

Supplement of

Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes

Valeria Di Biagio et al.

Correspondence to: Valeria Di Biagio (vdibiagio@ogs.it)

The copyright of individual parts of the supplement might differ from the article licence.

Equations

- Oxygen regulating factor to switch between aerobic and anaerobic conditions for bacterioplankton:

$$f_B^{O_2} = \frac{O_2^3}{O_2^3 + h_B^{O_2}} \quad (S1)$$

in which $h_B^{O_2}$ is the oxygen concentration at which metabolic functionalities are halved.

- Nitrification rate:

$$\left. \frac{dA}{dt} \right|^{nit} = \Lambda_A^{nit} f_n^T \frac{O_2}{O_2 + h_{O_2}} A \quad (S2)$$

in which Λ_A^{nit} is the constant specific nitrification rate, h_{O_2} the half saturation oxygen concentration and f_n^T the temperature regulating factor expressed as:

$$f_n^T = Q_{10,n}^{\frac{T-10}{10}}$$
 (S3)

where $Q_{10,n}$ is the characteristic coefficient for nitrification.

- Reoxidation rate:

$$\left.\frac{dR_{eq}}{dt}\right|^{reox} = \Lambda_{R_{eq}}^{reox} \frac{O_2}{O_2 + h_{O_2}} R_{eq} \quad (S4)$$

in which $\Lambda_{R_{eq}}^{reox}$ is the constant specific daily reoxidation rate and h_{O_2} the half saturation oxygen concentration.

Tables

Symbol	Units	Value	Description	
$\Omega_c^{O_2}$	mmolO2 mgC ⁻¹	1/12	Stoichiometric coefficient for production and respiration	
$\Omega_n^{O_2}$	mmolO2 mmolN ⁻¹	2	Stoichiometric coefficient for nitrification reaction	
$\Omega_r^{O_2}$	mmolO ₂ (mmolHS ⁻) ⁻¹	2	Stoichiometric coefficient for anaerobic reaction	
<i>h</i> ₀₂	mmolO ₂ m ⁻³	10	Half saturation for nitrification and reoxidation	
$h_B^{O_2}$	mmolO ₂ m ⁻³	30	Half saturation constant for oxygen limitation (bacterioplankton)	
Λ^{nit}_A	d ⁻¹	0.01	Specific nitrification rate at 10 °C	
<i>Q</i> _{10,<i>n</i>}	-	2.367	Characteristic Q10 factor for nitrification	
$\Lambda^{reox}_{R_{eq}}$	d ⁻¹	0.05	Specific daily reoxidation rate of reduction equivalents	

ST1: Model parameters defined in Sect. 2.1.

	Emodnet_int	t_int BGC-Argo Static		Stations	
	No. O ₂ profiles	No. O ₂ profiles	No. GPP profiles	No. CR profiles	No. NCP profiles
alb	6	х	х	х	x
swm	34	602	1	1	2
nwm	1327	2623	(7)	8 (7)	(7)
tyr	147	587	2	2	3
adr	14	179	х	х	х
aeg	232	х	1	1	1
ion	315	897	7	7	8
lev	338	949	4	4	4

ST2: Number of profiles of O₂ and GPP, CR and NCP used in the validation procedure (with references for the observations indicated in the text). The time periods for the observations are: 1999-2016 for Emodnet_int and 2013-2019 for BGC-Argo float oxygen concentration (first and second column, respectively); 1999-2000, 2002-2003, 2006-2008, 2017 for planktonic metabolism observations (last three columns, where parentheses indicate coastal data).

Figures

Figure S1: Hovmöller plot of net primary production in western (left) and eastern Mediterranean (right) in 1999-2019 reanalysis simulation. Gray squares represent the euphotic depth (Zeu), i.e. the depth at which the modelled PAR is 1% of its surface value.

Figure S2: Spatial mean of the 1999-2019 annual summer values of the SOM concentration (first column) and depth (second column) within the A-E areas (rows) indicated in Fig. 6b of the manuscript. For each year, vertical bars indicate the spatial standard deviation. Trend significance has been evaluated by Mann-Kendall test (p=0.05) and the slope computed by Theil-Sen method has been provided in the plot in case of significant trend. Horizontal and vertical dashed lines refer to the year 2014 extensively discussed in the text.

Figure S3: Hovmöller plot of model-derived temperature (top) and salinity (down), with density contours (in black) in E area (Fig. 7) in 2014.

Figure S4: Hovmöller plot of mean model-derived monthly chlorophyll concentration in the Mediterranean areas indicated in Fig. 6 in 2014. White circles indicate the depth of the mixed layer, black and white rectangles the depth of DCM and SOM in the summer period (JAS months), respectively.