

Supplement of

Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface

Swamini Khurana et al.

Correspondence to: Swamini Khurana (swamini.khurana@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Figures

Figure S1: Flux averaged concentrations of dissolved species in heterogeneous domains (indicated by variance and anisotropy values in the row index) in three types of heterogeneous scenarios (solid lines) compared to that in the homogeneous base case (zero variance and no associated anisotropy, dashed-dot lines) in all flow regimes. The flux averaged concentration profile is the same for a given column (i.e., there is only one homogeneous/base case for comparison in each flow regime).

Figure S2: Spatially averaged concentration profile of the immobile active biomass in heterogeneous domains (indicated by variance and anisotropy values in the row index) in three types of heterogeneous scenarios (solid lines) compared to that in the homogeneous base case (zero variance and no associated anisotropy, dashed-dot lines) in all flow regimes. The spatially averaged concentration profile is the same for a given column (i.e., there is only one homogeneous/base case for comparison in each flow regime).

Figure S3: 2D concentration distributions of dissolved species in heterogeneous domains (μM) with the velocity distribution (in m d⁻¹) in these domains.

Figure S4: 2D concentration distributions of microbial species in heterogeneous domains (µM) with the velocity distribution (in m d⁻¹) in these domains

Figure S5: Increasing DO persistence with heterogeneity (presented in the legend as Variance in permeability field: Anisotropy)

Figure S6: Distribution of Damköhler number (Da) in the investigated scenarios. Panel (a) presents the Da of all chemical species in all domains, differentiated by the flow regime: Slow flow regime is in red, medium flow regime is in green, and fast flow regime is in blue). Panel (b) presents the Da of all chemical species in all domains, differentiated by the chemical species: DO is in red, ammonium is in green, nitrate is in blue and DOC is in orange.

(b)

Figure S7: Impact on (normalized) removal of reactive species as a result of spatial heterogeneity characterized as reduction in solute residence times in the domain

Figure S8: Comparison of simulation results and corresponding analytical solutions for changing removal of reactive species with changing residence time alone.

Figure S9: Contribution to total biomass of different fractions of microbial species with increasing spatial heterogeneity (i.e., decreasing residence time of solutes).

Tables

S. No.	Independent variable/ fixed effect	Random effect	idom effect Interaction between breakthrough time	
1	fraction of breakthrough	Flow regime	No	904.88
2	time fraction of breakthrough time	Chemical species	No	841.05
3	fraction of breakthrough time	Flow regime	Yes	896.21
4	fraction of breakthrough time	Chemical species	Yes	677.29
5	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species	No	426.54
6	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species	Yes	156.46
7	fraction of breakthrough time	Regime + Chemical species	No	481.84
8	fraction of breakthrough time	Regime + Chemical species	Yes	-147.75
9	fraction of breakthrough time + Flow regime	Flow regime + Variance + Anisotropy + Chemical species	Yes	148.29
10	fraction of breakthrough time + Flow regime	Regime + Chemical species	Yes	-86.47
11	fraction of breakthrough time + Flow regime + Chemical species	Regime + Chemical species	Yes	-141.27
12	fraction of breakthrough time + Chemical species	Regime + Chemical species	Yes	-142.45
13	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	35.87
14	fraction of breakthrough time	Flow regime + Chemical species + Dat category	Yes	-211.06
15	fraction of breakthrough time + Flow regime	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	25.39
16	fraction of breakthrough time + Flow regime	Flow regime + Chemical species + Dat category	Yes	-209.61
17	fraction of breakthrough time + Flow regime + Chemical species	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	20.18
18	fraction of breakthrough time + Flow regime + Chemical species	Flow regime + Chemical species + Dat category	Yes	-191.36
19	fraction of breakthrough time + Chemical species	Flow regime + Variance + Anisotropy + Chemical species + Day category	Yes	20.72
20	fraction of breakthrough time + Chemical species	Flow regime + Chemical species + Dat category	Yes	-180.86

Table S1 Linear mixed models for the simulation dataset

Model:			Dependent		impact	on	species
			Variable		removal		
No. Observations:	588		Method:		REML		
No. Groups	4		Scale:		154.32		
Min. group size	49		Log-Likelihood:		-2318		
Max. group size	214		Converged:		Yes		
Mean group size	147						
	Coef.	Std. Err	Z	P> z	[0.025	0	.975]
Intercept	27.72	7.355	3.769	0	13.30	4	2.14
Chem [T.DOC]	-12.37	1.468	-8.429	0	-15.25	-9	9.497
Chem [T. Nitrogen]	-34.32	1.684	-20.38	0	-37.62		31.02
Chem [T.TOC]	-6.741	1.449	-4.652	0	-9.581		3.901
fraction of breakthrough	7.086	8.989	0.788	0.431	-10.53	2	4.71
time							
Group variance	187.5	14.50					
Group x fraction	102.4	12.78					
covariance							
fraction variance	286.3	20.26					