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Abstract. Studies engaging in tracking headwater carbon
signatures downstream remain sparse, despite their impor-
tance for constraining transfer and transformation pathways
of organic carbon (OC) and developing regional-scale per-
spectives on mechanisms influencing the balance between
remineralization and carbon export. Based on a 40-month
time series, we investigate the dependence of hydrology
and seasonality on the discharge of sediment and OC in
a small (350 km2) Swiss subalpine watershed (Sihl River
basin). We analyze concentrations and isotopic composi-
tions (δ13C, F14C) of particulate OC and use dual-isotope
mixing and machine learning frameworks to characterize
and estimate source contributions, transport pathways, and
export fluxes. The majority of transferred OC is sourced
from plant biomass and soil material. The relative amount
of bedrock-derived (petrogenic) OC, abundant in headwater
streams, progressively decreases downstream in response to
a lack of source material and efficient overprinting with bio-
spheric OC, illustrating rapid organic matter alteration over
short distances. Large variations in OC isotopic composi-
tions observed during baseflow conditions converge and form
a homogenous mixture enriched in OC and characterized
by higher POC-F14C values following precipitation-driven
events. Particulate OC isotopic data and model results sug-
gest that storms facilitate surface runoff and the inundation
of riparian zones, resulting in the entrainment of loose plant-

derived debris and surficial soil material. Although particle
transport in the Sihl River basin is mainly driven by hydrol-
ogy, subtle changes in bedrock erosivity, slope angle, and
floodplain extent likely have profound effects on the POC
composition, age, and export yields.

1 Introduction

River networks serve as an aquatic continuum, ultimately
connecting the terrestrial with the marine biosphere (Auf-
denkampe et al., 2011). Disproportional to their spatial ex-
tent, water bodies are active sites for transport, transforma-
tion, and storage of significant portions of organic carbon
(OC) mobilized from the terrestrial environment (Battin et
al., 2009). Annually, between 1.90 and 2.95 PgC yr−1 are en-
trained into inland waters (Cole et al., 2007; Tranvik et al.,
2009; Regnier et al., 2022). The majority of this carbon is lost
during transfer due either to remineralization and outgassing
or to burial in lakes and floodplains. Ultimately, only 0.80-
0.95 PgC yr−1 reaches marine coastal regions (Tranvik et al.,
2009; Battin et al., 2009; Raymond et al., 2013; Lauerwald
et al., 2015; IPCC, 2021; Regnier et al., 2022). However, an-
thropogenic and climate-driven changes markedly influence
erosional processes and thus may perturb the translocation
and sequestration of OC in freshwater systems. The human-
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induced lateral transfer of carbon adds∼ 0.60 PgC yr−1 to in-
land waters which are largely respired and buried during flu-
vial transit (Regnier et al., 2022; Lauerwald et al., 2020; Li et
al., 2019). The resulting OC flux to marginal shelves deviates
by only 0.15 PgC yr−1 from preindustrial values (Regnier et
al., 2022).

It is well established that small mountainous rivers de-
liver substantial quantities of sediment and particulate or-
ganic carbon (POC) to the oceans (Milliman and Syvitski,
1992; Lyons et al., 2002; Leithold et al., 2006; Hilton et al.,
2012; Goñi et al., 2013). These systems are often character-
ized by a steep basin morphology, with little to no developed
floodplains. The resulting basin storage capacity is insuffi-
cient to retain the large amounts of eroded sediments and
soils exported from upstream catchments (Wheatcroft et al.,
2010; Milliman and Farnsworth, 2013). During storm-driven
events, mountainous rivers are strongly coupled to hillslope
processes and often provide the main source of sediment to
downstream channels (Milliman and Syvitski, 1992; Hilton
et al., 2012).

A decrease in the OC content of the suspended load
is commonly observed with increasing discharge in high-
sediment-yield small mountainous rivers (Masiello and Druf-
fel, 2001; Coynel et al., 2005; Leithold et al., 2016). This de-
cline corresponds to the dilution with generally carbon-poor
bedrock material, with the proportion of fossil OC concomi-
tantly increasing with rising sediment yields in small river
systems as they share a common source and transport path-
ways (Blair et al., 2003; Komada et al., 2004; Leithold et al.,
2006; Hilton et al., 2011a). On the other hand, while deep-
seated landslides and gully erosion mobilize predominantly
bedrock-sourced (petrogenic) OC, surface runoff and shal-
low landslides preferentially remove fresh litter and organic-
rich surface soils (Hovius et al., 2000; Hilton et al., 2008b;
Hatten et al., 2012; Goñi et al., 2013). In headwaters, signifi-
cant portions of biospheric organic matter are exported in the
form of coarse POC (> 1 mm) encompassing leaves, needles,
and wood fragments (Turowski et al., 2016; Rowland et al.,
2017). In contrast to fine-grained OC, which can remain in
suspension for prolonged periods, coarse particles are often
deposited in headwater valley segments due to gravitational
settling or retention in log jams (Wohl et al., 2012; Jochner et
al., 2015). Interaction of woody debris and the gravel bedload
might lead to grinding and size reduction, ultimately adding
to the fine POC pool (Turowski et al., 2016). Despite these
mechanisms, restricting the transport of coarse POC, studies
showed that event-driven floods can effectively recruit and
transfer vascular plant debris as driftwood (West et al., 2011;
Wohl and Ogden, 2013; Wohl, 2017; Ruiz-Villanueva et al.,
2019) or as a component of the suspended load (Schwab et
al., 2022) to continental margins.

Overall, despite the growing recognition of the substantial
and rapid downstream transfer of terrestrial OC from head-
water streams (Leithold et al., 2016; Wheatcroft et al., 2010;
Goñi et al., 2013) and increased understanding of the pro-

cesses controlling organic matter during its transfer through
lowlands and floodplains (e.g., Bouchez et al., 2010; Hem-
ingway et al., 2017; Repasch et al., 2021), river segments that
connect small, mountainous streams with lowland systems
remain underexplored. A few studies address temporal dy-
namics of POC export in moderately steep river basins span-
ning timescales of individual storm events to intra- and inter-
annual variability (Smith et al., 2013; Hatten et al., 2012).
Even fewer studies examine the downstream evolution, com-
position, and molecular signature of OC in dynamic moun-
tainous river systems (Goñi et al., 2014).

The focus of this study is to assess the response of sedi-
ment and bulk OC to variability in seasonality and discharge
behavior in a moderately steep river basin bridging the gap
between headwater streams and lowland rivers. The sub-
alpine Sihl River links small mountainous headwater streams
with the higher-order river Limmat, providing a crucial win-
dow on downstream transport and the evolution of OC along
the riverine continuum. We obtained a high-resolution time
series over 40 months focusing on the content, composi-
tion (δ13C, F14C), and flux of sediment and POC. Export
fluxes are modeled using traditional and machine learning
approaches, while a dual-isotope model framework allows
the estimation of potential organic matter source contribu-
tions. We discuss control mechanisms regulating organic
matter mobilization and transport and examine our results in
the context of previously published data on Sihl River head-
water catchments in order to derive comparisons regarding
the nature of exported POC (Smith et al., 2013; Turowski et
al., 2016; Gies et al., 2022).

2 Methods

2.1 Characteristics of the Sihl River watershed

The Sihl River basin located in the Swiss Prealps is part of
the Rhine River headwater system (fourth-order tributary;
Fig. 1). Its watershed covers an area of 346.0 km2 rang-
ing from an elevation of 1872 m (Druesberg) at its head-
waters to 402 m at the catchment mouth, with an average
slope of 19.5◦ (Fig. 1a–b, Table 1). The Sihl River basin
experiences a humid continental climate with a mean an-
nual air temperature of ∼ 9.5 ◦C and annual precipitation
varying from 1450 to 1830 mm, with snowfall generally oc-
curring between November and April (MeteoSwiss, https://
gate.meteoswiss.ch/idaweb/, last access: 15 May 2022). The
subalpine catchment is divided into an upper (145.7 km2)
and lower basin (190.1 km2) near Einsiedeln by the reser-
voir Lake Sihl (10.2 km2) constructed in 1937 (Addor et al.,
2011). The damming of Lake Sihl results in the abrupt frag-
mentation of the flow path and the effective capture of 93 %
of sediment entrained from the upper watershed (Grill et al.,
2019). The flow of the lower Sihl River is regulated by 14
small-scale weir structures and four run-off-the-river hydro-
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electric systems. The Alp and Biber River tributaries are free-
flowing rivers and major sources of water and sediment to the
Sihl River. Similar to other small mountainous river systems
(Wheatcroft et al., 2010), the steep morphology of the water-
shed and the absence of extensive floodplains limit the water
and sediment storage capacity of the Sihl River. In response
to severe storms, water discharge can rise from an average
of 6.8 m3 s−1 to over 200.0 m3 s−1 and result in devastating
flash floods (e.g., August 2005: 280.0 m3 s−1; Bezzola and
Hegg, 2007; Jaun and Ahrens, 2009).

The land cover of the Sihl River basin in 2017 consisted
of 38.9 % meadows and pastures, 9.0 % urban settlements,
6.1 % unproductive areas (e.g., rock terrain), 1.3 % water
bodies, and 1.1 % cropland (Fig. 1c; Federal Statistical Of-
fice, https://www.bfs.admin.ch, last access: 15 May 2022),
with the majority of the watershed covered by forests
(43.4 %; Waser et al., 2017). The main tree species in the up-
per basin are spruce (Picea abies) and fir (Abies alba), which
are gradually replaced by deciduous trees such as beech (Fa-
gus sylvatica), maple (Acer spp.), ash (Fraxinus spp.), and
oak (Quercus petraea) in the lower basin (Schleppi et al.,
2006). Forest soil carbon projections estimate stocks between
5 and 20 kgC m−2 (Nussbaum et al., 2014; van der Voort et
al., 2019).

The lithology of the lower Sihl River basin is composed
of weakly consolidated, clastic sediments of the Molasse
basin (Fig. 1d; Swisstopo, https://www.swisstopo.admin.ch,
last access: 15 May 2022). Limestones and other biogenic
sedimentary rocks are common in the allochthon nappes,
Klippen, and Säntis zones. Campanian–Maastrichtian and
Eocene flysch (Schlieren and Wägital flysch), largely com-
posed of mudstone and calcareous sandstone, predominate
in the Alp and upper Sihl River basins (Winkler et al., 1985).
Dolomitic rocks of the Northern Limestone Alps and meta-
morphic rocks of the Arosa zone outcrop in the southern re-
gion of the upper Sihl River basin. Stream valleys and low-
lands are filled with unconsolidated rock material such as al-
luvions, moraines, and gravel deposits that constitute impor-
tant groundwater aquifers (Doppler et al., 2007).

The Erlenbach, Lümpenbach, and Vogelbach streams
(Fig. 1a) are monitored as experimental catchments by the
Swiss Federal Institute for Forest, Snow, and Landscape Re-
search (WSL) and are well studied in terms of terrestrial OC
sources, mobilization, and export of fine and coarse mate-
rial (Schleppi et al., 1998; Hagedorn et al., 2001; Turowski
et al., 2011, 2016; Rickenmann et al., 2012; Smith et al.,
2013; Hilton et al., 2021; Gies et al., 2022). These streams
are second-order tributaries to the Sihl River, with catchment
sizes ranging from 0.7 to 1.6 km2 and average discharges
of 0.038 to 0.077 m3 s−1 (Smith et al., 2013; Gies et al.,
2022). The Erlenbach basin is developed on an extensive
bedrock landslide consisting primarily of Eocene Wägital
flysch (Winkler et al., 1985; Schuerch et al., 2006; Golly et
al., 2017), while bedrock lithologies in the Lümpenbach and
Vogelbach are largely composed of calcareous sandstones

(Milzow et al., 2006). The land cover of the drainage basins
consists of alpine meadows, forests, and wetlands (Turowski
et al., 2009; Gies et al., 2022).

2.2 Sample collection

From May 2014 to February 2015, surface water was
sampled and processed by Chantal Valérie Freymond and
Hannah Gies. Sample collection from August 2016 to
March 2019 was designed to capture variations in OC ex-
port in response to both seasonal changes and shorter-term
variations in discharge behavior. We collected surface wa-
ter samples from the Sihl River (Allmend Park, 47.35◦ N,
8.52◦ E; Fig. 1a) in a biweekly rhythm using a river-rinsed
bucket. In addition, river water was collected during 17 storm
events, emphasizing discharges > 20 m3 s−1. Although the
water level can rise ∼ 1.7 m during exceptional flood events,
the Sihl River is generally characterized by water depths
< 1 m, suggesting little vertical variations in suspended sed-
iment and POC concentrations in the water column. Surface
waters were retrieved seasonally from Lake Sihl (Sihl River
inflow and two locations in the center of the lake) and the
Alp River (Fig. 1a).

Known volumes of surface water (0.95 to 64.61 L) were
filtered through three preweighed and combusted (450 ◦C,
6 h) 90 or 142 mm glass microfiber filters (GF/F, Whatman)
with a nominal pore size of 0.7 µm using a steel filtration
unit. The filtration occurred either in the field or immediately
upon returning to the laboratory at ETH. Filters were frozen
after filtering and kept frozen until freeze-drying. Dried fil-
ters were reweighed to obtain suspended sediment concen-
trations (SSCs). We averaged water and sediment concen-
trations of the three collected filters to obtain a more robust
representation of the suspended load. Filtered water was col-
lected for dissolved organic carbon (DOC) in 120 mL pre-
combusted (450 ◦C, 6 h) amber bottles, acidified to pH 2 with
85 % H3PO4 (120 µL), and stored cooled (4 ◦C) and in the
dark. About 4 mL of filtrate was collected in glass vials for
the analyses of water isotopic (δ18O, δ2H) compositions.

2.3 Geochemical analyses

Filter pieces (3 mm diameter) containing on average 350 µgC
were placed in Ag boats (Säntis Analytical AG) and de-
carbonated in a desiccator under HCl vapor (70 ◦C, 72 h),
followed by neutralization over NaOH pellets (70 ◦C, 72 h;
Freymond et al., 2018). Vapor-acid-treated samples were
wrapped in tin boats and analyzed for content and stable iso-
topic composition (δ13C) of OC using a coupled elemental
analyzer–isotope ratio mass spectrometer (EA-IRMS; Ele-
mentar, Vario MICRO cube, and Isoprime, VISION) system
at the Laboratory of Ion Beam Physics (LIP) at ETH Zurich.
Radiocarbon (14C) was measured directly as CO2 gas using
a mini carbon dating system (MICADAS, Ionplus; Wacker
et al., 2010; McIntyre et al., 2016). Samples were calibrated
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Figure 1. Sihl River basin showing (a) altitude, (b) the distribution of slope angles (https://www.swisstopo.admin.ch, last access:
15 May 2022), (c) different land-use types (https://www.bfs.admin.ch, last access: 15 May 2022), and (d) the underlying geology
(https://www.swisstopo.admin.ch, last access: 15 May 2022, Winkler et al., 1985). The sampling location for the Sihl River time series
is indicated as a yellow symbol; the locations of the Lake Sihl and the Alp River sampling sites are shown as gray symbols.

Table 1. Summary of river and watershed characteristics for the Sihl River, Erlenbach, Lümpenbach, and Vogelbach streams. Information
for the Sihl River headwaters is provided by Smith et al. (2013) and von Freyberg et al. (2018).

Erlenbach Lümpenbach Vogelbach Sihl – Sihlhölzli

Basin size at gauging station (km2)a 0.73 0.88 1.58 346.02
Average slope (◦)a 23.9 19.6 28.9 19.5
Mean catchment elevation (m a.s.l.)a 1359 1336 1335 1041
Average discharge (m3 s−1)a 0.04 0.05 0.07 6.83
Basin geologyb Eocene flysch, Cretaceous flysch Cretaceous flysch Subalpine molasse,

Cretaceous flysch flysch, limestone,
evaporites, sandstone

Land usec Settlements (%) 0 0 0 9.0
Agriculture (%) 0 0 0 1.1
Meadows, pastures (%) 21.6 81 30 38.9
Forest (%) 59.5 19 70 43.4
Water bodies (%) 0 0 0 1.3
Unproductive areas (%) 18.9 0 0 6.1

a Federal Office for the Environment, https://www.bafu.admin.ch/bafu/de/home.html, last access: 15 May 2022. b Federal Office of Topography swisstopo,
https://www.swisstopo.admin.ch/, last access: 15 May 2022. c Federal Statistic Office, https://www.bfs.admin.ch/bfs/en/home.html, last access: 15 May 2022.

against Oxalic Acid II (NIST SRM 4990C) as well as an in-
house soil and shale standards to correct for contamination
during fumigation. All samples were corrected for constant
contamination (∼ 8 µgC) following Haghipour et al. (2019),
and 14C data are reported as fraction modern, F14C (Reimer
et al., 2004).

A wet chemical oxidation approach was used to con-
vert DOC into CO2 (Lang et al., 2012, 2016). Due
to low DOC concentrations in the Sihl River, 20 mL

of sample material was concentrated in a precombusted
12 mL exetainer vial via repeated freeze-drying. The DOC
(10–134 µgC) was then reconstituted in Milli-Q water,
oxidized using an acidified sodium persulfate solution
(100 mL H2O+ 4.0 g Na2S2O8+ 200 µL of 85 % H3PO4),
and purged at room temperature with high-purity helium
gas (grade 5.0, 99.9999 % pure, for 10 min) removing am-
bient air and inorganic CO2. The samples were then heated
to 100 ◦C for 1 h to convert the DOC to CO2. Vials were
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loaded into the carbonate handling system of the MICADAS
(LIP, ETH Zurich). Blank assessment was based on re-
peated measurements of sucrose (Sigma, δ13C: −12.4 ‰
VPDB, F14C: 1.053± 0.003) and phthalic acid (Sigma,
δ13C: −33.6 ‰ VPDB, F14C < 0.0025) standards, as well
as process blanks. The evaluation of constant contamination
amounted to ∼ 2 µgC (Haghipour et al., 2019).

Analysis of water isotopic compositions (δ2H and δ18O)
was performed on a Picarro L2120-i cavity ring-down spec-
trometer (Geological Institute, ETH). Standards comprised
VSMOW2, GISP, and SLAP2 as well as three in-house ref-
erence waters. Each sample and reference material were in-
jected seven times while discarding the first three injections
to eliminate instrumental memory effects.

2.4 Bayesian isotope mixing model

We applied the MixSIAR unmixing approach to assess con-
tributions of biogenic and petrogenic sources of the partic-
ulate OC load. MixSIAR is an open-source Bayesian tracer
mixing model framework in the R computing environment
that allows the estimation of fractional contributions of mul-
tiple sources to a mixture (Stock and Semmens, 2016; Stock
et al., 2018). The model accounts for uncertainties in the
source end-member compositions. Although mixing models
were originally intended to constrain animal diets in ecology,
they are often applied to apportion relative contributions of
OC sources in rivers and lakes (Butman et al., 2015; Upad-
hayay et al., 2017; Repasch et al., 2021). We parameterized
the mixing model using POC-δ13C, POC-F14C, and five po-
tential end-member compositions assessing the influence of
seasonal and hydrodynamic variations on the source appor-
tionment of organic matter in the Sihl River catchment. Or-
ganic carbon sources comprise bedrock, leaf litter, wood, and
top and deep soil material (Smith et al., 2013; van der Voort
et al., 2016; Gies et al., 2022). The vegetation end-member
14C composition was obtained by averaging reported atmo-
spheric 14C values from May 2014 to March 2019 (Hua
et al., 2022). The soil end-member was divided based on
a 10 cm threshold into a carbon-replete top and a carbon-
poor deep mineral soil layer. We adjusted the 14C signa-
tures of soil samples collected in 1998 (van der Voort et al.,
2016) to the sampling period using two-point turnover cal-
culations (van der Voort et al., 2019). Source end-member
compositions are reported as OC-weighted mean and stan-
dard deviation (Table B1). However, as foliage, wood, top
soils (< 10 cm), and deep soils (> 10 cm) are not statisti-
cally different in either δ13C or F14C compositions, they
are combined into a single biospheric end-member a priori.
MixSIAR was run without any initial assumptions (uninfor-
mative prior), a burn-in of 200 000 iterations, a thinning fac-
tor of 100, and a chain length of 300 000 for three parallel
Markov chain Monte Carlo chains. Model convergence was
evaluated using Geweke (Geweke, 1991) and Gelman–Rubin
metrics (Gelman and Rubin, 1992).

2.5 Estimating fluvial loads

2.5.1 Traditional sediment rating curves

River discharge is a key parameter determining the export
of sediment and POC. Commonly, rating curves are used to
calculate fluvial export where the sample collection is too
infrequent to provide continuous concentration records. The
relationship between concentration (C) data and discharge
(Q) is fitted with a power law function (e.g., Walling, 1977;
Cohn, 1995; Syvitski et al., 2000; Wheatcroft et al., 2010),
C = aQbε, where a and b are rating coefficients inferred
from an ordinary least linear squares regression of logarith-
mically transformed data. However, log-transformed residu-
als introduce systematic bias that results in overestimation of
small and underestimation of large values (Asselman, 2000;
Cohn, 1995; Ferguson, 1986). We apply Duan’s (1983) non-
parametric retransformation bias correction factor (ε) appro-
priate for non-normal error distributions to minimize distor-
tion:

ε =
1
N

∑N

i=1
exp

(
ln(C)− ln

(
aQb

))
. (1)

Nonlinear least squares regression does not require log trans-
formation as a power law function is directly fitted to the data
(Asselman, 2000). But this approach poses statistical prob-
lems as the assumption of homoscedasticity is often not met.

2.5.2 Machine learning approaches

Power rating curves are of limited value in predicting export
fluxes as they rely largely on the relationship between dis-
charge and the suspended load. In contrast, machine learn-
ing regressions enable the modeling of the dependent vari-
able in response to several predictor variables. Although ma-
chine learning techniques gain increasing popularity in envi-
ronmental and earth sciences (e.g., Karpatne et al., 2019; Re-
ichstein et al., 2019), their application in fluvial hydrology
remains limited (Olyaie et al., 2015; Choubin et al., 2018;
Sharafati et al., 2020). Supervised machine learning refers to
a set of data mining approaches that develop pattern recogni-
tion based on a sample data set in order to predict unlabeled
target values. Here, we applied four commonly used machine
learning algorithms: a multiple linear regression (MLR), a
support vector regression (SVR) (Drucker et al., 1997), a ran-
dom forest regression (RFR) (Breiman, 2001), and a neural
network regression (NNR) (McCulloch and Pitts, 1943). De-
tailed descriptions of the applied models can be found in Ap-
pendix C. We evaluated and compared different techniques
with the goal of estimating annual sediment and POC fluxes
for the Sihl River basin.

2.5.3 Predictor variables and parameterization

Power rating curves and machine learning regressions were
developed based on data from physically collected sediment
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samples, as well as river discharge (Q), stage (H ), precip-
itation (P ), 1 d (Pt−1), and 2 d (Pt−2) antecedent precipi-
tation (Choubin et al., 2018; Sharafati et al., 2020) span-
ning from 1974 to 2020 delineating sediment and POC ex-
port rates in the Sihl River. Daily discharge and water level
values were obtained from the gauging station Sihlhölzli,
Zurich, operated by the Swiss Federal Office for the Envi-
ronment (FOEN, https://www.hydrodaten.admin.ch, last ac-
cess: 22 May 2022). Daily precipitation data were retrieved
for 21 stations located within and around the Sihl River
basin from the Federal Office of Meteorology and Clima-
tology (MeteoSwiss, https://gate.meteoswiss.ch/idaweb/, last
access: 15 May 2022). We applied inverse-distance-weighted
(IDW) interpolation to produce inclusive and comprehen-
sive maps describing the distribution of daily rainfall in the
Sihl River watershed. The IDW approach, without consid-
ering orography, assumes that the attributed value of an un-
known point is the weighted average of known values within
its neighborhood. Weights are inversely related to the dis-
tances between the predicted and sampled locations.

Machine learning models were developed using scikit-
learn, an open software machine learning library for the
Python programming language. Input variables were stan-
dardized using a robust scaler accounting for skewed data
distributions and outliers. We tested several combinations of
input predictors (Table C1) for machine learning approaches
developing regression models. Hyperparameters for MLR,
SVR, RFR, and NNR were determined using tuning tech-
niques. Model tuning and stable model results were derived
by 10-fold nested cross-validation (trials= 20). The perfor-
mance of each model to predict suspended sediment and
POC concentrations was evaluated based on three commonly
used statistical metrics: the coefficient of determination (R2),
the root mean squared error (RMSE), and the mean abso-
lute error (MAE). While the R2 indicates the precision of
the standard regression type, RMSE and MAE represent the
model accuracy. All models were visually examined and
compared using a combination of violin and strip plots, il-
lustrating the probability and actual distributions of the ob-
served and predicted data. The best-performing algorithms
were chosen to interpolate annual sediment and OC export
rates. Predicted sediment and POC concentration values of
< 0 were set to 0.

2.6 Statistical analyses

In order to statistically assess seasonal or rainfall-driven
changes in exported sediment and OC concentrations and
compositions, we introduce meteorological seasons and the
discrimination between baseflow and stormflow conditions
as categorical variables. A discharge threshold value of
12.7 m3 s−1 to separate stormflow from baseflow conditions
was derived from the average daily flow duration curve of
the Sihl River spanning 47 years of continuous observation
(Fig. D1). A flow duration curve represents the frequency

of occurrence of various flow rates. Recorded discharges
are ranked according to their magnitude and subdivided into
the percentages of time during which specific flows are
equaled or exceeded. Flow rates ranging from 0 % to 10 %
exceedance are categorized as high-flow events, while values
above 90 % indicate the contributions of groundwater to the
streamflow.

Due to the assumption violations of normality, equal vari-
ances, and equal sample sizes, we performed nonparametric
Mann–Whitney and Kruskal–Wallis rank sum tests. After the
identification of significant between-group differences, we
applied Conover–Iman post hoc tests with a Bonferroni ad-
justment of p values (Table E1). All statistical comparisons
are reported at the 95 % confidence interval (p< 0.05).

3 Results

3.1 Basin hydrology

Mean annual discharges observed during the study period
(2016–2019) are comparable to the long-term mean value of
Qmean 6.8± 0.1 m3 s−1 (M ±SE). The lowest annual mean
discharge is observed in 2018 (6.4± 0.4 m3 s−1), reflect-
ing prolonged periods of drought (Hari et al., 2020; Peters
et al., 2020). The highest annual mean discharge amounts
to 7.1± 0.4 m3 s−1 in 2016. The sampled discharges range
from 2.7 to 77 m3 s−1 and represent the full range of dis-
charge conditions observed during the 40-month study period
(Figs. 2a; D1). We observe no pronounced seasonal variabil-
ity in the discharge of the Sihl River. Slight increases in wa-
ter export coincide with snowmelt and periods of frequent
storms in spring and summer (57 %). The majority of the an-
nual discharge occurs during storm events (Q> 12.7 m3 s−1;
82 %), while baseflow conditions account for only 18 %.

Riverine water isotopic compositions vary from −89.4 ‰
to−51.3 ‰ for δ2H values and from−12.7 ‰ to−7.7 ‰ for
δ18O values (Figs. 2c–d, 3a; Table S1). We note no differ-
ence between waters delivered during baseflow and storm-
flow conditions. However, water isotopic compositions are
subject to seasonal shifts. While the majority of precipitation
was primarily sourced from the North Atlantic, higher δ2H
and δ18O values indicate enhanced moisture supply from ter-
restrial Mediterranean and locally recycled moisture sources
during the summer months (LeGrande and Schmidt, 2006;
Batibeniz et al., 2020).

3.2 Suspended sediment and organic carbon
concentrations

Suspended sediment concentrations in the Sihl River
range between 0.8 and 133.1 mg L−1, with an average of
13.5± 2.8 mg L−1 (n= 77) during low flow conditions
(Fig. 3b; Table S1). Suspended sediment concentra-
tions reached an observed maximum of 398.3 mg L−1

(241.3± 28.3 mg L−1, n= 17) during high-discharge
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events. In comparison, SSC values of the Erlenbach
varied from 19.8 to 15 310.7 mg L−1 during storm-
flow (Smith et al., 2013). We observe higher sedi-
ment input rates in fall (61.8± 21.6 mg L−1, n= 29)
and winter (64.8± 25.8 mg L−1, n= 25) compared to
the spring (42.1± 21.9 mg L−1, n= 17) and summer
(44.1± 11.6 mg L−1, n= 23) months. Suspended sedi-
ments collected from Lake Sihl and the Alp River show
concentrations ranging from 1.2 to 82.2 mg L−1.

Particulate OC concentrations range from 0.01 to
12.08 mgC L−1, with an average concentration of
1.37± 0.27 mgC L−1 (n= 90, Table S1). Over an or-
der of magnitude more organic matter is exported during
storm-driven events (5.52± 0.81 mgC L−1, n= 17) than
during baseflow conditions (0.41± 0.10 mgC L−1, n= 73).
The observed range of suspended sediment OC contents
varies from 0.37 wt % to 11.64 wt % (2.48± 0.18 wt %,
n= 92; Figs. 2e, 3c). The mean POC content for low
discharges amounts to 2.36± 0.17 wt % (n= 75), while
POC content rapidly increases (3.02± 0.63 wt %, n= 17)
during storm-driven events. In contrast to SSC, measured
OC contents are lower during the fall (2.33± 0.27 wt %,
n= 29) and winter (2.04± 0.18 wt %, n= 25) months
and increase to 2.84± 0.75 wt % (n= 15) in spring and
to 2.91± 0.36 wt % in summer (n= 23). The Sihl River
transports higher POC contents compared to those reported
for the Erlenbach by Smith et al. (2013; 1.45± 0.06 wt %,
n= 122) and Gies et al. (2022; 1.79± 0.34 wt %, n= 24).
In contrast, POC contents in the Lümpenbach and Vogelbach
of ∼ 5.35 wt % exceed those of the Sihl River (Gies et al.,
2022). Observed POC concentrations and contents vary from
0.04 to 0.76 mg L−1 and from 0.89 wt % to 2.13 wt % in Lake
Sihl (n= 15). Measured organic matter concentrations in
the Alp River average 0.10± 0.07 mg L−1 and OC contents
to 2.58± 0.24 wt % (n= 3).

3.3 Isotopic composition of particulate and dissolved
organic carbon

Sihl River POC-δ13C signatures across the time series range
from −30.1 ‰ to −25.8 ‰, averaging −27.7± 0.1 ‰ (n=
92; Figs. 2f and 3d; Table S1). No statistically significant
differences between POC-δ13C and discharge are observed,
but we note pronounced seasonality in isotopic signatures
(Table D1). Higher POC-δ13C values are recorded during
the summer (−27.1± 0.1 ‰, n= 23), whereas OC mea-
sured in spring exhibits on average the lowest δ13C val-
ues (−28.1± 0.2 ‰, n= 17). In contrast, POC-δ13C values
in Lake Sihl (−29.7± 0.5 ‰, n= 15) and the Alp River
(−28.0± 0.3 ‰, n= 2) are generally lower. Bulk POC-δ13C
in the Sihl River overlaps with reported C3 vegetation and
soil biomass constituents (Kohn, 2010; Smith et al., 2013;
Gies et al., 2022).

Sihl River POC-F14C values range from 0.56 to 1.00
(0.87± 0.01, n= 91; Fig. 2g; Table S1), and display a sta-

Figure 2. Hydrographs for the sampling periods from May 2014
to February 2015 and August 2016 to March 2019: (a) hourly
discharge values (m3 s−1; https://www.hydrodaten.admin.ch, last
access: 22 May 2022) and (b) daily precipitation values for the
Sihl River basin (mm d−1; https://gate.meteoswiss.ch, last access:
22 May 2022). Gray dots represent individual sampling campaigns.
Water isotopic compositions, (c) δ2H (‰) and (d) δ18O (‰), are
shown alongside (e) particulate organic carbon (POC) contents
(wt %), (f) POC-δ13C (‰), (g) POC-F14C, and (h) dissolved or-
ganic carbon (DOC) F14C. Dots are scaled to discharge.

tistically significant positive correlation with discharge (rS =
0.43, p< 0.001). Mean F14C values of 0.86± 0.01 (n= 75)
are measured during low flow and increase to 0.91± 0.01
(n= 16; Fig. 3e) during high flow conditions. This indicates
storm-driven mobilization and entrainment of undegraded,
biospheric POC to the Sihl River, with the latter having been
observed in tectonically active regimes (Lyons et al., 2002;
Carey et al., 2005; Hilton et al., 2008a, 2010; Gomez et al.,
2010). In contrast, suspended sediment POC-F14C values
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Figure 3. Combined violin and strip plots of (a) δ18O (‰), (b) sus-
pended sediment concentrations (SSCs, mg L−1), (c) particulate
organic carbon (POC) contents (wt %), (d) POC-δ13C (‰), (e)
POC-F14C, and (f) dissolved organic carbon (DOC) F14C faceted
for seasons and discharge. Violin plots depict rotated kernel den-
sity plots. White vertical lines indicate median values. Significant
between-group differences are denoted with brackets and p values
(Table E1).

in the mountainous Erlenbach average 0.65± 0.08 (n= 6)
(Smith et al., 2013). Gies et al. (2022) report POC-F14C sig-
natures for the Erlenbach, Lümpenbach, and Vogelbach of
0.64± 0.22 (n= 24), 0.80± 0.17 (n= 26), and 0.76± 0.25
(n= 27), respectively. The depletion in 14C values in the Er-
lenbach likely reflects substantial contributions of petrogenic
OC. Nevertheless, the overall OC-F14C values of Sihl River
POC are in good agreement with forested, temperate catch-
ments characterized by minor inputs of organic-rich sedi-
mentary bedrock and the absence of intense agricultural land

use (Raymond et al., 2004; Longworth et al., 2007; Goñi et
al., 2013). The Alp River and Lake Sihl display POC-F14C
values of 0.84± 0.01 (n= 3) and 0.79± 0.02 (n= 15).

Sihl River DOC-F14C values vary from 0.52 to 1.16, with
a mean of 0.95± 0.01 (n= 77; Figs. 2h, 3f; Table S1).
Moderately aged DOC is observed in the summer months
(0.90± 0.03, n= 17), whereas DOC enriched in 14C is dis-
charged during fall (0.97± 0.01, n= 23). Similar to the F14C
signature of POC, high precipitation events supply more
modern DOC to the Sihl River (0.98± 0.01, n= 17). On
average, Lake Sihl (0.97± 0.01, n= 15) and the Alp River
(0.97± 0.01, n= 2) display slightly higher DOC-F14C sig-
natures than the Sihl River.

3.4 Performance of predictive models

All four machine learning algorithms outperform traditional
rating curve models (Figs. 4; C1–C2) in predicting sus-
pended sediment and POC concentrations. The statistical
performance of the evaluated models according to different
scenarios is listed in Table C1. Traditional rating curves over-
estimate low values of suspended sediment and POC, leading
to poor performance. Based on model performance criteria,
SSC in the Sihl River depends primarily on discharge, water
stage, and 1 d antecedent precipitation as predictor variables.
Similarly, scenarios that include discharge, water stage, pre-
cipitation, and 1 d antecedent precipitation appear to reliably
reproduce measured POC concentrations. While discharge
and water stage display the highest predictive power for in-
stantaneous SSCs, POC concentrations are more accurately
described by water stage and 1 d antecedent precipitation.
Random forest regression achieves the overall best fit with
observed SSCs (scenario 7; R2

= 0.85, RMSE= 39.0), fol-
lowed by SVR (scenario 2; R2

= 0.81, RMSE= 43.8), MLR
(scenario 8; R2

= 0.80, RMSE= 45.6), and NNR (scenario
2; R2

= 0.75, RMSE= 48.2). The highest coefficient of de-
termination (R2

= 0.73) and the lowest root mean squared
error (RMSE= 1.2) for predicting POC concentrations are
obtained from SVR (scenario 4). The performance of NNR
(scenario 10; R2

= 0.70, RMSE= 1.4), RFR (scenario 8;
R2
= 0.68, RMSE= 1.3), and MLR (scenario 8; R2

= 0.59,
RMSE= 1.5) captured observed POC variations with less ac-
curacy.

3.5 Annual fluxes and yields of suspended sediment
and organic carbon

We calculate suspended sediment and POC export fluxes us-
ing continuous 47-year daily water discharge, stage, and pre-
cipitation records (see Sect. 2.6). Given our intermittent sam-
pling design, we are not able to correct export fluxes for hys-
teresis effects or supply limitations (Wymore et al., 2019).
We regard estimated sediment and POC budgets as conser-
vative estimates, constraining a lower boundary.
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Figure 4. Combined violin and strip plots comparing model performances in predicting (a) suspended sediment (SSCs, mg L−1) and (b) par-
ticulate organic carbon (POC, mg L−1) concentrations. Models approaches include traditional and nonlinear least squares power law func-
tions as well as multilinear regression (MLR), support vector regression (SVR), random forest regression (RFR), and neural network regres-
sion (NNR). Violin plots depict rotated kernel density plots, with white horizontal lines indicating median values.

Annual suspended sediment flux estimation for the Sihl
River range from 17 790± 1042 (nonlinear least squares
power law) to 25 788± 3776 t yr−1 (bias-corrected power
law) (Table C2). Fluxes provided by the best fitting model
(RFR) average 25 167± 1056 t yr−1. The majority of sed-
iment export occurs during storm-driven events (72.9 %–
93.0 %). We observe elevated export fluxes during summer
(36.6 %–48.5 %) and spring (26.4 %–31.4 %) months corre-
sponding to convective rainfall and snowmelt (Schmidt et al.,
2019). The suspended sediment load in fall and winter varies
between 12.0 % and 18.4 % of the annual export. Similar to
the export of suspended sediment, the lowest modeled an-
nual POC flux (426± 21 t yr−1) is obtained from nonlinear
least squares power law functions, while bias-corrected rat-
ing curves provide the highest values (763± 121 t yr−1) (Ta-
ble C2). The mean POC load inferred from the SVR model
amounts to 574± 25 t yr−1. Particulate organic carbon is pri-
marily mobilized and transported downstream during high-
discharge events (66.0 %–94.9 %). The highest POC loads
are transported during summer (31.1 %–49.7 %) and spring
(26.2 %–32.5 %), while lower fluxes are observed in fall and
winter (11.5 %–18.3 %).

The reservoir Lake Sihl is considered a sediment trap,
efficiently retaining particulate matter delivered from the
upper Sihl River watershed. Therefore, mean annual yield
calculations were restricted to the lower Sihl River basin,

including the Alp and Biber catchments. We estimate an-
nual yields between 93.6± 5.5 and 135.7± 19.9 t km−2 yr−1

(RFR: 132.4± 5.6 t km−2 yr−1) for suspended sediment
and 2.2± 0.1 and 4.0± 0.6 t km−2 yr−1 (SVR: 3.0±
0.1 t km−2 yr−1) for POC.

4 Discussion

4.1 Seasonal variability in exported organic carbon

Rivers integrate a mixture of POC comprising contemporary
organic matter derived from terrestrial and aquatic produc-
tion, aged soil-derived organic matter, and OC devoid of 14C
released by weathered sedimentary bedrock (e.g., Hedges et
al., 1986; Masiello and Druffel, 2001; Raymond et al., 2004;
Blair and Aller, 2012). These sources have distinct carbon
isotopic signatures and provide constraints on the contribu-
tion from different OC inputs. The Sihl River receives a uni-
form mixture of fresh, aged, and ancient OC pools with mod-
est variations as seasons progress (Fig. 5a). MixSIAR mod-
eling results suggest that suspended sediments in the Sihl
River are largely derived from biospheric sources. The high-
est input of plant-derived debris and soil material is supplied
to the Sihl River watershed in spring (90± 2 %, M ±SD)
followed by fall (88± 2 %), winter (86± 2 %), and summer
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(84± 2 %). Similar source proportions have been observed
in the headwaters of the Alp River (Gies et al., 2022).

Biospheric carbon sources consist of allochthonous (e.g.,
higher plant biomass, soils) and autochthonous (phytoplank-
ton, benthic algae, aquatic macrophytes) inputs. However, we
consider aquatic primary productivity as a negligible con-
stituent of bulk particulate organic matter based on three con-
siderations. First, the formation of large-scale phytoplankton
blooms and microbial biofilms is likely restricted by the low
abundance of nutrients (Känel et al., 2021; Romaní et al.,
2004; Battin, 1999) and limited light conditions in forested
river segments (Boston and Hill, 1991). Second, algal growth
is further disturbed by high-discharge events (when most of
the POC is exported), resulting in river bed movement and
the loss of algal mats (Schuwirth et al., 2008). Third, phyto-
plankton OC produced in Lake Sihl is efficiently retained by
the hydroelectric dam (Grill et al., 2019). From the above rea-
soning, we believe that instream biomass does not contribute
significant amounts of OC to the Sihl River and would not
bias our interpretations.

Low POC-δ13C values in winter and spring may indicate
an enhanced input of leaf litter (−28.3± 1.5 ‰; Table B1),
while slightly more enriched values in the summer months
may reflect contributions from freshwater C3 plants (δ13C:
∼−18 ‰; Chikaraishi, 2013), and enhanced contributions of
wood (−25.3± 1.1 ‰) or soils (−26.9± 1.1 ‰). However,
the coarse-grained riverbed substrate prevents the coloniza-
tion of macrophytes, resulting in sparse aquatic vegetation in
headwaters, and allows only localized growth in the lower
reaches of the Sihl River (Känel et al., 2021). We, there-
fore, attribute the 13C enrichment in summer to increased
entrainment of soil and wood debris. This interpretation is
in agreement with soil erosion risk modeling based on the
Revised Universal Soil Loss Equation (RUSLE) (Schmidt et
al., 2016, 2019). Soil loss peaks between July and Septem-
ber in response to high rainfall erosivity on Swiss grasslands,
while extensive vegetation cover is insufficient to counteract
water-driven erosion (Schmidt et al., 2016, 2019).

Soils can often be partitioned into several end-members
reflecting different stages of soil development as aging, mi-
crobial decomposition, and respiration introduce alterations
to the isotopic composition of organic matter (Fernandez et
al., 2003; Werth and Kuzyakov, 2010; Wang et al., 2015).
However, Swiss shallow soils frequently display relatively
muted gradients in OC-14C content with increasing soil depth
and between climatic regions (van der Voort et al., 2016).
This relatively homogenous isotopic composition has been
ascribed to the presence of bomb-derived OC in soil layers
up to 30 cm depth (van der Voort et al., 2016, 2019). Van der
Voort et al. (2019) suggest that percolation of DOC (as con-
strained via water-extractable OC measurements) may serve
as an agent to propagate modern carbon into deeper soil lay-
ers in nonwaterlogged (aerobic) soils, resulting in a less pro-
nounced age gradient with depth. Additionally, roots and my-
corrhizal communities may introduce bomb-derived OC to

deeper soil layers. Physical and chemical soil erosion pro-
cesses deliver primarily modern dissolved and particulate or-
ganic matter to the Sihl River, hindering source allocation
between litter and top and deep soils.

The legacy of bomb-14C is also evident in the DOC
fractions retrieved from the Sihl River, which are consis-
tently 14C-enriched relative to corresponding POC samples
(Fig. 5b). Commonly, DOC is leached from vegetation and
soils by precipitation, and its residence time in fluvial sys-
tems is similar to that of water (Raymond and Bauer, 2001;
Marwick et al., 2015). The overall modern OC-F14C signa-
ture implies that DOC is primarily sourced from through-
fall and the assimilation with non-fossil OC stored in litter
and shallow soil layers (Inamdar et al., 2011, 2012). A recent
study by von Freyberg et al. (2018) investigated the outflow
of Swiss catchments and found that the residence time of
contributing groundwater is less than 2–3 months. Similar to
the Alp, Biber, Erlenbach, and Vogelbach systems (von Frey-
berg et al., 2018), the Sihl River water isotopic compositions
reflect seasonal cycles in precipitation and streamflow, im-
plying that groundwater contributions are primarily sourced
from recent rainfall events (Fig. 2c–d). The short residence
time and the likely shallow flow paths result in limited fluid
and solid interactions, impeding the dissolution and mobi-
lization of moderately aged soil organic matter and favor-
ing the export of percolating DOC derived from litter and
organic-rich soil horizons.

Aged DOC is often associated with anthropogenic dis-
turbances including deforestation, agriculture (Moore et al.,
2013; Drake et al., 2019), atmospheric deposition (Stub-
bins et al., 2012; Spencer et al., 2014), and the release of
petroleum and wastewater (Griffith et al., 2009; Regnier et
al., 2013; Butman et al., 2015). Although we observe spo-
radic 14C-depleted DOC signals collected during the summer
months, which could be ascribed to the localized introduction
of petrogenic OC emanating from fertilizers, mineral oil, or
sewage, the majority of the DOC isotopic compositions sug-
gest a generally low degree of anthropogenic disturbance.

4.2 Downstream evolution of particulate organic
carbon

The isotopic composition of Lake Sihl (open symbols) in the
upper watershed is distinctly different from the Sihl River
(Fig. 5a). While suspended sediment at the inlet of Lake
Sihl (Lake Sihl 1) resembles material from the lower Sihl
River, suspended sediments within the lake display more de-
pleted 13C and 14C signatures. Lower POC-δ13C values in
lakes can be attributed to enhanced aquatic productivity. The
13C isotopic composition of planktonic freshwater algae can
range from −40 ‰ to −22 ‰, with the majority of reported
δ13C values being <−28 ‰ (Chikaraishi, 2013). Isotopic
fractionation of phytoplankton biomass can be amplified in
the presence of abundant dissolved inorganic carbon (DIC).
Lake Sihl, a moderately alkaline water body, receives DIC
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Figure 5. Relationship between (a) particulate organic carbon (POC) F14C and POC-δ13C (‰) values and (b) between dissolved organic
carbon (DOC) and POC-F14C values. Gray crosses indicate samples from the Alptal headwater streams: Erlenbach, Lümpenbach, and
Vogelbach (Smith et al., 2013; Gies et al., 2022). Mean isotopic compositions (±SD) of bedrock, foliage, wood, and top and deep soil
end-members are depicted (Table B1). Dots are color-coded for seasons and scaled to discharge.

from weathering carbonaceous bedrocks (allochthon nappes,
Northern Limestone Alps, Säntis zone, Fig. 1c) via surface
runoff and groundwater inflow. This “hard water effect” fur-
ther manifests itself in lower POC-F14C values as the input
of bedrock-derived, 14C-depleted DIC dilutes the carbon iso-
topic content of the water (Blattmann et al., 2019; Broecker
and Walton, 1959; Keaveney and Reimer, 2012). Isotopic
shifts in POC may also be caused by the selective uptake, de-
composition, and preservation of organic matter (Lehmann
et al., 2002, 2004). Kinetic isotope effects during enzymatic
reactions lead to the enrichment or depletion of biomolecules
relative to the bulk biomass (O’Leary, 1988). Carbohydrates
and proteins often enriched in 13C are bioactive compounds
and preferentially decomposed by microbes (Harvey et al.,
1995; van Dongen et al., 2002). In contrast, lipids and lignin
derived from plant tissue exhibit in general lower δ13C val-
ues and are more robust against degradation, leading to accu-
mulation in the particulate fraction (Harvey et al., 1995; van
Dongen et al., 2002; Lehmann and Kleber, 2015).

Surface water samples collected from Lake Sihl 1 in sum-
mer and Lake Sihl 2 in winter and spring are character-
ized by high SSC and low OC contents, enriched in 13C,
and depleted in 14C (Fig. 5a). These signatures resemble
those of the Sihl headwater streams (Smith et al., 2013; Gies
et al., 2022), suggesting enhanced contributions of petro-
genic OC (e.g., Wägital flysch). The suspended sediment was
likely entrained by the Sihl and Minster rivers in response
to storm events, forming extensive sediment plumes in the
epilimnion of Lake Sihl (Fig. 1). Fine-grained mineral soil-
and bedrock-derived particles are advected to the center of
the lake, whereas coarser, waterlogged biospheric debris mo-

bilized by surface runoff is likely deposited near the river in-
lets (Douglas et al., 2022).

In comparison to the Sihl River, headwater-sourced POC
is highly variable and encompasses a large range of carbon
isotopic compositions (Figs. 5a, 6). Headwaters, in particu-
lar the Erlenbach, receive substantial contributions of petro-
genic OC (up to ∼ 40 % of total OC) and fall between mod-
ern C3 plants and bedrock end-members (Smith et al., 2013;
Gies et al., 2022). In a recent study, Hilton et al. (2021) used
fluxes of dissolved Re, a redox-sensitive element, to con-
strain weathering intensities of petrogenic OC in the Erlen-
bach and Vogelbach basins. Findings suggest that ∼ 40 % of
OC contained in the Wägital flysch is lost to oxidative rem-
ineralization, implying that the majority of unweathered pet-
rogenic POC is eroded and entrained into adjacent streams.
Despite the high supply of sediment and petrogenic OC, the
fingerprint of severely aged organic matter is gradually lost
downstream. We attribute the gradual attenuation of headwa-
ter OC signals to (1) a declining input and increasingly distal
source of bedrock-derived sediments, (2) an enhanced con-
tribution of modern biospheric OC, (3) abiotic, and (4) biotic
processes modifying organic matter during transit.

Highly erodible Eocene flysch sequences are super-
seded downstream by more competent Cretaceous fly-
sch and molasse units, likely resulting in reduced ero-
sion rates and a lower input of petrogenic OC. Simulta-
neously, the relative abundance of entrained litter and sur-
face soils increases downstream, thereby diluting or re-
placing bedrock-derived particles (Feng et al., 2016; Hem-
ingway et al., 2017). Numerous physicochemical mecha-
nisms dynamically influence the addition, removal, and ex-
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change of OC in dissolved and particulate pools. These pro-
cesses include flocculation–deflocculation, particle sorption–
desorption, aggregation–disaggregation, leaching, settling,
and photo-oxidation (Bauer and Bianchi, 2012; Bianchi and
Bauer, 2012). Flocculation and adsorption of largely mod-
ern DOC (Fig. 5b) onto particles may provide an additional
source of biospheric organic matter, further masking petro-
genic OC inputs (von Wachenfeldt and Tranvik, 2008; Atter-
meyer et al., 2018).

Although rock-derived carbon is often regarded as inert,
persisting in the environment for at least millennia, studies
have shown that microbes in aquatic settings can assimilate
and efficiently respire OC devoid of 14C to CO2 (Petsch et al.,
2001; McCallister et al., 2004; Bouchez et al., 2010). How-
ever, flume experiments demonstrate that in-river transport,
particle abrasion, and turbulent mixing exert minimal con-
trols on the loss of organic matter and that the preservation
of OC is primarily regulated by transient storage in flood-
plains (Scheingross et al., 2019, 2021). Considering the ab-
sence of extensive floodplains and the short-distance trans-
port of water and sediment in the Sihl River watershed, we
regard oxidative loss as a minor factor contributing to the re-
moval of bedrock-sourced POC (Fox et al., 2020) and assume
that overall OC fluxes experience little microbial decomposi-
tion during active fluvial transfer along the Alp–Sihl aquatic
continuum.

The downstream exchange and dilution of petrogenic OC
with relatively undegraded biospheric organic matter have
previously been observed in large river systems such as the
Amazon (Hedges et al., 1986, 2000; Mayorga et al., 2005),
Ganges–Brahmaputra (Galy et al., 2008; Galy and Eglin-
ton, 2011), Congo (Hemingway et al., 2017), and Orange
(Herrmann et al., 2016) rivers. The alteration of riverine POC
composition in these extensive river networks occurs over
large spatial scales involving changes in topography, basin
morphology, geology, vegetation, and climatic variables. In
comparison, the Sihl River integrates and modifies exported
POC over a ∼ 40 km river interval without experiencing sig-
nificant shifts in basin characteristics. These findings imply
that low-order rivers may possess the potential to actively
modulate exported OC impacting local and regional terres-
trial carbon cycles.

4.3 Hydrologic controls on particulate organic carbon
sources and pathways

MixSIAR model results suggest that storm-driven events mo-
bilize and flush enhanced proportions of biospheric material
into the Sihl River, with values rising from 85± 1 % dur-
ing baseflow to 90± 2 % during high flow conditions. Con-
currently, relative inputs of petrogenic OC decrease from
15± 1 % to 10± 1 %, respectively.

We observe pronounced patterns in the character of POC
isotopic compositions as a function of discharge (Fig. 6).
During low flow, POC-δ13C and POC-F14C values display a

large spread in values, corresponding to heterogeneous con-
tributions from a variety of potential sources. In contrast,
the isotopic signatures of storm-derived POC are less vari-
able and appear to converge (as indicated by the arrows in
Fig. 6b–c) towards a POC-δ13C value of −27.5± 0.1 ‰ and
a POC-F14C value of 0.90± 0.01. Similar behavior is noted
in the Sihl headwaters (Gies et al., 2022). Although POC ex-
hibits a larger variance in these headwaters, the composition
of OC isotopes forms a relatively homogenous mixture dur-
ing elevated precipitation events (Gies et al., 2022). This con-
vergence might indicate a thorough mixing of several carbon
pools mobilized during a storm event (Kao and Liu, 2000;
Hilton et al., 2008a; Gies et al., 2022). However, high OC
concentrations and predominately modern 14C signatures of
the Sihl River suspended load point towards a marked shift
in sources and transport pathways from moderately aged to
fresher OC pools primarily consisting of surface soils and
litter (Fig. 3c–d).

The enhanced storm-facilitated export of modern bio-
spheric material has been previously observed in subtropi-
cal (Hilton et al., 2008b, 2012; Wang et al., 2016; Qiao et
al., 2020) and temperate regions (Medeiros et al., 2012; Hat-
ten et al., 2012; Goñi et al., 2013) and has been attributed to
increased surface runoff and landsliding. Heavy rainfall and
the resulting overland flow mobilize and laterally transport
loose plant-derived debris and sediment from surface soils to
adjacent fluvial systems (Harmon et al., 1986; Medeiros et
al., 2012; Hatten et al., 2012; Turowski et al., 2013). Storm-
induced erosion processes such as shallow landslides effi-
ciently detach litter and organic-rich surface soil layers and
actively connect forested hillslopes to river channels (Hovius
et al., 2000; Hilton et al., 2011b, 2012). Storm events may
also alter the relative contributions of distal and proximal
OC sources. Rising water levels inundate adjacent riparian
zones, potentially mobilizing significant amounts of stand-
ing riparian biomass, litter, and soil organic matter (Marwick
et al., 2014; Sutfin et al., 2016). However, as the vegetation in
the Sihl River watershed consists primarily of C3 plants, the
distinction between proximal and distal biospheric sources
cannot be resolved by a simple dual OC isotopic approach.

The traditional rating curve exponent b is often interpreted
as a proxy for the mobilization rate of particles in a fluvial
system. However, the best-fit parameters for POC (1.9± 0.1)
and SSC (1.8± 0.1) display similar values, suggesting no
change in the ratio of exported OC to suspended sediment
during elevated discharges.

In contrast, machine learning predictor variables differ in
their ability to explain suspended sediment and POC concen-
trations, suggesting a divergence in sources and mobilization
pathways. Discharge is a measure of the fluvial flow strength
and the capacity to transport sediment downstream. Simi-
larly, daily precipitation represents the intensity of rainfall
and its potential to mobilize and laterally transfer particles
via surface runoff. Water stage may act as a proxy for inunda-
tion as flooding links the river channel with banks and the ad-
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Figure 6. Relationship between runoff (mm d−1), (a) particu-
late organic carbon (POC) contents (wt %), (b) POC-δ13C (‰),
and (c) POC-F14C. Gray crosses indicate samples from the Erlen-
bach, Lümpenbach, and Vogelbach streams (Smith et al., 2013; Gies
et al., 2022). Circles are color-coded for seasons. Gray arrows indi-
cate trends.

jacent floodplain supporting the mobilization of loosely held
sediment and plant-derived debris.

The applied machine learning algorithms rely primarily on
discharge and water stage to predict SSC in the Sihl River
(Table C1). This dependency may indicate that the major-
ity of carbon-poor sediment is sourced from channel beds
and banks. The variables water stage and 1 d antecedent pre-
cipitation achieve high predictive performance for POC con-
centrations and may suggest that flooding and precipitation-

induced erosion are major mechanisms facilitating the ex-
port of coarse discrete OC via detaching litter and surface
soil. This interpretation agrees with previous assessments by
Smith et al. (2013) for the Erlenbach stream, highlighting the
importance of overland flow for POC export.

4.4 Export fluxes and implications

Sediment fluxes in the Sihl River basin are less than half
of the particle export documented in other Swiss rivers
(Spreafico et al., 2005). The low yield can be attributed to
(1) the damming of the upper basin (Lake Sihl), retaining
annually up to 1470 t yr−1 of the suspended sediment load
(Spreafico, 2007); (2) river engineering; (3) topography; and
(4) catchment geology.

Although the course of the Sihl River is strongly engi-
neered, with four run-off-the-river hydroelectric systems and
14 weir structures, these artificial barriers pose only minor
obstructions to water and sediment export. Run-off-the-river
systems use the natural flow rate of the river by redirect-
ing a portion of the river water through a penstock to a tur-
bine (Csiki and Rhoads, 2010). The water is then returned
to the main channel further downstream. Weirs or overflow
dams are barriers that do not exceed the elevation of the
channel banks, allowing constant flow over the weir crest
during baseflow conditions. Weirs along the Sihl River con-
sist largely of broad-crested weirs, boulder weirs, and water
stairs. In comparison to large dams that inundate the river
channel and floodplain, run-off-the-river and weir structures
create low-head impoundments with little or no storage ca-
pacity and present no effective barriers against flooding. In-
stead, partly fortified river banks and the narrow floodplain
of the Sihl River basin (< 10 %; Grill et al., 2019) likely sup-
port the routing of water and sediment downstream during
storm-driven events.

Differences in bedrock lithology influence the export of
sediment and associated petrogenic OC. The lithology in the
lower watershed consists mainly of molasse characterized by
low slope angles and a reduced erosion potential (Schuerch
et al., 2006; Korup and Schlunegger, 2009). Only the Alp
River drains highly erosive flysch formations in the lower
Sihl River basin (Winkler et al., 1985). However, flysch units
differ markedly in their erosivity. While the Erlenbach is un-
derlain by easily erodible, fine-grained Eocene pelitic tur-
bidites and mudstone sequences, bedrock in the Lümpenbach
and Vogelbach watersheds mainly consists of more compe-
tent Cretaceous calcareous sandstones (Fig. 1d) (Keller and
Weibel, 1991; Milzow et al., 2006; Schuerch et al., 2006).
These differences in lithological units are manifested in their
respective sediment yields. The Erlenbach, despite compris-
ing only 0.4 % of the lower Sihl River basin, supplies about
4.7 % to 6.7 % of the overall particulate load, with mean an-
nual sediment yields ranging from 1225 to 1648 t km−2 yr−1

(Keller and Weibel, 1991; Smith et al., 2013). In comparison,
the watershed of the Vogelbach is twice as large as the Er-

https://doi.org/10.5194/bg-19-5591-2022 Biogeosciences, 19, 5591–5616, 2022



5604 M. S. Schwab et al.: Environmental and hydrologic controls

lenbach but has similar SSC export flux rates (4.4 %–6.4 %),
resulting in lower annual sediment yields of 725 t km−2 yr−1

(Keller and Weibel, 1991).
By multiplying OC fluxes with the mean values of the

MixSIAR posterior distributions for baseflow and storm-
flow conditions, while neglecting contributions from in situ
aquatic productivity, we can estimate export rates for the con-
tributions of biospheric and petrogenic OC. Biospheric (2.0–
3.6 tC km−2 yr−1) and petrogenic (0.3–0.4 tC km−2 yr−1)
POC yields in the Sihl River are similar to contributions
from the Erlenbach reported by Gies et al. (2022; POCbio:
1.2± 0.4 tC km−2 yr−1) but distinctly lower than estimations
by Smith et al. (2013; POCbio: 14.0± 4.4 tC km−2 yr−1,
POCpetro: 10.1± 1.6 tC km−2 yr−1). Smith et al. (2013) fo-
cused their sample collection on storm-driven events yield-
ing particularly high export fluxes, and this may account for
the discrepancy in fluxes. However, the increase in relative
biospheric contributions concomitant with the reduction in
petrogenic OC proportions and the decline in absolute export
yields from headwaters to the downstream Sihl sampling site
underline the impact of diverse processes acting upon and
contributing to OC along the fluvial continuum. These pro-
cesses reflect the impact of subtle changes in basin lithol-
ogy (erosivity, OC content), geomorphology (slope, flood-
plain extent), and anthropogenic activities (e.g., damming,
channelization, land use) on the age and the composition of
exported POC.

5 Conclusions

This study focuses on temporal variations in OC export from
a Swiss subalpine river and its tributary streams and provides
insights into the mechanisms of sediment and associated OC
mobilization and transport within a moderately steep river
basin. Our results indicate that POC in the Sihl River consists
primarily of modern to moderately aged biospheric OC de-
rived from terrestrial vegetation and soils. While petrogenic
carbon is prevalent in Sihl headwater catchments, the sig-
nal is gradually lost downstream. We attribute this decline
of rock-derived OC (i) to decreasing contributions of source
material that are restricted to upstream segments of the wa-
tershed and (ii) to dilution and replacement by soil and plant
biomass, as well as instream OC transformation processes.
Despite the moderate stream gradient of the Sihl River, parti-
cle export is driven by episodic, short-lived storm events. We
observe large variations in the isotopic composition of or-
ganic matter during baseflow conditions, whereas POC-δ13C
and POC-F14C values converge to a more uniform mixture
during storm-driven events. Results of traditional and ma-
chine learning modeling approaches further reveal diverging
transport pathways for suspended sediment and OC with in-
creasing discharge. Given the high POC content, the modern
POC-F14C signature, and the differences in particle mobi-
lization, we suggest that severe precipitation events facilitate

the preferential entrainment of litter and surficial soil layers
via surface runoff or the inundation of riparian vegetation and
soils. Climate model simulations predict an increase in inten-
sity, frequency, and duration of extreme precipitation events
both regionally and globally with continued climate warming
(Myhre et al., 2019; Kahraman et al., 2021), resulting in en-
hanced flood risks, water-induced erosion, and landsliding.
The increased export of freshwater, nutrients, and sediment
will likely severely affect downstream ecosystems and car-
bon cycling, requiring direct human intervention (Turowski
et al., 2009; Talbot et al., 2018) and warranting the continu-
ous monitoring of river systems.

Appendix A: Dissolved organic carbon concentrations

DOC concentration measurements were conducted using a
Shimadzu system (TOC-L Series) at the Department of En-
vironmental System Science at ETH Zurich and are reported
in Table S1. However, measurements from August 2016 to
March 2018 are not reported due to uncertainties in the qual-
ity of the measurements. We choose not to discuss them in
the paper.
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Appendix B: End-member compositions for the
Bayesian unmixing model (MixSIAR)

Table B1. Particular organic carbon (POC) end-member compositions used in the MixSIAR Bayesian model.

POC-δ13C (‰) POC-F14C Reference

M SD M SD n

Bedrock −25.45 0.89 0.000 0.001 22 Smith et al. (2013)
Top soil −26.91 1.20 1.053 0.027 22 Smith et al. (2013); van der Voort et al. (2016); Gies et al. (2022)
Deep soil −26.80 1.08 0.968 0.007 5 Smith et al. (2013); van der Voort et al. (2016); Gies et al. (2022)
Foliage −28.25 1.49 1.017 0.004 8 Smith et al. (2013); Hua et al. (2022)
Wood −25.26 1.15 1.017 0.004 12 Smith et al. (2013); Hua et al. (2022)

Appendix C: Machine learning frameworks

Multiple linear regression (MLR) assumes a linear relation-
ship between a single dependent continuous variable and
several independent variables. To reduce overfitting of the
MLR, we apply elastic net regularization, which penalizes
the model for both `1 and `2 norms (Zou and Hastie, 2005).

Support vector machines are a popular machine learning
approach performing linear or nonlinear classification, re-
gression, and outlier detection. The support vector machine
classification algorithm identifies an optimal hyperplane in
n-dimensional space to separate and categorize data points.
In contrast, the support vector regression (SVR) uses this
principle to fit as many instances onto a hyperplane while
limiting margin violations. This supervised learning algo-
rithm supports different kernels (linear, Gaussian radial ba-
sis, polynomial) handling nonlinearity. Radial basis func-
tion kernels are commonly applied to fit nonlinear regression
lines and often outperform linear and polynomial kernels.

A standard decision tree is a nonparametric supervised
learning method that predicts the value of a target variable by
inferring simple decision rules based on data features. Deci-
sion trees are prone to overfitting the training set and thus are
often replaced by an ensemble of decision trees called a ran-
dom forest. Random forests are generally built on bagging
and random feature selection creating an uncorrelated forest
of decision trees and thus generalizing well to unseen data
(Breiman, 2001).

Neural networks are a system of algorithms inspired by the
human brain that attempts to recognize underlying patterns in
a data set. The simplest neural network consists of an input
and output layer that is interconnected through one hidden
layer. Each neuron in these layers has an associated weight
and threshold. The weighted sum of all neurons in a layer
is passed through an activation function and augmented by
a bias term. In a feed-forward neural network, backpropa-
gation adjusts the weights by minimizing the loss function
and reducing the error between modeled and output values
(Rumelhart et al., 1986). The utilized architecture consists of
two hidden layers, each containing 10 neurons. To prevent
overfitting, we apply dropout. This regularization technique
temporarily removes units during the training period (Srivas-
tava et al., 2014). Dropped units are chosen randomly.

https://doi.org/10.5194/bg-19-5591-2022 Biogeosciences, 19, 5591–5616, 2022



5606 M. S. Schwab et al.: Environmental and hydrologic controls

Figure C1. Performance of (a–b) traditional power law, (c) multiple linear regression (MLR), (d) support vector regression (SVR), (e) ran-
dom forest regression (RFR), and (f) neural network regression (NNR) models. The evaluation is based on observed against predicted
suspended sediment concentrations (mg L−1). Performance metrics are based on nested cross-validation (R2: coefficient of determination,
RMSE: root mean squared error, MAE: mean absolute error).

Figure C2. Performance of (a–b) traditional power law, (c) multiple linear regression (MLR), (d) support vector regression (SVR), (e) ran-
dom forest regression (RFR), and (f) neural network regression (NNR) models. The evaluation is based on observed against predicted partic-
ulate organic carbon concentrations (mg L−1). Performance metrics are based on nested cross-validation (R2: coefficient of determination,
RMSE: root mean squared error, MAE: mean absolute error).
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Table C1. Model performance in predicting suspended sediment (SS) and particulate organic carbon (POC) concentrations for the investi-
gated period. SS: suspended sediment, POC: particulate organic carbon,Q: discharge,H : water stage, P : precipitation, Pt−1: 1 d antecedent
precipitation, Pt−2: 2 d antecedent precipitation.

Model scenario Model structure R2 RMSE MAE R2 RMSE MAE
mg L−1 mg L−1 mg L−1 mg L−1

Suspended sediment concentration

Power law (bias-corrected) Power law (nonlinear least squares)

0.628 130.027 43.355 0.777 49.534 33.086

Multiple linear regression (elastic net) Random forest regression

1 SS∼Q 0.769 48.241 26.720 0.831 41.617 20.951
2 SS∼Q+H 0.781 47.119 26.052 0.789 47.633 24.752
3 SS∼Q+H +P 0.775 47.877 26.440 0.809 46.130 23.236
4 SS∼Q+H +P +Pt−1 0.791 46.171 26.236 0.829 41.131 20.961
5 SS∼Q+H +P +Pt−1+Pt−2 0.791 46.165 26.597 0.823 44.162 21.384
6 SS∼Pt−1 0.530 66.768 40.194 0.589 67.226 28.772
7 SS∼Pt−1+Q 0.792 45.974 25.824 0.847 39.027 19.136
8 SS∼Pt−1+Q+H 0.796 45.568 26.007 0.783 41.032 20.784
9 SS∼H 0.673 57.444 34.489 0.670 56.707 32.647
10 SS∼H +Pt−1 0.666 57.614 35.160 0.659 54.453 27.061
11 SS∼P 0.335 81.021 56.256 0.115 99.313 58.731

Support vector regression Neural network regression

1 SS∼Q 0.796 45.110 23.504 0.717 50.760 27.259
2 SS∼Q+H 0.810 43.846 22.647 0.752 48.235 24.726
3 SS∼Q+H +P 0.751 50.146 25.362 0.746 48.390 25.518
4 SS∼Q+H +P +Pt−1 0.771 48.357 22.429 0.728 48.316 24.640
5 SS∼Q+H +P +Pt−1+Pt−2 0.763 48.937 23.132 0.734 48.845 25.634
6 SS∼Pt−1 0.358 79.794 37.551 0.435 71.182 32.648
7 SS∼Pt−1+Q 0.793 45.320 21.168 0.690 49.812 25.873
8 SS∼Pt−1+Q+H 0.799 44.745 20.701 0.741 49.391 25.241
9 SS∼H 0.479 70.756 34.971 0.593 59.417 28.658
10 SS∼H +Pt−1 0.604 62.900 29.319 0.669 56.086 27.110
11 SS∼P 0.168 91.156 47.051 0.023 97.894 52.224

Particulate organic carbon concentration

Power law (bias-corrected) Power law (nonlinear least squares)

0.474 4.755 1.568 0.584 1.678 1.069

Multiple linear regression (elastic net) Random forest regression

1 POC∼Q 0.362 1.780 1.079 0.467 1.569 0.874
2 POC∼Q+H 0.555 1.506 0.841 0.663 1.383 0.765
3 POC∼Q+H +P 0.440 1.676 0.974 0.613 1.356 0.780
4 POC∼Q+H +P +Pt−1 0.592 1.499 0.884 0.642 1.381 0.784
5 POC∼Q+H +P +Pt−1+Pt−2 0.578 1.526 0.913 0.601 1.518 0.847
6 POC∼Pt−1 0.368 1.757 1.197 0.628 1.598 0.781
7 POC∼Pt−1+Q 0.464 1.660 0.987 0.503 1.487 0.866
8 POC∼Pt−1+Q+H 0.595 1.485 0.871 0.680 1.327 0.749
9 POC∼H 0.553 1.509 0.839 0.479 1.522 0.864
10 POC∼H +Pt−1 0.515 1.601 0.999 0.638 1.503 0.747
11 POC∼P 0.078 2.006 1.452 −0.263 2.218 1.534

Support vector regression Neural network regression

1 POC∼Q 0.064 2.061 1.144 0.627 1.471 0.792
2 POC∼Q+H 0.636 1.422 0.791 0.579 1.599 0.817
3 POC∼Q+H +P 0.663 1.343 0.729 0.574 1.411 0.760
4 POC∼Q+H +P +Pt−1 0.735 1.226 0.670 0.650 1.479 0.743
5 POC∼Q+H +P +Pt−1+Pt−2 0.594 1.531 0.862 0.285 1.762 0.840
6 POC∼Pt−1 0.498 1.648 0.848 0.590 1.699 0.887
7 POC∼Pt−1+Q 0.531 1.541 0.797 0.667 1.432 0.779
8 POC∼Pt−1+Q+H 0.612 1.455 0.762 0.656 1.468 0.781
9 POC∼H 0.541 1.579 0.748 0.599 1.466 0.713
10 POC∼H +Pt−1 0.471 1.598 0.792 0.697 1.392 0.701
11 POC∼P −0.022 2.305 1.245 0.188 2.250 1.168
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Appendix D: Flow duration curve

Figure D1. Flow duration curve of the Sihl River spanning from 1974 to 2020. Gray data points indicate sampling points.

Appendix E: Results of nonparametric analyses of
variance

Table E1. Results of significant nonparametric Mann–Whitney and Kruskal–Wallis ranks sum tests as well as Conover–Iman post hoc
tests for suspended sediment concentrations (SSCs), particulate organic carbon (POC), dissolved organic carbon (DOC), and water isotopic
compositions. Bold font indicates significant p values.

Mann–Whitney rank sum test Kruskal–Wallis rank sum test Conover–Iman post hoc test

difference p value df H p value difference p value

SSC (mg L−1) baseflow− stormflow −231.64 < 0.001 δ2H (‰) 3 25.98 < 0.001 fall− spring 4.23 < 0.001
fall− summer −0.81 1.000

POC-F14C baseflow− stormflow −0.04 < 0.001 spring− summer −4.89 < 0.001
fall−winter 3.86 0.001

DOC-F14C baseflow− stormflow −0.03 < 0.001 spring−winter −0.54 1.000
summer−winter 4.56 < 0.001

δ18O (‰) 3 24.25 < 0.001 fall− spring 4.29 < 0.001
fall− summer −0.74 1.000
spring− summer −4.88 < 0.001
fall−winter 3.35 0.004
spring−winter −1.08 0.853
summer−winter 3.99 < 0.001

POC-δ13C (‰) 3 24.05 < 0.001 fall− spring 2.73 0.023
fall− summer −3.03 0.010
spring− summer −5.33 < 0.001
fall−winter 1.15 0.761
spring−winter −1.67 0.294
summer−winter 4.08 < 0.001

DOC-F14C 3 10.55 0.010 fall− spring 2.20 0.092
fall− summer 3.29 0.005
spring− summer 0.91 1.000
fall−winter 1.34 0.556
spring−winter −0.99 0.970
summer−winter −2.03 0.139
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