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Abstract. With a changing climate, it is becoming increas-
ingly critical to understand vegetation responses to limiting
environmental factors. Here, we investigate the spatial and
temporal patterns of light and water limitation on photosyn-
thesis using an observational framework. Our study is unique
in characterizing the nonlinear relationships between photo-
synthesis and water and light, acknowledging approximately
two regime behaviours (no limitation and varying degrees of
limitation). It is also unique in using an observational frame-
work instead of using model-derived photosynthesis proper-
ties. We combine data from three different satellite sensors,
i.e., sun-induced chlorophyll fluorescence (SIF) from the
TROPOspheric Monitoring Instrument (TROPOMI), surface
soil moisture from the Soil Moisture Active Passive (SMAP)
microwave radiometer, and vegetation greenness from the
Moderate Resolution Imaging Spectroradiometer (MODIS).
We find both single-regime and two-regime models describe
SIF sensitivity to soil moisture and photosynthetically ac-
tive radiation (PAR) across the globe. The distribution and
strength of soil moisture limitation on SIF are mapped in
the water-limited environments, while the distribution and
strength of PAR limitations are mapped in the energy-limited
environments. A two-regime behaviour is detected in 73 % of
the cases for water limitation on photosynthesis, while two-
regime detection is much lower at 41 % for light limitation
on photosynthesis. SIF sensitivity to PAR strongly increases
along moisture gradients, reflecting mesic vegetation’s adap-
tation to making rapid usage of incoming light availability on
the weekly timescales. The transition point detected between

the two regimes is connected to soil type and mean annual
precipitation for the SIF–soil moisture relationship and for
the SIF–PAR relationship. These thresholds therefore have
an explicit relation to properties of the landscape, although
they may also be related to finer details of the vegetation
and soil interactions not resolved by the spatial scales here.
The simple functions and thresholds are emergent behaviours
capturing the interaction of many processes. The observa-
tional thresholds and strength of coupling can be used as
benchmark information for Earth system models, especially
those that characterize gross primary production mechanisms
and vegetation dynamics.

1 Introduction

Vegetation plays a large role in the Earth’s system, modu-
lating land–atmosphere exchanges of water, carbon, and en-
ergy (Beer et al., 2010; Jasechko et al., 2013). With increas-
ing temperature and changing precipitation, and possibly
more intense droughts and heatwaves, these change-induced
factors that affect vegetation productivity have impacts on
global carbon budgets and food security (Liang et al., 2017;
Huang et al., 2018; Gentine et al., 2019). It is therefore im-
perative to understand how vegetation function responds to
environmental factors across the globe. More specifically, it
is important to understand how climatic factors create limita-
tions on vegetation function at large spatial scales (Ahlström
et al., 2015; Zhang et al., 2020a, b; Li et al., 2021). Such de-
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terminations using observed datasets are key for predicting
and validating terrestrial ecosystem productivity responses in
Earth system models (Fisher et al., 2018), ultimately improv-
ing our ability to predict the future land surface conditions in
the context of global change.

Remote sensing has proven to be a useful tool for map-
ping and monitoring vegetation function across the globe.
Satellite observations provide the ability to spatially integrate
over the behaviour of whole ecosystems, providing scaled-
up behaviour relevant to the global carbon cycle and Earth
system models. Observations of sun-induced chlorophyll flu-
orescence (or commonly called solar-induced fluorescence;
SIF) – radiation emitted at wavelengths of 650 to 800 nm
from plant photosystems – are valuable indicators of ecosys-
tem photosynthetic activity. In contrast to traditional vegeta-
tion reflectance indices, SIF is sensitive to diurnal and sea-
sonal photosynthetic dynamics and not only to changes in
greenness (Wang et al., 2020). SIF emission is connected to
transpiration and photosynthesis-related processes, and these
relationships are controlled by intrinsic water use efficiency
(WUE) and light use efficiency (LUE). Recent studies have
shown the value of satellite observations of SIF to moni-
tor ecosystem transpiration (Lu et al., 2018; Pagan et al.,
2019; Shan et al., 2019; Maes et al., 2020) and productivity
(gross primary production, GPP) (Joiner et al., 2014; Zhang
et al., 2016; He et al., 2020). Since 2009, surface soil mois-
ture (SM) could also be derived globally from low-frequency
microwave (L-band; 1.4 GHz) radiometer observations (En-
tekhabi et al., 2010; Kerr et al., 2010). While microwave
measurements are sensitive to the water in the top 5 cm of
the soil profile, it has been shown that SM estimates averaged
over several days are both physically and statistically corre-
lated to deeper root zone soil moisture (Akbar et al., 2018b;
Short Gianotti et al., 2019b; Feldman et al., 2022).

Using these satellite remote sensing developments, several
studies have analysed the influence of bio-climatic factors
on productivity. Madani et al. (2017) found that reanalysis-
derived soil moisture (SM), vapour pressure deficit (VPD),
and minimum daily air temperature are significant control
factors influencing ecosystem productivity over the globe.
They showed that SIF was positively correlated with soil
moisture on monthly timescales in dry biomes (e.g., Sahel),
whereas in humid biomes (e.g., Amazonia), SIF was nega-
tively correlated with soil moisture and positively correlated
with VPD. While Global Ozone Monitoring Experiment-2
(GOME-2) satellite SIF observations were used as proxy of
productivity, environmental factors were derived from model
reanalysis data, which may have model-prescribed relation-
ships between one another and with productivity. In addition,
factors influencing vegetation growth were limited to tem-
perature and moisture constraints, but other environmental
controls such as light limitation were not addressed.

Similarly, Nemani et al. (2003) have analysed the impact
of global climate changes on vegetation productivity using
global reanalysis data and a production efficiency model.

Their results indicate differential controls of light, water,
and temperature on vegetation but mainly with a reduction
of climatic constraints to plant growth during the last two
decades of the past century, with significant increase in net
primary production over large regions of Earth such as the
Amazon rain forests. Walker et al. (2020) review theory and
evidence suggesting a substantial increase in global photo-
synthesis since pre-industrial times driven at least in part by
increased atmospheric carbon dioxide concentration leading
to increases in plant water use efficiency.

Recently, using Orbiting Carbon Observatory-2 (OCO-2)
SIF and Soil Moisture Active Passive (SMAP) SM satel-
lite observations, Gonsamo et al. (2019) found that SM was
often a primary limiting factor to plant growth in drylands
and croplands. While based on a low number of concurrent
SIF and SM data records, the authors observed positive and
stronger SIF–SM relationships in drier and warmer regions.
In their study, nonlinear behaviour was not addressed.

Using satellite observations of SIF and climate datasets,
Liu et al. (2020) found that SM has a dominant role in de-
termining dryness stress on ecosystem production over most
land vegetated areas. However, the study was primarily inter-
ested in moisture effects, having investigated the relative role
of SM and VPD in limiting ecosystem production.

Short Gianotti et al. (2019a) showed that SIF–SM relation-
ships match satellite-derived GPP–SM relationships in both
time and space, with little-to-no SIF–SM relationship in the
light-limited humid regions of the contiguous United States
and increasing response strength with aridity. Water-limited
regions showed strong increases in ecosystem water use effi-
ciency (daily SIF or GPP divided by latent heat flux) during
SM dry spells.

Studies investigating global drivers of photosynthesis tend
to focus on linear relationships between these variables,
which potentially neglects nonlinear conditions where pho-
tosynthesis is not limited (Teubner et al., 2018; Gonsamo et
al., 2019). For example, the light use efficiency (LUE) model
is widely used in Earth system modelling to simulate GPP
as a linear function of absorbed light (Monteith, 1972). It
is becoming more evident that nonlinear plant function be-
haviour exists, especially depending on soil moisture (under
dry and wet moisture states) (Feldman et al., 2018; Short Gi-
anotti et al., 2019a; Bassiouni et al., 2020). Those that eval-
uate nonlinear relationships do so regionally or globally and
do not evaluate on a per-pixel basis (Madani et al., 2017).
The global patterns of SIF relationships with water and light
across climates and biomes remain under-characterized. Yet,
the influence of environmental factors on vegetation produc-
tivity (and carbon cycle) has both weather timescale and sea-
sonal timescale (relative timing of warm and wet seasons).
Both timescales are important and exist in nature. Ecosystem
responses on these different timescales are to date not well
understood (Linscheid et al., 2020).

The objective of this study is to evaluate the environmen-
tal factors that limit surface water and carbon exchanges over
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vegetated areas. Specifically, we ask the following questions.
What are the conditions under which SIF is limited by water
and light in space and time? Can we detect first-order non-
linear controls of water and light on photosynthesis as sug-
gested from theory? If so, are there climatic controls on the
water and light availability thresholds that divide regimes of
SIF nonlinear responses to environmental variables? Here,
we use an observation-based framework to evaluate nonlin-
ear relationships between SIF and available water and light.
Observations are key to providing benchmark information
for parameterizing effects of water stress or light limitation
on ecosystem productivity in Earth system models. Modelled
vegetation products can implicitly or explicitly parameterize
the relationships between SIF and water and light that we
intend to evaluate. In this observationally driven study, we
combine three data streams – sun-induced chlorophyll fluo-
rescence (SIF) from the TROPOspheric Monitoring Instru-
ment (TROPOMI), surface soil moisture (SM) from SMAP,
and normalized difference vegetation index (NDVI) from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
– to globally monitor observational evidence for seasonal wa-
ter limitation and light limitation in plant function.

2 Data

Satellite-based data were collected and analysed for our main
per-pixel approach for a 2.5-year period from April 2018 to
September 2020 (determined by the concurrently available
TROPOMI and SMAP data; see Table 1). Climatology infor-
mation from decade-long time series was used as auxiliary
datasets.

2.1 Global satellite data

2.1.1 TROPOMI sun-induced chlorophyll fluorescence

Sun-induced chlorophyll fluorescence (SIF,
mW m−2 nm−1 sr−1) data are obtained from the TRO-
POspheric Monitoring Instrument (TROPOMI) aboard
the Sentinel-5 Precursor satellite (Köhler et al., 2018).
TROPOMI provides optical observations with a spectral
resolution of 0.5 nm, a spatial resolution of 7× 3.5 km2

(along track× across track) at nadir, and almost global
coverage within 1 d. Sentinel-5 Precursor has an overpass
time near 13:30 local solar time. SIF is retrieved in a spectral
window ranging from 743 to 758 nm using the method of
Köhler et al. (2018). SIF observations with large cloud
cover (cloud fraction larger than 0.8) were filtered out as
described in Köhler et al. (2015). As a robustness test, we
additionally use SIF data from the Global Ozone Monitoring
Experiment-2 (GOME-2) instrument aboard the MetOp-A
satellite, for the period of April 2015 and March 2019, the
longest period for which SMAP and GOME-2 are jointly
available (Joiner et al., 2013).

2.1.2 SMAP soil moisture

Surface soil moisture (SM (m3 m−3)) data (top 5 cm) are
from the L-band (1.4 GHz) microwave radiometer aboard the
NASA Soil Moisture Active Passive (SMAP) satellite (En-
tekhabi et al., 2010). Microwave observations from the 06:00
local solar time descending overpasses were used with a spa-
tial resolution of 36× 36 km2 and a global coverage within
3 d. Retrievals of soil moisture were obtained using the multi-
temporal dual channel algorithm (MT-DCA) (Konings et al.,
2016; Feldman et al., 2021). The MT-DCA algorithm esti-
mates vegetation attenuation and scattering from an algo-
rithm with temporal regularization. It does not use any in-
formation on land-use and ecosystem classifications which
would bias the results otherwise. While the microwave mea-
surements are commonly known to reflect the top 5 cm, sev-
eral lines of evidence suggest SM can viably represent rel-
evant root zone dynamics in most cases. First, under wetter
conditions, SMAP SM is known to closely correlate with root
zone dynamics, especially in the upper 50 cm (Akbar et al.,
2018b; Short Gianotti et al., 2019b). Under drier conditions,
microwave emission depth originates from deeper than 5 cm,
down to a metre in some cases depending on soil proper-
ties (Njoku and Entekhabi, 1996). Furthermore, many plants,
especially species in semi-arid grasslands where we mainly
evaluate SIF–SM, have rooting distributions skewed to the
upper layers (< 30 cm) with preferential uptake of water in
the upper soil layers (Flanagan et al., 1992; Meinzer et al.,
1999; Miguez-Macho and Fan, 2021). As such, SMAP, in
fact, effectively senses soil layers deeper than 15–25 cm, rel-
evant to global root water uptake especially in water-limited
ecosystems (Feldman et al., 2022).

2.1.3 MODIS normalized difference vegetation index

Normalized difference vegetation index (NDVI) data come
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument aboard the NASA Terra satellite. NDVI
data between 1 January 2003 and 31 December 2021 were
obtained from the level 3 MODIS product which is a cloud-
free 16 d 0.05◦ dataset (Didan, 2015). We linearly resampled
the 0.05◦ grid to the 36 km EASE2 grid. Then, we linearly
interpolated the 16 d NDVI data to daily values to determine
growing-season start and end dates within each pixel.

2.2 Ancillary data for analyses

2.2.1 Mean annual precipitation and soil type

Mean annual precipitation is obtained by averaging annual
means between 2010 and 2020 from the Integrated Multi-
satellitE Retrievals for GPM (IMERG) final run product
combining data from the Global Precipitation Measurement
(GPM) satellite constellation (Huffman et al., 2019). Sand
and clay fraction information was also obtained from the
SoilGrids250m database (Hengl et al., 2017). These metrics
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Table 1. List of datasets used in this study with their respective native spatial and temporal resolution. Note that the datasets were all linearly
aggregated to a spatial resolution of 72× 72 km2 and 8 d periods.

Variable Source of data Spatial resolution Temporal resolution

Sun-induced chlorophyll fluorescence Sentinel-5P satellite
TROPOMI

7× 3.5 km2 1 d

Soil moisture SMAP satellite
L-band radiometer

36× 36 km2 3 d

Normalized difference vegetation index Terra satellite
MODIS

0.05◦ 16 d

Photosynthetically active radiation MERRA-2 global reanalysis 0.5◦× 0.625◦ 1 d

Precipitation GPM satellite constellation
IMERG product

0.1◦× 0.1◦ 0.5 h

Figure 1. Growing-season determination based on MODIS nor-
malized difference vegetation index (NDVI). Day of the year for
the phenological peak based on MODIS NDVI climatology. White
shading indicates NDVI was not available (bare soil or water bod-
ies).

were used to evaluate climate gradients of spatial maps gen-
erated in the analysis.

2.2.2 MERRA-2 photosynthetically active radiation

Daily and downwelling photosynthetically active radiation
(PAR (W m−2)) data are provided by the NASA Modern-
Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) global reanalysis (GMAO, 2015).
The spatial resolution is 0.5◦× 0.625◦. While PAR is an
observation-driven modelled product, it is not expected to
have strong relationships with vegetation function prescribed
within the model because it is driven mainly by solar season-
ality and assimilated atmospheric fields such as cloud cover.

2.3 Spatial and temporal aggregations

The SIF, PAR, and NDVI data were regridded on a linear
weighting basis to the EASE-2 SMAP grid (36× 36 km2).
The SIF, SM, and PAR data were also aggregated tempo-
rally to produce 8 d composites. The temporal aggregation

was performed to smooth SIF data, with 8 d aggregation se-
lected to match the exact repeat cycle of SMAP. To increase
sample size for the correlation maps and the regime classifi-
cation, the SIF, SM, and PAR data at 36× 36 km2 resolution
are pooled in 2×2 pixel boxes, for each 8 d period. In the fol-
lowing section, all maps have therefore a spatial resolution of
72× 72 km2.

3 Methodology

3.1 Growing-season estimation

Since we analyse the seasonal water limitation and light lim-
itation of plant function only during the growing season, the
growing season for each global pixel was first defined using
NDVI climatology. The NDVI climatology was developed by
averaging 19 years (2003 to 2021) of NDVI data into a mean
climatology and smoothing using a 90 d moving average fil-
ter (Fig. S1 in the Supplement). The growing season was de-
fined by first finding the peak of the NDVI climatology to
identify the main growing season and then finding the green
up and brown down times as when NDVI reaches its median
before and after this peak. This results in growing seasons
with a peak on day of the year (DOY) between 100 and 275 in
the Northern Hemisphere and DOY typically between 0 and
50 and 300 and 365 in many regions of the Southern Hemi-
sphere (Fig. 1). There are a number of different approaches to
estimating plant phenology based on satellite measurements
(e.g., see Moulin et al., 1997; Zhang et al., 2006; Bush et al.,
2018; Morellato et al., 2018; Peano et al., 2019). Ultimately
the applied technique depends on the application needs, and
the approach followed here is sufficient to characterize the
active growing season encompassing the primary water and
energy interactions with the carbon cycle. It is worth noting
that for some regions, several peaks could be observed. The
peak with the maximum NDVI was selected corresponding
to the primary growing season, such as in the tropics, which
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Figure 2. TROPOMI sun-induced chlorophyll fluorescence (SIF)
and SMAP-MT-DCA soil moisture (SM) growing-season correla-
tion. Pearson correlation coefficient of 8 d averages. Regions of
statistical significance (P < 0.05) are indicated with stippling. The
stippling corresponds to distributed areas of statistically significant
grid points, and therefore each statistically significant pixel may not
have its own dot.

are characterized by a smaller seasonal amplitude. We addi-
tionally tested shorter growing seasons to ensure that shoul-
der seasons did not influence results.

3.2 Conceptual basis

While chlorophyll fluorescence originates from energy par-
titioning at the photosystem (leaf) level, SIF presents as an
aggregated landscape variable at large spatial and temporal
scales (as considered in this study). It is a function of the
absorbed PAR (APARChl = PAR× f PARChl, with f PARChl
being the fraction of PAR absorbed by chlorophyll pigments
and mainly controlled by vegetation cover fraction, leaf area
index, leaf chlorophyll content, and plant structure) and the
fluorescence quantum yield (φF, mainly controlled by leaf
biochemical properties and dependent on plant health and
water status), both correlated with photosynthetic productiv-
ity and strongly influenced by water and energy (light) avail-
ability (Joiner et al., 2014; Jonard et al., 2020; Magney et al.,
2020):

SIF(λ)= PAR× f PARChl×φF(λ)× fesc(λ)× τatm(λ), (1)

with fesc being the fraction of SIF (at wavelength λ) emitted
from all leaves that escape from the canopy and τatm being
the fraction of SIF that also passes through the atmosphere
(τatm).

The behaviour of the factors in Eq. (1) differs strongly
throughout the globe. For instance, annual croplands tend to
show large variations in f PARChl and fesc during the grow-
ing season, while these factors are expected to remain more
constant over evergreen forests. The value of φF is expected
to react to the ambient stress conditions (De Cannière et al.,
2021). Light- and water-limited photosynthesis will first im-
pact the photosynthetic machinery, affecting φF. A prolonged
water- or light-limited regime will manifest in primary pro-

Figure 3. TROPOMI sun-induced chlorophyll fluorescence (SIF)
and MERRA-2 photosynthetically active radiation (PAR) growing-
season correlation. Same conventions as Fig. 2.

duction and biomass growth and therefore on f PARChl and
on fesc. Evaluating the combination of the parameters in
Eq. (1) provides insights on the limiting factors of the plant
growth. Furthermore, it is expected that many of these pa-
rameters are nonlinearly related to water and light limitation
(Xu et al., 2021).

We emphasize that it is not our goal to investigate all possi-
ble limiting factors on photosynthesis (e.g., temperature, nu-
trient limitation) or how they interact to create states where
one or both variables are limiting. A more comprehensive
analysis can classify states along multiple axes of climatic
factors. Our single-axis classification provides a first step to-
wards such classifications in detecting globally where, to a
first order, nonlinear relationships between SIF and water
and/or light emerge. It also determines observed spatial vari-
ations of the types of climatic factor relationships with SIF.
The effects of water and light are at least expected to capture
the major global limiting pathways based on previous work
(Madani et al., 2017).

3.3 Correlation maps

As a zeroth-order analysis motivating our subsequent evalu-
ation of SIF, we first evaluate the Pearson correlation coeffi-
cient between SIF and SM (Fig. 2) and SIF and PAR (Fig. 3)
using our 8 d aggregations of each variable. Only values from
the growing season are used. In this case, factors that directly
limit SIF appear to be positively correlated with SIF (in blue
in Figs. 2 and 3). Ultimately, the correlation maps guide sub-
sequent analysis of more detailed two-regime behaviour. The
SIF–SM correlation map (Fig. 2) shows large regions of wa-
ter limitation (blue regions), such as the Sahel, eastern and
southern Africa, eastern Brazil, southern Asia, and eastern
Australia. The SIF–PAR correlation map (Fig. 3) shows large
regions of positive correlation (blue regions), such as much
of the United States, southern Brazil, Europe, and Russia,
which are negatively correlated with SM in Fig. 2. Green et
al. (2017) provide a more in-depth analysis of linear corre-
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Figure 4. Schematics of model types for the SIF–SM and SIF–PAR regimes. The Bayesian information criterion (BIC) is used to avoid
overfitting among models during statistical selection.

spondences between vegetation growth and land/atmosphere
variables among others.

Low SIF–SM correlations occur mainly in densely
forested regions where soil moisture estimation uncertainty
is largest and potentially surface soil moisture is less of a con-
trol on vegetation function than other factors. Regions in blue
in Fig. 2 are generally in red in Fig. 3, revealing that SM and
PAR are typically negatively correlated (Fig. S2). This is due
to synoptic-scale correlations between cloud cover and soil
moisture (positive) and between cloud cover and shortwave
radiation (negative), as well as seasonal-scale alignment of
growing-season peaks with peaks in the primarily limiting
component: light or water. Given these considerations, in the
remainder of our analysis, we do not evaluate negative rela-
tionships between SM (or PAR, separately) and SIF, which
could reflect a spurious relationship due to limitation from
the other variable. We expect that positive correlations be-
tween SM (or PAR) and SIF reflect causal relationships from
SM (or PAR) to photosynthesis in limiting environments. We
similarly hypothesize that negative correlations between SM
and SIF indicate light limitation or a lagged response of root
uptake and increased PAR following precipitation events.

3.4 Regime classification

Pearson correlation provides information about the degree to
which a variable linearly limits SIF. However, in many cases,
nonlinear relationships are present where the strength of lim-
itation may decrease above a certain threshold of soil mois-
ture or photosynthetically active radiation (e.g., see Fig. 5).
Therefore, this can bias linear correlations and obscure their

interpretation in Figs. 2 and 3 as well as previous studies
(Gonsamo et al., 2019). We approximate this relationship
here as a two-regime linear model to characterize conditions
when water or light limits SIF. In some instances, only one
regime may be observed for either water or light. Therefore,
three distinct models were tested, representing three scenar-
ios for each limitation (water and light) (Fig. 4) as in previ-
ous studies that evaluated surface energy fluxes (Akbar et al.,
2018a; Feldman et al., 2019).

The following models are used for SM and PAR separately
and independently. Only model selections are completed in
the pixels where the given variable is positively correlated
with SIF (Figs. 2 and 3). If a given pixel shows a positive SIF
correlation with both SM and PAR, then models for both SM
and PAR are estimated. The first model is the linear model
representing the water- or light-limited regime (Fig. 4a and
d). Here, the conditions are always characterized by water
or light limitation without another regime of behaviour de-
tected. An increment of SM or PAR always impacts pho-
tosynthesis and therefore the SIF. The second model is the
full two-regime model representing the two regimes of water
and light limitation (Fig. 4b and e). Only when this regime is
determined, a moisture or light threshold will be estimated.
Below this threshold, the given variable limits SIF. Above
the threshold, an increment of SM or PAR will not affect
photosynthesis. The third model is the zero-slope model for
the no-water-limitation regime or no-light-limitation regime
(Fig. 4c and f). In this case, plant growth is not sensitive to
water or light within the variability observed at that location.
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Figure 5. Example SIF relationships with water and light with model estimation from Fig. 4 demonstrated. Scatter plot of (a) sun-induced
chlorophyll fluorescence (SIF (mW m−2 nm−1 sr−1)) and soil moisture (SM (m3 m−3)) data and (b) SIF and photosynthetically active
radiation (PAR (W m−2)) data for the primary growing season and for a single 72× 72 km2 pixel located in (a) the Sahel region (Mali, lati-
tude/longitude: 13.68◦ N/6.35◦W) and (b) Spain (Zamora, latitude/longitude: 41.25◦ N/5.60◦W). Data are fitted with a two-regime model.

A model is selected based on the Bayesian information
criterion (BIC) in order to avoid overfitting among mod-
els shown in Fig. 4. Specifically, BIC penalizes more com-
plex models (i.e., two-regime model here) that inherently in-
crease the model fit to the data but may not provide more
predictability than more parsimonious models. For example,
the linear model has one additional parameter than the zero-
slope model, which is the slope. In order for the linear model
to be selected, the additional parameter of a non-zero slope
must increase the model fit beyond the penalty of overfitting.
Note that an information criterion like BIC has been applied
to similar model selection applications of water and energy
limitation (Feldman et al., 2019; Schwingshackl et al., 2017).
Example pixels are shown in Fig. 5, where the two-regime
model is selected by this method. Note that we only perform
the analysis on pixels with at least 20 pairs of SIF–SM or
SIF–PAR.

4 Results and discussion

In this section, we present the results of the selection of
the best-fit model (based on the Bayesian information cri-
terion) among the three model types described above (linear,
two-regime or zero-slope model) for each factor’s (water and
light) limitation on SIF.

4.1 Water-limited regimes

The spatial distribution of the selected model types, the cor-
responding model slopes, and the frequency distribution of
the model threshold for the SIF–SM relationship are shown
in Fig. 6. Several regions with a two-regime water limita-
tion can be clearly identified, such as most of sub-Saharan
Africa (except the Congo Basin), southern Asia, eastern Aus-
tralia, eastern Brazil, and Mexico. Few regions are identi-
fied as having no water limitation, meaning that while their
growing-season SIF–SM correlation is positive, it does not

aid the fit in model estimation to have a non-zero slope.
This likely means that the SIF–SM slope is positive but near
zero. Arid and semi-arid regions, with sparsely vegetated
areas, show expected water-limitation patterns. Among the
pixels showing a water limitation on photosynthesis, 72.5 %
were characterized by a two-regime behaviour, suggesting
widespread nonlinearity of the soil moisture controls on veg-
etation. Therefore, at a given water-limited location, a unit
loss of soil moisture typically confers more plant water stress
when soil moisture is drier on average than when it is wetter.

Slope values are the highest (up to 10 mW m−2 nm−1 sr−1

per m3 m−3) in the Sahel region, Miombo woodlands south
of the Congo Basin (Angola, Zambia, Mozambique), India,
the Mekong basin, and eastern Brazil. These regions corre-
spond well to the tropical savannah climate of the Köppen–
Geiger climate classification (Beck et al., 2018). In these re-
gions, in the water-limited regime, a small incremental in-
crease in soil moisture corresponds to a large increase in veg-
etation productivity and therefore the expected 8 d mean flu-
orescence emission. The high slope values of the regression
between SIF and SM in drylands is mainly due to the clear
relationship between photosynthetic efficiency, and there-
fore also φF, and water availability. As a feedback of the
increase in photosynthetic activity, the plant green biomass
increases, leading to an increase in f PARChl. The latter ef-
fects are especially determined by the water supply over dry-
lands (Moreno-de las Heras et al., 2015). SIF observations
allow monitoring of the combined biomass and photosyn-
thetic efficiency effect. Values of the soil moisture thresh-
old are between 0 and 0.45 m3 m−3, with a median around
0.1–0.2 m3 m−3 (Figs. 6c and S3a for the spatial distribu-
tion). When the soil moisture state is above this threshold,
SIF has minimal to no water limitation. It is worth noting
that the threshold value might be harder to detect for re-
gions with a low slope value. Furthermore, the SM thresh-
olds are correlated (across space) with soil texture (correla-
tion coefficient ρ = 0.37, p value P < 0.01 with clay frac-
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Figure 6. Estimated SIF–soil moisture (SM) relationship features. (a) Model type (W.-L.: water-limited; 2-R. W.-L.: two-regime water-
limited; No W. L.: no water limitation), (b) model slope (mW m−2 nm−1 sr−1) in the water-limited regime, and (c) model threshold (m3 m−3)
for the SIF–SM relationship. White shading denotes areas where the SIF–SM correlation is not positive – i.e., where SIF is not increasing
with SM – or areas where no collocated SIF and SM records are available.

tion; ρ =−0.40, P < 0.01 with sand fraction). Such correla-
tions were similarly observed by Denissen et al. (2020) over
Europe. SM thresholds were also broadly assessed based
on vegetation types using International Geosphere-Biosphere
Program (IGBP) land cover classification information. There
is a tendency for the forested and tree-covered IGBP classi-
fications to have higher soil moisture thresholds (Fig. S4a),
though it is still unclear whether the drivers of the soil mois-
ture threshold are dominated by vegetation characteristics or
characteristics of wetter mean climate conditions.

4.2 Light-limited regimes

The spatial distribution of the selected model types, the cor-
responding model slopes, and the frequency distribution of
model threshold for the SIF–PAR relationship are shown
in Fig. 7. In contrast to the SIF–SM relationship, a light-
limitation regime is observed in many parts of the Northern
Hemisphere, mainly in southern Canada, the western United
States, the US East Coast, western and central Russia, the
Balkans, and the Baltic region. Several regions are identified
as having a break point between two regimes of light (non-
)limitation, such as western Europe (France, Spain, Italy,
Great Britain), northern Russia, the US Corn Belt, southeast-
ern South America, and southeastern Africa. Among the pix-
els showing a light limitation on photosynthesis, only 40.5 %
were characterized by a two-regime behaviour. These regions
of two-regime light limitation and threshold behaviour are

novel given that two-regime light influence on photosynthe-
sis has not been observed or considered at large scales previ-
ously.

Slope values are highest (up to 0.015 mW m−2 nm−1 sr−1

per W m−2) in the midlatitudes, specifically in the Great
Lakes regions of North America, most of Europe, southern
Russia, northern Argentina, and southern Brazil. These re-
gions correspond well to the cold and temperate climates
without a dry season (hot or warm summer) of the Köppen–
Geiger climate classification (Beck et al., 2018). A large
proportion of these regions is used for annual crops. Their
green biomass, and therefore the f PARChl, is strongly af-
fected by the (cumulative) PAR of the growing season. This
explains a large part of the SIF–PAR relationship over these
regions. In these regions, a small increment of light will sub-
stantially increase the vegetation productivity and therefore
the expected fluorescence emission. This suggests that the
Calvin cycle of these plants are adapted to strongly respond
to light availability compared to other regions. By contrast,
in the high latitudes of the Northern Hemisphere, slope val-
ues are the lowest, probably due to lower temperatures and
limited seasonal changes in biomass of boreal ecosystems.
Values of the estimated PAR threshold are between 0 and
140 (W m−2) with a maximum occurrence around 100–110
(W m−2) (Figs. 7c and S3b for the spatial distribution). When
light availability is above this threshold, SIF has minimal to
no light limitation. Such threshold behaviour is theoretically
expected based on the nonlinear relationship between in-
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Figure 7. Estimated SIF–photosynthetically active radiation (PAR) relationship features. (a) Model type (L.-L.: light-limited; 2-R. L.-L.: two-
regime light-limited; No L. L.: no light limitation), (b) model slope (10−3 nm−1 sr−1) in the light-limited regime, and (c) model threshold
(W m−2) for the SIF–PAR relationship. White shading denotes areas where the SIF–PAR correlation is not positive – i.e., where SIF is not
increasing with PAR – or areas where no collocated SIF and PAR records are available.

coming shortwave radiation and plant carbon fixation (Jones,
2014). Specifically, nonlinear relationships between SIF and
PAR are expected because many plant cellular processes are
strongly light limited in low-light environments but become
maximized in brighter environments (Jones, 2014). For ex-
ample, the light response curve fundamentally defines the
rate of leaf-level carbon fixation that is limited under low-
light environments but becomes Calvin cycle limited (i.e.,
carboxylation limiting) in brighter environments where more
light marginally produces more carbon uptake (Hermann et
al., 2020). Laboratory experiments have shown a decrease
in leaf-level fluorescence yield in high-light environments
(Wang et al., 2018). Similarly, De Cannière et al. (2022) ob-
served a near-linear behaviour of canopy-level SIF emission
under low-light conditions, while saturating at higher light
availability values. Our threshold and slope estimates here
are some of the first large-scale observations of these funda-
mental light-limiting photosynthesis processes.

The PAR thresholds are additionally correlated with soil
texture (ρ = 0.25, P < 0.01 with clay fraction). Significant
differences in PAR threshold values are observed according
to the IGBP land cover classes (see Fig. S4b). We note that
PAR may relate strongly with surface temperature at seasonal
scales in the Northern Hemisphere, and thus relationships
here may include the influence of surface temperature (Buer-
mann et al., 2018; Zhang et a., 2020a). For example, the high
SIF slope in the Northern Hemisphere midlatitudes may be

inflated because we do not partition temperature limitation,
which requires future investigation.

4.3 Relationships of SIF limitation characteristics with
mean moisture availability

SIF sensitivity to soil moisture shows a relationship with
mean annual precipitation (Fig. 8a; ρ = 0.32, P < 0.01 with
slopes corresponding to the sloped part of the two-regime
model and the one-regime linear model). Sensitivities peak
at approximately 1000 mm yr−1. Locations with peak slopes
occur in the wetter environments such as in India, south-
eastern Asia, Angola, and Mozambique. These larger slopes
are likely related to the degree to which vegetation responds
to mean moisture and individual storms, given the weekly
timescales of this analysis (Feldman et al., 2018). It also in-
dicates that these wetter regions may have a stronger plant–
water stress response when the land surface becomes drier
below the soil moisture threshold.

SIF sensitivity to PAR shows an even stronger relationship
with annual precipitation (Fig. 8b; ρ = 0.44, P < 0.01), es-
pecially for regions below 1000 mm yr−1 (Fig. 8b; ρ = 0.46,
P < 0.01). The increasing sensitivities may similarly be an
adaptation of the vegetation to utilize light availability, given
that moisture is typically less limited in these regions.

Furthermore, both SM and PAR thresholds are correlated
(across space) with mean annual precipitation (Fig. 8c and
d; ρ = 0.31 and 0.29, respectively, P < 0.01; ρ = 0.14 and
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Figure 8. (a) SIF–SM slopes (mW m−2 nm−1 sr−1), (b) SIF–PAR slopes (10−3 nm−1 sr−1), (c) SIF–SM thresholds (m3 m−3), and (d) SIF–
PAR thresholds (W m−2) binned as a function of mean annual precipitation (mm yr−1) obtained from the GPM satellite constellation. Slope
values correspond to the sloped part of the two-regime model and the linear model (see Fig. 4). Each boxplot bin includes the same number
of data points (915, 1548, 664, and 629 data points for boxplots, a, b, c, and d respectively). Box edges are the 25th and 75th percentiles
of the distribution bounding the median (bold line), and whiskers extend to extrema (maximum and minimum). The median SIF–SM and
SIF–PAR slopes and the median SIF–SM and SIF–PAR thresholds all increase with increasing mean annual precipitation.

0.37, respectively, P < 0.01, when considering only regions
below 1000 mm yr−1).

4.4 Robustness and limitations

The main sources of uncertainty in this study include (1) ob-
servation errors from the data streams (SIF, SM, PAR),
(2) growing-season definition errors, (3) model structural and
parameter estimation errors, and (4) lack of consideration of
all SIF-limiting factors. Here, we discuss each of these error
sources and conduct several tests to evaluate the robustness
of results to these errors, including repeating the analysis on a
different satellite SIF dataset, on alternative growing-season
definitions, and on deseasonalized variables.

To assess the effect of observation errors, we first re-
peat the analysis with GOME-2 SIF data, which resulted
in comparable spatial patterns and thus robustness of the
TROPOMI-based results (see Fig. S5). However, the main
differences are reduced classification of the regimes with
more parameters where the linear and two-regime models are
selected less often. This is mainly because GOME-2 SIF re-
sults in fewer data pairs, which reduces the ability for the

model selection to select more parameterized models. An-
other reason could also be related to the different timing of
observations, with an overpass time near 13:30 local solar
time for TROPOMI and near 09:30 for GOME-2. The higher
water stress generally observed around noon compared to
the morning could explain the lower detection of the water-
limited regime (Qiu et al., 2020). TROPOMI was used as the
main dataset given that its higher spatiotemporal coverage
and lower retrieval noise were essential for the regime clas-
sification. We avoid evaluating alternative soil moisture and
PAR datasets given that the study would result in a combi-
natorial analysis which we wish to avoid. Furthermore, it is
more appropriate to evaluate alternative SIF measurements
because SIF is a weak signal with relatively larger measure-
ment errors given its retrieval from noisy atmospheric proper-
ties compared to lower error microwave remote sensing tech-
niques for soil moisture, for example (Köhler et al., 2018;
Jonard et al., 2020).

These results are based on a growing season with the
start and end defined using the median NDVI (accounting
for asymmetrical growing season with dynamic length). We
found that spatial patterns of results were qualitatively the
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same when repeating the analysis considering a shorter grow-
ing season defined based on an NDVI threshold of 75 % of
the peak value (see Figs. S7 and S8), which suggests a re-
duced impact of seasonality considerations on results. There-
fore, the results are not a strong function of the growing-
season definition and are not greatly influenced by transi-
tional time periods before and after the growing season that
may be included in our definition. The fact that we condition
on the growing season and do not assess the full year removes
some influence of seasonality on the results, where too much
influence of seasonality may amplify the determined connec-
tions between SIF with water and light. We acknowledge that
this approach may miss secondary growing seasons in some
regions.

Uncertainties from the retrieval error can also be evaluated
by calculating the coefficient of determination (R2). How-
ever, R2 is not appropriate for measuring the goodness of fit
for nonlinear (here broken linear) models. This is why the
R2 and the coefficient of variation (CV) of the model fit have
been considered together as shown in Fig. S6. The R2 values
are higher in regions with high SIF sensitivity to SM or PAR
(higher slopes in Figs. 6b and 7b). They tend to be lower in
regions with more energy limitation (for SIF–SM), for exam-
ple. This does not mean that the model fit is uncertain but that
the SIF–SM slopes are approaching zero as physically ex-
pected. However, low R2 values can be observed in other re-
gions that do not conform to this claim. For example, boreal
regions tend to have lower R2 values, which may be related
to instrument and/or retrieval noise. Some of these locations
may have additionally low R2 due to the simplified form of
our models. However, we expect a large influence of SIF re-
trieval noise considering that retrieval error variance tends to
be higher in SIF retrievals than for satellite-based vegetation
reflectance metrics (Dechant et al., 2022). As such, R2 val-
ues of 0.5 and 0.6 are a relatively good fit given SIF retrieval
noise that will limit higher R2 values. An uncertainty anal-
ysis of the model selection and parameters using bootstrap-
ping (with 1000 iterations) on 100 randomly selected pixels
showing a two-regime behaviour (100 pixels for each limita-
tion) reveals that the mean bootstrapped standard deviation of
the SIF–SM slope, SIF–SM threshold, SIF–PAR slope, and
SIF–PAR threshold is 3.6 mW m−2 nm−1 sr−1, 0.02 m3 m−3,
0.004× 10−3 nm−1 sr−1, and 5.5 W m−2, respectively. The
SIF–SM regime selection was on average (for the 100 pix-
els) the same for more than 75 % of the bootstrapping itera-
tions, but the SIF–PAR regime selection tended to be more
uncertain (around 60 % of the iterations). This may be be-
cause the functional form of the SIF–PAR relationship is less
well defined in many locations than the SIF–SM functional
form. An example of bootstrapping analysis for 2 pixels is
shown in Fig. S9. There is potential for structural errors and
consequent parameter estimation errors when assuming that
a piecewise linear model fits a more complex nonlinear rela-
tionship that has curvature. As such, this creates uncertainties
in soil moisture thresholds, for example. However, relatively

low soil moisture threshold variances were found from the
uncertainty analysis (mean bootstrapped standard deviation
of 0.02 m3 m−3) showing robustness of the method and sug-
gesting the curvature may not bias thresholds greatly. Never-
theless, we emphasize the importance of the threshold detec-
tion, apart from its numerical value, which occurs despite the
presence of curvature. The two-regime model is appropriate
given the known nonlinear relationships that drive environ-
mental influence on plant function (Jarvis, 1976). As such,
studies that do not acknowledge the different regimes and
assume linear SIF relationships with the environment would
bias estimations of SIF–SM or SIF–PAR relationships. Our
results here suggest that with widespread detection of non-
linear SIF relationships with SM and PAR, the commonly
used linear correlations and slopes between these variables,
ignoring the nonlinearity, will create biases in evaluating wa-
ter and light limitation. Finally, we repeated the results us-
ing the Akaike information criterion (AIC) rather than BIC
to test the selection frequency of the more complex model
forms (i.e., linear model and two-regime model). We found
that our use of BIC is conservative in selecting less complex
models. AIC finds a much more frequent detection of more
complex models at a greater risk of overfitting the data over
that of BIC (not shown).

Not assessing all limiting variables including temperature
and nutrient limitations is a drawback of the analysis. Our
analysis indeed misses some limitations on plant function.
For instance, no water and light limitation can be seen in
the same regions (such as tropical forests) where other bio-
climatic factors (such as nutrient limitation) could influence
plant growth. Predominance of a water versus light-limiting
regime might also shift over the growing season and between
years, particularly in transitional climate regions (Senevi-
ratne et al., 2010). However, we also note that the raw SIF–
SM relationships, and not their deseasonalized relationships,
include coupling from many factors beyond just water limita-
tion on SIF. We repeated the computation of linear slopes in
the limiting regime using deseasonalized variables and found
that the relationships are still positive but are reduced (not
shown). Because deseasonalized variables will show a more
direct, isolated connection between SIF and each of these
limited variables, this analysis indicates that SM and PAR do
have direct influences on SIF. However, the higher magnitude
slopes in their raw interactions indicate that other factors and
their interactions with water and light limitation are included
in the SIF–SM and SIF–PAR relationships in addition to the
influence of SM and PAR alone. As such, we argue in favour
of determining the SIF–SM and SIF–PAR relationships with
the raw (non-deseasonalized) variables to assess the state de-
pendence and coupling of multiple limiting factors on SIF.
These overall relationships provide a test for model emergent
behaviour and coupled coevolution of multiple variables and
their influence on SIF.
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4.5 Future work

Finally, we aimed to only detect and observe the emerging
relationships in nature of how photosynthesis is limited by
water and light. The procedure was purposefully naïve and
required few assumptions, allowing the observations alone to
drive the results. This is the first step in the process of using
detection procedures that include interactive effects of water
and light with other variables. One can also obtain a more
mechanistic understanding of physiological behaviour by es-
timating parameters, such as from Eq. (1), from the observed
behaviour in Figs. 6 and 7. However, these future approaches
require more assumptions, which have the added challenge
of detecting natural emerging behaviour without biasing the
results with restrictive assumptions.

The observation-only approach is chosen to best identify
the naturally occurring and emerging plant function response
to the environment. Such a study informs others that the
use of model or reanalysis frameworks that have built-in as-
sumptions may confound the results. Nevertheless, the use
of PAR from reanalysis here should be updated in the future
with globally available shortwave radiation observations. Ul-
timately, we expect that MERRA-2 PAR is not largely in-
fluenced by built-in interactions with land surface behaviour
given that it is driven mostly by the atmospheric model
scheme and assimilation of soundings.

5 Summary and conclusion

In this study, we map observational evidence for seasonal
water limitation and light limitation in plant function at the
ecosystem scale. We analysed data from three different satel-
lite sensors, namely sun-induced chlorophyll fluorescence
from TROPOMI, surface soil moisture from SMAP, and nor-
malized difference vegetation index from MODIS. In this
purely observationally driven study, the combination of the
three data streams allowed us to test a set of hypotheses on
the types and extent of bio-climatic regions that should be
classified as under seasonal water or light limitation.

To detect where nonlinear controls of water and light
on photosynthesis occur, three distinct models were tested
representing three scenarios for each limitation (water and
light). The first model is the linear model representing the
water- or light-limited regime. The second model is the non-
linear two-regime model representing the situation where the
rate limitation ceases above a certain threshold of soil mois-
ture (SM) or photosynthetically active radiation (PAR). The
conditions to select this model are conservative, and thus
we exhibit confidence in the detection of nonlinear controls
when this model is selected. The third model is the zero-
slope model for the no-water-limitation regime or no-light-
limitation regime.

The main results show that soil moisture limits on SIF
are found primarily in drier environments while PAR lim-

itations are found in intermediately wet regions. Nonlinear
two-regime behaviour is observed in 72.5 % of the cases for
water limitation on photosynthesis, while two-regime detec-
tion is much lower at 40.5 % for light limitation on photosyn-
thesis. Nevertheless, these nonlinear relationships are theo-
retically expected and widely observed across the globe for
light limitation for the first time here. The widespread non-
linear control of water availability on SIF indicates that dry
anomalies will differentially influence plant function: plants
are buffered from reductions in water availability when soil
moisture is higher but will strongly respond to unit reduction
in water availability under drought conditions. SIF sensitivity
to PAR strongly increases along moisture gradients, reflect-
ing mesic vegetation’s adaptation to making rapid usage of
incoming light availability on the weekly timescales inves-
tigated here. The transition point detected between the two
regimes is connected to soil type and mean annual precipita-
tion for both the SIF–SM and SIF–PAR relationships. These
thresholds have therefore an explicit relation to properties of
the landscape, although they may also be related to finer de-
tails of the vegetation and soil interactions not resolved by
the spatial scales here. Future work can account for interac-
tions between more variables and more explicit characteriza-
tion of the nonlinear relationships in each pixel. Successful,
systematic detection of nonlinear controls of individual en-
vironmental variables on photosynthesis with the statistical
relationships is a first step here.

While our analysis is not exhaustive in not directly evalu-
ating all possible factors (e.g., vapour pressure deficit (VPD),
air temperature, nutrients) and their interactions, it highlights
that vegetation function exhibits widespread, nonlinear de-
pendencies on bio-climatic factors that are highly spatially
variable. Given that we show vegetation existing in limited
and non-limiting states depending on the water or light con-
ditions, linear correlations of photosynthesis with specific re-
sources provide limited views of landscape-scale photosyn-
thesis. At the same time, many land-surface variables are
tightly coupled, and thus SM and PAR contain significant
information about current meteorological conditions. There-
fore, the information captured in bivariate SIF–SM and SIF–
PAR relationships represents the real-world coevolution of
photosynthesis with these limiting variables as they typically
co-evolve with strongly co-varying temperature, VPD, etc.

As such, our study is unique (1) in evaluating the state-
dependent, coupled controls on SIF; (2) in detecting the non-
linear relationships between plant function and water and
light, major controls on global photosynthesis; and (3) in
being an observational framework instead of using model-
derived parameters. Our spatial maps therefore can serve as
a benchmark to directly validate the model emergent con-
trols on terrestrial gross primary production from Earth sys-
tem models.
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