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Abstract. The subsurface is a temporally dynamic and spa-
tially heterogeneous compartment of the Earth’s critical
zone, and biogeochemical transformations taking place in
this compartment are crucial for the cycling of nutrients. The
impact of spatial heterogeneity on such microbially mediated
nutrient cycling is not well known, which imposes a severe
challenge in the prediction of in situ biogeochemical trans-
formation rates and further of nutrient loading contributed
by the groundwater to the surface water bodies. Therefore,
we used a numerical modelling approach to evaluate the sen-
sitivity of groundwater microbial biomass distribution and
nutrient cycling to spatial heterogeneity in different scenar-
ios accounting for various residence times. The model results
gave us an insight into domain characteristics with respect to
the presence of oxic niches in predominantly anoxic zones
and vice versa depending on the extent of spatial heterogene-
ity and the flow regime. The obtained results show that mi-
crobial abundance, distribution, and activity are sensitive to
the applied flow regime and that the mobile (i.e. observable
by groundwater sampling) fraction of microbial biomass is
a varying, yet only a small, fraction of the total biomass in a
domain. Furthermore, spatial heterogeneity resulted in anaer-
obic niches in the domain and shifts in microbial biomass be-
tween active and inactive states. The lack of consideration of
spatial heterogeneity, thus, can result in inaccurate estimation
of microbial activity. In most cases this leads to an overesti-
mation of nutrient removal (up to twice the actual amount)

along a flow path. We conclude that the governing factors
for evaluating this are the residence time of solutes and the
Damköhler number (Da) of the biogeochemical reactions in
the domain. We propose a relationship to scale the impact
of spatial heterogeneity on nutrient removal governed by the
log10Da. This relationship may be applied in upscaled de-
scriptions of microbially mediated nutrient cycling dynamics
in the subsurface thereby resulting in more accurate predic-
tions of, for example, carbon and nitrogen cycling in ground-
water over long periods at the catchment scale.

1 Introduction

The Earth’s critical zone comprises the near surface, surface,
and sub-surface compartments, from the top of the vegeta-
tion canopy to aquifers in the bedrock (Giardino and Houser,
2015; Küsel et al., 2016). Biogeochemical processes impact
most ecosystem functions (and consequently ecosystem ser-
vices) in the critical zone by controlling the distribution of
nutrients in the compartments of the critical zone. All these
compartments are connected by water fluxes. Within the crit-
ical zone, the soil and deeper subsurface compartments ac-
count for almost 50 % of the global carbon budget, and the
subsurface is also one of the biggest storage compartments
of nitrogen (McMahon and Parnell, 2014; Schlesinger and
Andrews, 2000).
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Especially the subsurface part of the critical zone exhibits
high spatial and temporal variability in environmental con-
ditions that have been proven to be correlated with sub-
surface nutrient dynamics (Cole et al., 2007; Harden et al.,
1997; Holt, 2000; Küsel et al., 2016; van Leeuwen, 2000).
Since studies investigating these links are limited to near-
surface soil zones, e.g. focusing on the root zone (Küsel et
al., 2016), studies linking surficial events with nutrient dy-
namics in the deeper subsurface are limited. Some research
however shows that both subsurface heterogeneity and in-
put variation affect subsurface microbial community struc-
ture. Schwab et al. (2017), Zhou et al. (2012), and Hofmann
et al. (2020) linked changing diversity of microbial commu-
nities in groundwater with spatio-temporal variation in the
groundwater physico-chemical quality. McGuire et al. (2000)
and Benk et al. (2019) linked changing composition of ter-
minal electron acceptors and of dissolved organic matter
(DOM) in groundwater with surficial events, respectively.
Their results also indicated further links with microbial com-
munity evolution, but they were unable to resolve the effect
of transport in the subsurface presumably due to unresolved
spatial heterogeneity. All the aforementioned studies com-
bined establish a link between spatio-temporal variability in
environmental conditions and nutrient cycling. However, this
link is not yet quantitatively characterized. Therefore, this
further impedes the predictability of biogeochemical cycles.

Improved prediction of biogeochemical cycles requires
advancement in the mechanistic understanding of governing
factors. Microbial communities play a key role in these bio-
geochemical cycles since they mediate nearly all the natu-
rally occurring processes that contribute to these cycles. Re-
cent advances in microbial techniques have led to greater in-
sight into the functions of microbial communities for biogeo-
chemical transformations in laboratory-scale batch and col-
umn experiments (Ballarini et al., 2014; Grösbacher et al.,
2018). However, transferring this knowledge to the subsur-
face is challenging. For instance, the growth conditions used
in laboratory studies are favourable with high substrate con-
centrations and readily accessible terminal electron acceptors
(Grösbacher et al., 2018; Hofmann and Griebler, 2018). This
is not representative of the subsurface as the subsurface is a
spatially heterogeneous medium. Spatial heterogeneity influ-
ences subsurface microbial and nutrient dynamics by limit-
ing access to nutrients and electron acceptors (Murphy et al.,
1997), thereby influencing the distribution of active, inactive,
suspended, and attached microbes as well (Grösbacher et al.,
2018; Couradeau et al., 2019). Inactive microbes were found
to account for 60 % to 80 % of total microbial biomass in
soil (Lennon and Jones, 2011), and attached microbes com-
monly form the majority of microbial biomass fraction in
the subsurface (Griebler and Lueders, 2009; Grösbacher et
al., 2018). However, data on these fractions for groundwater
systems are still scarce. Investigating the impact of spatially
heterogeneous media on microbial biomass and nutrient cy-
cling in the subsurface is hindered by the limited observa-

tional opportunities, lack of visualization of real-time condi-
tions, and limitations of sampling methods and oligotrophic
conditions (growth limiting) in groundwater (Ballarini et al.,
2014; Hofmann and Griebler, 2018). Since the critical zone
is a complex system with non-linear process dynamics, gov-
erning factors are difficult to isolate, and their impact is un-
feasible to quantify (Grösbacher et al., 2018). To overcome
these limitations, numerical modelling approaches are pow-
erful alternatives to undertake such investigations (Molins et
al., 2014).

Formulating a conceptual model for microbially mediated
carbon and nitrogen dynamics in the subsurface requires a
two-pronged approach. First, the reaction network should be
representative of a system’s chemical and biological species,
and second, the flow component of the model should be rep-
resentative of a system’s flow and transport pathways. Bio-
geochemical reaction networks have been explored exten-
sively over the past decades with improvement in the con-
ceptual understanding of the transient environmental condi-
tions of the critical zone, the microbial life cycle, and the
key processes involved in carbon and nitrogen cycles (Thull-
ner and Regnier, 2019; Manzoni and Porporato, 2009). In-
corporating microbially explicit reaction networks in reactive
transport models is beneficial as these models could capture
transient conditions and associated impacts (Thullner et al.,
2007). In contrast to soil-based models that account for com-
plex reaction networks, often comprising more than one mi-
crobial functional group (Yabusaki et al., 2017b; Thullner et
al., 2007; Thullner and Regnier, 2019; Manzoni and Porpo-
rato, 2009), the reaction networks used for modelling biogeo-
chemical processes in deep sub-surface domains are seldom
complex. They do not account for microbially explicit mod-
els and relevant microbial life processes or any interactions
thereof (Thullner and Regnier, 2019). A straightforward ap-
plication of the soil-based biogeochemical model approaches
to conditions in deeper subsurface compartments is problem-
atic because the nature of carbon source changes as it travels
into the deeper zones. A reaction network that is sufficiently
representative of growth conditions found in the subsurface is
lacking and must be conceptualized to study both microbial
dynamics and resulting nutrient dynamics. Below we present
a possible reaction network for such groundwater settings.

The second challenge, as stated above, is to characterize
the flow and transport in a heterogeneous medium. Several
attempts have already been made to model microbially driven
reactions in the subsurface (Yabusaki et al., 2017b; Thull-
ner et al., 2005; Schäfer et al., 1998a; Hunter et al., 1998;
Arora et al., 2016) at a regional scale with further inves-
tigations on the impact of temporal variation on microbial
activity and microbially driven redox dynamics in riparian
zones (Yabusaki et al., 2017a; Dwivedi et al., 2018; Arora
et al., 2016). Conducting studies at this scale is relevant, but
it lacks the spatial resolution of microbially mediated nutri-
ent dynamics in the subsurface. Additionally, it is difficult
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to transfer the results to other geological settings (Tufenkji,
2007).

To understand the fundamental mechanisms (without the
volume-averaging effect of large-scale studies) influenc-
ing microbial activity, several studies worked on identify-
ing factors influencing microbial activity at the pore scale
(Stolpovsky et al., 2011; Meile and Tuncay, 2006; Heße et
al., 2010; King et al., 2010; Gharasoo et al., 2012). Explor-
ing microbial dynamics at the pore scale requires the knowl-
edge of pore-scale features and/or geometry for practical ap-
plications (Heße et al., 2010), which is typically not avail-
able. Additionally, utilizing the pore-scale resolution as the
base for modelling catchment-scale nutrient cycles is compu-
tationally problematic. Meanwhile, field groundwater sam-
pling techniques reflect average conditions at the continuum
scale depending on the sampling resolution. Sanz-Prat et
al. (2016) attempted to simplify reactive transport modelling
in heterogeneous media at the metre scale by proposing a
travel time approach but considered a limited reaction net-
work comprising only growth and decay dynamics of aerobic
degraders and denitrifiers. The study conducted by Jung and
Meile (2019) applied first-order reactions in heterogeneous
porous media at the Darcy scale (or continuum scale) and
further upscaled the effective reactions to the regional scale.
Microbial kinetics and interplay between different functional
groups thereof are more accurately expressed using Monod-
derived kinetics (Arora et al., 2016; Thullner et al., 2007),
although Liu et al. (2019) attempted to identify the condi-
tions in which first-order rates may be suitably used in soil
systems to optimize computational efforts at field or regional
scales. In summary, model attempts have been related to the
regional and pore scale, leaving a gap at the soil core, rock
core, and groundwater sampling scale.

In this research, we aim to study nutrient dynamics us-
ing a comprehensive reaction network at the continuum scale
(sub-metre scale in our case). This provides the link between
the pore-scale microbial dynamics and regional-scale micro-
bial dynamics. It assists in developing a process-based un-
derstanding of the impact of spatial heterogeneity on micro-
bial activity and subsequent nutrient dynamics and assists in
scaling the activity to pragmatic regional scales accounting
for spatial heterogeneity.

We seek to describe the influence of spatial variability in
terrestrial subsurface settings (i.e. porous aquifer properties)
on the in situ biogeochemical function of microorganisms
through numerical simulations. Since preferential flow paths
have been established to control access to nutrients and elec-
tron acceptors and thus influence the emergence of micro-
bial hotspots (Franklin et al., 2019), we focus on investigat-
ing spatial heterogeneity alone. We use a complex reaction
network that considers varying microbial functional groups
(both aerobes and anaerobes) and key microbial life pro-
cesses in a variety of redox conditions (aerobic, ammonia
oxidizing, nitrate reducing and sulfate reducing) that eventu-
ally influence carbon and nitrogen transformation. Simulated

scenarios are informed by data from the literature and from a
subject site to describe realistic although generic conditions,
which allows us to combine these conditions with different
types of subsurface heterogeneities to determine the result-
ing biogeochemical potential of the subsurface system. The
results of this study support the identification of key drivers
of microbial dynamics in the critical zone and assist in ef-
fective upscaling of these process descriptions. This, in turn,
contributes towards the regional-scale modelling of biogeo-
chemical cycles resulting from microbial dynamics.

2 Methods

This study investigates the impact of spatial heterogeneity of
the aquifer matrix on nutrient cycling in groundwater with a
focus on carbon and nitrogen using reactive transport mod-
elling. For this we used a numerical reactive transport mod-
elling approach which considered the microbial abundance
and activity in spatially heterogeneous environmental condi-
tions, that is, spatial variations in aquifer permeability. We
used the geochemical and geomicrobial observations from
our subject site in the Hainich Critical Zone Exploratory
(CZE; Küsel et al., 2016) as the foundation of the concep-
tual model to investigate the research questions. The subject
site was set up under the DFG (German Research Founda-
tion) Collaborative Research Centre grant 1076 AquaDiva
to study the links between surficial processes and subsur-
face dynamics. Thus, it provides spatially and temporally
resolved field observations to enable the formulation of a
representative conceptual model. We used this information
to constrain our conceptual approach and the simulated sce-
narios to realistic conditions. It is, however, not the aim to
explicitly simulate a specific part of the subject site. For
some model input we rather considered values at the extreme
end of possible conditions to enlarge the range of condi-
tions covered by our model scenarios. We ran all simulations
for a two-dimensional transect of 50× 30 cm size assuming
fully saturated conditions, steady-state flow, and constant in-
flow concentrations of dissolved species. We deemed this do-
main size appropriate to investigate sub-sampling-scale (sub-
metre-scale) heterogeneities. We considered three different
average flow velocities and 12 scenarios of hydraulic con-
ductivity fields of varying heterogeneity for all simulations.
The following sections describe the conceptual model com-
prising reaction network, flow regime and corresponding pa-
rameterization, the simulated scenarios, and methodology of
analyses of the simulation results.

2.1 Reaction network

We conceptualized an extended biogeochemical process net-
work to describe the turnover of carbon and nitrogen (Ap-
pendix A and Fig. 1). The reaction network is an extended
adaptation of the carbon dynamics described by Vogel et
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al. (2018), as well as relevant processes in the subsurface
as implemented by Manzoni and Porporato (2009). The net-
work accounts for autotrophy and heterotrophy in both aero-
bic and anaerobic regimes considering four functional groups
of microorganisms: aerobic dissolved organic carbon (DOC)
degraders, nitrate reducing DOC degraders, ammonium oxi-
dizers, and sulfate reducing DOC degraders.

The network accounts for other observed microbial pro-
cesses such as dormancy and mortality using a modified
dual-Monod approach adapted from Stolpovsky et al. (2011).
The reaction network also accounts for the “maximum car-
rying capacity” of the matrix (Ding, 2009; Grösbacher et al.,
2018), lumping all growth-limiting effects not explicitly ac-
counted for into an additional term (Prommer et al., 1999;
Schäfer et al., 1998b; Thullner et al., 2007; Wirtz, 2003).
Eventually the carbon and nitrogen loop are completed via
recycling of bacterial necromass. Furthermore, the reaction
network accounts for microbial attachment, in the case of
hospitable conditions, and detachment, which is due to inhos-
pitable conditions or velocity of the water (see Sect. A.3.3).
The detached mobile bacteria are transported by the flowing
water.

2.2 Flow and transport

We modelled steady-state flow conditions in each fully sat-
urated domain (50× 30 cm in size) by imposing fixed hy-
draulic heads at the inlet and outlet of the domain, adjusting
the inlet value to achieve the desired average flow velocity.
We kept the head at both inlet and outlet constant through-
out the simulation periods ensuring steady-state flow condi-
tions. All simulated domains had a constant porosity of 0.2
and an average hydraulic conductivity of 2.0× 10−6 m s−1.
The transport regimes account for advection, dispersion, and
diffusion. We assumed inlet concentrations of mobile species
to be constant for all simulations.

2.3 Parameterization

The subject site is a monitoring well transect within the
Hainich CZE in the Hainich National Park, Thuringia, Ger-
many. Groundwater characteristics and composition of mi-
crobial communities observed in the groundwater of the sub-
ject site over 5 years (Küsel et al., 2016) informed the param-
eterization of the model.

As model input, we introduced a solution which was
representative of water infiltrating from the shallow sub-
surface (Table A3), containing a mixture of naturally de-
rived dissolved organic carbon (DOC), dissolved oxygen
(DO), nitrate, sulfate, and some mobile microorganisms (het-
erotrophic aerobic degraders, heterotrophic nitrate and sul-
fate reducers, and autotrophic ammonia oxidizers) in the do-
main. The concentrations of the reactive species mimicked
conditions observed in the subject site.

2.4 Simulated scenarios

We performed simulations for three different flow regimes,
each characterized by a specific average flow velocity: for
the slow flow regime, the average flow velocity of 3.8×
10−4 m d−1 is given by the estimated recharge rate at the sub-
ject site (Kohlhepp et al., 2017; Jing et al., 2018) and repre-
sents the slow migration of water through the uppermost part
of the saturated aquifer. We increased the average flow ve-
locity by a factor of 10 for the medium flow regime and by a
factor of 100 for the fast flow regime (Table 1).

For each flow regime, a base case scenario accounted for a
homogeneous flow field; i.e. the homogeneous domains did
not have any variation in the distribution of conductivity field
and no associated anisotropy. Further scenarios considered
spatial heterogeneity of the flow field using randomly gener-
ated hydraulic conductivity fields (Heße et al., 2014). Each
random field was characterized by the same mean value of
conductivity (i.e. average conditions at the subject site; Jing
et al., 2018) and spatial autocorrelation length scale (0.1 m)
in all realizations, scaling with the size of the domain in line
with previous studies (Turcke and Kuper, 1996; Welhan and
Reed, 1997; Desbarats and Bachu, 1994). To conceptualize
heterogeneity, we used a limited parameter set (i.e., variance
in the log normal distribution of conductivity and anisotropy)
to represent varying porous and fractured media and to also
control the degree of channelized flow in the domain (Ed-
ery et al., 2016; Heße et al., 2014). We varied the values
of these parameters within ranges reflecting the site condi-
tions and geological features at the study site (Heath, 1983;
Kohlhepp et al., 2017). The scenarios are summarized in Ta-
ble 2. In total, we ran 147 simulations for the three different
flow regimes in spatially heterogeneous domains. We kept
the average water fluxes the same in all scenarios, and we
compared the results of the scenarios with the base case sce-
nario. We used the breakthrough of a constantly injected con-
servative tracer as a measure of the solute residence time (i.e.
time for flux-averaged outlet concentration to reach 50 % of
inlet value) in the system.

2.5 Numerical tools

We used OGS-BRNS (Centler et al., 2010) to carry out
the numerical simulations. This numerical model couples
the BRNS (Biochemical Reaction Network Solver; Aguil-
era et al., 2005; Regnier et al., 2002), an established tool
that allows for the simulation of reaction networks of ar-
bitrary size and complexity (Thullner et al., 2005), with
OGS (Open Geosys), a state-of-the-art open-source thermo-
hydro-mechanical-chemical (THMC) simulator (Kolditz et
al., 2012) that has also been used for modelling groundwa-
ter flow and transport (Jing et al., 2018). We used a con-
stant finite volume discretization of 0.01 m in both directions.
Transient simulations were performed until steady state was
achieved.
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Figure 1. Schematic representation of the simulated biochemical reaction network.

Table 1. Flow and transport parameters considered in the simulations and the resulting Péclet number (Pe) associated with the different flow
regimes. For the latter, the domain size of 0.5 m was used as a characteristic length for all flow regimes.

Property Slow flow Medium flow Fast flow

Darcy velocity (m d−1) 3.8× 10−4 3.8× 10−3 3.8× 10−2

Diffusion coefficient (m2 d−1) 8.64× 10−5 8.64× 10−5 8.64× 10−5

Longitudinal dispersivity (m) 0.02 0.02 0.02
Pe (−) 2.02 11.7 22.45

Table 2. Summary of spatially heterogeneous scenarios investigated
for each flow regime. S. no. 1 is the homogeneous base case.

S. Variance in Anisotropy Number of Category
no. permeability realizations type

1 0 n/a 1 Homogeneous (referred to
as 0 : 1 in Fig. 2)

2 0.1 2 4 0.1 : 2
3 0.1 5 4 0.1 : 5
4 0.1 10 4 0.1 : 10
5 1 2 4 1 : 2
6 1 5 4 1 : 5
7 1 10 4 1 : 10
8 5 2 4 5 : 2
9 5 5 4 5 : 5
10 5 10 4 5 : 10
11 10 2 4 10 : 2
12 10 5 4 10 : 5
13 10 10 4 10 : 10

We used the Python programming language (van Rossum
and Drake, 2006) (referred to as Python henceforth) to set up
the scenarios for running the simulations using OGS-BRNS.
These tasks included the generation of input files. We used
ogs5py (Müller, 2020) to generate the input files for running
the simulations in OGS-BRNS. We used gstools (Müller and
Schüler, 2019) to generate the spatial random fields to rep-
resent heterogeneous domains in OGS-BRNS. We processed

and further analysed simulation results using a workflow in
Python as well. We also used Python to generate all graph-
ical outputs presented in this paper. The scripts used for the
Python workflow along with the input files are available in a
repository for ease of reproducibility (Khurana et al., 2021).

2.6 Data analysis

The Péclet number (Pe) indicates the relative importance of
flow processes in the flow regime. The resulting Pe of each
flow regime (calculated using Eq. 1) increased from 2 indi-
cating a mixed diffusion–advection–transport regime for the
slow flow regime to 22 indicating fully advection-dominated
transport for the fast flow regime (see Table 1 for further de-
tails).

Pe =
veff · l

D+ α · veff
, (1)

with veff as effective Darcy velocity, l as length scale, D as
diffusion coefficient, and α as longitudinal dispersivity.

The breakthrough time is a useful metric to evaluate the
matter flux in the domain. We defined the breakthrough
time of a conservative tracer as the time taken for the flux-
averaged concentration at the outlet of the domain to be 50 %
of the continuous tracer input concentration at the inlet of
the domain. This also enables the evaluation of the impact of
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spatial heterogeneity on matter flux alone without consider-
ing the impact of reactions.

To evaluate the impact of spatial heterogeneity on nutri-
ent cycling, we calculated the removal of reactive species
(that is, DOC, DO, ammonium, and nitrate) from the domain
in steady-state conditions. Thus, while the chemical species
entering the domain at the inlet were consumed at varying
rates by the microbial species present in the system, the rate
of consumption was constant in time in each domain in all
flow regimes. In addition to these dissolved reactive species,
we also considered (total) nitrogen and total organic carbon
(TOC) concentrations by considering also nitrogen and car-
bon present in the mobile microbial biomass and in partic-
ulate organic matter being transported in the domain (Ap-
pendix A). We compared the changing mass removal in het-
erogeneous domains with the respective base case scenarios
(homogeneous domains).

To evaluate the key factors determining the impact of spa-
tial heterogeneity on nutrient cycling, we undertook a series
of multivariate statistical analyses of the simulation results
using linear mixed effect modelling, progressively including
variables in both fixed effects and random effects. We com-
pared the Akaike information criterion (AIC) of each model
to evaluate the fit of the model. AIC is an indicator of pre-
diction error associated with a general linear model. It is an
indicator of relative performance of a group of models; the
model with the lowest AIC is concluded to be the one with
the least prediction error or the best performance. With each
iteration of the model, we selected the features most influ-
encing the performance of the model and reducing the AIC
of the predictions. We described these key factors using es-
tablished dimensionless numbers which are also identifiable
by observations. For example, we used Pe to indicate differ-
ent flow regimes (described in Sect. 2.4). Similarly, we used
the Damköhler number (Da) to indicate the reaction regime
for each reactive species. Da is defined as the ratio of the
transport timescale and the reaction timescale as described
in Eq. (2).

Da =
τtransport

τreaction
, (2)

where τreaction is the characteristic reaction timescale, and
τtransport is the characteristic transport timescale given by the
breakthrough time of a conservative tracer in the domain. We
adapted this definition to derive the characteristic reaction
timescale assuming 63 % loss (Pittroff et al., 2017) and used
Eq. (3) below to calculate the apparent Da using values es-
timable in the field when Cout

Cin
> 5 %.

Da = − ln
Cout

Cin
, (3)

with Cin as flux-averaged concentration of a reactive species
entering the domain and Cout as flux-averaged concentration
of the reactive species leaving the domain. In the case of

Cout
Cin
≤ 5 %, we used Eqs. (4) and (5) to derive the apparent

Da of the chemical species:

τreaction =
− ln(0.37)

− ln
(
Cy5
Cin

) × τy5, (4)

τreaction =
τy5

ln
(
Cy5
Cin

) , (5)

where Cy5 is the concentration of the chemical species at the
first cross-section (y = y5) when C

Cin
≤ 5 %, and τy5 is the

breakthrough time for a conservative tracer at the same cross-
section; i.e. y = y5. τtransport in this case was the same as the
breakthrough time of the conservative tracer in the domain
(Eq. 6).

Da =
breakthrough time

τy5

ln
(
Cy5
Cin

) (6)

Thus, we were able to characterize reaction-dominant sys-
tems where Da > 1. We took the logarithm of Da to the
base 10 (log10Da) to characterize the regime for each reac-
tive species in each domain.

For a scalable relationship addressing the impact of spa-
tial heterogeneity on reactive species removal, we conduct a
simple linear regression analysis of species removal vs. resi-
dence time (both in relative units to the homogeneous refer-
ence cases) for different log10Da ranges.

For comparison we also use the following expression to
predict the impact of reducing breakthrough time on the re-
moval of reactive species in the case of a first-order removal
rate expression (Eq. 7):

Ct = Ci e
−kt , (7)

with Ci as initial concentration of reactive species [ML−3],
Ct as concentration of reactive species at time t [ML−3], k
as first-order rate constant [T −1], and t as time taken for the
reaction to occur [T ].

Then it follows that normalized removal of reactive
species may be described with the following:

Ci− Ct

Ci
= 1− e−kt . (8)

To compare the removal of reactive species between two dif-
ferent time points, we use the following:

Impact on removal of reactive species with

respect to base case=
1− e−Da.tf

1− e−Da
, (9)

with tf as the ratio of the time taken for the reaction to take
place in the two (2) different scenarios. In our study, this
is the same as the ratio of breakthrough time in the hetero-
geneous domain and that in the base case. Furthermore, we
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calculated the impact of reducing breakthrough time on the
removal of reactive species in the case of a zeroth order (i.e.
constant) removal rate R0 as

Impact on removal of reactive species with

respect to base case= tf R0. (10)

3 Results

We compare characteristics of flow and transport of porous
media such as conservative tracer breakthrough, microbial
biomass in the domain, and nutrient removal from the do-
main for heterogeneous domains and the base case. The base
case is the homogeneous domain in all the three considered
flow regimes. We explore flux-averaged concentrations of
mobile species and spatially averaged concentrations of im-
mobile species in 1-D, along the predominant flow direction,
and explore the two-dimensional concentration heat maps of
the domain to compare the information lost when neglecting
spatial heterogeneity at scales smaller than that of the sample.
We further consider the total microbial biomass present in
the domain and nutrient removal from the domain as aggre-
gated results and compare these between the heterogeneous
domains and respective base cases.

3.1 Base case (homogeneous domain with uniform flow
rate) results

The breakthrough time varied in the base case of each flow
regime depending on the flow velocity in the domain. It
was 205 d in the slow flow regime, 24 d in the medium flow
regime, and 2.4 d in the fast flow regime.

As mentioned in Sect. 2.3, we set the concentration of the
dissolved species at the inlet to be the same across all flow
regimes and heterogeneity scenarios, while it varied at the
outlet for each scenario. In all flow regimes DOC concen-
trations decreased continuously along the domain length, yet
they remained at relatively high values. In other words, an
active microbial DOC degradation in the entire domain was
not significantly limited by the abundance of DOC itself. In
the slow flow and medium flow regimes, the dissolved oxy-
gen (DO) dropped to concentrations less than 3 µM (common
detection limit of DO sensors; ISO, 2014) within the top half
(upgradient) of the domain, indicating anoxic conditions in
the downgradient parts of the domain (Fig. S1). Along the
1-D flow path in the domains aerobic degradation rates de-
creased more and more at low concentrations of DO (below
approximately 20 µM), while ammonia oxidation persisted.
With DO concentration lowering further, nitrate concentra-
tion reduced, which is attributable to the activity of nitrate
reducers at DO < 15 µM (Fig. S1). As the concentration of
DO reduced, so did the biomass of aerobic degraders, while
ammonia oxidizer biomass increased. This resulted in pref-
erential occurrence of ammonia oxidation and nitrate reduc-
ers, as well as nitrate reduction further downgradient in the

domain (Fig. S2). No sulfate reduction took place in any of
the flow regimes; the concentration of nitrate was still high
(> 63 µM in all flow regimes) down to the outlet. In contrast
to the slow and medium flow regimes, DO concentration at
the outlet of the fast flow regime (∼ 4 µM in the base case)
indicated that both oxic zones and aerobic activity prevailed
further downgradient in the domain, and consequently the
growth of nitrate reducers was suppressed till further down-
gradient in the domain. Overall, the concentration profiles
along the flow direction of the base case in all flow regimes
were thus in agreement with redox hierarchy, wherein aero-
bic degradation occurred preferentially upgradient in the do-
main promoted by a relatively high concentration of aerobic
degraders.

The removal of reactive species, DOC (59.2 %), DO
(99.6 %), ammonium (19.8 %), and nitrate (74.7 %), was the
highest in the slow flow regime (Table 3). The removal of
the reactive species was related to the average flow veloci-
ties since it related directly to the residence time in the do-
main and reaction-dominated regimes. Hence, the rate of re-
moval of all these reactive species reduced in the medium
flow and fast flow regimes. Also the removal of total nitro-
gen was the highest in the slow flow regime (57 %), while the
removal of TOC was the lowest there (32.6 %) and highest in
the medium flow regime (42.6 %).

The concentration of microbial species in different states
of activity and locations in the domain is shown in Table 4.
The total biomass concentration was the highest in the slow
flow regime (122 µM C), while it was the lowest in the fast
flow regime (86 µM C). This reduction was mainly attributed
to a decrease in mobile biomass concentration with increas-
ing flow rate, while the total concentration of immobile
biomass remained constant with changing flow regimes. In
all the flow regimes, the aerobic degraders formed the domi-
nant species primarily due to the influx of oxygenated water
at nearly saturation levels entering the domain at the inlet. In
the slow flow regime, the highest proportion of biomass was
contributed by inactive microbial species (> 90 % of the to-
tal biomass concentration). The proportion of active aerobic
degraders and ammonia oxidizers was the lowest in the slow
flow regime (∼ 5 %), while it increased in the medium flow
regime (∼ 17 %) and was the dominating species in the fast
flow regime (∼ 87 %). This was indicative of a small oxic
zone with aerobic activity in the slow flow regime domain,
which further expanded downgradient in the medium flow
regime domain (Figs. S1 and S2). The dominance of the ac-
tive aerobic degraders and increased presence of ammonia
oxidizers in the fast flow regime domain indicated persis-
tent oxic conditions and aerobic activity. Consequently, the
proportion of active nitrate reducers was lowest in the fast
flow regime (∼ 3 %), only growing in the downgradient di-
rection near the outlet of the domain (Fig. S2). The medium
flow regime provided the conditions for active nitrate reduc-
ers to sustain and form a substantial proportion of the micro-
bial community (14 % as opposed to ∼ 4 % in the slow flow
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Table 3. Removal of dissolved species (Rb) in terms of mass flux (ṁ in µmol d−1) from the homogeneous domain in three flow regimes –
slow flow, medium flow, and fast flow.

Dissolved species Slow flow Medium flow Fast flow

ṁin ṁout Rb (%) ṁin ṁout Rb (%) ṁin ṁout Rb (%)

DOC 0.456 0.186 59.2 4.56 1.98 56.5 45.6 31.4 31.1
DO 0.143 0.001 99.6 1.43 0.01 99.4 14.3 0.2 98.4
Ammonium 0.0342 0.0274 19.8 0.342 0.276 19.4 3.42 3.03 11.5
Nitrate 0.143 0.036 74.7 1.43 0.49 65.8 14.3 14.1 1.12
Nitrogen 0.178 0.077 57.0 1.78 0.84 53.1 17.9 17.6 1.90
TOC 0.470 0.316 32.6 4.70 2.70 42.6 47.0 36.3 22.7

regime and ∼ 3 % in the fast flow regime). Among the ac-
tive microbial species, the immobile fraction was higher than
the mobile fraction in all flow regimes (more than 7 times in
the slow flow regime, more than 4 times in the medium flow
regime, and more than 2 times in the fast flow regime).

3.2 Tracer breakthrough times

For each flow regime, the tracer breakthrough time in het-
erogeneous domains varied from that in the base case. With
the increase in variance of the hydraulic conductivity field
and increase in anisotropy in the domain, the breakthrough
time was shorter compared to the base case (Fig. 2). This
was a result of preferential flow paths that were introduced
by the heterogeneous hydraulic conductivity fields. The same
“category” (combination of variance and anisotropy) of het-
erogeneity induced varying impacts depending on the flow
regime, with higher average flow velocities leading to rel-
atively stronger reductions in the breakthrough times. This
difference in the impact of heterogeneity on tracer break-
through times and thus the residence time of solutes in the
domain was attributed to the different Péclet numbers (Pe) of
the regimes (Table 1). Diffusion played a stronger role in the
transport processes in the slow flow regime, promoting mix-
ing effects and reducing the influence of the preferential flow
paths in heterogeneous domains. This resulted in the lower
deviation in breakthrough time from the base case in the slow
flow regime. In contrast, in the medium flow regime and in
particular in the fast flow regime transport was dominated by
advection with little mixing between flow paths. The prefer-
ential flow paths in the heterogeneous domains therefore had
a higher influence on the resulting tracer breakthrough times
and thus on the residence time of dissolved species in these
regimes.

3.3 Distribution of dissolved reactive species in
heterogeneous scenarios

Scenarios with a heterogeneous hydraulic conductivity distri-
bution exhibited a heterogeneous flow velocity distribution
with pronounced preferential flow paths emerging with in-
creasing variance and/or anisotropy of the conductivity dis-

Figure 2. Breakthrough time in different heterogeneous scenar-
ios (described as variance in permeability field:anisotropy) normal-
ized by that in the base case (or homogeneous case) in three flow
regimes: slow, medium, and fast flow.

tributions. The distribution of dissolved species in heteroge-
neous domains followed the orientation of the preferential
flow paths (Fig. S3). All the species persisted longer along
these preferential flow paths compared to the low permeabil-
ity zones. Moreover, also on average all the reactive species
penetrated further downgradient into the heterogeneous do-
mains compared to the homogeneous domain due to the pres-
ence of the preferential flow paths (Fig. S1). For example,
in the medium and fast flow regimes DO persisted further
in the heterogeneous domain (deeper in the domain) as the
groundwater flowed through preferential flow paths. This im-
pact of heterogeneity on the longer persistence of DO was,
however, not observable for the slow flow regime. This is be-
cause the DO was preferentially and quickly consumed by
aerobic degraders close to the inlet of the domain in the slow
flow regime, rendering more than 90 % of the domain sub-
oxic to anoxic with prevailing anaerobic activity. Effectively,
spatial heterogeneity did not play a role in aerobic respira-
tion in the slow flow regime. In contrast, a larger oxic zone
with aerobic activity existed in the upgradient section of the
domains in the medium and fast flow regimes. There, spa-
tial heterogeneity resulted in observable shifts in the transi-
tion from the oxic to sub-oxic zone or from aerobic activity
to anaerobic activity to further downgradient parts of the do-
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Table 4. Total biomass concentration (µM C) in homogeneous base case domains (volume averages) with fraction of biomass concentration
(%) of each microbial species for three flow regimes.

Microbial species Slow flow Medium flow Fast flow

Total 122.0 93.34 86.35

Active fixed aerobes 3.5 12 74
Active fixed ammonia oxidizers 0.5 2.5 2.4
Active fixed nitrate reducers 2.5 12 2.3
Active mobile aerobes 1.0 2.2 9.6
Active mobile ammonia oxidizers 0.2 0.7 0.7
Active mobile nitrate reducers 1.2 3.1 0.3
Inactive fixed aerobes 44 41 5.2
Inactive fixed ammonia oxidizers 0.5 0.2 0.2
Inactive fixed nitrate reducers 15 11 3.2
Inactive mobile aerobes 24 12 0.5
Inactive mobile ammonia oxidizers 0.3 0.1 0.3
Inactive mobile nitrate reducers 7.9 2.9 1.4

main. Additionally, spatial heterogeneity resulted in oxic and
anoxic mesh nodes co-existing along a cross-section that was
apparently oxic (Fig. 3). Oxic mesh nodes were nodes where
DO was recorded to be higher than 3 µM. We noted that even
though the flux-averaged concentration decreased steadily in
the downgradient direction, a high percentage of nodes along
the cross-section remained oxic in heterogeneous domains.
Because of this delayed transition, nitrate reduction was also
affected. In heterogeneous domains, nitrate was observed to
be respired further downgradient in the domain and at the
interface of high flow and low flow zones (Fig. S3).

These concentration distributions translated into reduced
removal of carbon and nitrogen in heterogeneous domains
with increasing spatial heterogeneity compared to the base
cases (Fig. 4). DOC removal was less than in the base case
in all the flow regimes with the lowest removal reaching only
40 % of the base case values in the fast flow regime. The re-
moval of DO was reduced in the fast flow regime (down to
40 % of the base case value), while no or negligible reduc-
tions were observed for most slow and medium flow scenar-
ios. Nitrogen removal was reduced in the slow and medium
flow regimes reaching at least 70 % of base case values.
One exception was nitrogen removal in the fast flow regime,
which increased (up to 6 times the base values) compared
to the base case. The dependency of TOC removal on spa-
tial heterogeneity matched that of DOC for the different flow
regimes (Fig. 4).

The above results could be summarized by the use of
log10Da. The distribution of log10Da is shown in Fig. S6.
The same value of log10Da is associated with different com-
binations of reaction and flow regimes. The aerobic reactions
in the slow flow and the medium flow regimes were charac-
terized with high values of log10Da (> 0.5), while the anaer-
obic reactions in the slow and medium flow regimes were
characterized by mid-range values of log10Da (0–0.5) along

with the aerobic reactions in the fast flow regime. The anaer-
obic reactions in the medium flow regime were characterized
by low values (−1 to 0) of log10Da. Lastly, the anaerobic
reactions in the fast flow regime were characterized by ex-
tremely low values of log10Da (<−1).

3.4 Distribution of microbial biomass in heterogeneous
scenarios

As already shown in Sect. 3.1, the active immobile fraction
of the biomass has a larger presence in the domain com-
pared to the mobile fraction, thereby making a larger con-
tribution to nutrient cycling. The median value of the mobile
biomass in the domain varied from 98 µM C (in the fast flow
regime) to 320 µM C (in the slow flow regime), out of which
active mobile biomass varied from 8 µM C (in the medium
flow regime) to 15 µM C (in the fast flow regime). Immobile
biomass in comparison was in the order of 300 µM in all flow
regimes, out of which active immobile biomass varied from
29 µM (in the slow flow regime) to 232 µM (in the fast flow
regime). Therefore, next we focus on the impact of spatial
heterogeneity on the distribution of this important fraction of
the biomass. Aerobic immobile degraders were found to be
active and most abundant near the inlet of the domain, as well
as along the preferential flow paths in the downgradient zone
of the domain (Fig. S4). Ammonia oxidizers were active at
the interfaces between high flow and low flow regions of the
upstream parts of the system, co-existing with a high concen-
tration of active aerobic degraders. Ammonia oxidizers were
also active further downgradient in the system along the pref-
erential flow paths. This may be due to the presence of DO at
reduced concentrations in the downgradient region of the do-
main. DO at these concentrations and low DO/ammonium
ratios can be preferentially taken up by ammonia oxidizers
compared to aerobic degraders (Gu et al., 2006). The max-
imum concentration of active immobile ammonium oxidiz-
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Figure 3. Comparison of flux-averaged DO concentration and percent of oxic mesh nodes (i.e. cells with DO concentration > 3 µM) along
the flow direction in a medium flow regime.

ers was more than an order of magnitude lower than that of
the active immobile aerobic degraders. Nitrate reducers were
present in lower permeability zones in the heterogeneous do-
mains, but close to the preferential flow paths, in response
to the continuous supply of nutrients from the groundwater
flowing through the domain. They co-existed with ammonia
oxidizers but at higher concentrations. Active immobile ni-
trate reducers were much higher than active mobile nitrate
reducers in the fast and medium flow regimes but compara-
ble in magnitude in the slow flow regime.

The corresponding 1-D distribution of microbial species in
heterogeneous domains was observed to vary from the base
case given the same average water flux (Fig. S2). All the mi-
crobial species were prevalent along a larger section in the
heterogeneous domains. Aerobic and anaerobic microorgan-
isms also appear to co-exist in heterogeneous domains (solid
lines) in contrast to their sequential occurrence in the base
case (dashed lines).

The changing distribution pattern of the microbial species
impacts the total active immobile biomass concentration in
the domain, which diverges from the base case as hetero-
geneity increases (Fig. 5). The biomass of active immobile
aerobic degraders decreased with increasing heterogeneity
regardless of the flow regime, with the lowest values reaching
only 40 % of the base case biomass. The biomass of immo-
bile active ammonia oxidizers and nitrate reducers also de-
creased with increasing heterogeneity in the slow (∼ 75 %
and ∼ 90 % of base case, respectively) and medium flow
regimes (30 % and 85 %, respectively). However, the impact
on the biomass of immobile active nitrate reducers was the
reverse in the fast flow regime (increase to 5 times the con-

centration in the base case). Lastly, there was no impact of
spatial heterogeneity in the biomass of immobile active am-
monia oxidizers in the fast flow regime.

Overall, active immobile biomass decreased with the in-
crease in spatial heterogeneity in all the flow regimes, while
active mobile biomass increased marginally (Fig. S9). Inac-
tive immobile biomass reduced with spatial heterogeneity in
the slow and medium flow regimes, while it increased in the
fast flow regime. Lastly, inactive mobile biomass increased
with heterogeneity in all flow regimes.

3.5 Predicting impact of spatial heterogeneity on redox
regimes.

While conducting the multivariate statistical analysis of
change in mass removal of reactive species, we made use of
AIC to evaluate governing factors influencing mass removal
in a spatially heterogeneous domain. The analysis indicated
that AIC was 994 when considering only breakthrough time
and chemical species. AIC reduced to −211 when the chem-
ical species, the flow regime, variance in permeability field,
and the anisotropy of the domain were included as random
factors. Please refer to Table S1 for further details. Thus, we
concluded that nutrient dynamics are influenced by spatial
heterogeneity. Categorizing the systems using log10Da, we
proposed a linear expression to predict the impact of spatial
heterogeneity on nutrient removal. The regression parame-
ters informing this expression are given in Table 5. The re-
sults indicated that we may underestimate nutrient removal
by 6 times or overestimate it by twice the amount (Fig. 6).
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Figure 4. Removal of chemical species in spatially heterogeneous domains in different flow regimes. Values show mass flux differences
between inlet and outlet of the heterogeneous domains normalized by the flux differences for the homogeneous base case of each flow
regime.

Figure 5. Biomass concentration of active immobile fraction of different species in spatially heterogeneous domains in different flow regimes.
Shown volume-averaged values for the heterogeneous domains were normalized by values of the homogeneous base case of each flow regime.

Table 5. Regression parameters for predicting removal of chemical
reactive species based on the reaction regime indicated by log10Da.

Category of flow and Regression parameters

reaction regime Slope Intercept RMSE

log10Da <−1 −365.0 497.3 57
−1< log10Da < 0 53.94 46.68 3.7
0< log10Da < 0.5 12.16 87.71 4.7
log10Da > 0.5 0 100 –

4 Discussion

In this study we synthesized available process knowledge and
observations from our subject site on geomicrobial activity in
the deep subsurface, both terrestrial and marine, into a set of
in silico scenarios on the fate of biogeochemically reactive
compounds in heterogeneous subsurface settings. This ap-
proach allowed us to generate a wide range of spatially het-
erogeneous domains (with variance of the log normal distri-
bution of conductivity varying from 0.1 to 10, and anisotropy
varying from 2 to 10), which is not possible experimentally.
Therefore, we utilized geostatistical methods using variance
in conductivity field and anisotropy to simulate heteroge-
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neous subsurface scenarios. Variance reflects naturally occur-
ring variation in the conductivity field. In the case of a high
variance, it represents scenarios in which lenses of a different
medium are present in another medium (such as clay lenses
in a sandy aquifer). Anisotropy provides an additional con-
trol to enforce channelized flow fields in the domain or layer-
ing processes in general, common in both alluvial sediments
and fractured bedrock. Thus, we considered 12 scenarios for
representing these heterogeneous flow fields, covering most
physically (variance) and geometrically (anisotropy) plausi-
ble scenarios. At the same time, linking the extent of spatial
heterogeneity with breakthrough time allowed us to discuss
the impact of spatial heterogeneity on the removal of chem-
ical species independently of how we generated the spatial
heterogeneity.

The reaction network was formulated using literature
knowledge and geomicrobial activity identified at the subject
site. At the same time, it captures varying microbial respi-
ration and growth regimes, from aerobic autotrophy to aero-
bic heterotrophy and anaerobic heterotrophy. The activity of
geomicrobial reactive systems is dependent on a variety of
factors, such as nutrient availability, access to energy gradi-
ents, pH, pore size, hydraulic conductivity, and particle size
distribution (Smith et al., 2018). The limited information on
microbial activity applicable to oligotrophic conditions in the
subsurface does challenge the parameterization of the reac-
tion network, which is a priori a potential major source of
uncertainty for the obtained model results. Given this limita-
tion, we calibrated the parameters of the reaction network to
ensure that it covers a sufficiently large range of Da values
and that it does not violate the established redox hierarchy
in any of the flow regimes considered (see Appendix A and
the base case results). Additionally, we consistently used our
parameter set in all scenarios and used results of the homoge-
neous base cases as internal reference to which we compared
results of the individual heterogeneous scenarios as we aimed
to study the impact of spatial heterogeneity on microbial ac-
tivity and sub-surficial nutrient dynamics.

Lastly, the consideration of varying flow regimes in com-
bination with the reaction network provides a view on both
reaction-dominant systems and flow-dominant systems, indi-
cated by the use of Da. This compensates for our approach
wherein we do not explore additional scenarios varying con-
centrations of chemical species and their influence on micro-
bial growth and distribution. By treating the analysis of re-
sults in terms of Da, we condense the discussion to effective
rates of microbial activity given the presence of spatial het-
erogeneity of hydraulic conductivity. Thus, we are confident
that the presented findings are not limited to the particular
parameter set used in this study but that they are applicable
widely.

Figure 6. Regression analysis: predicting impact of spatial het-
erogeneity on chemical species removal in the different reaction
regimes indicated by log10Da. Value on the y axis indicate the re-
moval of chemical species in heterogeneous domains normalized by
that in the corresponding base case. Spatial heterogeneity is plotted
on the x axis, indicated by the breakthrough time in the heteroge-
neous domain normalized by that in the base case (homogeneous
domain). A value of 100 % on the y axis indicates that the removal
of the chemical species is the same as that in the corresponding
base case (homogeneous domain). A value of 50 % indicates that
the removal of the chemical species was reduced by half in the cor-
responding heterogeneous domain. A value of 600 indicates that the
removal of the chemical species in the heterogeneous domain was
6 times that in the homogeneous domain.

4.1 Sampling and analysis: biomass and reactive
species

Microbial abundance can be derived from carbon content in
the biomass using available conversion factors varying from
5–39 femtogram (fg) C per cell (Fukuda et al., 1998; Vrede
et al., 2002). This resulted in median values of total mo-
bile biomass in the domain of 109 to 1011 cells L−1. Opitz
et al. (2014) measured the total bacterial biomass in ground-
water of the subject site to vary from 106 to 108 gene copies
L−1 (depending on location, tapped aquifer, and season of
measurement), which is lower than the simulated mobile val-
ues. However, the simulated values of mobile biomass are
in the range derived in both lab-scale and field-scale studies
(Holm et al., 1992; Griebler and Lueders, 2009; Grösbacher
et al., 2018). Also, the mobile biomass concentration is in the
range of particulate organic carbon concentration observed
to be exported in the seepage at the subject site (Lehmann et
al., 2021). The relatively high biomass values obtained in the
simulations are attributed to the relatively high inflow con-
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centrations, as well as to the relatively high microbial reac-
tivity we considered in the simulations to allow them to cover
also high Da ranges. We note that while the total biomass
may not be matching the observations at the subject site, the
relative composition of the microbial species fractions (that
is, immobile, mobile, active, and inactive) follow established
findings. For example, immobile microbial biomass indeed
forms the majority biomass in the subsurface (as well as in
our study), with its ratio with mobile biomass changing based
on nutrient and other environmental conditions (Griebler et
al., 2002; Grösbacher et al., 2018). It is proposed that the ra-
tio of immobile and mobile biomass in Griebler et al. (2002)
and Grösbacher et al. (2018) varies per nutrient availability,
with higher ratios observed in oligotrophic conditions and
lower ratios in nutrient rich conditions. We extend this fur-
ther in our study by observing that the ratio depends on the
Damköhler number, with higher ratios in low Da systems
and lower ratios in high Da (reaction-dominant) systems. It
is further estimated that 60 %–80 % of microbial biomass in
soil may be inactive (Lennon and Jones, 2012). In our study,
we observe these ranges in the slow flow and medium flow
regimes but not in the fast flow regime. With newer technolo-
gies equipped to better characterize activity of microbes in
environmental samples (Couradeau et al., 2019), we expect
that it will be easier to draw the comparison in the future.

It is also important to note that the estimated abundance
at the subject site varies with both sampling location and
season. And as mentioned above, we also observe that mi-
crobial biomass may be in different states of activity (ac-
tive or inactive) or location (immobile or mobile) depend-
ing on the flow regime and the structure of spatial hetero-
geneity in the system. This brings into focus that next to
spatial heterogeneities addressed in this study also temporal
variations in environmental conditions can have a significant
impact on microbial abundance (Eckert et al., 2015). This
study provides preliminary insights into how varying water
velocities and flow regimes may impact the relative contri-
bution of microbial species between inactive, active, mobile,
and immobile fractions in spatially heterogeneous domains.
The system may respond similarly to temporal fluctuations
in groundwater velocities resulting from seasonal cycles as
well. While this is not part of the current study, the presented
conceptual approach and assessment scheme may be applied
in future studies focussing on such transient effects.

Commonly used groundwater sampling techniques do not
resolve the heterogeneous distribution of chemical and mi-
crobial species along the length and cross-section of a well
screen, though specialized probes exist to characterize small-
scale chemical variability in the subsurface (Ronen et al.,
1987). The obtained samples may thus present a skewed
or biased observation of the biogeochemical dynamics in
the subsurface. For example, the gradual reduction of flux-
averaged DO concentration from near-saturation values at
the inlet to below detection limit implies the continuous pres-
ence of an aerobic zone until DO is fully depleted. However,

when the number of oxic and anoxic mesh nodes was calcu-
lated at each cross-section, it was evident that several oxic
and anoxic regions can co-exist in an apparently oxic zone
(Fig. 4). This results in unexpected observations wherein aer-
obes and anaerobes appear to be active in similar conditions,
while in fact their zones of activity are spatially separated,
and anaerobes are active in smaller zones that specifically
provide hospitable conditions to their activity. Spatial het-
erogeneity allows for this apparent co-occurrence of several
microbial species by providing appropriate niches. For in-
stance, the biomass of immobile active nitrate reducers in-
creased with spatial heterogeneity in the fast flow regime due
to the introduction of sub-oxic pockets with anaerobic activ-
ity in low flow zones within a predominantly oxic zone with
aerobic activity (Fig. S4). Seemingly overlapping conditions
have also been observed by field-scale studies (Alewell et al.,
2006; Waldron et al., 2009; Schwab et al., 2017; Lohmann
et al., 2020), although the diversity of microbial commu-
nities varied in both space and time. Alewell et al. (2006),
Schwab et al. (2017), and Lohmann et al. (2020) also noted
that small-scale heterogeneities did not allow for the sequen-
tial redox hierarchy (as defined by energy yields of redox
half reactions) to be applicable at the metre scale. We es-
tablish that the persistence of microbial species in the do-
main is governed by the presence of the appropriate carbon
source and electron acceptor despite apparent co-existing mi-
crobial species that may be identified by groundwater sam-
pling techniques that do not resolve sub-sampling-scale het-
erogeneities. Therefore, while mobility of microbial species
using water as the medium may temporarily affect the com-
position of microbial communities, it is unlikely that mobile
microbial species persist in high numbers at a location in the
absence of sustained sources of nutrients and energy. This
is further evident from the impact of spatial heterogeneity
on microbial biomass distribution whereby active microbial
biomass is only found to be persistent in high numbers in
zones where reactive species are easily accessible. In addi-
tion, Kim et al. (2009, 2019) also suggested that groundwater
redox chemistry and distribution of carbon pools are linked
with geological controls such as hydraulic conductivity. The
requirement of vertically discretized sampling has already
been recognized (Ronen et al., 1987; Smith et al., 2018)
and addressed by various sampling methodologies such as
low flow sampling techniques, passive samplers, and point
and discrete interval samplers (Ronen et al., 1987; Smith et
al., 1991; Powell and Puls, 1993; Báez-Cazull et al., 2007;
Anneser et al., 2008), even though heterogeneities at scales
lower than that resolved by the sampling scheme will remain
unobserved. Our results support the usefulness of such spa-
tially resolved sampling techniques for the analysis of mi-
crobial activity in the groundwater. On the other hand, com-
posite sampling from macro-scale matrix samples is useful
to estimate the microbial activity in the sampled matrix core.
This enables a more accurate estimate of microbial activity
aggregated over the matrix core.
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The impact of heterogeneity on microbial biomass distri-
bution has strong implications for evaluating sampling tech-
niques and data obtained from groundwater samples. Im-
mobile microbes account for more microbial activity com-
pared to mobile microbes. However, groundwater samples
represent mobile microbial biomass, termed as planktonic
biomass (Smith et al., 2018). Estimates of microbial respi-
ration are thereafter made based on the abundance of mobile
microbes in the obtained groundwater samples. The results
of this study suggest that the immobile microbes are, in fact,
the major contributors to microbial respiration in the sub-
surface, which was also experimentally established by Al-
freider et al. (1997), Griebler et al. (2002), and Grösbacher
et al. (2018) by providing the link between heterogeneous
structures in the domain, corresponding nutrient availability,
and microbial biomass growth. Our results suggest that the
relative composition of species in the mobile and immobile
subcommunities is however similar (in part due to the same
detachment and attachment properties assigned to the micro-
bial species in this study) such that the assessment of micro-
bial diversity based on the mobile fraction only would still
be representative. However, this is not necessarily the case
for nutrient cycling (see below).

Since spatial heterogeneity impacts microbial biomass dis-
tribution and microbial activity, it is not surprising that spa-
tial heterogeneity also impacts carbon and nitrogen removal.
Sanz-Prat et al. (2015, 2016) already established that travel
time models are valid for use as reactive transport models in
steady-state advective-transport conditions with other studies
already discussing the same in surface waters and hyporheic
zones (Liao and Cirpka, 2011; Painter, 2018). Painter (2018)
also considers the application of travel time distribution as a
representation of heterogeneity to be specific to the processes
or reactive species being considered. We further this under-
standing by exploring a wider range of flow regimes, from
locally mixed regimes to dominantly advective flow regimes
and a complex process network exploring a variety of reac-
tive species across both aerobic and anaerobic microbial pro-
cesses. The impact on the removal of carbon resulting from
heterogeneity is consistent for all flow regimes, with carbon
removal decreasing in heterogeneous domains. For nitrogen
removal the same trend is observed for the slow and medium
flow regimes. In contrast, nitrogen removal in the fast flow
regime increases with spatial heterogeneity as spatially het-
erogeneous domains provide the opportunity for anaerobic
activity sub-zones to be sustained in predominantly oxic sys-
tems with aerobic regimes. As for the fast flow regime oxic
conditions prevailed until the vicinity of the outlet of the sim-
ulated domain, nitrogen removal is mainly restricted to such
sub-oxic sub-zones, and heterogeneity leads to an increased
number of such sub-zones. It must be noted though that the
concentration of nitrate decreases when and where the con-
centration of DO is below 15 µM (Fig. S1) (De Brabandere et
al., 2014; Kalvelage et al., 2013; Seitzinger et al., 2006). The
reduced concentration of nitrate is attributable to the activity

of nitrate reducers. It is assumed that for sufficiently long do-
mains with sub-oxic conditions dominating the downstream
parts, nitrogen removal would also exhibit a decreasing trend
with heterogeneity, even for the fast flow regime. Therefore,
travel time information is useful for estimating both carbon
and nitrogen removal and identifying dominant microbial re-
dox processes despite sub-scale heterogeneities allowing for
the co-existence of several microbial species. Since immo-
bile active microbial biomass was the major contributor to
carbon and nitrogen removal, the reduction in the removal of
reactive species can be traced to the reduced presence of im-
mobile active microbial biomass in heterogeneous domains.
In contrast, the contribution of the mobile active biomass in
heterogeneous domains remains largely the same as that in
homogeneous domains. This indicates that the mobile mi-
crobial abundance detected in groundwater samples must be
used with care as a proxy for effective microbial activity and
nutrient cycling (also confirmed by Alfreider et al., 1997,
Murphy et al., 1997, Griebler et al., 2002, and Grösbacher
et al., 2018, as mentioned earlier).

4.2 Indicators to evaluate impact of spatial
heterogeneity on biomass and redox regimes

In this study, we explored three different flow regimes, rep-
resenting Péclet (Pe) numbers varying over an order of mag-
nitude. The Damköhler number of the varying components
of the system (derived from the observed mass removals
and breakthrough times) varies over 4 orders of magnitude
(Fig. S6a) in the considered scenarios.

There is substantial overlap in Da across all the flow
regimes; a given reactive species has different Da in the
different heterogeneous domains in each flow regime. How-
ever, spatial heterogeneity impacts the removal of each re-
active species in the flow regimes differently. This is further
evidenced in the significant improvement of the model AIC
(Table S1) when the reactive species is included as a fixed ef-
fect in conjunction with the flow regime. While this approach
helps us to generate a predictive understanding of system be-
haviour, it is specific to the reactive species and flow regimes
concerned. For a scalable approach to modelling and predict-
ing nutrient cycles at larger scales, it is therefore useful to
consider proxy indicators that may assist in generalizing this
expression.

Noting that the impact of spatial heterogeneity on removal
of nitrogen in the medium flow regime and of DO and TOC
in the fast flow regime is the same given the same reduction
in breakthrough time (Fig. S7), we consider the impact of
spatial heterogeneity in the context of Da or log10Da, thus
providing an opportunity to disentangle reactive species and
flow regimes in terms of non-dimensional numbers (Fig. 5).
The impact of spatial heterogeneity on nutrient cycling varies
with the value of log10Da (Fig. 5). For values higher than
0.5, the impact is negligible. For log10Da <−1, spatial het-
erogeneity results in an increased removal of nutrients from
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the domain. This is in part due to the negligible removal of
the corresponding nutrients in the base case (specifically, ni-
trogen in the fast flow regime, refer to Sects. 3.3 and 4.1).
Even a marginal increase in the relevant microbial activity
results in a remarkably high impact on the removal of the
corresponding nutrient when compared to the base case. As
discussed above, for the fast flow regime oxic conditions with
aerobic activity are found along the entire homogeneous do-
main. Since most nitrogen removal processes are suppressed
by elevated DO concentrations, the formation of a sub-oxic
zone exhibiting anaerobic activity in low flow regions of the
heterogeneous domains is the only chance for these nitrogen
removal processes to take place in the fast flow scenario. The
observed increase in mass removal with heterogeneity is thus
to some extent an artefact that may not represent a general
trend. While heterogeneity does have an impact on nitrogen
removal in the fast flow regime, even after increased removal,
the log10Da value remains below −1, indicating low abso-
lute activity and removal.

For regimes where log10Da > 0.5, spatial heterogeneity
has a limited impact on the ability of the system to remove re-
active species. But the removal of reactive species decreases
with the reduction in breakthrough time for−1< log10Da <

0.5. To explore the cause of this, we compared the trend of
removal of reactive species in first-order rates (Fig. S8) and
zero-order rates with reduced residence times with the sim-
ulation results for varying values of log10Da. The mean of
log10Da in this regime was −0.3 with a standard deviation
of 0.3. So, we approximated the analytical solution for vary-
ing values of log10Da (Fig. S8). With increasing log10Da

(between 0 and 0.5), the root mean squared error (RMSE)
between the analytical solution for a first-order reaction and
the simulation results decreases. Additionally, the data points
lie in between the solutions for first-order and zero-order ki-
netics, as would be the case for Monod kinetics in the case
of reduced residence times. Consequently, the impact of spa-
tial heterogeneity on regimes with 0< log10Da < 0.5 may
be described on the bases of reducing residence time alone,
and the results do not allow us to determine if additional het-
erogeneity effects on removal take place. For regimes where
−1< log10Da < 0, first-order kinetics may be substituted
with zero-order kinetics. Additionally, the impact on mass
removal of reactive species in this domain is lower than es-
timated from the analytical solution. Therefore, while mass
removal of reactive species reduces with reducing break-
through times, it does not follow Monod kinetics, which im-
plies that heterogeneity has a different impact on removal
than changing only the residence time. In fact, the impact
of spatial heterogeneity on mass removal is lower than that
predicted by reducing residence time alone. For a quantita-
tive assessment we proposed linear regression metrics to esti-
mate mass removal resulting from reducing residence times.
At the same time, we observed that the dramatic increase in
mass removal for regimes log10Da <−1 is not attributable
to a shorter residence time but is due to heterogeneous con-

ditions providing niches to the relevant microbial species to
become active. Therefore, we conclude that spatial hetero-
geneity may result in changed nutrient dynamics. The re-
gression model links the impact of heterogeneity to variables
which can be estimated in field studies. Furthermore, this
helps to categorize reaction regimes to consider if spatial het-
erogeneity is of significance. For high log10Da values, spa-
tial heterogeneity is not of significance. For extremely low
log10Da values, spatial heterogeneity resulted for the used
model domains in a high impact on removal rates with re-
spect to the homogeneous base cases. However, this might
be an artefact of the used domain size, and the absolute re-
moval values are still low. Thus, heterogeneity effects may
be neglected for these low log10Da values. In turn, spa-
tial heterogeneity is significant for medium range log10Da

values (−1< log10Da < 0.5). For these values, the highest
heterogeneity-induced reductions in mass removal were ob-
served and can be well described by the linear regression
model.

We expect advection-dominated systems to be impacted
by spatial heterogeneity because spatial heterogeneity had
a higher impact on the transport profiles in these systems.
These are typically systems that are shallow, less compacted
(in the case of alluvial sediments), or fractured rock systems.
Furthermore, the shallow subsurface also receives bioavail-
able and reactive organic matter with the incoming water
which enables a relatively high microbial activity. In contrast,
in the deep subsurface microbial activity is lower and rather
relies more often on inputs from the matrix material, which
is ubiquitous and does not rely on transport for access to nu-
trients or energy gradients. It must be noted that this generic
description of dominant processes serves to give examples
for reactive systems for the purpose of our discussion and
may vary from site to site depending on specific site charac-
teristics. We expect additional studies exploring the impact
of varying concentrations of chemical species and parame-
ters relevant to these ecosystems or subject sites to add to the
evidence generated by our study that the impact of spatial
heterogeneity on sub-surficial reactive systems may be pre-
dicted using field-estimated indicators such as breakthrough
time, Pe, and Da.

5 Summary and conclusions

In this study, we investigated the impact of spatial hetero-
geneity on biomass persistence, distribution, and nutrient cy-
cling at the sub-metre scale in the subsurface. When con-
sidering spatial heterogeneity, a combination of variance
and anisotropy of the hydraulic conductivity was considered
when evaluating the transport regime, which may be further
interpreted as a reduction of solute residence time in the do-
main. The flow regime was found to play an influential role
in the average behaviour of the domain. Not only does the
total microbial biomass vary with the flow regime, but the
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contribution of different fractions of microbial biomass (be-
tween active or inactive, mobile or immobile) is also differ-
ent based on the flow regime. Spatial heterogeneity also im-
pacts the different fractions of microbial biomass differently.
This has a cumulative impact on nutrient cycling in the sub-
surface. The activity of the microbial species in the domain
is governed by the spatial heterogeneity as it influences the
distribution of nutrients and energy sources. We found that
several microbial species that are conventionally accepted to
occupy mutually exclusive niches may co-exist in the sub-
surface in close vicinity. This further demonstrates that the
occurrence of oxic systems does not preclude the existence
of anaerobic species in the same zone as heterogeneity leads
to the formation of sub-oxic regions with anaerobic activity
within an oxic zone exhibiting predominantly aerobic activ-
ity. Since modellers and experimentalists do not convention-
ally resolve these small-scale heterogeneities, the accuracy
of the prediction of biogeochemical cycles at the larger scale
suffers.

Depending on the reaction and flow regime of the domain,
the impact of spatial heterogeneity on mass removal of re-
active species can be quantified as a linear function of the
breakthrough time. We propose the use of the Damköhler
number to identify the appropriate parameters of this func-
tion. Simulations that neglect or aggregate microbially medi-
ated dynamics in spatially heterogeneous media may overes-
timate reactive species removal by as much as 2 times. This
factor can be predicted using readily observable data that in-
form Damköhler numbers and residence times using a lin-
ear function of residence time. We propose using this scaling
factor to account for heterogeneity in regional-scale simula-
tions for the accurate prediction of microbial-mediated reac-
tive species dynamics in groundwater.

Appendix A: Biochemical reaction network

A1 Reactive species

1. Chemical compounds:

– dissolved organic carbon (DOC)

– particulate organic carbon (POC)

– oxygen (O2)

– nitrate (NO3)

– sulfate (SO4)

– ammonium (NH4)

2. Microbial species:

– aerobic DOC degraders (BO2)

– nitrate reducers (BNO3)

– sulfate reducers (BSO4)

– ammonia oxidizers (BNH4)

For each microbial species, we considered different sub-
populations: active bacteria able to grow and to perform bio-
geochemical reactions, inactive bacteria, immobile bacteria
attached to the solid matrix, and mobile bacteria moving with
the flowing water. In combination this leads to four subpopu-
lations for each microbial species X: active immobile (Xa,s),
active mobile (Xa,w), inactive immobile (Xi,s), and inactive
mobile (Xi,w).

A2 Biogeochemical reactions

1. Aerobic respiration:

CH2O+O2→ HCO−3 +H+ (A1)

2. Nitrate reduction:

CH2O+0.8NO−3 + 0.8H+→ HCO−3
+0.4N2+ 0.4H2O+H+ (A2)

3. Sulfate reduction:

CH2O+0.5SO2−
4 + H+→ HCO−3

+0.5HS−+ 1.5H+ (A3)

4. Ammonia oxidation:

0.5NH+4 +O2→ 0.5NO−3 + 0.5H2O+H+ (A4)

5. Hydrolysis of POC:

C10H7O2N+ 8H2O+H+→ 10CH2O+NH+4 (A5)

A3 Rate expressions

A3.1 Microbial respiration

We used modified Monod-type expressions for microbially
driven reactions. The term Kxx depends on the specific group
of microorganisms performing the degradation process (Ta-
ble A1):

1. Aerobic respiration:

r =

(
O2min (1−Kxx)

e
Kxx

st + 1

)
×
(
BO2a,s+BO2a,w

)
, (A6)

2. Nitrate reduction:

r =

(
NO3min (1−Kxx)

e
Kxx

st +1

)
×
(
BNO3a,s+BNO3a,w

)
(A7)

3. Sulfate reduction:

r =

(
SO4min (1−Kxx)

e
Kxx

st + 1

)
×
(
BSO4a,s+BSO4a,w

)
(A8)

4. Ammonia oxidation:

r =

(
NH4min (1−Kxx)

e
Kxx

st + 1

)
×
(
BNH4a,s+BNH4a,w

)
(A9)
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A3.2 Microbial growth

Growth processes (i.e. formation of biomass carbon) are
linked to rates of microbially driven reactions using a con-
stant yield factor with an additional dependency on the con-
centration of ammonium and its availability for uptake. For
the latter, we considered a fixed ratio between carbon (DOC)
and nitrogen (NH4) uptake. As mentioned above, the term
Kxx depends on the specific group of microorganisms per-
forming the degradation process (Table A1).

1. Dependency on ammonium:

NH4 limit=
1

e
amming−NH4

st×amming + 1
(A10)

2. Active aerobic DOC degraders:

r = NH4 limit×

(
O2min (1−Kxx)

e
Kxx

st + 1

)
×Yo×BO2a,x (A11)

with a indicating active biomass, and x indicating the
location of the bacteria; either x = s for attached bacte-
ria or x = w for mobile bacteria.

3. Active nitrate reducers:

r = NH4 limit×

(
NO3min (1−Kxx)

e
Kxx

st + 1

)
×Yn×BNO3a,x (A12)

4. Active sulfate reducers:

r = NH4 limit×

(
SO4min (1−Kxx)

e
Kxx

st + 1

)
×Ys×BSO4a,x (A13)

5. Active ammonia oxidizers:

r = NH4 limit×

(
NH4min (1−Kxx)

e
Kxx

st + 1

)
×Ya×BNH4a,x (A14)

A3.3 Processes governing the location of the microbes

1. The mobilization of immobilized bacteria (Bxx) into
the fluid medium (i.e. the transfer of attached bacte-
ria into mobile bacteria) is adapted from Rittman and
McCarty (2001) assuming additionally that high to-
tal attached biomasses lead to higher detachment rates
(adapted from Clément et al., 1997):

r = kl × (vq0× vpor0)0.58
×Bxx

+
kdet

e
Bfmax−Bo2a,s−BO2i,s−BNO3a,s−BNO3i,s−BSO4a,s−BSO4i,s−BNH4a,s−BNH4i,s

st×Bfmax + 1
×Bxx

(A15)

2. Immobilization or reattachment: attachment rates of
mobile bacteria Byy also depend on the total concen-
tration of attached biomass:

r = katt

×

(
1−

1

e
Bfmax−Bo2a,s−BO2i,s−BNO3a,s−BNO3i,s−BSO4a,s−BSO4i,s−BNH4a,s−BNH4i,s

st×Bfmax + 1

)
×Byy

(A16)

A3.4 Processes governing the activity states of
microbes

1. Deactivation or dormancy: deactivation rates of active
bacteria (i.e. conversion of active (mobile or attached)
into inactive or inactive (mobile or attached) bacteria)
in unfavourable substrate conditions are expressed fol-
lowing Stolpovsky et al. (2011).

r = kdeac ×Bxx ×

(
1−

1

e
Kxx

st + 1

)
, (A17)

with the term Kxx depending on the bacterial species
Byy and its substrate source (see Table A1).

2. Reactivation: in analogy to the deactivation rates, reac-
tivation rates are expressed as follows:

r = kreac ×Byy×
1

e
Kxx

st + 1
, (A18)

with the term Kxx depending on the bacterial species as
described in Table A1.

3. Mortality: mortality rates follow a first-order depen-
dency on biomass concentration.

r = km × fdorm × Bxx (A19)

For active bacteria fdorm= 1, and for inactive bacteria
fdorm= 0.1. Dead bacterial biomass is added to the par-
ticulate organic matter (POM) pool.
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Table A1. Expressions controlling respiration, growth, dormancy, and reactivation of microbial species.

Notation Descriptors

Aerobic degraders Nitrate reducers Sulfate reducers Ammonia oxidizers

Bxx BO2a,s and BO2a,w BNO3a,s and BNO3a,w BSO4a,s and BSO4a,w BNH4a,s and BNH4a,w

Byy BO2i,s and BO2i,w BNO3i,s and BNO3i,w BSO4a,s and BSO4i,w BNH4a,s and BNH4i,w

Kxx 1− kmax1
×

(
DOC

ksodoc1+DOC

)
×

(
O2

ksox1+O2

)
/O2min

1− kmax2
×

(
DOC

ksndoc+DOC

)
×

(
kindox

kindox+O2

)
×

(
NO3

ksno3+NO3

)
/NO3min

1− kmax3
×

(
DOC

kssdoc+DOC

)
×

(
SO4

ksso4+SO4

)
×

(
kindox

kindox+O2

)
×

(
kinno3

kinno3+NO3

)
/SO4min

1− kmax4
×

(
NH4

ksamm+NH4

)
×

(
O2

ksox+O2

)
/NH4min

A3.5 Miscellaneous processes

1. Hydrolysis of POC is described by first-order rate kinet-
ics:

r = kpd ×POC (A20)

2. Background autotrophic microbial growth is dependent
on the presence of ammonium:

r = NH4 limit × kmax5 ×
(

NH4

ksamm+NH4

)
(A21)

A4 Parameters

A4.1 Biogeochemical reaction network parameters
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A4.2 Transport boundary conditions

Table A3. Flow and transport parameterization and boundary conditions for all domains in all three flow regimes. The boundary condition
for the reactive species was a Dirichlet boundary condition (fixed concentration) at the inlet of the domain.

Property (units) Value

Porosity (–) 0.2
Density (matrix, kg m−3) 1500
Density (groundwater, kg m−3) 1000

Boundary conditions for chemical and microbial species at the inlet of the domain

POM (µM C) 5
DOC (µM C) 800
DO (µM) 250
Nitrate (µM) 250
Ammonium (µM) 60
Sulfate (µM) 1500
Bx,w (µM C) 2

Code availability. OGS5 is available in an online repository
(https://doi.org/10.5281/zenodo.4617988, Khurana et al., 2021).
The input files for all simulated scenarios are available in the same
repository. In addition, we also provide the Maple worksheet and re-
sulting BRNS dynamically linked library that is required to run the
simulations in OGS-BRNS at this link. We also provide the Python
scripts used for processing the raw simulation results and for gener-
ating graphics in this publication at this link. The processed datasets
are also available in this repository.

Data availability. We provide the raw simulation results in this
repository on Zenodo (https://doi.org/10.5281/zenodo.4288721,
Khurana et al., 2020) along with processed data files.
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