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Abstract. Wetlands are the largest natural source of methane.
The ability to model the emissions of methane from nat-
ural wetlands accurately is critical to our understanding of
the global methane budget and how it may change under fu-
ture climate scenarios. The simulation of wetland methane
emissions involves a complicated system of meteorologi-
cal drivers coupled to hydrological and biogeochemical pro-
cesses. The Joint UK Land Environment Simulator (JULES)
is a process-based land surface model that underpins the UK
Earth System Model (UKESM) and is capable of generating
estimates of wetland methane emissions.

In this study, we use GOSAT satellite observations of at-
mospheric methane along with the TOMCAT global 3-D
chemistry transport model to evaluate the performance of
JULES in reproducing the seasonal cycle of methane over
a wide range of tropical wetlands. By using an ensemble
of JULES simulations with differing input data and process
configurations, we investigate the relative importance of the
meteorological driving data, the vegetation, the temperature

dependency of wetland methane production and the wetland
extent. We find that JULES typically performs well in repli-
cating the observed methane seasonal cycle. We calculate
correlation coefficients to the observed seasonal cycle of be-
tween 0.58 and 0.88 for most regions; however, the seasonal
cycle amplitude is typically underestimated (by between 1.8
and 19.5 ppb). This level of performance is comparable to
that typically provided by state-of-the-art data-driven wet-
land CH4 emission inventories. The meteorological driving
data are found to be the most significant factor in determin-
ing the ensemble performance, with temperature dependency
and vegetation having moderate effects. We find that neither
wetland extent configuration outperforms the other, but this
does lead to poor performance in some regions.

We focus in detail on three African wetland regions (Sudd,
Southern Africa and Congo) where we find the performance
of JULES to be poor and explore the reasons for this in de-
tail. We find that neither wetland extent configuration used is
sufficient in representing the wetland distribution in these re-
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gions (underestimating the wetland seasonal cycle amplitude
by 11.1, 19.5 and 10.1 ppb respectively, with correlation co-
efficients of 0.23, 0.01 and 0.31). We employ the Catchment-
based Macro-scale Floodplain (CaMa-Flood) model to ex-
plicitly represent river and floodplain water dynamics and
find that these JULES-CaMa-Flood simulations are capable
of providing a wetland extent that is more consistent with ob-
servations in this regions, highlighting this as an important
area for future model development.

1 Introduction

Methane (CHy) is a significant greenhouse gas, with a global
warming potential (GWP) many times greater than that of
CO; (100-year GWP = 28; Etminan et al., 2016). Accord-
ing to IPCC et al. (2021), methane accounts for approxi-
mately 20 % of the increase in radiative forcing from the pre-
industrial period to the present day. The relatively short atmo-
spheric lifetime of methane (~ 9 years; Prather et al., 2012)
means that reductions provide significant potential for miti-
gation of climate change to help address the goals of the Paris
Agreement (O’Connor et al., 2010; Ganesan et al., 2019).
However, the global methane budget is highly complex with
a range of natural and anthropogenic sources (Saunois et al.,
2020), many of which are still poorly constrained and possess
large uncertainties (Dlugokencky et al., 2009; Nisbet et al.,
2014).

Wetlands are the largest natural methane source and are
comparable to (or larger in magnitude than) emissions from
agriculture/waste and fossil fuels (Saunois et al., 2020). Nat-
ural wetlands are inundated ecosystems with water-saturated
soil or peat and include permanent or seasonal floodplains,
swamps, marshes and peatlands where the anaerobic condi-
tions lead to CH4 production via methanogenic bacteria. Im-
portantly, the uncertainty in CH4 emissions from wetlands
remains one of the most significant challenges for under-
standing the global CH,4 budget. Not only are there large un-
certainties on processes and mechanisms related to the CHy
emission itself (Melton et al., 2013), but the wetland extent
is highly uncertain (Bloom et al., 2010; Kirschke et al., 2013;
Stocker et al., 2014) as is the response to meteorological
drivers (Poulter et al., 2017; Parker et al., 2018).

One important step in better understanding the global CHy
budget is reconciling the bottom-up estimates of CHy emis-
sions (e.g. from land surface models) with top-down es-
timates based on atmospheric observations. The latest as-
sessment of the global CHy budget (Saunois et al., 2020)
has a bottom-up estimate of wetland CHy emissions of
149 Tg CHy yr~! (range of 102-182) compared with a top-
down estimate of 181 Tg CHyyr~! (range of 159-200) for
2008-2017. Recent work (Folberth et al., 2022) has cou-
pled wetland CH4 emissions from the Joint UK Land En-
vironment Simulator (JULES) into the UK Earth System
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Model (UKESM) for the first time, allowing interactive wet-
land emissions from JULES to be used in climate simula-
tions. To fully exploit this new capability, it is vital that
the performance of the JULES wetland CH4 scheme is
well-characterised and evaluated against present-day obser-
vations.

In this study, we perform an evaluation of the wetland CHy
emissions from the JULES land surface model using satellite
observations of atmospheric CHs columns in order to both
assess the utility of the model in providing emission esti-
mates as well as to diagnose any discrepancies against ob-
servations that may lead to future model improvements and
increased understanding of the relevant processes.

The objectives of this study are as follows:

— to provide an evaluation of the performance of JULES
wetland CHy simulations across the tropics using satel-
lite remote sensing data;

— to evaluate and characterise the differences in per-
formance across an ensemble of JULES simulations
with different configurations and identify the best-
performing configuration(s) with the most suitable input
data;

— to explain the underlying reasons for poorly performing
regions, relating these to the processes within JULES,
and provide guidance on potential improvements.

In Sect. 2, we introduce the JULES land surface model,
explain how wetland methane emissions are calculated and
describe the ensemble of simulations that we have produced.
Section 3 details the datasets and tools used to directly com-
pare the JULES CHy emissions to observations. In Sect. 4,
we perform an evaluation of the seasonal cycle of JULES
CH4 emissions over a range of wetland regions, and we focus
in more detail on the challenging African regions in Sect. 5.
We conclude the study in Sect. 6.

2 JULES wetland CH4 emissions

The Joint UK Land Environment Simulator, JULES (Best
et al., 2011; Clark et al., 2011), is a process-based land sur-
face model that both underpins the UK Earth System Model
(Sellar et al., 2019) and acts as a stand-alone model capable
of simulating many processes related to the land surface by
describing the carbon, water and energy exchanges. We use
JULES version 5.1 in this study.

2.1 Generation of wetlands within JULES

TOPMODEL (TOPography-based hydrological MODEL) is
a rainfall-runoff model where estimates of surface and sub-
surface runoff are produced considering the topography of
the land surface (Beven, 2012). This is defined through the
topographic index, which is related to the relative propensity
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for soil saturation in that it incorporates both slope and up-
stream area. TOPMODEL was originally applied at the scale
of small catchments, using pixels smaller than 50 m x 50 m
in extent, but this framework has since been extended to
global applications at a much wider range of spatial scales
(Marthews et al., 2015; Gedney et al., 2019). TOPMODEL
remains one of the most popular and widely used runoff pro-
duction models (Beven et al., 2021) and has been imple-
mented within the framework of the JULES model for many
years (Best et al., 2011).

TOPMODEL is implemented in JULES as part of the
large-scale hydrology scheme (Gedney and Cox, 2003; Best
et al., 2011). A deep layer of restrictive water flow, added to
the bottom of the standard soil column at a 3 m depth, re-
sults in the production of a saturated soil zone and a water ta-
ble. The water table moves vertically when the soil moisture
changes. Within each grid box the statistical distribution of
topographic index (Marthews et al., 2015) is combined with
the mean water table depth. This enables the simulation of a
sub-grid water table distribution and, therefore, the extent of
wetland in the grid box.

2.2 JULES wetland CH4 emissions

The JULES land surface model calculates methane wetland
emissions (Fc,) from three key factors, namely the amount
of available substrate carbon, the temperature and the inun-
dated area below the water table (Gedney et al., 2004; Clark
etal., 2011):

n Cs pools z=3m
Fowy =kew - fu ) kie Y e
i=l1 z=0m
0.1(Tsoi1— Tt
- Cy,., - Q1o (Toin) - Troit =10, (1

kcu, 1s a dimensionless scaling constant (7.41 x 10712y
for wetland CH4 emissions when soil carbon is taken as the
substrate for CH4 emissions. The wetland fraction (i.e. the
proportion of a grid cell where the water table is at/above the
surface and below a threshold indicative of significant flow;
Gedney et al., 2004) is denoted by f,. z is the depth of soil
column (in m), i is the soil carbon pool, «; (s™1) is the spe-
cific respiration rate of each pool (Table 8 of Clark et al.,
2011), Cs (kg m~2) is soil carbon and Ty (K) is the soil
temperature, averaged over the soil layers in the top 1 m of
soil. The decay constant y (= 0.4 m~!) describes the reduced
contribution of CHy emission at deeper soil layers due to in-
hibited transport and increased oxidation through overlaying
soil layers. This representation of inhibition is a simplifica-
tion. However, previous work which explicitly represented
these processes showed little to no improvement when com-
pared with in situ observations (McNorton et al., 2016). We
do not model CHy emissions from freshwater lakes.

https://doi.org/10.5194/bg-19-5779-2022
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4-digit code describes ensemble member - ABCD

Met Driving Data ERA-Interim WEFDEI

s | 1 | 2 | 3 |

Vegetation Phenology, TRIFFID Fixed,  TRIFFID
9pfts 9pfts Dynamic,
9Ipfts

Temperature Dependence Q10= 3.7 Q‘m: 5.0

Extent Parameterisation JULES JULES with
SWAMPS
mask

Figure 1. Description of the 24 JULES ensemble members used in
this study, comprising 2 meteorological driving data configurations,
3 vegetation configurations, 2 temperature dependencies and 2 wet-
land extent configurations. The four-digit code (ABCD) is used to
identify the individual ensemble members.

2.3 JULES ensemble experimental set-up

As outlined in Eq. (1), there are a variety of options within
JULES and choices of input data that affect the calculation
of CHy from wetlands, which we call a “configuration”. In
this study, we produce an ensemble of JULES simulations
that spans a range of configurations. Different configura-
tions allow adjustment of factors that have all been identified
as key sources of uncertainty in previous wetland methane
modelling efforts. We identify the optimal configuration(s)
through comparison of model outputs against observations.
The JULES ensemble that we produce comprises two dif-
ferent sets of meteorological driving data (ERA-Interim and
WATCH Forcing Data ERA-Interim (WFDEI); Sect. 2.3.1),
three different vegetation configurations (prescribed phenol-
ogy and dynamic vegetation with and without competition;
Sect. 2.3.2), two different temperature dependencies (Q109 =
3.7 and Qo = 5.0; Sect. 2.3.3) and two different wetland ex-
tent parameterisations (the default from JULES and a ver-
sion masked via the Surface WAter Microwave Product Se-
ries (SWAMPS) wetland extent; Sect. 2.3.4). This results in
an ensemble with 24 members (2 x 3 x 2 x 2). In order to
identify ensemble members, we assign to each member a
four-digit ID, as shown in Fig. 1. Thus the ensemble member
using WFDEI meteorology data (2), using dynamic vegeta-
tion (3), with the lower temperature dependency (1) and with
the original JULES wetland extent (1) is ensemble member
2311.

In a post-processing step, the time series of annual wet-
land emissions of each ensemble member, regardless of
whether they have been further constrained with a wetland
mask or not, is separately scaled to give annual emissions
of 180 Tg CH4 yr~! for the year 2000 (Saunois et al., 2016),
as described in Comyn-Platt et al. (2018). The scaling is
most important when applied to the SWAMPS-based ensem-
ble members as the geographic masking of the JULES wet-
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land area with the SWAMPS data would otherwise result
in reduced global emissions, below a level consistent with
Saunois et al. (2016).

Maps of the CH4 emissions for each ensemble member
are presented in Fig. 2 for August 2011. Clear differences
are observed relating to the different ensemble configura-
tions, including the following: substantial differences be-
tween ERA-Interim and WFDEI-based ensemble members,
with the magnitude of the emissions in the WFDEI members
visibly smaller, and large spatial differences based on the de-
fault vs. SWAMPS wetland extent masking, with SWAMPS
significantly reducing the wetland areas and concentrating
the emissions, particularly removing the widespread but low
emissions found more generally in the default members.

2.3.1 Driving data: ERA-Interim vs. WFDEI

Meteorological forcing data are used to drive the JULES land
surface model. The meteorological parameters used in this
study are as follows: air temperature, surface pressure, pre-
cipitation, short- and long-wave radiation, relative humidity,
and wind speed. In the ensemble, we use two sources for the
meteorological data: ERA-Interim and WFDEL

The ERA-Interim reanalysis (Dee et al., 2011) is a widely
used global atmospheric reanalysis product produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWEF). WFDEI is based on the ERA-Interim reanalysis
data but includes the modifications as outlined in Weedon
et al. (2014). These include interpolation to a 0.5° x 0.5° res-
olution, a sequential elevation correction and a monthly bias
correction based on observations.

2.3.2 Vegetation

Vegetation is represented by nine plant functional types
(PFTs): broadleaf deciduous trees, tropical broadleaf ev-
ergreen trees, temperate broadleaf evergreen trees, needle-
leaf deciduous trees, needle-leaf evergreen trees, C3 and Cy
grasses, and deciduous and evergreen shrubs (Harper et al.,
2016). Depending on the options chosen, these PFTs can be
in competition for space, based on the TRIFFID (Top-down
Representation of Interactive Foliage and Flora Including
Dynamics) dynamic vegetation module within JULES (Clark
etal., 2011). There are also four non-vegetated surface types:
urban, water, bare soil and ice.

The ensemble uses three different JULES configurations
to describe the vegetation behaviour (Clark et al., 2011): a
configuration based on calculating leaf-level phenology and
two configurations based on the TRIFFID dynamic vegeta-
tion module in JULES, with and without vegetation compe-
tition (i.e. allowing for changes in surface coverage by dif-
ferent PFTs or not respectively). The calculation of leaf phe-
nology is independent of the calculation of the evolution of
vegetation coverage and is available even when the TRIFFID
dynamic vegetation module is not used.
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The number of carbon pools used in Eq. (1) depends on
the soil biogeochemistry model (soil_bgc_model) and veg-
etation options selected. For the leaf phenology vegetation
option, soil_bgc_model = 1 and a single (fixed) soil car-
bon pool is used. For the vegetation configurations using the
TRIFFID dynamic vegetation model, soil_bgc_model = 2
and four carbon pools are used based on the RothC model
(Clark et al., 2011).

2.3.3 Temperature dependence: Q19 = 3.7 vs. 5.0

As indicated in Eq. (1), the CH4 emission is strongly depen-
dent on the temperature of the soil. This temperature depen-
dency of methanogenesis is generally parameterised using
a Qo value that approximates the Arrhenius equation. As
discussed in Gedney et al. (2004), the approach that JULES
takes due to applying this approximation globally over a wide
temperature range is to use an effective or generalised Qg
that fits the form of the Arrhenius equation exactly (Eq. 2).

010(T) = Q1o(Tp) ™/ T 2)

We chose Qg values of 3.7 and 5 based on the work of
Gedney et al. (2019), who tested respective values of 3, 3.7
and 4.7 as low, middle and upper estimates based on Turetsky
et al. (2014) values for poor fens, rich fens and bogs.

2.3.4 Wetland extent: JULES vs. JULES with
SWAMPS mask

JULES generates wetland extent following the TOPMODEL
approach, as outlined in Sect. 2.1. As accurate wetland extent
is one of the largest challenges in relation to modelling wet-
land emissions of methane (Saunois et al., 2020), the ensem-
ble also provides an alternative observationally constrained
wetland extent. In this instance, the JULES wetland area is
simply masked by the SWAMPS dataset (Schroeder et al.,
2015), meaning that any wetland extent that is inconsistent
with the SWAMPS observations is disregarded.

3 Datasets used for comparing JULES CH4 emissions
to atmospheric observations

3.1 GOSAT CH4 observations

The primary observational dataset that we use for evaluation
of the JULES CHy4 is the University of Leicester GOSAT
Proxy XCH4 (Parker et al., 2011, 2020a). The GOSAT
satellite, launched in 2009 by the Japanese Space Agency,
was the first dedicated greenhouse gas observing satellite
(Kuze et al., 2009). These data were recently used (Parker
et al., 2020b) to evaluate the WetCHARTs CHy4 emission
database (Bloom et al., 2017a) and have previously been
used for many wetland-related studies, including Parker et al.
(2015), Berchet et al. (2015), McNorton et al. (2016), Lunt
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Figure 2. Example (August 2011) of wetland CH4 emissions generated from each JULES ensemble members used in this study. The ensem-
ble comprises two meteorological driving data configurations, two wetland extent configurations, two temperature dependency configurations
and three vegetation configurations. Each panel is labelled with the details of its configuration, following the format of the key (shown in the

bottom left).

et al. (2019), Saunois et al. (2020), Wilson et al. (2021),
Maasakkers et al. (2021) and Lunt et al. (2021).

GOSAT measures the signal of reflected sunlight in the
short-wave infrared (SWIR) and, as such, is capable of pro-
viding measurements over land and also over the ocean in
cases where sun-glint reflection allows. The GOSAT Proxy
XCHy retrieval provides around 15 000-25 000 observations
over land each month and, after changes to the sun-glint sam-
pling in 2015, a comparable number over the ocean. For a full
description of the data, including evaluation and validation,
see Parker et al. (2020a).

3.2 TOMCAT atmospheric CHy simulations

In order to link surface CH4 emissions as generated by
JULES with atmospheric observations as measured by
GOSAT, it is necessary to run the emissions through a global
chemistry transport model.

https://doi.org/10.5194/bg-19-5779-2022

In this study, we use the TOMCAT 3-D model (Chipper-
field, 2006), run globally between 2009 and 2017 ata 1.125°
horizontal resolution and 60 vertical levels up to 0.1 hPa. The
model set-up is consistent with that in Parker et al. (2020b).
In short, non-wetland CH4 fluxes are taken from the Emis-
sions Database for Global Atmospheric Research (EDGAR)
v4.2 database for anthropogenic emissions and the Global
Fire Emissions Database (GFED) v4.1s dataset for biomass
burning emissions. Annually repeating rice paddy emissions
are used from Yan et al. (2009), with ocean and termite
sources used following Patra et al. (2011). The atmospheric
(OH, O('D) and stratospheric Cl) and soil sinks are as de-
scribed in McNorton et al. (2016).

For the wetland CHy4 fluxes, the emissions generated for
each of the 24 JULES ensemble members (Sect. 2.3) are as-
signed to individual tracers. These tracers each contain the
wetland and non-wetland CHy4 fluxes; therefore, an addi-

Biogeosciences, 19, 5779-5805, 2022
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tional tracer containing no wetland emissions is used as a
reference to remove the non-wetland effects.

The model was initialised using the same method as Parker
et al. (2018) and Parker et al. (2020b), which, in turn, were
based on simulations from McNorton et al. (2016). The
model tracers were initialised in 1977 and ran up to 2004 at
a coarser resolution (2.8°) than the main simulation. At this
point, the tracers were scaled to match the overall observed
surface concentration for CH4. The period from 2004 to 2009
was then run at the 1.125° resolution before the analysis be-
gan in 2009.

4 Evaluation of the JULES wetland CH4 seasonal cycle

In this section, we evaluate the seasonal cycle of the wet-
land CH4 emissions generated from the ensemble of JULES
simulations against atmospheric satellite observations. We
perform the same analysis on the JULES wetland emission
datasets as was used for the evaluation of the WetCHART'Ss
emission dataset (Parker et al., 2020b), thereby enabling
comparison of results and conclusions.

The evaluation is performed over 7 large-scale areas
(global, Northern Hemisphere, Southern Hemisphere, 60° S—
60° N, tropics, north tropics and south tropics) as well as 16
specific wetland areas, as indicated in Fig. 3.

To calculate the XCH4 seasonal cycle, we apply the
NOAA curve-fitting routine (ccgerv) (Thoning et al., 1989;
NOAA, 2022) to the GOSAT CHy observations as well as
the TOMCAT model simulations for each of the JULES wet-
land emission ensemble members. To determine the wetland-
specific signal, we apply the same technique to the TOMCAT
tracer that contained no wetland emissions and subtract that
signal. This method does make the assumption that the uncer-
tainties in the inter-annual variability in non-wetland XCHy
sources (such as biomass burning) are much smaller than the
uncertainty in wetland methane emissions. This assumption
has previously been tested (e.g. Parker et al., 2020b; Wilson
et al., 2021), and inversion results suggest that, whilst it is
possible for fire emissions to interfere with our analysis to a
small degree, this is largely not the case with flux changes
in fire-affected regions generally remaining consistent with
the prior (see Appendix B for more details). In future work,
CO inversions, currently under development, will allow us
to better represent the XCH4 flux from biomass burning and
separate any effect more explicitly.

The above method results in a wetland XCHy seasonal cy-
cle for each region from GOSAT and from each of the model
ensemble members (Fig. 4). The observed (GOSAT) sea-
sonal cycle magnitude varies significantly between regions
(e.g. contrast the Pantanal and East Amazon regions) and
can also be seen to vary strongly between years for the same
region (e.g. contrast SE Asia for the period from 2010 to
2017). Qualitatively, the ensemble of JULES-based simula-
tions are not dissimilar to the observations; however, the sim-
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ulated seasonal cycles are typically weaker in magnitude than
the observations. Although the ensemble spread can be large
in some regions (e.g. Indo-Gangetic region), the areas with
a strong observed seasonal cycle typically exhibit a strong
seasonal cycle in the JULES ensemble, albeit typically with
a smaller magnitude. This suggests, overall, that JULES is
generally capable of reproducing the region-to-region and
month-to-month wetland emissions that we see from obser-
vations, but details for specific regions can fail to match the
observations.

A more rigorous quantitative evaluation of the seasonal
cycle phase and magnitude is shown in Fig. 5. In this analy-
sis, we produce a box-and-whisker plot for the distribution of
the model-GOSAT wetland XCH4 seasonal cycle amplitude
differences (A A), combining all ensemble members and all
years for each region. Further, the box is coloured according
to the mean value of the correlation coefficient (Rcycle) be-
tween the GOSAT and model seasonal cycles. In this way,
we attempt to portray two separate aspects of the model per-
formance. The box-and-whisker plot indicates the difference
in the amplitude of the seasonal cycle for each year, while
the colours indicate the correlation coefficient of the time se-
ries. It is entirely possible to have highly correlated time se-
ries where the amplitude of the signal is different (e.g. two
perfectly in sync seasonal cycles but one with a very differ-
ent amplitude to the other). This is the case for regions such
as the Pantanal, where the seasonality between JULES and
GOSAT matches well but the amplitude of the seasonal cy-
cle is much larger in GOSAT than JULES (see the Pantanal
panel in Fig. 4). Conversely, there are regions where the max-
imum amplitude difference is small but the seasonally cycles
are out of phase, leading to a poor correlation (e.g. see the
Indonesia panel in Fig. 4).

The lower limit of the colour scale in Fig. 5 is capped at
zero, although it should be noted that one region (N Aus-
tralia) has a negative correlation of —0.16. However, the sea-
sonal cycle over this region is very small (< 5 ppb); hence,
the correlation is not particularly meaningful.

Globally we find that the JULES ensembles underesti-
mate the XCHy4 wetland seasonal cycle amplitude by approx-
imately 6.6 ppb (quartiles: 5.6-7.9 ppb) with a correlation co-
efficient of 0.85. When considering the Northern and South-
ern hemispheres, we see somewhat different behaviour: AA
of —9.2 and —0.4 ppb respectively. This north—south differ-
ence is exaggerated further when contrasting the north trop-
ics (AA = —11.5ppb, Rcycle = 0.73) and the south tropics
(AA =—1.0ppb, Reycle = 0.0).

When focusing on specific wetland regions, we find that
the evaluation is varied and performance is very dependent
on the region. For example, although Rcycle = 0.83 for the
Pantanal region, suggesting that the phase of the seasonal
cycle is reasonably well-captured, the seasonal cycle ampli-
tude is significantly underestimated (AA = —19.5 ppb); fur-
thermore, this underestimation has a very large spread be-
tween ensemble members and years (ranging from —42.4 to
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R. J. Parker et al.: JULES wetland CH4 evaluation

Example of JULES Wetland Fractio

n Indicating Selected Wetland Regions

0.00 0.05 0.10 0.15 0.20
JULES Wetland Fraction for 2011-08

CONOUTE WN -

5785

- East US

- Yucatan

- West Amazon

- East Amazon

- Pantanal

- Parana

- Sudd

- Congo

- Southern Africa

- Indo-Gangetic
- China

- SE Asia

- Indonesia

- Papua

- N Australia

- SE Australia

Figure 3. Map showing the locations of the 16 wetland regions considered in this study. A representative month (August 2011) of the JULES

wetland fraction is shown as the basemap.

—5.7 ppb). In contrast, the Parand region has a slightly poorer
Reycle (0.70) and slightly better AA (—15.3 ppb) but with sig-
nificantly smaller spread between ensemble members (—21.8
to —7.9 ppb).

For the majority of wetland regions (East US, Yucatén,
West Amazon, Pantanal, Parand, Indo-Gangetic, China and
Papua), Rcycle shows a reasonable correlation of between
0.58 and 0.88. However, several regions stand out as having
a particularly poor Rycle Value (East Amazon, Sudd, Congo,
Southern Africa, Indonesia, N Australia and SE Australia).
This poor correlation coefficient is easily explained for some
regions (especially the Australian regions) where the sea-
sonal cycle itself is very small (Fig. 4). However, of particular
note are the three African regions (Sudd, Congo and South-
ern Africa) where the seasonal cycle itself can be relatively
strong but timing is in poor agreement between the JULES
ensemble and the observations (Rcycle values of 0.23, 0.31
and 0.01 respectively). We revisit these regions in Sect. 5
and perform a more detailed evaluation in order to explain
the poor performance here.

Despite these few poorly performing regions, JULES
shows reasonable to good performance overall in represent-
ing the observed seasonal cycle. It is informative here to
judge the performance of JULES against the current state-
of-the-art wetland emission dataset, WetCHARTSs. In Parker
et al. (2020b), we evaluated the performance of WetCHART'Ss
in the same way as we evaluate JULES here, so a direct
comparison of the ability to model the observed seasonal
cycle can be made. We reproduce Fig. 4 from Parker et al.
(2020b) in the Appendix of this work (Fig. A1) and contrast
it against Fig. 5 from this study. Overall the comparisons for
the different wetland regions are largely in agreement, with a
strikingly similar distribution in AA between regions. Both
WetCHARTSs and JULES typically underestimate the wet-
land seasonal cycle magnitude, with the largest AA occur-
ring in the same regions (Southern Africa, Indo-Gangetic,
China and SE Asia). The largest discrepancies between the
JULES analysis and our previous WetCHARTSs analysis are
as follows: for WetCHARTS, the ensemble spread (o) in the
Congo is far larger than for JULES, while Reycle is reasonable
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compared to poor for JULES; although the biases for South-
ern Africa are very similar, Reycle for WetCHARTS is reason-
able, while again, it is poor for JULES. The above findings
suggest that the performance of JULES is very comparable to
that of the observation-driven WetCHART's emissions, albeit
with some differences in key regions.

4.1 Attribution of performance to specific
configuration choices

A significant feature apparent in the analysis so far is that
the spread in AA across the ensemble members is typically
large, often in excess of 20 ppb between the minimum and
maximum A A values. Understanding which ensemble mem-
bers perform well (and poorly) is an important step towards
identifying which parameters and processes are driving the
discrepancies to observations. To investigate this, we calcu-
late the change in two metrics: the correlation coefficient
between the GOSAT and modelled wetland seasonal cycle
(Rcycle) and the standard deviation of the seasonal cycle am-
plitude (oa), above the minimum value for that metric. We
denote these respective changes as A Rcycle and Aoa. We do
this for the different ensemble parameter groupings (mete-
orological driving data, vegetation, temperature dependency
and wetland extent) individually and hold the other param-
eters constant. To elaborate, out of the 24 ensemble mem-
bers, the ensemble is split into (2 x 3 x 2 x 2) groupings (see
Sect. 2.3 and Fig. 1). Using the meteorological driving data
as an example, there are 12 different configurations that use
ERA-Interim and 12 configurations that use WFDEI. We
compare the statistics for the performance of these config-
urations for pairs of configurations where the only difference
is which meteorological driving data are used and calculate
the change in the metric between the highest and lowest val-
ues. We then do likewise for the other parameters (vegetation,
temperature dependency and wetland extent). Note that there
are three configuration possibilities for vegetation (phenol-
ogy, fixed-TRIFFID and dynamic-TRIFFID), and this results
in triplets rather than pairs of members that are compared.
For clarity, the values that we report are the change above
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Wetland Seasonal Cycle

—— GOSAT [ JULES Ensemble

Wetland XCH,4 Seasonal Cycle [ppb]

Figure 4. Time series showing the GOSAT (red) and JULES ensemble (blue, min/max envelope) wetland CHy seasonal cycles (in ppb) for 7
large-scale areas and 16 specific wetland regions. The wetland seasonal cycle is calculated by subtracting the TOMCAT model simulations
that do not contain any wetland emissions. For each time series, the dashed horizontal lines indicate the [—25, 0, 25] levels, as indicated in
the bottom panel.
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Figure 5. Box plot showing the distribution of the difference in the wetland CH4 seasonal cycle amplitude between the JULES ensemble
and GOSAT observations for all years (2009-2017). A box-and-whisker (box: quartiles; whiskers: min/max) plot is calculated for each of
the regions (7 large-scale areas and 16 specific wetland areas) and is coloured by the mean value of the correlation coefficient between the

modelled and observed wetland CH, seasonal cycle.

the minimum value for each pair/triplet; hence, by construc-
tion, this is a positive (or zero) value.

The results of this analysis are presented in Fig. 6 with
all regions collated into a single set of results. The en-
semble members driven by WFDEI consistently outperform
the ERA-Interim-based members, with both a significantly
higher A Rcycle (a median increase of 0.12 with quartile val-
ues of 0.02 and 0.24) and significantly lower Aoa (a me-
dian decrease of 0.53 ppb). For the vegetation configurations,
the results are more mixed, without any single configuration
being substantially better than the rest, but the phenology-
based configurations do exhibit a slightly higher ARcycle
value (0.03, 0.01 and 0.01 for phenology, TRIFFID-Fixed
and TRIFFID-Dynamic respectively) and lower Aoy value
than the TRIFFID configurations, suggesting that they per-
form slightly better overall. However, the significant overlap-
ping spread here suggests that these results are much more
dependent on the region. For temperature dependency, the
lower Q1o value (3.7) performs better than the higher Q19
value (5.0), but, again, the spread in both A Rcyle (e.g. 75th
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percentile values of 0.15 and 0.09 for a Q19 of 3.7 and 5.0
respectively) and Ao (75th percentile values of 0.53 and
0.72 ppb respectively) are high, suggesting a large region-to-
region variability (consistent with Turetsky et al., 2014, who
measured a wide range of Q¢ values across different wet-
land types). Finally, the choice of wetland extent between
JULES and SWAMPS is found to make little difference, with
SWAMPS very slightly increasing the correlation and de-
creasing the standard deviation over the original JULES. We
discuss this aspect in more detail below.

Overall, we can conclude that the source of the meteoro-
logical driving data (ERA-Interim vs. WFDEI) is the most
significant factor in how well JULES is able to reproduce the
wetland seasonal cycle, with WFDEI performing (almost)
unanimously better than ERA-Interim over the 16 wetland
regions that we consider. In this context, an important factor
is that WFDEI precipitation is bias-corrected using the ob-
served monthly mean (Weedon et al., 2014). This is likely the
cause of the significant improvement in wetland extent ob-
tained by using WFDEI over ERA-Interim. The choice of the
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Change in Correlation Coefficient and Standard Deviation between modelled and observed wetland seasonal cycle
for each parameter when controlling for remaining parameters across all regions
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Figure 6. The change in correlation coefficient (top) and standard deviation (bottom) between the JULES ensemble and GOSAT wetland CHy
seasonal cycle when controlling for the remaining ensemble parameters. The change is the difference above the minimum value for each set
of ensemble members. An increased correlation coefficient should be considered an improvement, whereas an increased standard deviation
should be considered a deterioration. The changes are calculated for all 16 wetland regions in this study and presented as a box-and-whisker

plot (box: quartiles; whiskers: min/max).

vegetation and temperature dependency configurations were
found to improve (or worsen) the representation of the sea-
sonal cycle depending on their choice, but this was found to
be much more region-dependent with a greater spread. Per-
haps surprisingly, the choice of wetland extent configuration
was found to have less of an effect when collating results
across all regions. However, an important point to make here
is that we are solely comparing the performance between two
extent configurations, and we find that neither is significantly
better than the other. This does not preclude extent itself from
being important. It should also be remembered here that, for
the majority of regions, Rcycle already shows a good corre-
lation to observations for the majority of ensemble members
(see Fig. 5), implying that the extent is already sufficiently
well-reproduced in these regions. In the following section,
we focus on case studies over the three poorly performing
African wetland regions and demonstrate the significance of
poorly reproducing the wetland extent in these regions.

5 Evaluation of the JULES ensemble over African
wetland regions

We now investigate three significant African wetland regions
(the Sudd, the Congo and Southern Africa) in detail and eval-
uate the performance of the JULES wetland methane emis-
sion estimates in these regions. These regions were selected
as they were found to exhibit particularly poor correlation
coefficients between GOSAT and JULES, suggesting issues

Biogeosciences, 19, 5779-5805, 2022

with the timing of the seasonal cycle, as well as large differ-
ences in seasonal cycle amplitude.

Figure 7 presents the same analysis as performed in Fig. 6
but broken down individually for the three African wetland
regions. Overall, the same general pattern that we find for all
regions persists individually for these regions but with some
interesting exceptions.

For the meteorological data, the WFDEI ensemble mem-
bers show improved ARcycle (0.26, 0.12 and 0.46 medi-
ans for Sudd, Congo and Southern Africa respectively) with
ERA-Interim worsening the Aoa value (by 0.60, 0.50 and
1.35 ppb respectively). As a reminder here, a value of zero
(as is the case for the change in ERA-Interim) indicates that
the selection consistently performs the same (be that the low-
est correlation coefficient or the smallest standard deviation)
in relation to the other possible selection(s).

For the vegetation configuration, as found across all re-
gions combined, there is not a distinctly better configuration.
The phenology-based ensemble members perform best for
the Sudd, with the highest ARcycle (0.12) and lowest Aoa
(0.0 ppb, indicating that it consistently outperforms the other
configurations). However, there seems to be very little im-
provement for the Congo region, or indeed variability, be-
tween the three different vegetation options. This is largely
expected due to low variability/seasonality in the tropical
broadleaf vegetation. For the Southern Africa region, the dy-
namic TRIFFID configuration performs slightly worse than
the others (Aoa increasing by 0.28 ppb), but the performance
of phenology and fixed-TRIFFID is hard to differentiate.
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Change in Correlation Coefficient and Standard Deviation between modelled and observed wetland seasonal cycle
for each parameter when controlling for remaining parameters for African regions
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Figure 7. The change in correlation coefficient (top) and standard deviation (bottom) between the JULES ensemble and GOSAT wetland
CHy seasonal cycle when controlling for the remaining ensemble parameters. The change is the difference above the minimum value for
each set of ensemble members. An increased correlation coefficient should be considered an improvement, whereas an increased standard
deviation should be considered a deterioration. The figure shows the changes for the three wetland regions that we examine over Africa
(Sudd, Congo and Southern Africa) and are presented as box-and-whisker plots (box: quartiles; whiskers: min/max).

The temperature dependency exhibits very strong regional
behaviour. For example, for Southern Africa, the temperature
dependency can improve A Reycle by 0.75 for the lower Q19
value vs. the higher value, and, at the same time, the higher
Q10 value can worsen the Aoa by over 1.6 ppb. In con-
trast, for the Congo, the higher Q¢ value improves A Reycle
by 0.32 with the lower Q¢ value worsening Acoa by over
0.6 ppb. While this does not leave us with a clear indica-
tion that one Q19 value is universally better than the other,
it does highlight the potential for significantly improving the
ARcycle Via the selection of appropriate region-specific val-
ues. It should be noted that while some studies (e.g. Turetsky
et al., 2014) have measured a wide variability in Q¢ values
across different wetland types (e.g. bog, fen and swamps),
these have typically focused on subtropical, temperate and
northern high-latitude regions. Further observations and con-
straints on the temperature dependency of tropical wetlands
would be useful in this context.

Finally, neither configuration of wetland extent is found
to significantly outperform the other for any of the three re-
gions. For the Congo and Southern Africa regions, there is
very little difference and very little improvement from se-
lecting one extent configuration over the other. For the Sudd
region, there is a slightly larger spread across the ensem-
bles, but that is true for both the JULES and SWAMPS wet-
land extent configurations with neither significantly improv-
ing A Rcycle nor worsening the Aoca.
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5.1 Additional datasets for African case study analysis

We find that several additional datasets offer utility in further
diagnosing the wetland CH4 behaviour. This section briefly
describes those datasets used in the case study analysis of
African wetlands in Sects. 5.2-5.4.

5.1.1 Wetland emissions datasets

WetCHARTSs (Bloom et al., 2017a) is a simple data-driven
wetland model and one which has previously been exten-
sively evaluated against satellite observations (Parker et al.,
2020b). WetCHARTS is also commonly used as a priori in-
formation in atmospheric inversions of CHy (Sheng et al.,
2018; Lu et al., 2021; Palmer et al., 2021). As such, it can act
as a useful benchmark against which to compare the JULES
wetland emission estimates.

We also utilise emission estimates from a dedicated high-
resolution (0.5° x 0.625°) atmospheric inversion of GOSAT
XCHy4 (Lunt et al., 2021) using the GEOS-Chem model over
sub-Saharan Africa. Emissions were estimated in a Bayesian
inversion framework between 2010 and 2016. Emission pri-
ors for wetlands were taken from the WetCHARTSs model,
the EDGAR v4.3.2 database for anthropogenic emissions
and the GFED v4.1s dataset for biomass burning emissions.
Total CH4 emissions were resolved in the inversion from
basis functions representing individual countries and ma-
jor river basins. Posterior wetland emissions were estimated
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based on the fraction of prior emissions from wetlands in
each grid cell, scaled by the posterior total CH4 emissions.

5.1.2 Wetland extent datasets

Wetland extent information can either be obtained from prog-
nostic (model-based) or observation-based estimates.

We use the Wetland Area and Dynamics for Methane
Modeling (WAD2M) wetland extent dataset (Zhang et al.,
2021) which provides global 0.25° x 0.25° estimates of wet-
land fraction for inundated and non-inundated vegetated wet-
lands, derived from microwave remote sensing. WAD2M is
derived using a combination of surface inundation based on
microwave remote sensing data along with static datasets
that identify inland waters, agricultural areas, shorelines and
non-inundated wetlands. Areas containing permanent wa-
terbodies (e.g. lakes and rivers), rice paddies and coastal
wetlands are excluded. Therefore, the resulting dataset rep-
resents the spatio-temporal patterns of inundated and non-
inundated vegetated wetlands and is expected to improve es-
timates of wetland CHy fluxes. In this study, we use the up-
dated version which spans 2000-2018.

The global Catchment-based Macro-scale Floodplain
(CaMa-Flood) v4.0 flood simulation model (Yamazaki et al.,
2011; Zhou et al., 2021) was used to predict fluvial inun-
dation extents, specifically simulations at a 0.25° x 0.25°
resolution driven by JULES runoff estimates from the
eartH>Observe project (Marthews et al., 2022).

Finally, we also use surface reflectance imagery (RGB)
from the MODIS satellite, processed and visualised using
Google Earth Engine. These data allow a visual inspection
of the region and provide a useful indicator of potential inun-
dation, albeit not in the presence of dense vegetation canopy.

5.1.3 Sentinel-5 Precursor (S5P) TROPOspheric
Monitoring Instrument (TROPOMI) XCHy4

We use XCH4 from v1.5 of the University of Bremen
TROPOMI weighting function modified differential optical
absorption spectroscopy (WFM-DOAS) retrieval (Schneis-
ing et al., 2019). Although the TROPOMI data are relatively
new (Sentinel-5 Precursor launched in October 2017) and al-
gorithm development is still maturing, TROPOMI does offer
an unprecedented capability for the mapping of CH4 over
large regions at an enhanced (7 km) spatial resolution and
complements the long time series of GOSAT point-based
measurements.

5.2 The Sudd

The first region that we focus on is the Sudd wetlands in
South Sudan. The Sudd is one of the world’s largest fresh-
water ecosystems and the largest in the Nile Basin, drain-
ing much of Eastern Africa, including water from Lake Vic-
toria (Sutcliffe and Brown, 2018). This outflow from Lake
Victoria leads to strong seasonal inundation, characterised
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by annual flood pulses (Rebelo et al., 2012), that is further
modified by local precipitation and evaporation (Mohamed
and Savenije, 2014), leading to highly complex and seasonal
behaviour (Sosnowski et al., 2016). Previous work (Parker
et al., 2020a; Lunt et al., 2021; Pandey et al., 2021) has de-
tailed the importance of understanding and characterising the
CHy emissions from the Sudd wetlands given their sensitiv-
ity to large-scale climate drivers.

As discussed in Sect. 5, we find that neither parameter-
isation of wetland extent (JULES nor JULES masked with
SWAMPS) outperforms the other for all three African re-
gions, and, as shown in Fig. 5, the correlation coefficient be-
tween the ensemble members and observations is poor. Al-
though the WFDEI driving data greatly improve the corre-
lation coefficient compared with ERA-Interim, the ensem-
ble members with the best performance are only capable of
achieving an Rcycle value of 0.61 (Fig. A2). It is interest-
ing to note here that, for the Sudd, the ensemble members
that perform best against observations (2121/2122: WFDEI,
phenology and high temperature dependency) are the ex-
ceptions from the ensemble. The majority of the ensemble
members correlate well with each other and poorly with the
observations. Figure 8a shows the wetland seasonal cycle
for the individual ensemble members and includes the ob-
served seasonal cycle. The wetland seasonal cycle amplitude
(AjuLEs) even for the ensemble member with the best perfor-
mance is significantly lower than the observed seasonal cy-
cle (Agosar), as summarised in Fig. 5, and the reason for the
poor Reycle value is that JULES appears to be out of phase
with observations. These findings all suggest that a funda-
mental lack of variability is being generated by JULES, with
wetland extent an obvious parameter to evaluate in greater
detail.

In Fig. 9, we compare the JULES wetland fraction for
these three regions against that generated using JULES-
CaMa-Flood simulations that are capable of explicitly rep-
resenting river and floodplain water dynamics and, hence,
incorporate fluvial inundation. CaMa-Flood is the only open-
source global river routing model that is based on the lo-
cal inertial approximation of the Saint-Venant equations,
which consider the backwater and tide effects of downstream
elements (viz. the possible reversal of flow in particular
reaches upstream from e.g. lakes, tributaries and estuaries)
(Marthews et al., 2022).

For the Sudd, we find that the wetland extent sea-
sonal cycle and magnitude are very similar between JULES
and JULES-CaMa-Flood. However, applying the SWAMPS
mask to JULES results in the JULES-SWAMPS configura-
tion having a drastically smaller seasonal cycle amplitude
and a significantly different phase (almost completely out
of phase). This suggests that simply applying the JULES-
SWAMPS mask for the Sudd results in a decoupling of the
seasonal cycle for the masked areas from the wider region.
For this reason, we evaluate the spatial distribution of both
the CHy emissions and the wetland extent. Figure 10 fo-
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Figure 9. Time series showing the mean fluvial inundation fraction generated by the CaMa-Flood model for the three African wetlands
regions between 2010 and 2015 compared to the standard JULES groundwater inundation. The annotations highlight the example month
chosen for each region that is subsequently presented in Figs. 10, 12 and 13.
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Figure 10. Comparison over the Sudd wetland region showing the wetland CHy emissions for September 2011 for (a) JULES with the default
wetland extent, (b) JULES with the SWAMPS masking for wetland extent, (¢) GEOS-Chem flux inversion of GOSAT XCHy over Africa and
(f) the WetCHART's ensemble mean. Also shown are the wetland fractions from (¢) JULES, (g) JULES-CaMa-Flood and (h) WAD2M along
with (d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI meteorological driving, the
lower Q¢ value and phenological vegetation, as these were shown to provide the best result over this region (see Fig. 7).

cuses on September 2011, which is towards the peak of the
inundation, as indicated by the JULES-CaMa-Flood simu-
lations (Fig. 9). In Fig. 10, we present CH4 emission maps
over the Sudd from two of the JULES ensemble members:
one with the default wetland extent (Fig. 10a) and one with
the additional SWAMPS mask (Fig. 10b). Furthermore, we
also show the CH4 emissions derived from a GEOS-Chem
flux inversion (Fig. 10e) and from the WetCHART's ensem-
ble (Fig. 10f). In addition to the CH4, we show the JULES
wetland fraction (Fig. 10c), MODIS imagery (Fig. 10d),
the JULES-CaMa-Flood wetland fraction (Fig. 10g) and the
WAD2M wetland fraction (Fig. 10h). By using this wide
range of information, we are able to more confidently as-
sess and evaluate the performance of JULES in this region
and determine whether wetland area (and subsequently CHy4
emissions) are being generated in the correct locations.
There is an obvious discrepancy between the area where
JULES generates wetland area (and subsequently CH4 emis-
sion) compared with the location indicated by all of the other
datasets. JULES places the majority of wetlands in the region
in western Ethiopia (Fig. 10c) and fails to generate signifi-
cant wetlands in South Sudan. All of the other data sources
agree strongly with respect to where the wetlands and emis-
sions should be located (Fig. 10d-h), with the majority over
the Sudd wetlands in central South Sudan and additional wet-
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lands in the Machar marshes on the border with Ethiopia (e.g.
Fig. 10h). When using the SWAMPS masking of the JULES
wetland extent, slightly more emissions are generated in the
correct location due to the removal of the majority of the spu-
rious Ethiopian emissions, but emissions remain significantly
too low with respect to both area and magnitude.

As further confirmation of where CH4 emissions should
be present in this region, CH4 observations from TROPOMI
are used, allowing us to map CHy4 in the region. Figure 11b
shows the enhancement in the TROPOMI data over the Sudd
region, calculated by subtraction of latitudinal means, be-
tween January and May for 2018-2020. This clearly shows
a strong enhancement in the measured CHy total column
(in excess of 45ppb) at the location, consistent with our
above interpretation, directly over the Sudd wetlands as well
as an enhancement over the Machar marshes. Pandey et al.
(2021) have previously shown a similar enhancement from
TROPOMI over this region, adding further weight to our
conclusions.

The reason that JULES fails to produce these wetlands
is largely due to the topography in this region. Rainfall
here occurs in the Ethiopian Highlands, flowing downhill
to maintain the Sudd wetlands. Without the addition of a
river routing and inundation mechanism within the JULES
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Figure 11. Enhancement in TROPOMI XCHy calculated by grid-
ding the data into daily 0.1° x 0.1° bins and subtracting a baseline
for each latitude bin. The baseline is calculated as the 5th percentile
of each latitude bin with a rolling five-bin (i.e. 0.5° latitude) aver-
age used to smooth out fluctuations. The enhancements are shown
for the Southern Africa and Sudd regions, averaged over the months
where the wetland signal peaks, as indicated in Fig. 8. For South-
ern Africa, it should be noted that the enhancement over the Etosha
Pan in Namibia (south-west corner of the domain) is likely overes-
timated due to particular spectral albedo variations within the fitting
window used in the satellite retrievals. Finally, there were not suffi-
cient cloud-free observations for the Congo region.

simulations, wetlands are instead created erroneously in the
Ethiopian Highlands (as indicated in Fig. 10a).

It is important to highlight here that the JULES-CaMa-
Flood simulations (Fig. 10g) are capable of producing wet-
lands in the correct location; as such, future developments
within JULES that incorporate some of the CaMa-Flood ca-
pabilities for river routing and fluvial inundation would be
expected to significantly improve the ability of JULES to
successfully reproduce the correct temporal and spatial dis-
tribution of wetlands (and ultimately CH4 emissions) over
the Sudd region.
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5.3 The Congo

The second region that we focus on is the Congo. The Congo
Basin contains flooded forests and peatlands, known as the
“Cuvette Centrale”, which act as a major global store of
carbon (Dargie et al., 2017) and source of CHy emissions
(Borges et al., 2015). CH4 emissions from the Congo are still
poorly constrained (Melton et al., 2013), with dense cloud
cover and forest canopies making observations of both wet-
land extent (Salovaara et al., 2005; Bwangoy et al., 2010;
Becker et al., 2018) and CH4 emissions challenging (Tathy
etal., 1992; Lunt et al., 2019; Parker et al., 2020b). The com-
plex hydrology (Lee et al., 2011) in this region includes two
wet seasons, in March and November (Haensler et al., 2013),
making coupled climate simulations of this region challeng-
ing (Crowhurst et al., 2021).

Figure 8b shows the modelled ensemble seasonal cycle
along with the observed seasonal cycle. Again, the highest
correlation coefficient for an ensemble member is found to
be poor (Rcycle = 0.52), with some ensemble members ex-
hibiting zero correlation to the observations. This again sug-
gests a significant lack of seasonal variability in the JULES
simulations. Furthermore, the observed seasonality exhibits
more complex behaviour with double-peaks in some (but not
all) years, highlighting the complex hydrology in this region.

Figure 9b shows that the seasonality produced by JULES-
CaMa-Flood is in good agreement with that from JULES
but with significantly lower average inundation (~ 0.02 vs.
~ 0.10). When applying the SWAMPS mask to JULES, the
average inundation is reduced (to ~ 0.05) and the seasonality
is largely lost.

By undertaking a comparison against the additional
datasets, we see why the Congo remains a difficult area to
model. The default JULES simulations result in groundwa-
ter inundation of the entire Congo Basin (Fig. 12c), leading
to fairly low widespread emissions, whereas the JULES sim-
ulations with the extent masked by SWAMPS produce sig-
nificantly more emissions (Fig. 12b), which are more tightly
constrained to the area in the vicinity of the river system, al-
though still very widespread. These latter emissions with the
SWAMPS mask do appear to be in more reasonable agree-
ment spatially with the CH4 emissions from both the GEOS-
Chem inversion (Fig. 12e) and from WetCHARTs (Fig. 12f).
Some care needs to be taken here because WetCHARTS it-
self is used as the prior for the GEOS-Chem flux inversion;
thus, the two should not be considered fully independent, and
the major difference between them is reflected in the emis-
sions magnitude. The fluvial inundation from the JULES-
CaMa-Flood simulations over the Congo (Fig. 12g) produces
a wetland extent close to the river, which is largely miss-
ing from the standard JULES simulations. MODIS imagery
(Fig. 12d) agrees with the JULES-CaMa-Flood simulations
and does not show clear signs of inundation over this area ex-
cept directly at the rivers. However, this may be misleading
due to the dense tree canopy in this area. Indeed, wetlands
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Figure 12. Comparison over the Congo wetland region showing the wetland CH4 emissions for November 2011 for (a) JULES with the
default wetland extent, (b) JULES with the SWAMPS masking for wetland extent, (¢) GEOS-Chem flux inversion of GOSAT XCHy4 over
Africa and (f) the WetCHARTSs ensemble mean. Also shown are the wetland fractions from (¢) JULES, (g) JULES-CaMa-Flood and (h)
WAD2M along with (d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI meteo-
rological driving, the higher Qg value and phenological vegetation, as these were shown to provide the best result over this region (see

Fig. 7).

(i.e. swamps and flooded forest) in the Congo can exist in
relatively hilly areas that are not directly fed by river flood-
ing but more by local precipitation or groundwater. The pat-
tern of wetland fraction from WAD2M (Fig. 12h), employ-
ing microwave observations that can partially penetrate the
canopy layer, does suggest that there is a combination of both
groundwater inundation and fluvial inundation. This does
highlight the challenge in simulating such flooded forests,
where evaluation can be challenging and observations lack-
ing. Additionally, dense cloud cover in this region results
in very few successful CHy retrievals from satellites (both
GOSAT and TROPOMI), again reducing our capability to
accurately evaluate model performance in this region.

The Congo remains one of the most significant global wet-
land regions but equally remains one of the most challeng-
ing to simulate and evaluate, with a significant uncertainty
in the CH4 emissions. Ongoing model development (Gedney
et al., 2019) related to the inclusion of methane emissions
from trees in flooded areas (Pangala et al., 2017; Gauci et al.,
2022) as well as improvements in the soil ancillary data to
represent Oxisol and Ultisol soils in this area are expected to
improve our ability to more accurately model the CH4 emis-
sions from the Congo in future work.

5.4 Southern Africa

The final region that we evaluate is Southern Africa, primar-
ily focusing on the Zambezi River basin in Zambia and An-
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gola but also including parts of Namibia, Botswana, Zim-
babwe, Mozambique and the Democratic Republic of Congo.
Wetlands in this region are primarily swampland and sea-
sonally inundated savannah/grasslands (Zimba et al., 2018;
Lowman et al., 2018). The region also encompasses the Oka-
vango Delta in northern Botswana (McCarthy, 2006; Wolski
et al., 2012).

The values of Rcycle for this region are found to vary
significantly, ranging from reasonable positive correla-
tions (Rcycle = 0.67) to similar large negative correlations
(Rcycle = —0.68). This region is one in particular where the
WEFDEI-based ensemble members perform much better than
the ERA-Interim members, as shown in Fig. 7.

Figure 8c shows that there is a reasonable correlation
(maximum of 0.67) to the observed cycle for the ensemble
members with the largest Reycle value. However, this is coun-
tered by some ensemble members having a similarly neg-
ative Rcycle value (of —0.68 in the worst case). All of the
ERA-Interim-based ensemble members have a low or neg-
ative Reycle value (—0.68 —0.23), whereas the WFDEI en-
semble members range from —0.23 to 0.67. This very wide
spread in Reycle (—0.68 —0.67) across the ensemble explains
why the average correlation is found to be very poor (Fig. 5).

When comparing the wetland extent from the ensemble
members that show the best performance to that produced by
JULES-CaMa-Flood (Fig. 9c) we find a good agreement in
the seasonality between all three. However, in terms of the
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Figure 13. Comparison over the Southern Africa wetland region showing the wetland CHy emissions for March 2010 for (a) JULES
with the default wetland extent, (b) JULES with the SWAMPS masking for wetland extent, (e) GEOS-Chem flux inversion of GOSAT
XCHy4 over Africa and (f) the WetCHARTSs ensemble mean. Also shown are the wetland fractions from (¢) JULES, (g) JULES-CaMa-Flood
and (h) WAD2M along with (d) MODIS (RGB) surface reflectance. Both JULES simulations are the configurations that use the WFDEI
meteorological driving, the lower Q¢ value and phenological vegetation, as these were shown to provide the best result over this region (see

Fig. 7).

magnitude, the average groundwater inundation for the de-
fault JULES configuration is augmented by approximately
50 % in the simulation with JULES-CaMa-Flood, with the
SWAMPS-masked inundation, in contrast, being far too low.
Figure 13 clarifies the fact that, although the seasonality is
reasonable, the spatial distribution is again incorrect. The de-
fault JULES wetland extent for this region places wetlands in
northern Zambia and in the southern Democratic Republic of
Congo. In contrast, the SWAMPS mask places the wetlands
primarily along the Zambezi and Bangweulu wetlands in the
west and north-east of Zambia respectively. The flux inver-
sion results from GEOS-Chem suggest that emissions are
observed over the Zambezi floodplain but also over various
other locations in the region, including the Okavango Delta to
the south, around Lake Kariba along the Zambia—Zimbabwe
border, the Cahora Bassa lake in Mozambique and the Bang-
weulu wetland system in north-east Zambia. The WAD2M
wetland fractions and the MODIS imagery both also indicate
these as being significantly inundated areas. Although the
methane enhancement signals (20-30 ppb) are not as large
as identified for the Sudd region, the TROPOMI S5P CHy
enhancement (Fig. 11) does indicate enhanced CHy values
over these areas, thereby giving further confidence that the
inundated areas are being correctly identified along with their
subsequent CH4 emission by the GEOS-Chem flux inversion.
The wetland fraction calculated by the JULES-CaMa-Flood
simulation (Fig. 13g) is found to be in very good agreement
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with the WAD2M data (Fig. 13g) and, hence, suggests that
JULES CHy emissions based on the JULES-CaMa-Flood-
derived wetlands would be in much closer agreement with
the observations.

6 Conclusions

Overall, we find that existing configurations of JULES can
simulate wetland CH4 emissions comparable in performance
to those generated via state-of-the-art data-driven emission
inventories such as WetCHARTS.

The wetland methane seasonal cycle amplitude from
JULES is typically underestimated by between 1.8 and
19.5ppb compared with observations across the different
wetland regions examined. However, the correlation coeffi-
cient to the observed seasonal cycle is typically reasonable to
good for most wetland regions (r = 0.58 to 0.88), although
several regions do exhibit a poor correlation (r < 0.31) and
these are explored in more detail.

Across the JULES ensemble, there are significant differ-
ences between ensemble members with the WFDEI driv-
ing data giving universally better performance than ERA-
Interim. This highlights the vital role that the meteorolog-
ical driving input data play in determining the wetland re-
sponse within the model and emphasises the benefits of bias-
correcting to observations as done in the generation of the
WFDEI data. We would expect our conclusions regarding the
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strong performance of WFDEI meteorology to also apply to
the updated WFDES data (based on ERAS), detailed in Cuc-
chi et al. (2020). Future work will assess simulations driven
by these inputs.

We find that the specific vegetation configuration of the en-
semble member has a small effect on the performance (with
phenology typically performing better than either TRIFFID
configuration), suggesting that there are potential improve-
ments to consider when using a dynamic vegetation model
such as TRIFFID. The effect of the temperature dependency
is moderate, with the lower value (Q10 = 3.7) generally per-
forming best, but there are some important regional differ-
ences where the effect is much larger. We recommend fur-
ther investigation into the variability in Q¢ across differ-
ent ecosystems and the consequences that has for CH4 emis-
sions.

Neither choice of wetland extent, either the original
JULES as is or masked with SWAMPS data, tends to perform
better, and both clearly have significant deficiencies. We find
that a simple masking of the JULES wetland extent with the
observed SWAMPS wetland mask is not sufficient to repro-
duce the wetland seasonal cycle in key areas; instead, fun-
damental changes to the way the inundation is modelled are
necessary in some regions, particularly those regions where
fluvial inundation plays a significant role in the hydrology.
This is demonstrated by the significant improvement in the
agreement to multiple observation-based wetland and CHy
datasets when using the JULES-CaMa-Flood wetland ex-
tent, which incorporates fluvial inundation, compared with
the original (interfluvial) JULES data over key African wet-
land regions. Incorporating such fluvial inundation changes
into JULES is expected to significantly improve the ability
of JULES to better represent the wetland extent and, subse-
quently, produce more accurate CH4 emissions.

Despite our analysis pointing towards the potential for sig-
nificant improvements in key regions, the Congo wetland re-
gion in particular remains both challenging to model and to
evaluate, highlighting the need for further study and addi-
tional ground-based observations that are less affected by the
extensive cloud coverage of the region. Improved mapping of
the wetland extent (by both groundwater and fluvial inunda-
tion) as well as measurements of the temperature dependency
of the CHy emissions would help in further constraining the
CH4 emissions from this region.

Finally, ongoing developments within JULES, such as the
chimney venting (i.e. transport by aerenchyma) of CH4 by
vegetation and the improved representation of soil properties,
are expected to lead to additional improvements in the model.
With these additions coupled to an improved representation
of wetland extent and variability through more advanced hy-
drological modelling, we greatly improve our capability to
model the emission of CH4 from tropical wetlands both his-
torically and under a changing future climate.
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Appendix A

In the main text (Sect. 4), we refer to previous work (Parker
et al., 2020b) that evaluates the WetCHARTSs data-driven
emission inventory (Bloom et al., 2017a) using a similar
methodology as used in this study. This common analysis
methodology allows a direct comparison between the per-
formance of the JULES wetland CH4 emissions (this study)
and the WetCHART' performance (Parker et al., 2020b). Fig-
ure Al reproduces Fig. 5 from this study and compares it to
Fig. 4 from Parker et al. (2020b).
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Figure A1. Comparison of Fig. 5 from this study for JULES against Fig. 4 from Parker et al. (2020b) for WetCHARTS.

Figure A2 shows the correlation coefficient between the
different ensemble members and the observed wetland CHy
seasonal cycle for the Sudd region. The majority of the en-
semble members correlate strongly to each other (r > 0.9)
but poorly to the observed seasonal cycle (r < 0.2). The set
of ensemble members that correlates best to observations
(members 2121 and 2122 — WFDEI meteorology, phenology
vegetation and high Q1o value) correlates the least to the re-
maining ensemble members, suggesting a significant differ-
ence in the characteristics of these few ensemble members.
This is discussed in the main text in Sect. 5.2.
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Figure A2. Correlation coefficient between the different ensemble members and the observed wetland CHy seasonal cycle for the Sudd
wetland region.
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Appendix B

We perform additional assessment on the assumptions made
in our methodology when calculating the wetland seasonal
cycle signal, specifically assumptions relating to the accuracy
of non-wetland sources.

We have performed analysis over three non-wetland ar-
eas (as highlighted in red in Fig. B1), namely the West
US, Arabian Peninsula and Western Australia. These re-
gions would not be expected to be dominated by wetland
emissions; hence, evaluation of the simulated CH4 column
against observations provides an assessment of how the non-
wetland emissions in the model are performing. The de-
trended methane seasonal cycle (note that this is the total,
not wetland-only) for the model is compared against GOSAT
observations in Fig. B2, and we find a very good agreement
(with correlation coefficients of 0.89, 0.96 and 0.90 for the
West US, Arabian Peninsula and Western Australia respec-
tively). This, along with previous work as outlined in Sect. 4,
provides confidence that the current model set-up and asso-
ciated priors provide a strong baseline against which to as-
sess the wetland-specific component of the observed/mod-

elled signal.
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Figure B1. An adjusted version of Fig. 3 showing the locations of the 16 wetland regions considered in this study plus 3 additional non-
wetland regions (in red). A representative month (August 2011) of the JULES wetland fraction is shown as the basemap.
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Figure B2. Time series showing the methane seasonal cycle as determined from GOSAT (orange) and the JULES ensemble (blue) over the

three non-wetland regions indicated (red) in Fig. B1.

Code and data availability. For this study, we use version 5.1
of JULES (at revision 10836, released in February 2018). The
source code is available from the JULES code repository (see
https://code.metoffice.gov.uk/trac/jules/log/main/trunk ?rev=10836,
UK Met Office, 2022a, user account required). The rose suites used
for the specific JULES runs are u-ba800 (WFDEI+phenology),
u-bh665  (WFDEI+TRIFFID no  competition), u-ax384
(WFDEI+TRIFFID), u-be476 (ERA-Interim+phenology), u-
be478 (ERA-Interim+TRIFFID no competition) and u-be517
(ERA-Interim+TRIFFID). The rose suites can be found at
https://code.metoffice.gov.uk/trac/roses-u/ (UK Met Office, 2022b)
(user account required). We run each rose suite twice, using Qg
values of 3.7 and 5.0.

The latest version of the University of Leicester GOSAT Proxy
v9.0 XCHy data (Parker and Boesch, 2020) is available from
the Centre for Environmental Data Analysis data repository at
https://doi.org/10.5285/18ef8247f52a4cb6al4013f8235ccleb. The
version used in this study (v7.2) is available from the Copernicus
C3S Climate Data Store at https://doi.org/10.24381/cds.b25419f8
(ECMWF, 2022). WetCHARTs v1.0 1is available from
https://doi.org/10.3334/ORNLDAAC/1502  (Bloom et al,
2017b). This study wuses v1.2.1, which is available on
request from A. Bloom. WAD2M is available from
https://doi.org/10.5281/zenodo.3998454 (Zhang et al., 2020).
The MODIS Surface Reflectance 8-Day L3 data and MODIS
Combined 16-Day NDWI data were visualised via the Google
Earth Engine software with the data provided courtesy of the
NASA Earth Observing System Data and Information System
(EOSDIS) Land Processes Distributed Active Archive Center (LP
DAAC), USGS/Earth Resources Observation and Science (EROS)
Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov, last
access: 13 December 2020).
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The University of Bremen TROPOMI/WFM-DOAS XCH4 data
are available from https://www.iup.uni-bremen.de/carbon_ghg/
products/tropomi_wfmd/ (Schneising, 2022).

Requests for information about the code, data and parameterisa-
tions can be made to the corresponding author.
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