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Abstract. Various machine learning methods were attempted
in the global mapping of surface ocean partial pressure of
CO2 (pCO2) to reduce the uncertainty of the global ocean
CO2 sink estimate due to undersampling of pCO2. In pre-
vious research, the predictors of pCO2 were usually se-
lected empirically based on theoretic drivers of surface ocean
pCO2, and the same combination of predictors was ap-
plied in all areas except where there was a lack of cover-
age. However, the differences between the drivers of sur-
face ocean pCO2 in different regions were not considered.
In this work, we combined the stepwise regression algo-
rithm and a feed-forward neural network (FFNN) to se-
lect predictors of pCO2 based on the mean absolute er-
ror in each of the 11 biogeochemical provinces defined by
the self-organizing map (SOM) method. Based on the pre-
dictors selected, a monthly global 1◦× 1◦ surface ocean
pCO2 product from January 1992 to August 2019 was con-
structed. Validation of different combinations of predictors
based on the Surface Ocean CO2 Atlas (SOCAT) dataset
version 2020 and independent observations from time series
stations was carried out. The prediction of pCO2 based on
region-specific predictors selected by the stepwise FFNN al-
gorithm was more precise than that based on predictors from
previous research. Applying the FFNN size-improving al-
gorithm in each province decreased the mean absolute er-
ror (MAE) of the global estimate to 11.32 µatm and the root

mean square error (RMSE) to 17.99 µatm. The script file of
the stepwise FFNN algorithm and pCO2 product are dis-
tributed through the Institute of Oceanology of the Chinese
Academy of Sciences Marine Science Data Center (IOCAS,
https://doi.org/10.12157/iocas.2021.0022, Zhong, 2021.

1 Introduction

As a net sink for atmospheric CO2, global oceans have re-
moved about one-third of anthropogenic CO2 since the be-
ginning of the industrial revolution (Sabine et al., 2004;
Friedlingstein et al., 2019). However, the global ocean sea–
air CO2 flux averaged between 2001–2015 varies from
−1.55 to −1.74 PgCyr−1 with a maximum difference in
individual years of nearly 0.6 PgCyr−1, depending on the
surface ocean partial pressure of the CO2 (pCO2) product.
These differences largely stem from differences in pCO2
estimates across the products (Rödenbeck et al., 2014; Iida
et al., 2015; Landschützer et al., 2014; Denvil-Sommer et al.,
2019). The magnitude and direction of the flux are primar-
ily set by the air–sea pCO2 difference. Surface water pCO2
greater than the overlying air indicates CO2 is released from
the ocean to the air. Conversely, absorption of CO2 by oceans
happens when the pCO2 of the surface water is lower than
the overlying air. The ocean in these two scenarios is known
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as the oceanic carbon source and oceanic carbon sink, re-
spectively.

Sparse and uneven observations of surface ocean pCO2
in time and space have severely limited the understanding
of interannual variability of oceanic carbon sink, and re-
search based on different methods were carried out to break
this barrier. In earlier studies, traditional unitary and mul-
tiple regression methods between surface ocean pCO2 and
its drivers were attempted in the mapping of surface ocean
pCO2, which were limited in specific regions and some-
times even in particular seasons with a relatively high root
mean square error (RMSE; Sarma et al., 2006; Takahashi
et al., 2006; Shadwick et al., 2010; Chen et al., 2011; Mar-
rec et al., 2015). Advances in artificial neural networks and
other machine learning algorithms, such as the feed-forward
neural network (FFNN) method (Zeng et al., 2014, 2015;
Moussa et al., 2016; Denvil-Sommer et al., 2019) and self-
organization mapping (SOM) method (Friedrich and Os-
chlies, 2009; Telszewski et al., 2009; Hales et al., 2012;
Nakaoka et al., 2013), significantly reduced the bias in inter-
polation based on relationships between surface ocean pCO2
and its drivers. In addition, finding better predictors or com-
bining SOM with other neural networks was also attempted
to decrease the pCO2 predicting error further (Hales et al.,
2012; Nakaoka et al., 2013; Landschützer et al., 2014; Chen
et al., 2019; Denvil-Sommer et al., 2019; Zhong et al., 2020;
Wang et al., 2021). However, the selection of predictors in the
surface ocean pCO2 mapping was more empirical, focusing
on the theoretical drivers of the pCO2 and its variation. Sea
surface temperature and salinity, related to the solubility of
CO2 in seawater, are considered as the most important and
used in almost all related studies (Landschützer et al., 2013;
Nakaoka et al., 2013; Moussa et al., 2016; Laruelle et al.,
2017; Zeng et al., 2017; Denvil-Sommer et al., 2019). Simi-
larly, the chlorophyll a concentration, which is related to the
phytoplankton uptake of CO2, is also widely used (Nakaoka
et al., 2013; Landschützer et al., 2014; Laruelle et al., 2017;
Zeng et al., 2017; Denvil-Sommer et al., 2019). One more
predictor, mixed layer depth, frequently appears in associ-
ated studies as a proxy related to the vertical transport of dis-
solved carbon (Telszewski et al., 2009; Nakaoka et al., 2013;
Landschützer et al., 2014; Zeng et al., 2017; Denvil-Sommer
et al., 2019). In addition, sampling information, such as lat-
itude and longitude (Friedrich and Oschlies, 2009; Jo et al.,
2012; Zeng et al., 2015, 2017; Denvil-Sommer et al., 2019;
Gregor et al., 2019) and sampling time (Friedrich and Os-
chlies, 2009; Zeng et al., 2015), has been used as a predictor.
In recent research, the dry air mixing ratio of atmospheric
CO2 (xCO2), related to the CO2 level in the air, was also
used to predict surface ocean pCO2 (Landschützer et al.,
2014; Denvil-Sommer et al., 2019). The sea surface height,
which was considered effective in improving the spatial pat-
tern and the accuracy of surface ocean pCO2 mapping at the
basin and regional scales, and the monthly anomalies of the
most widely used predictors mentioned above, were used by

Denvil-Sommer et al. (2019). In research focusing on the sur-
face ocean pCO2 mapping of coastal areas, bathymetry, sea
ice, and wind speed were also used as predictors (Laruelle
et al., 2017). In each of these research studies, the same com-
bination of predictors was applied in all global ocean areas,
although the global ocean was divided into several biogeo-
chemical provinces in some of the research. However, the
predictor that plays a vital role in the surface ocean pCO2
reconstruction at one region may not be a good predictor of
surface ocean pCO2 in the other regions due to complex and
variable drivers. Nevertheless, no widely recognized meth-
ods for judging the importance of each predictor in the sur-
face ocean pCO2 mapping are available yet. Thus, we at-
tempted to construct a stepwise FFNN algorithm to rank the
importance of predictors and figure out the optimal combi-
nation in each biogeochemical province defined by SOM for
decreasing the prediction errors in the surface ocean pCO2
mapping.

2 Methodology

2.1 Data

The surface ocean fugacity of CO2 (fCO2) observation
data from the Surface Ocean CO2 Atlas fCO2 dataset ver-
sion 2020 (SOCATv2020; Bakker et al., 2016) was used to
construct the non-linear relationship between surface ocean
pCO2 and predictors. The conversion between fCO2 and
pCO2 followed the formula (Körtzinger, 1999)

fCO2 = pCO2 · exp
(
P ·

B + 2δ
RT

)
, (1)

where fCO2 and pCO2 are in micro-atmospheres (µatm),
P is the total atmospheric surface pressure (Pa) using
the National Centers for Environmental Prediction (NCEP)
monthly mean sea level pressure product (Dee et al., 2011),
and T is the absolute temperature (K). R is the gas con-
stant (8.314 JK−1 mol−1). Parameters B (m3 mol−1) and
δ (m3 mol−1) are both viral coefficients (Weiss, 1974).

In this work, 33 predictors were used (Table 1), where
21 were chosen from previous research of surface ocean
pCO2 reconstruction based on machine learning methods. In
addition, 12 predictors that were only used in similar previ-
ous research focused on the mapping of total alkalinity or
dissolved inorganic carbon (Broullón et al., 2019; Broullón
et al., 2020), or were possibly related to the driver of sur-
face ocean pCO2 and its variability, were selected for testing
(predictors labeled with * in Table 1). Most of these products
were retrieved at 1◦× 1◦ resolution. Some products retrieved
at higher resolution were downscaled to 1◦× 1◦ resolution
by taking the average of all values in each 1◦× 1◦ grid.
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Table 1. Predictors and corresponding data products.

Predictor Abbreviation Data product Resolution

Sine of latitude sLat – –

Sine of longitude sLon – –

Cosine of longitude cLon – –

Number of months since January 1992 Nmon – –

Year Year – –

Month Month – –

Sea surface temperature SST Cheng and Zhu (2016), Cheng et al. (2017) 1◦× 1◦, monthly, 1940–2021

Monthly anomaly of SST SSTanom Cheng and Zhu (2016), Cheng et al. (2017) 1◦× 1◦, monthly, 1940–2021

Sea surface salinity SSS Cheng et al. (2020) 1◦× 1◦, monthly, 1940–2021

Monthly anomaly of SSS SSSanom Cheng et al. (2020) 1◦× 1◦, monthly, 1940–2021

Mixed layer depth MLD Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Monthly anomaly of MLD MLDanom Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Sea surface height SSH Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Monthly anomaly of SSH SSHanom Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Sea ice fraction fice Dee et al. (2011) 1◦× 1◦, monthly, 1979–2019

10 m wind speed Wind Dee et al. (2011) 1◦× 1◦, monthly, 1979–2019

Dry air mixing ratio of atmospheric CO2 xCO2 GLOBALVIEW-CO2 (2011) 0.25◦ latitude, monthly, 1979–2019

Monthly anomaly of xCO2 xCO2 anom GLOBALVIEW-CO2 (2011) 0.25◦ latitude, monthly, 1979–2019

Bathymetry Bathymetry NOAA National Geophysical Data Center
(2006)

2′× 2′

Chlorophyll concentration Chl a NASA Goddard Space Flight Center, Ocean
Ecology Laboratory, Ocean Biology Processing
Group (2018)

9 km× 9 km, monthly, 2002–2021

Monthly anomaly of Chl Chl aanom NASA Goddard Space Flight Center, Ocean
Ecology Laboratory, Ocean Biology Processing
Group (2018)

9 km× 9 km, monthly, 2002–2021

W velocity of ocean currents at 5 m depth∗ Wvel(5 m) Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Wvel at 65 m depth∗ Wvel(65 m) Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Wvel at 105 m depth∗ Wvel(105 m) Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Wvel at 195 m depth∗ Wvel(195 m) Menemenlis et al. (2008) 0.25◦× 0.25◦, monthly, 1992–2019

Sea level pressure∗ SLP Dee et al. (2011) 1◦× 1◦, monthly, 1979–2019

Surface pressure∗ Surface pressure Dee et al. (2011) 1◦× 1◦, monthly, 1979–2019

Climatology of dissolved oxygen∗ DO Boyer et al. (2018) 1◦× 1◦ in the horizontal, 102 depth
levels (0–5500 m) in the vertical, and
monthly

Climatology of nitrate∗ Nitrate Boyer et al. (2018) 1◦× 1◦ in the horizontal, 102 depth
levels (0–5500 m) in the vertical, and
monthly

Climatology of phosphate∗ Phosphate Boyer et al. (2018) 1◦× 1◦ in the horizontal, 102 depth
levels (0–5500 m) in the vertical, and
monthly

Climatology of silicate∗ Silicate Boyer et al. (2018) 1◦× 1◦ in the horizontal, 102 depth
levels (0–5500 m) in the vertical, and
monthly

Oceanic Niño Index∗ ONI Huang et al. (2017) Monthly, 1950–2021

Southern Hemisphere Annular Mode Index∗ SAM Marshall, G. J. (2003) Monthly, 1957–2021

Predictors with the ∗ label were here for the first time included in the pCO2 mapping. All data products retrieved at resolutions higher than 1◦ × 1◦ were downscaled to 1◦ × 1◦ resolution.
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2.2 Biogeochemical provinces defined by the
self-organizing map

For applying a different combination of predictors in regions
based on the differences in the dominated drivers of pCO2
and its variability, the global ocean was divided into a set
of biogeochemical provinces using a self-organizing map
(SOM) method. The monthly climatology of temperature,
salinity, mixed layer depth, sea surface height, nitrate, phos-
phate, silicate, and dissolved oxygen and pCO2 climatology
from Landschützer et al. (2020) were put into a 3-by-4 SOM
network to generate 12 biogeochemical provinces, where the
monthly climatology data in all 12 months were put into one
SOM network to generate one discrete set of biogeochemical
provinces. Provinces with less than 10 pixels and less than
1000 SOCAT observations were defined as discrete small
“island” provinces and then merged with nearest provinces.
The provinces covering areas separated by land were further
divided artificially. For example, the province covering the
northern subtropical Pacific and the province covering the
northern subtropical Atlantic was set as one province in the
original output of SOM, but it was mainly separated by the
North American continent. So, we divided the province into
two new provinces. The final version includes 11 biogeo-
chemical provinces. In this study, the coastal area was not in-
volved, and the boundary was defined as 200 m depth. In ad-
dition, the pCO2 mapping based on SOM-defined provinces
tends to be less smooth near the border of different biogeo-
chemical provinces, with an obvious borderline appearing.
However, applying different predictors may make this prob-
lem worse. To obtain a smoother distribution, we defined
the area within five 1× 1 grids of province boundaries as a
“boundary area”. Samples in the boundary area will be used
as training samples in all adjacent provinces (Fig. S1 in the
Supplement). However, this definition does not change the
actual spatial coverage of each province, only bringing more
training samples near the province boundary.

2.3 Stepwise FFNN algorithm

For finding a better combination of pCO2 predictors, a step-
wise FFNN algorithm was constructed. The FFNN com-
prises four parts: input, hidden, summation, and output layers
(Fig. 1). The input layer is designed to pass the inputs to the
hidden layer, and the number of neurons is equal to the di-
mensions of the input matrix p. The hidden layer includes
25 neurons in the FFNN model, with a tan-sigmoid function
as the transfer function. The input p is multiplied by a ma-
trix of weights (w1 in Fig. 1), and the inner product between
the result and a bias matrix (b1 in Fig. 1) is calculated as the
input of the transfer function in the first hidden layer. In the
summation layer, the transfer function f2 is a linear function.
The output of the hidden layer is multiplied by another ma-
trix of weights and summed. All bias and weights matrixes
were randomly assigned at the beginning of FFNN training.

Figure 1. Structure of the feed-forward neural network.
w: weighted matrix; b: bias matrix;

∑
: sum; f1: tan-sigmoid

transfer function; f2: linear function; a: output matrix.

The randomly assigned bias and weights matrixes, the num-
ber of training samples, and the sort order of training samples
in the input matrix p define where the FFNN starts training
in errors space. The practice of FFNN changes when these
conditions change. Here we fixed the training samples and
set one constant random number stream in MATLAB to en-
sure that the difference between the MAE based on different
predictors entirely stems from the predictor differences. The
random number was randomly chosen. When using different
random number streams, several predictors at the end of the
output list of the stepwise FFNN algorithm differed. How-
ever, the leading predictors were consistent, and the differ-
ent predictors were also related. The fixed random number
makes all networks using different predictors start training
from the same point in the error space when comparing the
performance of each predictor.

In the stepwise part, predictors of pCO2 are going to be
added and removed one by one, and which predictors will
be finally used in pCO2 predicting is determined according
to the real-time change of predicting error. The mean abso-
lute error (MAE), calculated using a K-fold cross valida-
tion method, was used to estimate the performance of each
predictor in the FFNN predicting. Although the RMSE was
widely used for the validation of machine learning methods,
compared to the MAE, the RMSE was more sensitive to a
few extreme samples, which generally deviated far from the
FFNN predicting values, resulting in a considerable discrep-
ancy between the FFNN outputs and pCO2 observations by
sometimes up to hundreds of micro-atmospheres. A higher
weight might be put on these few extreme samples than other
samples in the predictor selection if the performance of each
predictor was estimated by RMSE in the stepwise FFNN al-
gorithm. To avoid the higher weight on these few extreme
samples, the MAE was used instead for the internal perfor-
mance loss function in the stepwise FFNN algorithm. The
basic principle of the stepwise FFNN algorithm was adding
each predictor from a set of predictors into the inputs of
FFNN and removing each redundant predictor from the in-
puts successively to reduce the MAE in the fastest way, until
no decrease in the MAE appeared (Fig. 2), and where the
predictor having no contribution to the reducing of predic-
tion error was considered as redundant.

At the beginning of the stepwise FFNN algorithm, all
available predictors were put into a matrix, referred to as the
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Figure 2. The procedure of the stepwise FFNN algorithm. The flowchart follows an order of top left–bottom left–bottom right–top right. The
meaning of Predictors pool: store all predictors waiting to be tested; Inputs pool: store predictors that were temporally considered as good
predictors; Loop 1 and Loop 2: calculate the MAE when each predictor was added or removed; Selection step: add good predictors to the
Inputs pool; Removal step: remove predictors from the Inputs pool if removing leads to MAE decrease; Determine step: check if the process
reaches end condition. N1 and N2: number of predictors in the Predictors pool and Inputs pool, respectively; E0: lowest MAE in the last
iteration of Loop 1 or Loop 2; Endcheck: the number of iterations that E0 continuously increased.

Predictors pool (Start in Fig. 2). Each row represents one
predictor, and each column represents one SOCAT sample.
In this work, we collected 33 predictors for the test, that is,
the Predictors pool matrix has 33 rows. Meanwhile, a matrix
referred to as Inputs pool (Start in Fig. 2) was set up to store
predictors with good performance, where good performance
means that adding these predictors can significantly decrease
the MAE between SOCAT pCO2 measurements and FFNN
pCO2 predictions. Then a loop of K-fold validation test ran
out to calculate the MAE when predicting pCO2 by each
predictor in the Predictors pool in the first step (Loop 1 in
Fig. 2). Thus 33 MAE values were obtained in total, and the
minimum was recorded as E0. The predictor corresponding
to the minimum MAE value was moved from the Predic-
tors pool to the Inputs pool (Selection step in Fig. 2). After
that, the Loop 1 restarted, i.e., the second step started with
one predictor removed to the inputs pool and the remaining
32 predictors waiting to be tested. Then, the pCO2 was pre-
dicted using each of the rest 32 predictors in the predictors
pool with the addition of all predictors in the inputs pool, and
32 MAE values were calculated out. If the MAE in the low-

est situation, represented by the MAEi , decreased compared
to the E0, the ith predictor was considered a good predic-
tor and moved from the predictors pool to the inputs pool.
Then the value of E0 was replaced by the MAEi (Selection
step in Fig. 2). Part 1, including Loop 1, Selection step, and
Determine step 1 in Fig. 2, was repeated until no predictor
was left in the Predictors pool or no decrease of E0 could
be found regardless of which two predictors were added in
the next two steps. At this time, part 1 of the stepwise FFNN
algorithm finished, and all predictors left in the Predictors
pool were considered redundant. The second part ran in the
opposite way in that the predictors were removed from the
Inputs pool one by one to decrease E0 the fastest (Loop 2
in Fig. 2). The second part was used to remove the predic-
tor that could be represented by other predictors in the inputs
pool (Removal step in Fig. 2) and finished in the similar con-
dition that no significant decrease could be found regardless
of which predictor was removed in the next two steps (De-
termine step 2 in Fig. 2).
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2.4 pCO2 product

The dataset of predictors, except for chl a, start in 1992 or
earlier, while the chl a data range from August 2002 to the
present. In each province, the stepwise FFNN algorithm was
run once, first based on all samples covered by the chl a data;
secondly, the algorithm was run based on samples and all
predictors except chl a and chl aanom in the year that chl a
gridded data were not available. The pCO2 mapping in the
year that chl a gridded data were not available was carried
out based on the predictors selected in the second run. Then
the final product was built based on two FFNNs: one trained
for the period from August 2002 to August 2019 using one
predictor set including chl a or chl aanom, and the second
one for the period from January 1992 to July 2002 using the
second predictor set without chl a and chl aanom. Although
the performance may improve with the number of neurons
increasing, the influence of the number of neurons on the
performance of FFNN pCO2 prediction remains unclear. To
further decrease the predicting error between FFNN outputs
and SOCAT measurements, the number of neurons was im-
proved by an error test in each province. The number of neu-
rons increased from 5 to 300 (the increment was five during
5–50 and ten during 50–100 and fifty during 100–300). Then
the corresponding MAE values of each size were recorded,
and the number of neurons with the lowest MAE was ap-
plied. This test avoided the appearance of insufficient learn-
ing capacity for complex nonlinear relationships due to too
few neurons and the overfitting problem due to too many neu-
rons. Finally, based on the predictors selected by the stepwise
FFNN algorithm and improved FFNN size, a monthly global
1◦× 1◦ surface ocean pCO2 product from January 1992 to
August 2019 was constructed.

2.5 Validation

To better estimate the predicting error of FFNN, the MAE
and the RMSE, which were widely used in previous research,
were calculated using a K-fold cross validation method. To
avoid overfitting caused by a lack of independence between
the training and testing samples, we put the SOCAT sam-
ples in chronological order and then divided them into the
group of years (Fig. 1; Gregor et al., 2019). In this paper, the
value of K was set as 4. Thus, among every four neighbor-
ing years, three group samples were used to train the FFNN
model, and the rest were used for testing. A total of four it-
erations were carried out, where the testing year changed in
each iteration. After the four iterations finished, all samples
were used for testing only once, and the MAE and RMSE
between FFNN output and the testing samples were calcu-
lated. The performance of the predictor selection algorithm
was estimated by comparing the MAE and RMSE results
of the FFNN based on predictors selected by the stepwise
FFNN algorithm with the result based on predictors used in
previous research in each biogeochemical province (Table 2).

All validation groups were applied with the same FFNN and
same samples from SOCAT, with the only differences being
in the predictors. The same K-fold validation procedure was
applied for three validation groups based on different pCO2
predictors. Thus, three results were generated to estimate
whether the stepwise FFNN algorithm can effectively find a
better combination of pCO2 predictors. Finally, the pCO2
data generated in all validation groups were further com-
pared with the completely independent observations from
the Hawaii Ocean Time-series (HOT, 22◦45′ N, 158◦00′W,
since October 1988; Dore et al., 2009), Bermuda Atlantic
Time-series Study (BATS, 31◦50′ N, 64◦10′W, since Oc-
tober 1988; Bates, 2007) and The European Station for
Time Series in the Ocean Canary Islands (ESTOC, 29◦10′ N,
15◦30′W, from 1995 to 2009; González-Dávila and Santana-
Casiano, 2012) stations. The pCO2 at HOT and BATS were
estimated from total alkalinity (TA) and dissolved inorganic
carbon (DIC), and pCO2 at ESTOC was directly measured.
These observations were not included in the SOCAT dataset.

3 Results and discussion

3.1 Biogeochemical provinces and corresponding
predictors of pCO2

11 biogeochemical provinces generated from the SOM
method after the separated small “island” was removed
and the province separated by lands was divided manually
(Fig. 4). The results of the stepwise FFNN algorithm in each
province are shown in Table 3. The predictors were listed
in the order that the stepwise FFNN algorithm printed rec-
ommended predictors out. The predictor printed earlier was
relatively more highly recommended and played an impor-
tant role in predicting pCO2 based on FFNN. Applying these
predictors effectively decreased the predicting error between
the FFNN outputs and pCO2 values from validation sam-
ples. Thus it is reasonable to consider that these predictors
were highly related to the drivers of pCO2 and its variability.
Predictors representing sampling positions were also listed
as recommended predictors in some provinces, including lat-
itude, longitude, and sampling time, suggesting that rela-
tively steady spatial or temporal variability patterns of sur-
face ocean pCO2 existed in these biogeochemical provinces.
For example, the predictor month was considered recom-
mended in most provinces, especially P4 subpolar Atlantic
and P5 north subtropical Atlantic, while pCO2 in these ar-
eas regularly peaked and bottomed out in summer and win-
ter (Takahashi et al., 2009; Landschützer et al., 2016, 2020).
Similarly, the sine of latitude and the sine and cosine of lon-
gitude were listed as recommended predictors of pCO2 in
most provinces, suggesting a meridional or zonal uniformly
varying spatial distribution pattern of pCO2, which was not
learned sufficiently by the FFNN model from existing mea-
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Table 2. Validation group using different predictors.

Validation group Predictor

FFNN1 Predictors selected by the stepwise FFNN algorithm

FFNN2 SST, SSS, log10(MLD), chl a, xCO2, SSTanom, SSSanom, xCO2 anom, chl aanom, log10(MLD)anom
(Landschützer et al., 2014)

FFNN3 SST, SSS, SSH, MLD, xCO2, chl a, SSSanom, SSTanom, SSHanom, chl aanom, MLDanom, xCO2 anom, sLat,
sLon, cLon (Denvil-Sommer et al., 2019)

The FFNN performance of three groups with different predictors of pCO2 were compared to test the result of stepwise FFNN algorithm. Predictors in group FFNN1 were
selected using the stepwise FFNN algorithm, and predictors in group FFNN2 were selected from Landschützer et al. (2014), and in group FFNN3 from Denvil-Sommer
et al. (2019).

Figure 3. TheK-fold validation procedure. (TheK value was set as 4, so iterations were repeated 4 times until all samples were set as having
tested samples once. In each iteration, samples in 7 years were set as testing samples (green cells) and in the rest 21 years were set as training
samples (white cells) to increase independence.)

sured predictors, and the predictors related to the spatial po-
sition were applied as supplementary.

As basic predictors highly related to the ocean environ-
ment, temperature and salinity were considered as parts of
the most important predictors of surface ocean pCO2 and
were applied in the pCO2 prediction in almost all previ-
ous related research based on various methods (Jo et al.,
2012; Signorini et al., 2013; Landschützer et al., 2014; Mar-
rec et al., 2015; Chen et al., 2016, 2017; S. Chen et al.,
2019; Moussa et al., 2016; Laruelle et al., 2017; Zeng et al.,
2017; Denvil-Sommer et al., 2019). The results of the step-
wise FFNN algorithm also supported this. The temperature
was listed as a recommended predictor in all biogeochemical
provinces, suggesting that temperature was one of the most
critical drivers of pCO2 and its variability in these provinces.
Similarly, results from the stepwise FFNN algorithm provide
evidence for the importance of salinity in predicting pCO2,
which was also listed as a predictor in most provinces. The
dry air mixing ratio of atmospheric CO2 (xCO2) and the
monthly anomaly of xCO2 were also recommended predic-
tors in most biogeochemical provinces, suggesting that the
exchange of CO2 across the sea–air interface was also an
important driver of surface ocean pCO2. As a widely used
predictor in pCO2 prediction, the chlorophyll a concentra-
tion (chl a) played an essential role in fitting the influence
of biological activities on pCO2 in previous research (Land-
schützer et al., 2014; Zeng et al., 2017; Laruelle et al., 2017;

Denvil-Sommer et al., 2019). Especially in the province P10
subpolar Southern Ocean and P11 Southern Ocean ice, chl a
was listed as the most recommended predictor in the result of
the stepwise FFNN algorithm, while in some other provinces
(P1 Arctic Ocean and P5 north subtropical Atlantic), chl a
was considered redundant in that no effective decrease of
MAE between FFNN outputs and pCO2 measurements ap-
peared when the chl a data were used. Similar to the pe-
riod where chl a was not available (represented by the sub-
script “b”), phosphate, nitrate, silicate, or dissolved oxygen
were recommended instead. In the province P1 Arctic Ocean,
silicate concentration and temperature were considered the
most crucial predictors of pCO2.

3.2 pCO2 product

Based on the predictors given by the stepwise FFNN algo-
rithm in each biogeochemical province, an FFNN size (rep-
resenting the number of neurons in the hidden layer) improv-
ing validation was applied to decrease the prediction error
further. The MAE values based on the same samples and
FFNN model with a different number of neurons were calcu-
lated, then the number of neurons corresponding to the low-
est MAE was applied (Fig. 5a). The MAE in most provinces
tends to decrease first and then increase when the number
of neurons in the hidden layer of the FFNN model increased
from 5 to 300. Based on the variation of MAE with the num-
ber of neurons in the FFNN hidden layer, the optimal FFNN
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Table 3. Predictors in each biogeochemical province.

Province Predictors in the order of the stepwise FFNN algorithm output

P1 Arctic Ocean Silicate, SST, Wind speed, SSS, log10(MLD), SSSanom, sLat, month, Wvel(65 m),
log10(MLD)anom, xCO2, cLon, Bathymetry, SSH

P2 subpolar Pacifica
∗ Nitrate, chl a, SSS, xCO2, cLon, SST, log10(MLD), sLon, sLat, month

P2 subpolar Pacificb
∗ Nitrate, xCO2 anom, sLon, SST, sLat, log10(MLD), cLon, SSS, SSHanom, DO, Wvel(195 m),

Bathymetry, Silicate

P3 north subtropical Pacifica log10(MLD), Nmon, SSH, SST, sLon, sLat, SSS, Bathymetry, month, log10(MLD)anom, cLon,
Surface pressure, Wvel(105 m), chl a, DO, SSHanom, xCO2 anom

P3 north subtropical Pacificb log10(MLD), xCO2, sLat, sLon, SST, Surface pressure, cLon, SSS, Wvel(5 m), Nmon,
log10(MLD)anom, month, Phosphate, xCO2 anom, Wvel(105 m)

P4 subpolar Atlantica month, sLat, cLon, SST, Year, chl a, DO, SSSanom, Wvel(195 m), SSH, log10(MLD),
Bathymetry, SSS

P4 subpolar Atlanticb month, xCO2, DO, Wind speed, log10(MLD),Wvel(195 m), sLon, Bathymetry,Wvel(5 m), SST,
Phosphate, Year, Nmon

P5 north subtropical Atlantic month, Year, SST, sLon, sLat, SSS, SSTanom, SSH, Bathymetry,Wvel(5 m), cLon,Wvel(65 m),
log10(MLD)anom

P6 south Pacifica SST, sLon, xCO2 anom, sLat, SSS, month, Phosphate, chl a, chl aanom, Wvel(65 m),
log10(MLD), log10(MLD)anom, Nitrate, Bathymetry

P6 south Pacificb xCO2, sLat, SSS, SST, Phosphate, SLP, xCO2 anom, sLon, cLon, Wvel(105 m), Wvel(65 m),
DO, Bathymetry, SSH, SAM

P7a equatorial Pacific Nitrate, xCO2, sLat, SSS, SST, cLon, xCO2 anom, log10(MLD), sLon, chl a, Phosphate,
Wvel(5 m), Wvel(105 m), Wvel(195 m)

P7b equatorial Pacific SST, SSS, Year, sLat, month, cLon, SSH, Bathymetry, Wvel(65 m), xCO2

P8 south Atlantica sLat, xCO2 anom, SSS, log10(MLD), chl a, SSHanom, Wvel(195 m), cLon, SST, Wvel(65 m),
Bathymetry, Nitrate

P8 south Atlanticb SST, xCO2, cLon, sLat, SSS, Silicate, SSH, log10(MLD), sLon

P9 Indian Oceana SST, cLon, sLat, Nitrate, Wvel(65 m), log10(MLD), SLP, chl a, Year, log10(MLD)anom,
SSHanom

P9 Indian Oceanb SLP, month, sLon, xCO2 anom, SST, Silicate, Wvel(65 m)

P10 subpolar Southern Oceana chl a, log10(MLD), Nmon, SSS, SST, Bathymetry, SSHanom, Wvel(5 m), chl aanom, xCO2

P10 subpolar Southern Oceanb Wind speed, xCO2 anom, SSS, Phosphate, log10(MLD), Wvel(65 m), Bathymetry, SST, month

P11 Southern Ocean icea chl a, sLon, Bathymetry, SSS, SSH, SST, Nitrate, cLon, sLat

P11 Southern Ocean iceb month, DO, SST, SSH, sLat, Nitrate, sLon, SSS, Wvel(195 m), Silicate, SSHanom

∗: Due to insufficient coverage of chl a data in the polar areas and during the period before 2002, in provinces that chl a or chl aanom were selected as predictors, the
pCO2 data were divided into two periods. The period with available chl a data was represented by the subscript ”a”, such as P2a, including global grids from 2002 to 2019
except polar grids in winter. The period with unavailable chl a data was represented by the subscript ”b”, such as P2b, including global grids from 1992 to 2001 and some
polar grids in winter from 1992 to 2019.

size in each province was considered as the number of neu-
rons when the MAE was lowest. The result and correspond-
ing MAE are shown in Fig. 5b. After applying optimal FFNN
size in each province, the MAE and RMSE of global esti-
mates between predicted pCO2 and measurements from SO-
CAT v2020 further decreased to 11.32 and 17.99 µatm, re-
spectively.

Then the RMSE and mean residuals in each grid were cal-
culated based on theK-fold cross validation method. In most
grids, the RMSE was lower than 10 µatm, and the mean resid-
uals were close to zero (Fig. 6). However, the prediction error
in the north subpolar Pacific, the eastern equatorial Pacific,
and the Southern Ocean near the Antarctic continent was sig-
nificantly higher than in other areas. Also, the distribution of
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Figure 4. Map of biogeochemical provinces based on SOM.

Figure 5. MAE of different FFNN size in each biogeochemical province. (a) MAE between predicted pCO2 and SOCAT observations was
calculated using the same samples and FFNN with a different number of neurons. (b) The optimal FFNN size refers to the number of neurons
when MAE is lowest.

mean residuals suggested that surface ocean pCO2 in the In-
dian Ocean tends to be overestimated by the FFNN models,
while in other regions, the distribution of mean residuals was
more discrete, and no obvious pattern was found.

3.3 Validation of the stepwise FFNN algorithm based
on SOCAT samples

Validation based on the K-fold cross validation method sug-
gested that most FFNN outputs were quite close to the pCO2
values from SOCAT v2020 samples (Fig. 7). Comparing the
results based on a different combination of predictors, the
results of FFNN1 (based on stepwise FFNN algorithm, this
paper) and FFNN3 (based on 15 predictors from Denvil-
Sommer et al. 2019) were more precise than those of FFNN2
(based on 10 predictors from Landschützer et al. 2014).
The plots in the result of FFNN1 were most concentrated
along the y = x line, suggesting extremely close FFNN out-
puts with the measured pCO2 values from SOCAT, with the
RMSE of 17.99 µatm in the global open oceans. The RMSE

of FFNN1 was lower than that of FFNN2 (22.95 µatm) and
FFNN3 (19.17 µatm).

For specific comparison of accuracy in each province, the
MAE of FFNN1 was lower in most provinces (Table 4), ex-
cept for the relatively close results between the FFNN1 and
FFNN3 in parts of the provinces. The MAE of FFNN1 in the
province P9 Indian Ocean was significantly lower than that of
the other validation groups, suggesting a better combination
of predictors highly related to the drivers of surface ocean
pCO2 and its variability in the Indian Ocean. Compared with
FFNN2 and FFNN3, the predictors of FFNN1 added surface
pressure and W velocity of ocean currents and abandoned the
monthly anomalies of other predictors in the province P9 In-
dian Ocean. The low relevance between pCO2 and part of
the monthly anomalies, such as SSSanom and SSTanom, may
be responsible for the significantly lower MAE of FFNN1.
Adding redundant predictors may cause misleading informa-
tion in the learning of the FFNN model on the contrary. The
MAE and RMSE differences between FFNN1 and FFNN3
in some provinces were relatively small. The reason for the
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Figure 6. Global maps of (a) RMSE and (b) mean residuals between predicted pCO2 and SOCAT observations.

Figure 7. Comparison of FFNN-predicted pCO2 with SOCAT pCO2. FFNN1 was based on predictors selected by the stepwise FFNN
algorithm. FFNN2 and FFNN3 were based on predictors from Landschützer et al. (2014) and Denvil-Sommer et al. (2019), respectively.

higher MAE and RMSE of FFNN2 may be applying latitudes
and longitudes as predictors in both FFNN1 and FFNN3 but
not in FFNN2. In the province P10 subpolar Southern Ocean,
latitudes and longitudes were considered not good predictors
by the stepwise FFNN algorithm, and the results of three val-
idation groups were extremely close.

3.4 Validation based on independent observations

The FFNN outputs based on a different combination of pre-
dictors were compared with independent observations from
HOT (Dore et al., 2009), BATS (Bates, 2007), and ESTOC
(González-Dávila and Santana-Casiano, 2012; Fig. 8). Com-
pared with the independent observations from the HOT sta-
tion, the three validation groups all show close results, which
were also similar in the seasonal and interannual variability
of pCO2. From 1992 to 2019, the RMSE between FFNN1
outputs and HOT observations was only 9.29 µatm, lower
than the 10.85 µatm of FFNN2 and the 10.70 µatm of FFNN3.
The monthly mean pCO2 of FFNN2 during winter was lower
than the HOT observations and pCO2 values of other val-
idation groups, while the FFNN1 and FFNN3 outputs were
closer to the HOT observations. The MAE between predicted
pCO2 and HOT observations was also lower in the valida-
tion group FFNN1, which was only 7.17 µatm, compared

to the 8.61 µatm of FFNN2 and the 8.44 µatm of FFNN3.
Higher bias was generated in the winter bottom and sum-
mer peak, shown more obviously in the monthly average of
pCO2 (Fig. 8b). Compared with other validation groups, the
result of FFNN1 was closer to the monthly average values of
the HOT observations. The same conclusion can be obtained
for the ESTOC and BATS station located in the province
P5 north subtropical Atlantic. The RMSE between FFNN1
outputs and independent observations was 13.03 µatm for the
BATS station and 11.35 µatm for the ESTOC station, lower
than other validation groups. The RMSE between FFNN2
outputs and independent observations was 16.15 µatm for the
BATS station and 14.51 µatm for the ESTOC station. For
the group FFNN3, the RMSE was 13.09 µatm for the BATS
station and 13.01 µatm for the ESTOC station. All results
were extremely close to the independent observations, but
the RMSE and MAE of FFNN1 were lower. Similar to the
situation in the HOT station, FFNN1 was closest and FFNN3
second-closest. Based on the better performance of FFNN1,
in which the predictors selected by the stepwise FFNN algo-
rithm were used, we may conclude that the stepwise FFNN
algorithm can effectively find a better combination of pre-
dictors to fit the driver of surface ocean pCO2 and obtain a
lower error.
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Table 4. Performance of pCO2 prediction based on different predictors.

Province FFNN size MAE (µatm) RMSE (µatm)

FFNN1 FFNN2 FFNN3 FFNN1 FFNN2 FFNN3

P1 Arctic Ocean (9856) 10 24.50 32.32 26.87 32.27 43.68 35.08
P2 subpolar Pacific (30 516) 35 16.32 20.63 16.67 24.32 29.87 25.03
P3 north subtropical Pacific (56 367) 25 7.39 12.16 7.95 11.33 17.75 11.88
P4 subpolar Atlantic (29 595) 10 13.89 16.91 14.73 21.06 24.29 22.27
P5 north subtropical Atlantic (45 358) 35 8.55 12.28 9.00 12.80 17.86 13.72
P6 south Pacific (31 803) 20 6.96 9.94 7.24 9.86 14.64 11.00
P7 equatorial Pacific (11 233) 25 15.05 19.55 15.49 20.98 27.61 21.10
P8 south Pacific (10 259) 25 11.19 15.07 12.43 17.10 20.87 17.66
P9 Indian Ocean (7440) 25 11.54 13.78 15.49 17.15 22.89 28.29
P10 subpolar Southern Ocean (21 206) 15 11.00 11.76 12.14 16.61 17.22 17.66
P11 Southern Ocean ice (10 683) 10 24.84 29.26 25.74 34.73 40.42 35.22
Global (264 316) 11.32 15.08 12.06 17.99 22.95 19.17

FFNN1 was based on predictors selected by the stepwise FFNN algorithm. FFNN2 and FFNN3 were based on predictors from Landschützer et al. (2014)
and Denvil-Sommer et al. (2019), respectively. The lowest MAE and RMSE between different validation groups was shown in bold. The number in
parentheses after the province name is the number of SOCAT monthly mean samples for that province.

Figure 8. Validation based on independent observation from time series stations: (a, b) the Hawaii Ocean Time-series (HOT; Dore et al.,
2009); (c, d) the Bermuda Atlantic Time-series Study (BATS; Bates, 2007); (e, f) the European Station for Time Series in the Ocean Canary
Islands (ESTOC; González-Dávila and Santana-Casiano, 2012). FFNN1 was based on predictors selected by the stepwise FFNN algorithm.
FFNN2 and FFNN3 were based on predictors from Landschützer et al., 2014 and Denvil-Sommer et al., 2019, respectively. SOCATv2020
represents the monthly mean pCO2 of SOCAT observations in the corresponding grids of each time series station.
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Figure 9. Comparison between the long-term average of (a) the
SOCAT v2020 dataset, (b) the stepwise FFNN pCO2 product, and
(c) previous climatology product adapted from Landschützer et al.
(2020).

3.5 Climatological spatial distribution

The climatological average distribution of pCO2 suggested
significant spatial variability (Fig. 9), consistent with the
average distribution of SOCAT observations. In the Pacific
Ocean, the high pCO2 areas shown by the stepwise FFNN
product (Fig. 9b), including the equatorial areas, east temper-
ate areas, and north subpolar areas, were highly consistent
with the SOCAT datasets (Fig. 9a). Similarly, the distribu-
tion of pCO2 in the Atlantic Ocean was also close. However,
the stepwise FFNN product suggested lower pCO2 average
values in the Arctic and higher values in the Southern Ocean
near the Antarctic continent. Compared with the previous cli-
matology product (Landschützer et al., 2020), the stepwise
FFNN product has similar spatial patterns with high pCO2

in the eastern equatorial Pacific and equatorial Atlantic: an
inconsistent spatial distribution also existed in the Arctic and
parts of the Southern Ocean near the Antarctic continent. The
differences between the stepwise FFNN product and the pre-
vious climatology product may be caused by differences in
methods or SOCAT dataset versions used. In comparison,
lower average values of the SOCAT dataset in the South-
ern Ocean may be caused by the undersampling in winter.
The global spatial distribution pattern of the stepwise FFNN
pCO2 product was basically well consistent with the previ-
ous climatology product and SOCAT dataset, suggesting that
pCO2 predicting based on regional specific predictors se-
lected by the stepwise FFNN algorithm was better than that
based on the globally same predictors.

4 Conclusions

A stepwise FFNN algorithm was constructed to decrease the
predicting error in the surface ocean pCO2 mapping by find-
ing better combinations of pCO2 predictors in each biogeo-
chemical province defined by the SOM method, based on
which a monthly 1◦× 1◦ gridded global open-oceanic sur-
face ocean pCO2 product from January 1992 to August 2019
was constructed. Our work provided a statistical method for
predictor selection for all research based on relationship fit-
ting by machine learning methods. The validation based on
the SOCAT dataset and independent observations shows that
using regional-specific predictors selected by the stepwise
FFNN algorithm retrieved a lower predicting error than glob-
ally similar predictors. This stepwise FFNN algorithm can
also be used in pCO2 mapping research for higher resolu-
tion and coastal regions, and in other data mapping research
using SOM or other region dividing methods. The prepara-
tion work consisted only of collecting as many predictors as
possible that might be related to the target data, and they
need to be sufficiently available in time and space. However,
high predicting error in particular regions, such as polar re-
gions and the equatorial Pacific, still needs to be improved.
Since the stepwise FFNN algorithm’s result largely depends
on how biogeochemical provinces are divided, improving the
SOM step is still necessary. In addition, the FFNN can be re-
placed by any suitable type of neural network. A possible
way to improve the performance of the stepwise FFNN algo-
rithm is to modify the structure of the FFNN or to use net-
works with more sophisticated architecture and to use differ-
ent learning algorithms. In future work, the stepwise FFNN
algorithm with possible improvement will be attempted for
the mapping of other products, such as total alkalinity and
pH in order to provide sufficient data support for studies on
ocean acidification and carbon cycling.

Code and data availability. The stepwise FFNN algorithm (as a
.m file for MATLAB) and the global 1◦× 1◦ gridded sur-
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face ocean pCO2 product since from January 1992 to Au-
gust 2019 (as a NetCDF file) generated during this study
are available from the Institute of Oceanology of the Chi-
nese Academy of Sciences Marine Science Data Center at
https://doi.org/10.12157/iocas.2021.0022 (Zhong, 2021) or di-
rectly at http://english.casodc.com/data/metadata-special-detail?
id=1418424272359075841 (last access: 21 August 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-845-2022-supplement.
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