types and the anisotropy factor, which have dif-
ferential impacts on TST and TS, leading to such an opposite
bias in class 2 as compared with class 1 and class 3.

4.2 Sensitivity analysis of STIC-TI Gi, LEi and Hi to
land surface variables

4.2.1 Sensitivity of Gi to land surface variables

The average sensitivity of Gi to three land surface variables
(TS, NDVI, αR) by combining the estimates of wet and dry
periods is shown in Fig. 6. Gi was found to be substantially
sensitive to TS, with error magnitude ranging from 2 % to
18 % due to TS uncertainties of ±0.5–2.5 K (Fig. 6a), with
greater sensitivity to TS during the summer season. The me-
dian sensitivity of Gi due to ±5 %–10 % uncertainty in αR
varied from 5 % to 12 % in all the ecosystems (Fig. 6b). The
uncertainties in NDVI revealed 2 % to 15 % error in Gi es-
timates (Fig. 6c), and no significant difference in the mean
sensitivity due to NDVI uncertainties was noted between the
ecosystems. The sensitivity of Gi decreased with increasing
values of NDVI.
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Figure 5. (a) Two-dimensional scatterplots between (1Ts) versus
TSTA at different αR levels over different ecosystems. Here TSTA
on the y axis is the observed soil temperature amplitude that is used
to develop the scaling function, and 1Ts is the noon–night LST
difference of MODIS AQUA. (b) Validation of ecosystem-scale es-
timates of A from the above functions over different sites.

4.2.2 Sensitivity of LEi and Hi to land surface variables

Both LEi and Hi were sensitive to TS on the order of 2 %–
29 % (LEi) and 5 %–35 % (Hi) for a TS uncertainty of ±0.5–
2.5 K from its mean values (Table 3). Interestingly, LEi was
more sensitive to TS uncertainties as compared withHi in the
rainfed ecosystems. The highest mean sensitivity of LEi to
TS was found in arid (IND-Jai: 2 %–28 %), semi-arid (AU-
ASM: 5 %–21 %), tropical savanna (IND-Dha: 3 %–26 %),
savanna (US-Ton: 4 %–29 %), and arid (US-Var: 3 %–26 %)
ecosystems. The mean sensitivity of Hi to TS was maximum
in sub-humid (IND-Sam: 2 %–32 %), semi-arid (IND-Naw:
2 %–28 %), and savanna (AU-Ade: 8 %–17 %) (Table 3). A
greater sensitivity of the SEB fluxes due to αR uncertainties
was found than due to NDVI. The median sensitivity of LEi
and Hi due to 10 % uncertainty from mean αR varied within
2 %–16 % in all the ecosystems (Table 3). By contrast, errors
in the two SEB fluxes were substantially low (2 %–13 %) due
to ±0.05–0.15 uncertainty from mean NDVI (Table 3).

Table 3. Sensitivity (in percent) of LEi and Hi due to TS, NDVI,
and αR uncertainties.

Study Sensitivity of LEi and Hi to TS, NDVI,
sites and αR (percent change)

TS αR NDVI
uncertainty uncertainty uncertainty

(±0.5–2.5 K) (±5 %–10 %) (±0.05–0.15)

LEi Hi LEi Hi LEi Hi

IND-Jai 2–28 1–6 3–14 2–13 2–8 2–6
IND-Dha 3–26 2–8 2–12 3–12 3–10 3–9
IND-Naw 1–20 2–28 2–10 3–10 2–7 2–6
IND-Sam 1–16 5–32 4–13 6–11 2–5 2–7
US-Ton 4–29 4–12 3–12 4–12 3–8 5–7
US-Var 3–26 6–14 4–11 2–10 4–10 2–8
AU-ASM 5–21 2–10 3–12 2–13 2–10 2–11
AU-How 8–13 2–15 2–11 4–16 3–12 3–13
AU-Ade 2–17 8–17 3–12 2–10 3–10 3–9

Table 4. A comparison of error statistics of Gi estimates from
STIC-TI and existing Gi models over different ecosystems.

G models R2 RMSE MAPD KGE
(W m−2) (%)

STIC-TI 0.80 22 19 0.74
MOR89 0.70 31 29 0.46
BAS98 0.80 20 18 0.61
SU02 0.80 30 26 0.54
BO04 0.70 35 29 0.48

4.3 Comparative evaluation of the STIC-TI and
contemporary Gi models

The performances of the STIC-TI and existing Gi models
were evaluated and compared with respect to in situ Gi
measurements. The existing models reported by Moran et
al. (1989), Bastiaanssen et al. (1998), Su (2002), and Boegh
et al. (2004) have been considered for comparing with the TI-
based model. These four existing models are referred to here
as MOR89, BAS98, SU02, and BO04, respectively. While
the models MOR89, SU02, and BO04 are based on linear re-
gression between G versus NDVI, BAS98 is based on mul-
tivariate regression of G with NDVI, LST, and αR. The per-
formance of the STIC-TI was substantially better as com-
pared with MOR89, SU02, and BO04 with respect to MAPD
(19 %), RMSE (22 W m−2), and the coefficient of determina-
tion (R2

= 0.8) when compared with in situ measurements
over one Indian, three Australian and two US flux tower sites
(Table 4) and comparable with the BAS98Gi model. The val-
idation plot of retrieved noontimeGi from STIC-TI is shown
in Fig. 7.

The RMSE varied from 9 to 20 W m−2, with MAPD rang-
ing from 12 % to 21 % across individual flux tower sites. A
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high magnitude ofGi was predicted in the arid and semi-arid
systems (120–240 W m−2) as compared with the humid sys-
tems (20–90 W m−2), which was in close correspondence to
the observations. The model also captured the range of Gi
that is generally found in different biomes (20–140 W m−2

for grasslands, 20–90 W m−2 for cropland) (Purdy et al.,
2016). Due to the paucity ofGi measurements, direct valida-
tion of Gi was only possible for 32 d (concurrent to MODIS
overpass) at the IND-Dha site. Overall, STIC-TI tends to pro-
vide reasonable G estimates for the terrestrial ecosystems,
with a soil temperature amplitude above 5 ◦C.

4.4 Evaluation of STIC-TI LEi, Hi, and EF

The modeled versus measured LEi and Hi showed good
agreement in all nine ecosystems with RMSE in LEi and
Hi estimates using the MYD11 LST product on the order
of 29–62 W m−2 and 26–61 W m−2, MAPD of 9 %–31 %
and 20 %–36 %, BIAS of −29 to 38 W m−2 and −44 to
32 W m−2 (Fig. 8a, b; Table 5), and a high R2 of 0.8.

Arid ecosystems in India (IND-Jai) and the US (Ton and
Var) and the semi-arid ecosystem in Australia (AU-ASM) re-
vealed relatively high MAPD (31 %, 25 %, 27 %, and 28 %)
(Table 5). In general, STIC-TI was able to produce the dom-
inant convective heat fluxes with respect to the EC measure-
ments, as evident through the low RMSE for Hi and high
RMSE for LEi in IND-Jai, US-Ton, US-Var, and AU-Ade,
where LEi is inherently low except for a few rainy days. A
uniform distribution of data points around the 1 : 1 validation
line (Fig. 8a) indicated an overall low BIAS in LEi estimates.
However, modeled Hi was consistently lower than the obser-
vations (negative BIAS) in the tropical savanna (IND-Dha
and AU-How) and semi-arid (IND-Naw) ecosystems (−44)–
(−25) and −26 W m−2), while a consistent positive BIAS
was observed in AU-ASM (semi-arid), AU-Ade (savanna),
and US-Var (arid) (Fig. 8b; Table 5). This consequently led
to an overall low negative BIAS (−10 W m−2) and a rela-
tively lowR2 inHi (R2

= 0.8) as compared with the errors in
LEi (BIAS= 15 W m−2, R2

= 0.9). The regression between
the modeled and tower measurements of LEi is LEi (STIC-
TI)= 0.98LEi (tower)− 0.266. The regression between the
modeled and tower measurements of Hi is Hi (STIC-TI) =
0.93Hi (tower)+ 4.90. The KGE statistics varied in the range
of 0.71–0.95 for LEi and in the range of 0.64–0.91 for Hi,
respectively, across all nine flux tower sites, thus revealing
a reasonably high efficiency of the model in capturing the
magnitude and variability of SEB fluxes.

The impact of the MODIS Aqua day–night view angle
difference (δVZA) on STIC-TI fluxes was investigated. Es-
timated errors in terms of the mean percent deviation in
LEi, Hi, and Gi with respect to measurements for each 10◦

bin over 16 angular bins within ±80◦ were analyzed in re-
sponse to the mean δVZA of each angular bin. Gi errors (X)
were found to be significantly correlated with δVZA (Y ) in
a parabolic (Y = 0.0027X2

− 0.0025X+ 1.4919; r = 0.73)

pattern (refer to Appendix F, Fig. F1a). Errors in Gi on the
order of−5 % to 10 %, 10 %–15 %, and> 15 % were largely
found to be within ±30, ±45, and > 45 to −80◦ δVZA, re-
spectively. The errors inHi were found to have a strong linear
(Y =−0.1452X+ 1.1146, r = 0.77) dependence on δVZA
(refer to Appendix F, Fig. F1b). However, a weak depen-
dence of LEi errors (Y =−0.0878X+ 2.0314, r = 0.5) on
δVZA (refer to Appendix F, Fig. F1c) was found, as the ma-
jority of the errors were within ±10 %, which corresponded
to ±60◦ δVZA. The nature of the relations and the degree of
dependency of the model flux errors on δVZA in this study
would be helpful for minimizing the error budget in surface
energy balance fluxes from future thermal infrared missions
with day–night observations.

Further investigation was done on whether the KGE for
STIC-TI Gi and LEi follows any systematic pattern, and the
ratios 1TS and fc were used as a proxy for surface hetero-
geneity and dryness. The plot of the KGE ofGi and LEi with
this ratio is shown in Fig. 9. KGE–Gi was found to show a
systematic decrease with an increase in the 1TS–fc ratio of
up to 40, after which it remained unchanged with an increase
in the ratio. Although the KGE of LEi also decreased (20 %
reduction) with an increase in the 1Ts–fc ratio, KGE-LEi
was found to increase beyond 1Ts− fc 40. This revealed
that the model efficiency remained high (> 0.8) within cer-
tain dryness limits (1Ts− fc ratio < 20 and > 50) and that
the efficiency reduced moderately (within 0.7–0.8) for inter-
mediate dryness. Interestingly, the use of MYD21A2 LST in
STIC-TI showed improvements (see the parentheses in the
different columns in Table 5) in LEi and Hi error statistics
as compared with using MYD11A2 LST in terms of higher
R2 and KGE and lower RMSE in LEi (3 %–8 % less) and Hi
(2 %–3 % less) for semi-arid and arid sites such as IND-Jai,
IND-Naw, and US-Ton.

An independent evaluation of multi-temporal heat fluxes
over two US flux sites for the years 2016–2018 is shown in
Figs. 10 and 11. STIC-TI Gi estimates with the MYD11A2
LST product showed a close match with in situ measure-
ments with respect to intra- and inter-annual variability in
Gi, followed by LEi and Hi. This further demonstrates the
merit of the coupled model for reproducing ecosystem-scale
Gi estimates, especially for shorter and open canopies.

The temporal behavior of STIC-TI and the observed evap-
orative fraction (EF) (ratio of LE and RN–G) (Fig. 12) along
with observed monthly rainfall (P ) distinctly captured the
substantial temporal variability in EF during the dry-to-wet
transition in the Indian study sites, which also corresponded
to low (high) θ and P . In IND-Naw and IND-Sam, a marked
rise (> 0.4) in STIC-TI EF was noted during days of the year
(DOYs) 25 to 75, when wheat is grown under assured irriga-
tion. The impact of irrigation is thus captured by the substan-
tial increase in EF in the absence of P . In contrast, the rainfed
grassland system (IND-Jai) showed a peak EF (∼ 0.8), which
corresponded to southwestern monsoon rainfall during June
to September and a progressive decline in EF during the dry-
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Figure 6. Sensitivity of STIC-TI Gi due to uncertainties in TS (a), αR (b), and NDVI (c) for nine flux tower sites in India, the United States,
and Australia. The uncertainties were introduced by taking the mean values of these variables during three different periods (summer, rainy,
and winter) of a year. Mean uncertainties of the three periods are presented in the figure.

Table 5. Error statistics of STIC-TI LEi and Hi estimates with respect to EC measurements in different ecosystems of India, the USA, and
Australia using the MYD11A2 LST product for all nine sites and using the MYD21A2 LST product for three semi-arid and arid sites. The
statistics obtained by using MYD21A2 LST are shown in the parentheses.

Sites STIC-TI (LEi and Hi)

R2 BIAS (W m−2) RMSE (W m−2) MAPD (%) KGE

LEi Hi LEi Hi LEi Hi LEi Hi LEi Hi

IND-Jai 0.90 (0.91) 0.90 (0.92) −21 (−16) 12 (9) 57 (45) 27 (21) 31 (24) 22 (19) 0.80 (0.82) 0.76 (0.79)
IND-Naw 0.90 (0.92) 0.80 (0.85) 19 (12) −26 (−16) 44 (37) 51 (46) 17 (16) 28 (25) 0.92 (0.92) 0.71 (0.73)
IND-Dha 0.90 0.90 38 −44 43 35 27 25 0.71 0.64
IND-Sam 0.90 0.80 12 −10 32 61 9 27 0.95 0.70
US-Ton 0.90 (0.91) 0.90 (0.92) −29 (−18) −32 (−21) 53 (45) 34 (27) 25 (22) 17 (15) 0.85 (0.87) 0.91 (0.93)
US-Var 0.90 0.80 −19 −28 49 39 27 20 0.82 0.89
AU-ASM 0.90 (0.93) 0.90 (0.91) −3 (6) 22 (16) 46 (37) 26 (18) 29 (24) 20 (17) 0.94 (0.95) 0.83 (0.85)
AU-How 0.90 0.90 16 −25 42 27 17 21 0.89 0.85
AU-Ade 0.90 0.90 21 15 29 53 28 36 0.77 0.80
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Figure 7. Validation of noontime (13:30) Gi estimates with respect
to in situ measurements in different ecosystems. The regression
between the two sources of Gi is Gi (STIC-TI)= 0.90Gi (tower)
−0.10.

down period in October to April corresponding to the post
southwestern monsoon phase. Some intermittent spikes in
EF were also noted during the dry-down phase in both STIC-
TI and observations. The intermittent EF spikes during the
soil moisture dry-down phase could be due to enhanced LE
through moisture advection from the surrounding vegetation
causing a greater enhancement of evaporation than expected.
This is known as the “clothesline effect”, which frequently
occurs in semi-arid and arid ecosystems. In addition to IND-
Jai, the response of both modeled and measured EF to wet
and dry spells was also noted during the southwestern mon-
soon period at all other flux tower sites of India.

The temporal behavior of EF from the STIC-TI using the
MYD11A2 LST product and EC measurements along with
measured θ and P at the OzFlux and AmeriFlux sites also
revealed (Fig. 13) a close correspondence of STIC-TI to
EC observations. Low EF (0.05–0.40) during the dry sea-
son around DOY 100–250 and high EF (> 0.4) during the
wet season (DOY 1–120 and 300–360) in AU-ASM, US-
Ton, and US-Var was observed. The analysis showed that
STIC-TI EF can capture the annual variability of observed
EF and its responses across different ecosystems during the
wet and dry seasons. The plots of STIC-TI EF versus mea-
sured θ (in the inset of Fig. 13) revealed triangular scatter
close to the right-angled triangle with a positive slope of the
hypotenuse in three ecosystems: AU-ASM, US-Var, and US-
Ton. This showed, in the water-controlled ecosystems, that
distinct wet–dry seasons exist and that the positive EF–θ re-
lationship is an outcome of the soil moisture controls on tran-
spiration during the dry season.

5 Discussion

5.1 Interaction of flux and internal SEB metrices

From Sect. 4.1 we found a relatively reduced sensitivity
of Gi to TS uncertainties. In any given condition, if an
over(under)estimation of M due to noontime TS uncertain-
ties (through Eq. 13) leads to an over(under)estimation of
0, the effects of such over(under)estimation of 0 (due to
noontime TS uncertainties) tend to be compensated by un-
der(over)estimation of amplitude A (in Eq. 5), ultimately
leading to a reduction in the sensitivity ofGi to TS. While the
scatter between G versus A for a wide range of 0 (Fig. 14a)
revealed large scatter with increasing amplitude under the
dry conditions (low 0), the scatter between 0 versus TS for
different M (Fig. 14b) revealed an exponential reduction in
0 with increasing TS and dryness and almost no significant
change in 0 with increasing TS at a constantly high dryness
(M < 0.25). Thus, the confounding effects of 0, A, and M
through Eqs. (3), (5), (12), and (13) led to a reduction in sen-
sitivity of G to TS, as exemplified in Fig. 14.

Concerning LEi and Hi, dual uncertainties could be prop-
agated in both the fluxes through daytime TS (throughM and
Gi), leading to high sensitivity of these two SEB fluxes due
to TS perturbations. The relatively high sensitivity of LEi to
TS (as compared with Hi) in the non-irrigated ecosystems
could be due to partial compensation of gA/gS in both the
numerator and denominator of the PMEB equation for H
(Eq. C7 of Appendix C). A recent study (Fig. 10 in Mallick
et al., 2018a) showed high sensitivity of gS due to TS (a 1 %
change in TS led to a 5.2 %–7.5 % change in gS) as com-
pared with gA sensitivity to TS (a 1 % change in TS led to
a 1.6 %–2 % change in gA), suggesting that errors in gS due
to TS uncertainty tend to be larger than errors in gA. Partial
cancellation of the conductance errors in the numerator of
Eq. (C7) might have resulted in compensation ofHi errors in
the water-limited ecosystems. In this environment, the vari-
ability of LEi is mainly dominated by gA/gS, which makes
LEi highly sensitive due to TS uncertainties. Combined un-
certainty due to gA/gS in the denominator and gA in the nu-
merator of Eq. (C6) resulted in greater sensitivity in LEi to
TS in the arid and tropical savanna ecosystems (Mallick et
al., 2015, 2018a; Winter and Eltahir, 2010). The very low
sensitivity of LEi and Hi due to uncertainties in NDVI is be-
cause NDVI was not used in the conductance parameteriza-
tions and effects due to NDVI in STIC-TI only being prop-
agated through Gi. The sensitivity of LEi and Hi to albedo
was mainly due to the dependence of net radiation (RNi) on
albedo, and any resultant uncertainty in RNi (due to albedo)
tends to be reflected in the sensitivity of LEi andHi to albedo.

5.2 Possible sources of errors in SEB flux evaluation

In STIC-TI, underestimation and overestimation errors in Gi
in different ecosystems (Fig. 7) could originate due to the
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Figure 8. (a) Validation of STIC-TI LEi estimates with respect to in situ measurements in different ecosystems. (b) Validation of STIC-TI
Hi estimates with respect to in situ measurements in different ecosystems.

Figure 9. Relationship between the KGE of STIC-TI (Gi and LEi)
with 1TS/fc in different terrestrial ecosystems.

errors in the MYD11A2 LST product. A host of studies pre-
viously reported that the standard deviations of errors in re-
trieved emissivity in bands 31 and 32 are 0.009, and the max-
imum error in retrieved TS of the MOD11A1 LST falls within
2–3 K, which is mainly due to the errors in surface emissiv-
ity correction (Duan et al., 2017; Wan, 2014). In the present
analysis, we found an overestimation error of MODIS TS
in the range of 0.5–1.5 K when compared with in situ in-
frared temperature measurements at the tropical savanna site.
As mentioned in Sect. 3.1, a positive (negative) bias in TS
would tend to an overestimation (underestimation) of ampli-
tude (A) in Eq. (5), underestimation (overestimation) of M
in Eq. (13), and consequent underestimation (overestimation)
of 0 (Eq. 12) andGi, respectively. Furthermore, the standard
deviation of NDVI surrounding the tower sites varied from
0.01 to 0.05 when compared with the ground measurements,
which could be another source of error in the STIC-TI model.
In addition, NDVI saturates at LAI> 3. However, STIC-TI

provides direct estimates of ecosystem G and is independent
of RN.

Despite the comparable accuracy of current G estimates
with the G model of Bastiaanssen et al. (1998), the founda-
tion of STIC-TI lies in the use of soil moisture characteris-
tics with varying soil textural types which are known to in-
fluence the soil heat conductance and thereby G. Thus, the
control of soil moisture on evaporation is explicitly included
in STIC-TI as opposed to the semi-empirical G function of
Bastiaanssen et al. (1998). The higher accuracies of the TI-
based thermal diffusion model as compared with RN-based
empiricalGmodels were also reported by Purdy et al. (2016)
at daily or longer timescales in cropland and grassland. All
theseGmodel estimates may at times differ from in situ mea-
surements due to not accounting for leaf litter presence or the
layer on the soil floor in the remote-sensing-based G model.

The overestimation (underestimation) of LEi (Hi) is also
due to the effects of the spatial resolutions of different input
variables on these two SEB fluxes and conducted statistical
evaluation with respect to the measured SEB fluxes. Eswar
et al. (2017) demonstrated the need for spatial disaggrega-
tion models for monitoring LEi at field scale using contex-
tual models by disaggregation of the evaporative fraction (3)
and downwelling shortwave radiation ratio (RG). Using dif-
ferent disaggregation models, they estimated LEi at 250 m
spatial resolution and reported an RMSE of 30–32 W m−2 as
compared with LEi obtained at a 1000 m spatial resolution
with an RMSE of 40–70 W m−2 over different sites in India.
Anderson et al. (2007) reviewed different validation experi-
ments conducted in diverse agricultural landscapes (Ander-
son et al., 2004, 2005; Norman et al., 2003) and reported
RMSE in LEi in the range of 35–40 W m−2 (15 %) at 30–
120 m disaggregated spatial resolution. Current analysis also
brought out the need for noon–night thermal imaging with
a spatial resolution finer than 1000 m to adequately capture
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Figure 10. Illustrative examples of the temporal evolution of STIC-TI-derived fluxes using the MYD11A2 LST product versus observed
SEB fluxes for 3 consecutive years from 2016 to 2018 in a grassland ecosystem in the United States (e.g., US-Var).

Figure 11. Illustrative examples of the temporal evolution of STIC-TI-derived fluxes using the MYD11A2 LST product versus observed
SEB fluxes for 3 consecutive years from 2016 to 2018 in a woody savanna ecosystem in the United States (e.g., US-Ton).
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Figure 12. Illustrative examples of the temporal variation of STIC-TI-derived EF using the MYD11A2 LST product with respect to measured
EF and P in (a) IND-Naw, (b) IND-Jai, (c) IND-Sam, and (d) IND-Dha.

the magnitude and variability of LEi in the terrestrial ecosys-
tems, especially agroecosystems where average field sizes
are lower (< 0.5 ha) and fragmented, such as in India and
other sub-continents.

As seen in Fig. 8a and Table 5, there is a gross over-
estimation of LEi with respect to the tower observations
when MYD11A2 LST is used. The consistent positive
BIAS in STIC-TI LEi in five out of nine sites is presum-
ably due to the overestimation of RNi (Fig. B1 of Ap-
pendix B) and the underestimation of Gi. Figure 7 shows
an overestimation of Gi for three OzFlux sites and US
sites and an underestimation of Gi for the Indian site
with Gi (STIC-TI)= 0.90Gi (tower)− 0.10 and an overes-
timation of RNi at the ecosystem scale, with RNi (STIC-
TI)= 0.78RNi (tower)+ 58.92 (Appendix B2). This means
that a systematic overestimation of net available energy
(RNi−Gi) will be obvious in cases where STIC-TI shows an
underestimation of Gi. Since available energy is an impor-
tant component for estimating LE through the PMEB equa-
tion, an overestimation of net available energy leads to an
overestimation of LE by STIC-TI. Sensible heat flux will be
consequently underestimated due to the complementary na-
ture of the PMEB equation. It may also be noted that the
use of MYD21A2 LST led to a relatively better accuracy

in LEi (3 %–8 %) and Hi (2 %–3 %) as compared with us-
ing MYD11A2 LST in semi-arid and arid ecosystems. The
higher retrieval accuracy of MYD21A2 LST using the TES
algorithm over MYD11A2 LST that uses a split-window al-
gorithm (Wan and Li, 1997) is the main reason for obtaining
higher accuracy in LEi and Hi estimates.

The standard deviations of the MODIS Aqua day–night
overpass time over the study sites were found to be within
30–45 min (Sharifnezhadazizi et al., 2019), and the expected
deviation in LST from the mean local time would be around
±0.75 K (Sharifnezhadazizi et al., 2019). Sensitivity analysis
showed that resultant uncertainties in STIC-TI heat flux es-
timates would be on the order of ±5 %–7 % due to this LST
uncertainty.

5.3 Effects of SEB closure

Given that there is a widespread lack of SEB closure (H +
LE 6= RN −G) or residual energy balance, knowledge of
the impact of different vegetation types and climatic vari-
ables on SEB “non-closure” is essential. A recent study by
Dare-Idowu et al. (2021) covering eight growing seasons
and three crops (maize, wheat, and rapeseed) in two sites
of southwestern France showed that the systematic effect of
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Figure 13. Comparison of the temporal variation of STIC-TI-derived EF using the MYD11A2 LST with respect to measured EF, θ , and P in
(a) AU-ASM, (b) US-Var, and (c) US-Ton. The scatterplots in the inset show the relationship between STIC-TI EF with respect to measured
θ .

Figure 14. Response plots among parameters of the TI-basedGi model, such as (a)Gi versus amplitude (A) for varying 0 and (b) noontime
TS versus 0 with varying M .
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each site on SEB closure was stronger than the influence of
crop type and stage. The same study revealed a greater per-
centage of SEB closure under unstable atmospheric condi-
tions and in the prevailing wind directions, and sensible heat
advection accounted for more than half of the imbalance at
both the sites.

In our study, using unclosed SEB observations for Indian
sites in the absence of in situ Gi observations also added to
the consistent positive BIAS in the statistical evaluation of
LEi. A ubiquitous lack of energy balance closure on the order
of 10 %–20 % worldwide at most of the EC sites is reported
in different literatures (Stoy et al., 2013; Wilson et al., 2002),
which implies a systematic underestimation (overestimation)
of LEi (EC tower) (and/or the Hi EC tower). Accommodat-
ing an average 15 % imbalance in LEi (EC tower) would tend
to diminish the positive BIAS in STIC-TI. Therefore, the
pooled gain (0.98) and positive BIAS between the STIC-
TI and tower LEi are determined by the overestimation of
(RNi−Gi) combined with the underestimation of measured
LEi from the EC towers. An underestimation of Hi (negative
BIAS) is associated with two reasons: (a) ignoring the two-
side aerodynamic conductance of the leaves (Jarvis and Mc-
Naughton, 1986; Monteith and Unsworth, 2013; Schymanski
et al., 2017), which could lead to substantial underestimation
of Hi, and (b) the complementary nature of the PMEB equa-
tion; if LEi is overestimated, Hi will be underestimated. In
addition, frequent micro-advection fluxes alter measured in
situ H and LE fluxes, but these advection conditions are not
explicitly accounted for in the current STIC-TI model. At the
EC tower sites, the fraction of the residual energy balance to
RN can be quantified with respect to vegetation/crop growth
characteristics or biophysical properties. However, where G
observations are lacking, such as in many Indian EC tower
sites, the TI-based G model can be used to fill up the miss-
ing G observations to quantify residual energy balance and
to correct the SEB non-closure.

6 Summary and conclusions

This study addressed one of the long-term uncertainties in
thermal remote sensing of evaporation modeling in open-
canopy heterogeneous ecosystems, which is associated with
empirical methods of estimating ground heat flux. We
demonstrated for the first time physical integration and cou-
pling of a mechanistic ground heat flux model with an analyt-
ical evaporation model (Surface Temperature Initiated Clo-
sure, STIC) within the surface energy balance equation. The
model is called STIC-TI, which uses satellite-based land sur-
face temperature from MODIS Aqua and associated biophys-
ical variables, and it has minimal independence of in situ
measurements. The estimation of evaporation through STIC-
TI does not require any empirical function for inferring the
biophysical conductances. STIC-TI is independent of uncer-
tain parameterizations of surface roughness and atmospheric

stability and does not involve any look-up table for biome or
plant functional attributes. By linking noon–night land sur-
face temperature with a harmonics equation of thermal iner-
tia and soil moisture availability, STIC-TI derived the ground
heat flux and subsequently coupled it with evaporation. Inde-
pendent validation of STIC-TI with respect to eddy covari-
ance flux measurements from nine terrestrial ecosystems in
arid, semi-arid, and sub-humid climates in India, the USA,
and Australia led us to the following conclusions.

i. While the MODIS Aqua day–night view angle differ-
ence showed a strong impact on ground heat flux and
sensible heat flux estimated deviations of STIC-TI (with
respect to measurements), a relatively weak dependence
of latent heat flux errors on the day–night view angle
difference was noted.

ii. The most notable advantages of STIC-TI are firstly that
it provides direct estimates of ground heat flux while si-
multaneously integrating the effects of soil water stress
on ground heat flux and evaporation through the inclu-
sion of noon–night land surface temperature informa-
tion. Secondly, the ecosystem-scale surface soil tem-
perature amplitude used in the ground heat flux model
can advance our understanding of associated terrestrial
ecosystem processes.

The requirement of few input variables in STIC-TI gener-
ates promise for surface–atmosphere exchange studies us-
ing readily available data from the current-generation remote
sensing satellites (e.g., MODIS, VIIRS) that have noon–night
land surface temperature observations. STIC-TI can also be
potentially used for distributed ET mapping from future
high spatial resolution (∼ 50–60 m) TIR missions with noon–
night observations with high revisits, such as the Indo-French
mission, TRISHNA (Thermal infrared Imaging Satellite for
High-resolution Natural Resource Assessment) (Lagouarde
et al., 2018, 2019), ESA’s LSTM (Land Surface Temperature
Monitoring), and NASA SBG (Surface Biology and Geol-
ogy), respectively.
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Appendix A

Table A1. A list of symbols, their descriptions, and units used in the present study.

Attributes Symbol Description

Temperature TA Air temperature (◦C)
TMax Maximum air temperature (◦C)
TMin Minimum air temperature (◦C)
TD Air dew-point temperature (◦C)
TSTA Point-scale soil temperature amplitude
1Ts Noon–night LST difference (◦C)
TST Soil temperature (◦C)
TS Land surface temperature (LST) (◦C)

Humidity, RH Relative humidity (%)
vapor pressures eA Atmospheric vapor pressure at the level of TA measurement (hPa)

e∗A Saturation vapor pressure at the level of TA measurement (hPa)
e∗S Saturation vapor pressure at surface (hPa)
DA Atmospheric vapor pressure deficit at the level of TA measurement (hPa)

Radiation RG Downwelling shortwave radiation (or global radiation) (W m−2)
RR Upwelling or reflected shortwave radiation (W m−2)
RL↓ Downwelling longwave radiation (W m−2)
RL↑ Upwelling longwave radiation (W m−2)
τsw Atmospheric transmissivity for shortwave radiation (unitless)
αR Broadband shortwave surface albedo (unitless)

SEB components LEi Latent heat flux (W m−2); subscript “i” signifies “instantaneous”
Hi Sensible heat flux (W m−2); subscript “i” signifies “instantaneous”
Gi Ground heat flux (W m−2); subscript “i” signifies “instantaneous”
RNi Net radiation (W m−2); subscript “i” signifies “instantaneous”
ϕ Net available energy (W m−2), i.e., RN–G

MV2007 model A Ecosystem-scale surface soil temperature amplitude (◦C)
TSd Daytime TS (◦C)
TSn Nighttime TS (◦C)
ω Angular frequency (rad s−1)
φ′n Phase shift of the nth soil surface temperature harmonic (rad)
δ Shape parameter (unitless)
Sr Relative soil moisture saturation (m3 m−3)
fs Sand fraction (unitless)
θfc Soil water content at field capacity (m3 m−3)
θwp Soil water content at permanent wilting point (m3 m−3)
θ∗ Soil porosity (cm3 cm−3)
JS Summation of harmonic terms of soil surface temperature (K)
ϒ ′ Soil textural parameter (unitless)
0 Soil thermal inertia (J K−1 m−2 s−0.5)
τ0 Thermal inertia of air-dry soil (J K−1 m−2 s−0.5)
τ∗ Thermal inertia of saturated soil (J K−1 m−2 s−0.5)
t ′ Time of satellite overpass (seconds)
1t Time offset between the canopy composite temperature and the below-canopy soil surface temperature

(seconds)
k Total number of harmonics used (unitless)
fc Vegetation fraction (unitless)
θ Volumetric soil moisture (cm cm−3)

https://doi.org/10.5194/bg-19-5521-2022 Biogeosciences, 19, 5521–5551, 2022



5542 B. K. Bhattacharya et al.: A coupled ground heat flux-evaporation model

Table A1. Continued.

Attributes Symbol Description

Clear-sky RNi Rns Net shortwave radiation (W m−2)
model Rnl Net longwave radiation (W m−2)

Gsc Solar constant (1367 W m−2)
βe Sun elevation angle (◦)
εs Infrared surface emissivity (unitless)
εa Atmospheric emissivity (unitless)
E Eccentricity correction factor due to variation in Sun–Earth distance (unitless)

STIC-TI model M Aggregated moisture availability (0–1)
gA Aerodynamic conductance (m s−1)
gS Canopy-surface conductance (m s−1)
T0 Aerodynamic temperature (or source/sink height temperature) (◦C)
T0D Dew-point temperature at the source/sink height (◦C)
3 Evaporative fraction (unitless)
e0 Vapor pressure at the source/sink height (hPa)
e∗0 Saturation vapor pressure at the source/sink height (hPa)
D0 Vapor pressure deficit at the source/sink height (hPa)
s1 Psychrometric slope of vapor pressure and temperature between (T0D−TD) versus (e0−eA) (hPa K−1)
s2 Psychrometric slope of vapor pressure and temperature between (TS−TD) versus (e∗s −eA) (hPa K−1)
s3 Psychrometric slope of vapor pressure and temperature between (T0D− TD) versus (e∗s − eA).
κ Ratio between (e∗0 − eA) and (e∗s − eA) (unitless)
s Slope of saturation vapor pressure vs. temperature curve (hPa K−1)
α Priestley–Taylor coefficient (unitless)

Ancillary meteoro- U Wind speed at 8 m height (m s−1)
logical variables u∗ Friction velocity (m s−1)

Constants P Precipitation (mm d−1)
γ Psychrometric constant (hPa k−1)
cp Specific heat capacity of air at constant pressure (MJ kg−1 K−1)
ρ Density of air (kg m−3)
σ Stefan–Boltzmann constant (5.67× 10−8 W m−2 K−4)

Sensor view VZA MODIS Aqua sensor view angle (◦)
geometry δVZA Difference in MODIS Aqua day–night sensor view angle (◦)
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Table A2. Summary of instruments used, height or depth and period of measurements, and measured variables at nine EC flux tower sites.

Type of primary instruments used for in situ
data recording at flux tower sites

Measurement height/depth (m) Measured variables

Net radiometer q 3 m (IND-Naw,
IND-Jai, IND-Sam)q 15 m (AU-Ade)q 12.2 m (AU-ASM)q 23 m (AU-How),q 2 m (US-Ton, US-Var)

Four radiation flux components: shortwave in-
coming (RG) and outgoing (RR); longwave in-
coming (RL↓) and outgoing (RL↑)

EC assembly with IRGA (Infrared Gas
Analyzer), three-dimensional sonic
anemometer, TC probe

q 8 m (IND-Naw;
IND-Jai; IND-Sam)q 4.5 m (IND-Dha)q 15 m (AU-Ade)q 11.6 m(AU-ASM)q 23 m (AU-How)q 2 m (US-Ton, US-Var)

High-response wind vectors (u, v, andw), sonic
temperature, and CO2–water vapor mass at
10/20 Hz frequency

Humidity and temperature probe q 8 m (IND-Naw,
IND-Jai, IND-Sam)q 4.5 m (IND-Dha)q 15 m (AU-Ade),q 11.6 m (AU-ASM)q 23 m (AU-How),q 70 m (AU-How)q 2 m (US-Ton, US-Var)

TA and RH

Soil temperature probe q−0.1 m (IND-Dha)q−0.15 m (AU-Ade)q (−0.02, −0.06 m) (AU-
ASM)q−0.08 m (AU- How)q−0.02, −0.04, −0.08, and
−0.16 m (US-Ton,
US-Var)

TST

Soil heat flux plates qGround, 0.1 m (IND-Dha)qGround, −0.15 m (AU-Ade)qGround,−0.08 m (AU-ASM)qGround, −0.15 m (AU-How)q−0.01 m (US-Ton, US-Var)

Soil heat flux (G)

Appendix B

B1 Clear-sky instantaneous net radiation (RNi) model

Net radiation (RN) is defined as the difference between the
incoming and outgoing radiation, which includes both long-
wave and shortwave radiation at the Earth’s surface.

Terrestrial RN has four components: downwelling and up-
welling shortwave radiation (RG and RR) and downwelling
and upwelling longwave radiation (RL↓ and RL↑), respec-
tively.

RN = (RG−RR)+
(
RL↓−RL↑

)
(B1)

Out of these four terms mentioned in Eq. (B1), RG and RL↓
are dependent on various factors such as geographic loca-
tion, season, cloudiness, aerosol loading, and atmospheric
water vapor content and less on surface properties. On the
other hand, the upwelling radiations in Eq. (B1) strongly de-
pend on the surface properties such as surface reflectance and
emittance, land surface temperature, and soil water content
(Zerefos and Bais, 2013).

Instantaneous net radiation (RNi) can be derived using
Eq. (B2) as follows (Mallick et al., 2007):

RNi = Rns−Rnl (B2)
Rns = (1−αR)RG (B3)
Rnl = RL↓−RL↑ (B4)
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where Rns is net shortwave radiation (W m−2), Rnl is net
longwave radiation (W m−2), and αR is the broadband sur-
face albedo shortwave spectrum.

A WMO (World Meteorological Organization) shortwave
radiation model (Cano et al., 1986) calibrated over Indian
conditions (Mallick et al., 2007, 2009) was used to compute
RG using the following equation:

RG = τswGscE(sinβe)
1.15 (B5)

where τsw is the global clear-sky transmissivity for the short-
wave radiation (0.7),Gsc is the solar constant (1367 W m−2),
ε is the eccentricity correction factor due to variation in the
Sun–Earth distance, and βe is the Sun elevation in degrees.
RL↓ at any instance was calculated as follows:

RL↓ = εaσ(273.14+ TA)
4 (B6)

where σ is the Stefan–Boltzmann constant (5.67×
10−8 W m−2 K−4), TA is the air temperature (◦C), and εa is
the atmospheric emissivity.

Atmospheric emissivity (εa) was computed using the fol-
lowing equation (Bastiaanssen et al., 1998):

εa = 0.85− lnτ 0.09
sw (B7)

RL↑ at any particular instance was calculated as follows:

RL↑ = εsσ(273.14+ Ts)
4 (B8)

where εs is the surface emissivity in the thermal infrared (8–
14 µm) spectrum and TS is the land surface temperature (◦C).

B2 Evaluation of STIC-TI RNi

Comparison of the clear-sky RNi estimates with respect to in
situ measurements revealed RMSE inRNi on the order of 27–
72 W m−2, MAPD 8 %–24 %, BIAS (−67)–50 W m−2, and
R2 varying from 0.62 to 0.90 across all the sites (Fig. B2, Ta-
ble B2). Among the nine sites, a consistent underestimation
of RNi was noted in IND-Dha, US-Ton, and US-Var (with
BIAS of −23, −61, and −67 W m−2), whereas substantial
overestimation ofRNi was found in IND-Sam, IND-Naw, and
AU-ASM with BIAS of 50, 37, and 43 W m−2, respectively
(Table B2).

Appendix C

C1 Estimating SEB fluxes using the STIC1.2 analytical
model and thermal remote sensing data

STIC1.2 (Mallick et al., 2014, 2015a, b, 2016, 2018a) is a
one-dimensional physically based SEB model and is based
on the integration of satellite LST observations into the
Penman–Monteith energy balance (PMEB) equation (Mon-
teith, 1965). In STIC1.2, the vegetation–substrate complex is

Figure B1. Validation of STIC-TI-derived RNi estimates with re-
spect to in situ measurements in different ecosystems. The regres-
sion equation between modeled versus in situ RNi is RNi (STIC-
TI)= 0.78RNi (tower)+ 58.92.

Table B1. Performance evaluation statistics of clear-sky RNi esti-
mates in nine different ecosystems.

Sites Error statistics of clear-sky RNi model estimates

R2 BIAS RMSE MAPD
(W m−2) (W m−2) (%)

IND-Jai 0.81 −9 32 8
IND-Naw 0.81 37 56 12
IND-Dha 0.81 −23 42 9
IND-Sam 0.64 50 67 15
US-Ton 0.68 −61 69 21
US-Var 0.62 −67 72 24
Au-How 0.87 7 27 15
AU-ASM 0.88 43 50 14
AU-Ade 0.90 11 27 16

considered as a single unit. Therefore, the aerodynamic con-
ductances from individual air–canopy and canopy–substrate
components is regarded as an “effective” aerodynamic con-
ductance (gA), and surface conductances from individual
canopy (stomatal) and substrate complexes are regarded as an
“effective” canopy–surface conductance (gS) which simulta-
neously regulates the exchanges of sensible and latent heat
fluxes (H and LE) between the surface and atmosphere. One
of the fundamental assumptions in STIC1.2 is the first-order
dependence of these two critical conductances onM through
TS. Such an assumption enabled an integration of satellite
LST into the PMEB model (Mallick et al., 2016). The com-
mon expression for LE and H according to the PMEB equa-
tion is as follows.
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LE=
sφ+ ρcpgADA

s+ γ
(

1+ gA
gS

) (C1)

H =
γφ

(
1+ gA

gS

)
− ρcpgADA

s+ γ
(

1+ gA
gS

) (C2)

In the above equations, the two biophysical conductances
(gA and gS) are unknown, and the STIC1.2 methodology is
based on finding analytical solutions for the two unknown
conductances to directly estimate LE (Mallick et al., 2016,
2018a). The need for such analytical estimation of these
conductances is motivated by the fact that gA and gS can
neither be measured at the canopy nor at larger spatial scales,
and there is no universally agreed appropriate model of gA
and gS that currently exists (Matheny et al., 2014; van Dijk
et al., 2015). By integrating TS with standard SEB theory
and vegetation biophysical principles, STIC1.2 formulates
multiple state equations in order to eliminate the need to
use the empirical parameterizations of the gA and gS and
also to bypass the scaling uncertainties of the leaf-scale con-
ductance functions to represent the canopy-scale attributes.
The state equations for the conductances are expressed
as a function of those variables that are mostly available
as remote sensing observations and weather forecasting
models. In the state equations, a direct connection to TS
is established by estimating M as a function of TS. The
information of M is subsequently used in the state equations
of conductances, aerodynamic variables (aerodynamic
temperature, aerodynamic vapor pressure), and evaporative
fraction, which is eventually propagated into their analytical
solutions. M is a unitless quantity, which describes the
relative wetness (or dryness) of a surface and also controls
the transition from potential to actual evaporation, which im-
plies M→ 1 under saturated surface conditions and M→ 0
under extremely dry conditions. Therefore, M is critical for
providing a constraint against which the conductances are
estimated. Since TS is extremely sensitive to the surface
moisture variations, it is extensively used for estimating
M in a physical retrieval scheme (detail in Appendix A3
of Bhattarai et al., 2018; Mallick et al., 2016, 2018a). It
is hypothesized that linking M with the conductances will
simultaneously integrate the information of TS into the
PMEB model. To illustrate, we express the state equations
by symbols, sv1 = f {c1,c2,c3,v1,v2,v3,v4,sv3,sv5};
sv2 = f {v4,sv1,sv5,sv6}; sv3 = f {c3,v3,v4,sv4,sv5};
sv4 = f {c3,v3,sv1,sv2,sv7,sv8}. Here, f , sv, v, and c

denote the function, state variables, input variables (five
input variables; radiative and meteorological), and constants
(three constants), respectively. Here sv1 to sv4 are gA, gS,
aerodynamic temperature (T0), evaporative fraction (3), and
sv8 is M . Given the estimates of M , net radiative energy
(RNi−Gi), TA, RH, the four state equations are solved
simultaneously to derive analytical solutions for the four

state variables and to produce a surface energy balance
“closure” that is independent of empirical parameterizations
for gA, gS, T0, and 3. The state equations of STIC are given
below.

gA =
φ

ρcp

[
(T0− TA)+

(
e0−eA
γ

)] (C3)

gS = gA
(e0− eA)(
e∗0 − e0

) (C4)

T0 = TA+

(
e0− eA

γ

)(
1−3
3

)
(C5)

3=
2αs

2s + 2γ + γ gA
gS
(1+M)

(C6)

Detailed derivations of these four state equations are given
in Mallick et al. (2016, 2018a). However, the analytical so-
lutions to the four state equations contain three accompany-
ing unknowns; e0 (vapor pressure at the source/sink height),
e∗0 (saturation vapor pressure at the source/sink height), and
Priestley–Taylor coefficient (α), and as a result there are four
equations with seven unknowns. Consequently, an iterative
solution was needed to determine the three unknown vari-
ables (as described in Appendix A2 in Mallick et al., 2016).
Once the analytical solutions of gA and gS are obtained, both
variables are returned into Eq. (13) to directly estimate LE.

In STIC-TI, an initial value of α was assigned as 1.26;
initial estimates of e∗0 were obtained from TS through
temperature–saturation vapor pressure relationship, and ini-
tial estimates of e0 were obtained from M as, e0 = eA+

M(e∗0 − eA). Initial T0D and M were estimated according
to Venturini et al. (2008) as described in Sect. 3.2, and ini-
tial estimation of G was performed from initial M using the
equation sets Eqs. (2)–(11). With the initial estimates of these
variables; first estimate of the conductances, T0, 3, H , and
LE were obtained. The process was then iterated by updating
e∗0 , D0, e0, T0D, M , and α (using Eqs. A9, A10, A11, A17,
A16, and A15 in Mallick et al., 2016), with the first estimates
of gS, gA, T0, and LE, and re-computingG, ϕ, gS, gA, T0,3,
H , and LE in the subsequent iterations with the previous es-
timates of e∗0 , e0, T0D, M , and α until the convergence of LE
was achieved. Stable values of G, conductances, LE, H , T0,
e∗0 , e0, T0D, M , and α were obtained within ∼ 25 iterations.
The inputs needed for computation of LEi (Eq. C6) are air
temperature (TA), land surface temperature (TS), relative hu-
midity (RH), net radiation (RNi) and soil heat flux (Gi).

Appendix D

The temporal variation of estimated A and TSTA is shown in
Fig. D1. The annual variations of TSTA in different ecosystem
was found to be within the ranges of 1–4 ◦C.
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Figure D1. Temporal variation of A and TSTA in (a) AU-ASM (2013), (b) US-Ton (2014), and (c) US-Var (2014).

Appendix E

Table E1. Soil textural properties and their values used in the present study (Murray and Verhoef, 2007; Minasny and Hartemink, 2011;
Anderson et al., 2007).

Soil texture Water retention Field capacity Wilting point Sand Saturated
shape parameter (vol / vol) (vol / vol) fraction soil moisture

(δ) (%) θfc (%) θwp (fs) (vol / vol)
(%) θ∗

Sand 2.77 10 5 0.92 43
Loamy sand 2.39 12 5 0.82 41
Sandy loam 2.27 18 8 0.58 41
Loam 2.20 28 14 0.43 43
Silty loam 2.22 31 11 0.17 45
Sandy clay loam 2.17 27 17 0.58 39
Clay loam 2.14 36 22 0.40 41
Silty clay loam 2.14 38 22 0.10 43
Sandy clay 2.11 36 25 0.52 38
Silty clay 2.12 41 27 0.06 46
Clay 2.10 42 30 0.22 38
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Appendix F

The day–night view angle effect on errors of STIC-TI heat
flux estimates from measurements is shown in Fig. F1.

Figure F1. Dependence of STIC-TI model flux error in terms of mean percent deviation from measurements of day–night view angle
differences of MODIS Aqua expressed as a mean of the 10◦ bin for (a) Gi, (b) Hi, and (c) LEi.
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