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Abstract. The Arabian Sea (AS) was confirmed to be a
net emitter of CO2 to the atmosphere during the interna-
tional Joint Global Ocean Flux Study program of the 1990s,
but since then few in situ data have been collected, leav-
ing data-based methods to calculate air–sea exchange with
fewer and potentially out-of-date data. Additionally, coarse-
resolution models underestimate CO2 flux compared to other
approaches. To address these shortcomings, we employ a
high-resolution (1/24◦) regional model to quantify the sea-
sonal cycle of air–sea CO2 exchange in the AS by focusing
on two main contributing factors, pCO2 and winds. We com-
pare the model to available in situ pCO2 data and find that
uncertainties in dissolved inorganic carbon (DIC) and total
alkalinity (TA) lead to the greatest discrepancies. Neverthe-
less, the model is more successful than neural network ap-
proaches in replicating the large variability in summertime
pCO2 because it captures the AS’s intense monsoon dynam-
ics. In the seasonal pCO2 cycle, temperature plays the ma-
jor role in determining surface pCO2 except where DIC de-
livery is important in summer upwelling areas. Since sea-
sonal temperature forcing is relatively uniform, pCO2 dif-
ferences between the AS’s subregions are mostly caused by
geographic DIC gradients. We find that primary productiv-
ity during both summer and winter monsoon blooms, but
also generally, is insufficient to offset the physical delivery
of DIC to the surface, resulting in limited biological con-
trol of CO2 release. The most intense air–sea CO2 exchange
occurs during the summer monsoon when outgassing rates
reach ∼ 6 molCm−2 yr−1 in the upwelling regions of Oman
and Somalia, but the entire AS contributes CO2 to the atmo-

sphere. Despite a regional spring maximum of pCO2 driven
by surface heating, CO2 exchange rates peak in summer due
to winds, which account for ∼ 90 % of the summer CO2 flux
variability vs. 6 % for pCO2. In comparison with other es-
timates, we find that the AS emits ∼ 160 TgCyr−1, slightly
higher than previously reported. Altogether, there is 2× vari-
ability in annual flux magnitude across methodologies con-
sidered. Future attempts to reduce the variability in estimates
will likely require more in situ carbon data. Since summer
monsoon winds are critical in determining flux both directly
and indirectly through temperature, DIC, TA, mixing, and
primary production effects on pCO2, studies looking to pre-
dict CO2 emissions in the AS with ongoing climate change
will need to correctly resolve their timing, strength, and up-
welling dynamics.

1 Introduction

The global ocean represents a major reservoir of inorganic
carbon on the planet’s surface (40× atmosphere) and up
to the present has on average acted to uptake ∼ 23 % of
the 11 Gt excess anthropogenic carbon (Friedlingstein et al.,
2020; Ciais et al., 2013; Khatiwala et al., 2009). The Ara-
bian Sea (AS) is a region of the ocean that has been found
to naturally release CO2 to the atmosphere (∼ 90 MtCyr−1;
Sarma et al., 1998), mitigating the ocean’s role in moderat-
ing atmospheric CO2 accumulation. While the AS as a re-
gional basin is considered too small to greatly impact global
budgets of air–sea CO2 exchange (Naqvi et al., 2005), it at-
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tracts attention because high rates of air–sea CO2 flux 7–
33 molCm−2 yr−1 and values > 700 µatm of partial pressure
of CO2, or pCO2, have been observed there, in addition to
unique features such as the world’s thickest oxygen mini-
mum zone (OMZ) (Morrison et al., 1999; Acharya and Pani-
grahi, 2016; Lachkar et al., 2016) and corresponding carbon
maximum zone (CMZ) (Paulmier et al., 2011).

The role of the AS as a region of net CO2 emission,
while suspected for decades (Keeling, 1968; Naqvi et al.,
1993), was more firmly established with observations con-
ducted under the international collaborative efforts of the
Joint Global Ocean Flux Study (JGOFS) program during the
1990s (Sarma et al., 1998; Millero et al., 1998a; Goyet et al.,
1998b; Naqvi et al., 2005); see Smith (2005) and the accom-
panying Progress in Oceanography special issue for greater
context. Conducted over several years, a major focus was to
sample over the particularly strong seasonal monsoon cy-
cle present in the AS, complete with surface current rever-
sals, coastal upwelling, and intense phytoplankton blooms
(Schott and McCreary Jr, 2001; Kumar et al., 2001; Lévy
et al., 2007). JGOFS carbon data were first used to create
linear statistical models, which were then extrapolated over
a greater region of the AS to produce larger-scale estimates
of seasonal CO2 flux showing emission to the atmosphere
(Sabine et al., 2000; Sarma, 2003; Bates et al., 2006). JGOFS
data still represent the greatest source of data for current
de facto standard global products, such as Takahashi et al.
(2009) (hereafter TK09), who produced a global climatol-
ogy of pCO2 and CO2 flux gridded onto a 4◦× 5◦ grid us-
ing a horizontal advection–diffusion scheme. In recent years,
neural networks have been applied instead of simpler statisti-
cal models to likewise produce global climatologies, such as
Landschützer et al. (2015) (hereafter L15) on an increased-
resolution 1◦× 1◦ grid. All these different methodologies, al-
though of differing sophistication, still rely on the availability
of in situ data.

The wealth of information provided by the JGOFS expe-
ditions has been invaluable for understanding the AS, but
there has been little subsequent in situ sampling in the re-
gion, as has been previously remarked (Hood et al., 2016).
For example, in the Global Ocean Data Analysis Project v2
(GLODAP; Olsen et al., 2019) database, there are no re-
ported observations in the AS of two important carbon vari-
ables, dissolved inorganic carbon (DIC) and total alkalinity
(TA), more recent than 1998, with a similar > 98 % of data
predating 2000 for pCO2. Thus, the global products of TK09
and L15 are based upon conditions in the AS from 20 years
ago. Since quantities like surface pCO2 concurrently trend
with rising atmospheric CO2 concentration (Tjiputra et al.,
2014), the dearth of recent sampling means that uncertainty
in the AS’s carbon system will only grow with time. The gap
in data collection also means that the AS is proportionally
underrepresented in global datasets: whereas the AS is 2 %
of the ocean surface, DIC and TA measurements in the AS
are < 1 % of the GLODAP ensemble, which is also the case

with pCO2 reported in the Surface Ocean Carbon Atlas (SO-
CAT; Bakker et al., 2016; Pfeil et al., 2013).

Where data are sparse in the AS, numerical circulation
models have been used to complement the lack of spatiotem-
poral coverage. These models fill the domain with their own
estimates of carbon variables, such as pCO2, while also pro-
viding detailed information on the factors affecting them (for
example, DIC, temperature, biological productivity, etc.). For
example, in the wake of the JGOFS expeditions, the synthesis
study of Sarma et al. (2003) used a numerical model to ex-
amine biological and chemical aspects of the annual carbon
budget in the central and eastern AS. Further studies focus
on other aspects over different timescales, such as intrasea-
sonal pCO2 variability due to temperature vs. DIC (Valsala
and Murtugudde, 2015) or decadal trends in pH (Sreeush
et al., 2019a). These approaches, without more in situ data,
are the best estimates we have of the current AS carbon sys-
tem’s behavior. Therefore, it is incumbent that these mod-
els are vigorously validated against what precious few data
exist. The need to reduce uncertainty is further emphasized
when modeled carbon chemistry quantities are utilized as a
proxy for other things. For example, a recent modeling study
in the AS found that pCO2 could be used to indicate com-
munity compensation depth, which reflects the complicated
balance between primary production and respiration in the
water column (Sreeush et al., 2019b). As a result, the possi-
bility exists to propagate uncertainties beyond carbon chem-
istry. However, these AS modeling studies compare output to
established climatologies, such as TK09, which are coarse in
spatial resolution and smooth out unique features of the AS
such as coastal upwelling, although some studies have begun
using ARGO float profiles for model validation (Chakraborty
et al., 2018).

Despite the wealth of information that models provide,
they have their own weaknesses. In a review of CO2 flux esti-
mates from various independent methodologies, Sarma et al.
(2013) found that coupled ocean biogeochemical models un-
derestimated the air–sea CO2 flux in the AS. The underesti-
mate was attributed to poor resolution of monsoonal currents,
specifically near the coasts of Oman and Somalia. The need
for sufficient resolution of monsoon and upwelling currents
is underscored by the roles that small-scale horizontal (Ma-
hadevan et al., 2004) and vertical (Mahadevan et al., 2011;
Resplandy et al., 2019) currents can play in advecting carbon.
Additionally, Sarma et al. (2013) found that the peak of air–
sea CO2 flux observed in boreal summer occurred slightly
out of phase, with models leading observations by over a
month in the AS. Finally, the modeled pCO2 in the AS found
a springtime maximum not seen in the observations based
on the data from TK09. Clearly, an effort must be made to
establish whether these discrepancies are residual effects of
low resolution, endemic to models generally, or indicative of
a real pattern that suggests future concerted in situ sampling.

Considering the challenges specific to studying the AS
carbon cycle, in this paper we aim to put into context the
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role of the AS as a CO2 source by quantifying air–sea CO2
flux with a targeted approach. First, by employing a higher-
resolution regional numerical model of the AS carbon sys-
tem, monsoonal and upwelling currents will be sufficiently
resolved. Furthermore, model validation will use raw data,
not a smoothed climatological product, to evaluate the model
air–sea CO2 flux. Quantification of seasonal air–sea CO2 flux
will focus on the contributing factors of 1pCO2, the differ-
ence in seawater and atmospheric pCO2, and wind. In par-
ticular, the role of sea surface temperature (SST), sea sur-
face salinity (SSS), DIC, and TA in determining the seasonal
cycle of pCO2 will be investigated for the entire domain of
the AS, as well as its spatial heterogeneity within the AS. A
further budget analysis of surface DIC compares the physi-
cal and biological mechanisms governing carbon sources and
sinks, such as advection and mixing vs. biological production
and respiration, among others. The relative impacts of pCO2
and winds upon the seasonal cycle of CO2 flux are also com-
pared, culminating in a meta-analysis of the model’s CO2
flux estimates relative to alternative approaches.

For this study, we choose to focus on the seasonal cycle
due to the strength of the monsoon in the AS and because
it is resolved by the in situ data, although models suggest in-
terannual (Valsala and Maksyutov, 2013; Valsala et al., 2020)
and intraseasonal (Valsala and Murtugudde, 2015) variability
exists. The study begins with a description of pCO2 datasets
used, along with the model configuration and methods of
analysis in Sect. 2. Following this in Sect. 3 is a descrip-
tion of the model validation and results, with discussion in
Sect. 4. We conclude in Sect. 5 with perspectives and rec-
ommendations regarding future studies of pCO2 and air–sea
CO2 flux in the AS.

2 Methods

2.1 The pCO2 data

In this study, sea surface pCO2 is used as the primary in situ
data for model validation. Whereas models favor DIC and TA
(Wolf-Gladrow et al., 2007), shipboard pCO2 can be mea-
sured underway, and hence there are more observations avail-
able. Additionally, since model pCO2 is calculated from DIC
and TA (see Sect. 2.2), pCO2 measurements act as an inde-
pendent dataset. Here, pCO2 validation stems from in situ un-
gridded data merged from SOCAT v. 2019 (downloaded from
https://www.socat.info/index.php/version-2019/, last access:
3 September 2019) and the Lamont–Doherty Earth Obser-
vatory (LDEO) surface pCO2 database (Takahashi et al.,
2019). Both databases aggregate all available in situ sur-
face pCO2 data, including JGOFS. SOCAT and LDEO con-
tain > 180 000 and ∼ 90 000 data points on the AS, respec-
tively. SOCAT has more data because it includes multiple
methodologies. As a result, SOCAT data are preferred, and
LDEO observations are included for the years 1980–81 when

SOCAT data are unreported. SOCAT fugacity (fCO2) values
are converted to pCO2 and mole fraction (xCO2) using re-
ported SST and SSS data included in the products using rou-
tines from the CO2SYS software package (Van Heuven et al.,
2011). The anthropogenic effect of increasing surface pCO2
is removed by calculating a fit linear trend of 2 µatm yr−1,
slightly higher than ≈ 1.5 seen in Tjiputra et al. (2014). The
pCO2 values are calibrated to the year 2005, the representa-
tive year used for the model’s atmospheric xCO2. The year
2005 is chosen for the model’s xCO2 concentration because
it is the end of the historical period for the Intergovernmen-
tal Panel of Climate Change (IPCC) models used in its fifth
report published 2014. The earliest SOCAT data comes from
1962, and different databases used in this study stem from
similarly different time spans. As a result, we assume there
is a baseline seasonal cycle of pCO2 and air–sea CO2 flux
which has held stable over the past decades.

Alternative pCO2 products are used for comparison pur-
poses. A complete list of these datasets and their char-
acteristics is provided in Table 1. For all the comparison
datasets, air–sea CO2 flux is calculated from monthly values.
The 1pCO2 values are calculated using Keeling curve data
(downloaded from https://gml.noaa.gov/ccgg/trends/gl_data.
html, downloaded 1 February 2022) of atmospheric xCO2 for
the respective calibrated year of each dataset. The same cli-
matological winds as used in the model (Sect. 2.2) are ap-
plied to the pCO2 products. The gridded product TK09 is
chosen because previous modeling studies in the AS use it as
validation (see “Introduction”). The L15 climatology, while
based upon the same in situ data mentioned above, represents
different processing methodologies and, as a high-resolution,
global pCO2 dataset, also serves to provide independent con-
text to the model validation. pCO2 is also calculated from
DIC and TA provided by the statistical fits to JGOFS data
by Sarma (2003) and to the gridded GLODAP climatolog-
ical product. The statistical fits of Sarma (2003) are used
twice, first using model SST, SSS, and chl a, and second with
World Ocean Atlas (WOA) 2009 SST and SSS with SeaW-
iFS chl a. GLODAP-derived pCO2 also uses WOA 2009 SST
and SSS applied to the annual DIC and TA values. Calcula-
tions of pCO2 are performed using the CO2SYS software
package (Van Heuven et al., 2011). Since all calculations are
conducted at the near surface, differences between this soft-
ware suite and Orr and Epitalon (2015) are minimal. Fur-
thermore, for air–sea CO2 flux intercomparison purposes, all
pCO2 values except for TK09 are interpolated to the same
1◦× 1◦ grid already shared by GLODAP, WOA, and L15.
Due to the model’s higher resolution, the re-gridding pro-
cess reduces the area covered, consequently lowering the to-
tal model CO2 flux quoted in later sections of this study.

2.2 Model details and setup

The model we use is the Regional Ocean Modeling Sys-
tem Adaptive Grid Refinement In Fortran (ROMS-AGRIF)
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Table 1. Summary of pCO2 datasets used in this study. Included is whether the product is gridded and, if so, its spatial and temporal
resolution. Reference year (Ref. year) indicates the year from which Keeling atmospheric xCO2 values are used to calculate CO2 flux. Purpose
designates use case within the article. pCO2 calculated indicates whether product provides pCO2 (no) or whether pCO2 was calculated using
DIC, TA, temperature, salinity, and possibly chl a (yes).

Dataset Gridded
(yes/no),
resolution

Ref. year
(xCO2)

Domain Purpose pCO2
calculated

Reference

Surface Ocean Carbon Atlas
(SOCAT)

No, NA 2005 Global Model pCO2 validation No Bakker et al. (2016)

Lamont–Doherty Earth Obser-
vatory pCO2 database (LDEO)

No, NA 2005 Global Model pCO2 validation No Takahashi et al. (2019)

Takahashi 2009 (TK09) Yes, 4◦× 5◦,
monthly

2005 Global Air–sea CO2 flux estimate No Takahashi et al. (2009)

Landschützer 2015 (L15) Yes, 1◦× 1◦,
monthly

2001 Global pCO2 comparison and
air–sea CO2 flux estimate

No Landschützer et al. (2015)

Sarma statistical model,
T /S/chl a from model (ROMS)

Yes, 1/24◦

(interpolated to
1◦), seasonal

1995 AS north
of 10◦ N

Air–sea CO2 flux estimate Yes Sarma (2003)

Sarma statistical model, World
Ocean Atlas T/S, SeaWiFS
chl a

Yes, 1◦× 1◦,
seasonal

1995 AS north
of 10◦ N

Air–sea CO2 flux estimate Yes Sarma (2003)

GLODAP DIC/TA, World
Ocean Atlas T/S

Yes, 1◦× 1◦,
annual

2002 Global Air–sea CO2 flux estimate Yes Olsen et al. (2019)

NA: not available

Figure 1. Vertically integrated net primary production in the Ara-
bian Sea (gCm−2 yr−1) from the VGPM algorithm (Behrenfeld
and Falkowski, 1997) for SeaWiFS data (years 1997–2010) (a, c)
and model output (b, d) for summer (JJAS, a, b) and winter (DJFM,
c, d) monsoons. White boxes in (b, d) denote regions of analysis in
the paper.

version 3.1.1. (Shchepetkin and McWilliams, 2005). Previ-
ously used in the AS by Lachkar et al. (2016), the model
is a free-surface primitive equation model, with a sigma
and curvilinear grid for the vertical and horizontal dimen-
sions, respectively. ROMS implements a forward–backward
time-stepping algorithm with split baroclinic and barotropic
modes. The advection of tracers uses a rotated-split third-

order upstream biased algorithm to reduce spurious mixing
(Marchesiello et al., 2009). The K-profile parameterization
(KPP; Large et al., 1994) for vertical mixing is used. The
model domain spans from 5.3◦ S to 30.5◦ N and from 33 to
78.1◦ E (Fig. 1). For the sake of comparison with Sarma et al.
(2013), we will present the region north of the Equator and
exclude the Red Sea and Arabian Gulf. The model’s horizon-
tal resolution is 1/24◦, resulting in ∼ 5 km horizontal grid
spacing.

Coupled to the hydrodynamic model is a nitrogen-based
biogeochemical model with two components for nutrients,
nitrate and ammonium, with one phytoplankton, one zoo-
plankton, and two detrital pools (Gruber et al., 2006). Bio-
logical parameters for the model are the same as those used
in Gruber et al. (2011). A carbon module is also applied to
the model with the state variables of DIC, TA, and calcium
carbonate (CaCO3) (Gruber et al., 2012; Hauri et al., 2013;
Lachkar and Gruber, 2013). In addition to the usual phys-
ical transport and mixing, CaCO3 is allowed to vertically
sink at 20 md−1. The chosen sinking rate is a simplifica-
tion in that it does not include the faster rates observed for
foraminifera shells (Curry et al., 1992), which as a biological
group are not resolved by the biological model due to numer-
ical constraints. Organic carbon is linked to organic nitrogen
through the Redfield ratio 106 : 16. DIC is altered by air–sea
CO2 flux, primary production, respiration, remineralization,
and dissolution/precipitation of CaCO3. TA changes with the
removal and creation of nitrate (NO3), including nitrifica-
tion and denitrification, as well as dissolution/precipitation
of CaCO3. The amount of CaCO3 precipitation is linked to
primary production through a constant ratio of 0.07, meaning
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Table 2. List of parameters and their values used in the biogeochemical model.

Parameter Value

Kw , seawater light attenuation 0.04 m−1

KChl, chl a light attenuation 0.024 m−1

Palpha, initial slope of P -I curve 1.0 Wm−2 d−1

C : NP, carbon-to-nitrogen ratio of phytoplankton 6.625 molCmolN−1

C : NZ, carbon-to-nitrogen ratio of zooplankton 6.625 molCmolN−1

O2 : NO3, oxygen-to-nitrogen ratio for nitrate uptake 9.375 molO2 molNO3
−1

O2 : NH4, oxygen-to-nitrogen ratio for ammonium uptake 7.375 molO2 molNO3
−1

N : Cden, nitrate-to-DIC ratio for denitrification 0.8 molNO3 molDIC−1

O2 den, oxygen threshold for denitrification 4.0 mmolO2 m−3

RCaCO3 , ratio of calcium carbonate precipitation to production 0.07 molCaCO3 molC−1

2m, maximum chl a to carbon ratio 1.3538 mgchl amgC−1

KNO3 , half-saturation rate for nitrate uptake 0.75 mmolNm−3

KNH4 , half-saturation rate for ammonium uptake 0.5 mmolNm−3

µnitr, nitrification rate 0.05 d−1

µP, phytoplankton mortality rate 0.072 d−1

Gmax, maximum zooplankton growth rate 0.6 d−1

β, zooplankton assimilation efficiency 0.75
Kphy, half-saturation rate for zooplankton ingestion 1.0 d−1

µexc, zooplankton excretion rate 0.1 d−1

µZmor, zooplankton mortality rate 0.025 d−1

Zgam, fraction of sloppy feeding to fecal pellets 0.33
µSD, small detritus breakdown rate to ammonium 0.03 d−1

µagg, specific aggregation rate of small detritus and phytoplankton 0.005 mmolN−1 d−1

µLD, large detritus breakdown 0.01 d−1

Tdissol, water column dissolution rate of calcium carbonate 0.0057 d−1

Tsedremin, remineralization rate in sediments 0.003 d−1

wP, phytoplankton sinking velocity 0.5 md−1

wSD, small detritus sinking velocity 1.0 md−1

wLD, large detritus sinking velocity 10.0 md−1

wCaCO3 , vertical sinking speed of calcium carbonate 20 md−1

0.07 moles of CaCO3 are produced for each mole of organic
carbon. The dissolution rate is a constant 0.0057 d−1 in the
water column and 0.002 d−1 in the sediments. Surface fluxes
of DIC and TA due to evaporation, precipitation, and river in-
put are included as virtual fluxes proportional to SSS forcing.
Inside the module, surface carbon chemistry is calculated us-
ing routines from the Ocean Carbon-Cycle Model Intercom-
parison Project (OCMIP) carbonate chemistry routines (http:
//ocmip5.ipsl.jussieu.fr/OCMIP/phase3/simulations/, last ac-
cess: 1 February 2022). Carbon chemistry coefficients used
here include K1 and K2 CO2 dissociation from Millero
(1995) and original data from Mehrbach et al. (1973) which
was refit by Dickson and Millero (1987). A summary of the
biological parameters used in the biogeochemical model is
provided in Table 2.

The model is run with 360 d years and interpolated, cli-
matologically averaged monthly forcing. The different cli-
matological products derive from datasets spanning slightly
different periods, and so here we assume that the dynamics
represented within them have not changed in the time since.

Heat flux, evaporation and precipitation, and restoring SSS
are provided by the Comprehensive Ocean-Atmosphere Data
Set (COADS; da Silva et al., 1994). SST forcing is provided
by a monthly climatology of Pathfinder data from 1985 to
1997 (Casey and Cornillon, 1999). Wind stress is produced
using the QuikSCAT/SCOW monthly climatology from 1999
to 2009 (Risien and Chelton, 2008). Tracer values for the ini-
tial conditions and the boundaries are given by WOA 2009
for temperature, salinity, NO3, and oxygen. Horizontal veloc-
ities u,v for initial and boundary conditions derive from the
Simple Ocean Data Assimilation (SODA) analysis (Carton
and Giese, 2008). Initial and boundary conditions for DIC
and TA come from GLODAP from 300 m down to the bot-
tom. Surface TA was calculated using the relations from Lee
et al. (2006), and the corresponding DIC was calculated us-
ing WOA phosphate, silicate, T , and S values along with L15
pCO2. DIC and TA values between the surface and 300 m are
calculated using density weighting. The model is spun up for
30 years, with 5 additional years for analysis. Atmospheric
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xCO2 values are set to 380 ppm, equivalent to 2005 levels,
with an annual sinusoidal perturbation of 2.9 ppm.

2.3 Domains of analysis

In this study we focus on six distinct regions (Fig. 1). The
first, the entire analysis domain, is the AS north of the Equa-
tor. The upwelling regions of the Omani and Somalian coasts
are included separately to focus on the summer monsoon im-
pact of enhanced DIC but also enhanced biological produc-
tivity (Schott and McCreary Jr, 2001). The Omani region be-
gins at the coast and extends 300 km outward. The Soma-
lian region begins near 3.8◦ N and extends north to the tip of
the Horn of Africa, with an eastern extension to 58.6◦ E so
as to encompass the region known as the Great Whirl (Vic
et al., 2014), shown to be important for air–sea exchange
in previous studies (Valsala and Murtugudde, 2015). The
north region is defined by a rectangle from 21◦ N, 59.4◦ E to
26.5◦ N, 69.5◦ E, encompassing the northern part of the AS
where the winter monsoon’s primary productivity is most in-
tense (Kumar et al., 2001). An oligotrophic region represent-
ing the central AS, which has less productivity and chloro-
phyll a on average (Fig. 1), is defined by a rectangle from
3.3◦ N, 61.31◦ E to 17◦ N, 70.8◦ E. The last region, covering
the western coast of India, extends from the coastline 100 km
offshore.

2.4 Analysis of air–sea CO2 flux, pCO2, and DIC
variability

2.4.1 Air–sea CO2 variability

The air–sea flux in the model is calculated using

FCO2 =K0α
(

pCOsea
2 − pCOair

2

)
=K0α1pCO2, (1)

where K0 is the solubility determined by temperature and
salinity (Weiss, 1974), α is the CO2 piston velocity with a
quadratic wind speed dependence (Wanninkhof, 1992), and
the difference in ocean and atmosphere pCO2,1pCO2, is ar-
ranged so that the flux convention is positive outward from
the ocean. The choice of Wanninkhof (1992) for the solubil-
ity parameterization is for direct comparison with previous
modeling studies (see “Introduction”), despite the fact that
more recent formulations are available, such as Wanninkhof
(2014). The objective being to characterize seasonal anoma-
lies of air–sea CO2 flux, here we use a Reynolds decompo-
sition. Briefly, a Reynolds decomposition takes a time series
and divides it into a temporal mean and fluctuating compo-
nent. When applied correctly, multiple terms can be produced
in isolation showing their fluctuating contribution to the to-
tal. Noting that temperature effects upon solubility (K0) and
piston velocity (α) approximately cancel, meaning that their
product mostly reflects wind forcing, we have the following

arrangement for the decomposition of flux anomalies (Doney
et al., 2009b):

F ′CO2
= (K0α)

′1pCO2︸ ︷︷ ︸
wind

+ (K0α)1pCO2
′︸ ︷︷ ︸

pCO2

+

(
(K0α)

′(1pCO2)
′
− (K0α)′1pCO2

′

)
︸ ︷︷ ︸

cross terms

, (2)

where ′ indicates an anomaly and x is a 5-year average of
variable x, which are calculated at each grid point. The 5-
year average is necessary for exact closure in the Reynolds
decomposition. F ′CO2

is the seasonal flux anomaly, with
groupings based on wind anomalies (K0α)

′,1pCO2
′ anoma-

lies, and cross-terms involving both.
The winds in this study are prescribed, so uncertainty in

air–sea flux stems from pCO2. The SOCAT protocol assigns
a minimum uncertainty of 2 µatm to observations. Using the
average SST and SSS from the SOCAT observations, the
solubility change is 2.68× 10−2 mmolCm−3 µatm−1. Wind
speeds of 1, 5, and 10 ms−1 will then produce a shift of
0.0018, 0.0443, and 0.177 molCm−2 yr−1, respectively. The
model presents a median value of 1.28 molCm−2 yr−1 with
median winds of 5 ms−1, so therefore the baseline uncer-
tainty in air–sea CO2 is ∼ 3.5 %.

2.4.2 pCO2 variability

The proximate variables that affect pCO2 change in the
model are DIC, TA, SST, and SSS. Following previous stud-
ies (Lovenduski et al., 2007; Turi et al., 2014), we use a first-
order Taylor expansion to decompose pCO2 into contribu-
tions from these four, neglecting contributions from nutrients
(phosphate and silicate). Initially, the decomposition would
follow the form

1pCO2 ≈
∂pCO2

∂DIC
1DIC+

∂pCO2

∂TA
1TA

+
∂pCO2

∂SST
1SST+

∂pCO2

∂SSS
1SSS, (3)

where 1pCO2 is the perturbation of pCO2 from a mean
value, and the 1 terms for DIC, TA, SST, and SSS likewise
express deviations from a prescribed value depending on
whether the deviations are spatial or temporal in nature (see
below). The coefficients of the1 terms are partial derivatives
of pCO2 with respect to these variables, namely DIC, TA,
SST, and SSS, and are calculated via centered differences
described below. However, in order to control for salinity ef-
fects on DIC and TA (Keeling et al., 2004), we normalize
DIC and TA by the salinity S0= 35 psu to create the vari-
ables

DICs = S0
DIC
SSS

and TAs = S0
TA
SSS

. (4)

Substituting these terms into Eq. (3), we can expand to
produce, for example with DIC, the following (Lovenduski
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et al., 2007):

∂pCO2

∂DIC
1DIC=

∂pCO2

∂
(
SSS/S0DICs

)1(SSS/S0DICs
)

=
DICs

S0

∂pCO2

∂DIC
1SSS

+
S

S0

pCO2

∂DIC
1DICs . (5)

Collectively, the 1SSS term in Eq. (5) and its counterpart
in TA can be added to the original 1SSS term in Eq. (3) to
represent all salinity effects in a “freshwater” term so that we
now have the following (Turi et al., 2014):

1pCO2 ≈
∂pCO2

∂DICS
1DICS︸ ︷︷ ︸

1pCO2
DICs

+
∂pCO2

∂TAS
1TAS︸ ︷︷ ︸

1pCO2
TAs

+
∂pCO2

∂T
1T︸ ︷︷ ︸

1pCO2
T

+
∂pCO2

∂SSS
1SSS︸ ︷︷ ︸

1pCO2
SSS

. (6)

For the remainder of this paper, when discussing the re-
sults of the Taylor series decomposition method, it will be
understood that DIC and TA refer to DICs and TAs , and SSS
will refer to the combined term.

The contributions of DIC, TA, SST, and SSS to pCO2 vari-
ability are used to construct maps and time series of pCO2
anomalies. In order to calculate the anomaly, 1pCO2 re-
quires calculating both the 1 deviations of DIC, TA, T, and
SSS, as well as partial derivatives. In this study, we calcu-
late both temporal and spatial anomalies. To consider spatial
variability, starting with annual means of pCO2, DIC, TA,
SST, and SSS, an average value for the whole domain is cal-
culated and removed from each grid point’s annual mean to
get a1 perturbation or anomaly. Similarly, for temporal vari-
ability, with the monthly values of pCO2, DIC, TA, SST, and
SSS at each grid point, the annual average at that grid point
is removed to produce the monthly 1 perturbation/anomaly.
Partial derivatives are approximated via centered differences.
These are obtained by calculating pCO2 with slight devia-
tions of DIC, TA, SST, and SSS from the mean value. Both
positive and negative deviations are used to construct cen-
tered differences, with deviation magnitude determined by
Orr et al. (2018). For example to calculate the monthly pCO2
anomaly due to SST for a grid point with annual mean pCO2
of 430 µatm, annual mean SST of 24 ◦C, and monthly SST of
26 ◦C, the following equation is used:

1pCO2 ≈
∂pCO2

∂SST
1SST+ . . .

≈
pCO2

(
24+ 1× 10−4, . . .

)
− pCO2

(
24− 1× 10−4)

2 · 1× 10−4

· (26–24)+ . . . , (7)

where 1× 10−4 is the recommended SST deviation.

2.4.3 DIC budget

Whereas the state variables of DIC, TA, SST, and SSS pro-
vide the chemical context which determines carbon availabil-
ity to potential air–sea flux via pCO2, tracking the overall in-
ventory of inorganic carbon (i.e., DIC) allows for the parsing
of numerous source and sink processes governing the total
amount of carbon reaching the surface. Beyond the biological
processes impacting DIC as outlined in Sect. 2.2, the phys-
ical processes impacting DIC are air–sea CO2 flux, surface
evaporation and precipitation, horizontal and vertical advec-
tion, and horizontal and vertical mixing. In order to diagnose
the relative importance of these terms (i.e., to weigh com-
petition between upwelling circulation source and biological
drawdown sink), we calculate the budget IDIC in a 3D vol-
ume by integrating

IDIC =

∫∫
A

η∫
−z(σ )

J (x,y,z)dAdz (8)

with

J = −PPNew+Reg−CaCO3prec-remin+Zooresp+Detremin︸ ︷︷ ︸
Biology

− FAS︸︷︷︸
Air–Sea

+Advx +Advy +Mixx +Mixy︸ ︷︷ ︸
Horz. Circ

+Advz+Mixz︸ ︷︷ ︸
Vert. Circ

+Evap-Precip︸ ︷︷ ︸
Forc

, (9)

which is the volume-specific flux J of DIC in a given grid
cell. PPNew+Reg is net community primary production scaled
by the Redfield ratio, CaCO3remin-prec is net CaCO3 precip-
itation and remineralization, Zooresp is zooplankton respira-
tion, and Detremin is remineralization of both detrital pools.
All these terms are grouped together into “Biology” because
they represent all biological processes. FAS is air–sea flux,
with a sign convention of positive outward. Advx is advective
flux in the x direction, with corresponding y and z compo-
nents. Mixx is the x component of mixing flux, again with y
and z components. All x and y components of both advec-
tive and mixing DIC fluxes are grouped into horizontal cir-
culation, with a similar grouping for vertical circulation in
the z direction. Evap-Precip is the forced virtual flux from
evaporation and precipitation at the surface. A is the two-
dimensional horizontal area to be considered, which in our
study includes the entire domain but also the subregions of
analysis. The bottom boundary of integration, −z(σ ), is the
sigma-layer depth at which integration starts, moving up to
the free-moving surface η. We chose to integrate the top five
sigma layers of the model, corresponding to ∼ 20 m depth.
This level was chosen because below this depth, annual cy-
cles of IDIC begin to deviate from the surface DIC, which is
our focus in this study of air–sea CO2 flux.
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Figure 2. (a) Average surface in situ 1pCO2 (ppm), with proba-
bility density function of all 1pCO2 values inset. 1pCO2 data are
calculated in comparison to Keeling atmospheric pCO2 and then
binned into a 1◦× 1◦ grid. (b) Monthly distribution of in situ data
sampling times, color-coded by sampling year.

3 Results

3.1 Model validation and pCO2 data-model
comparisons

The implementation of ROMS-AGRIF presented here
has been used in previous studies of the AS (Lachkar
et al., 2016). Model output of net primary productiv-
ity (NPP) captures the summer monsoon highs near the
upwelling regions of Oman and Somalia (model > 400
vs. data > 500 gC m−2 yr−1), with enhanced NPP in the
north during the winter monsoon (model ∼ 300 vs.
data > 400 gCm−2 yr−1) (Fig. 1). The model also captures
the vertical distributions of temperature and salinity (Figs. S1
and S2 in the Supplement) with deviations from WOA
around 1 oC and 0.2 psu. Depth profiles of nitrate, oxygen,
DIC, and TA are similarly conserved (Figs. S3–S6 in the Sup-
plement). Nitrate, DIC, and TA all show their usual nutrient-
like profiles, while oxygen is its minimum within the OMZ.
The deviations seen between in situ data and model output
are greatest at depths less than 500 m. Deviations in near-
surface NO3 (Fig. S3) can be large for intermediate values
(5–20 µM) but overall do not show a systematic bias. DIC
(Fig. S5) also has large deviations (∼ 50 µM) in the top 500 m
and with a slight positive bias. It is in TA (Fig. S6) that de-
viations, while similarly∼ 50 µMeq, show a consistent near-
surface underestimation. The surface currents in the model
also demonstrate the monsoonal shifts and reversals seen in
the AS (Fig. S7 in the Supplement).

Regarding pCO2, in situ data from the merged SOCAT–
LDEO database show that ∼ 90 % of 1pCO2 values in the
AS are positive (Fig. 2a, inset), indicating a positive flux to
the atmosphere that is applicable geographically (Fig. 2a).
Sampling dates for pCO2 (Fig. 2b) show that ∼ 70 % are
from the summer monsoon months (June–September, JJAS).
Most observations similarly date from the 1990s, with 1995
and 1997 alone accounting for 96 %.

Seasonal pCO2 distributions from both data and the model
are shown in Fig. 3. During the winter monsoon, pCO2 val-
ues are at their lowest (range: 348–455 µatm; Fig. 3a). The

Figure 3. Seasonal surface pCO2 (µatm) from data (left column,
a, d, g, j) and the model (middle, b, e, h, k), as well as their differ-
ences (right, c, f, i, l). Plots are arranged by season: winter monsoon
(DJFM, a–c), spring intermonsoon (AM, d–f), summer monsoon
(JJAS, g–i), and fall intermonsoon (ON, j–l).

Table 3. Mean and standard deviation (in parentheses) of annual
and seasonal surface pCO2 (µatm) in both the merged dataset and
model.

Data Model

Annual 426 (68) 428 (32)
Winter (DJFM) 389 (14) 418 (30)
Spring (AM) 398 (13) 439 (26)
Summer (JJAS) 439 (77) 433 (36)
Fall (ON) 393 (12) 427 (27)

spring intermonsoon (Fig. 3d) finds pCO2 values similar to
the winter (range: 354–451 µatm), with data coverage im-
proving in the western AS. The summer monsoon, with the
best data coverage (Fig. 3g), has pCO2 peaking at 773 µatm.
In contrast, the fall intermonsoon (Fig. 3j) has very little data
coverage, with pCO2 ranging from 311 to 485 µatm. Similar
to the data, model pCO2 (Fig. 3b) is at its lowest during the
winter. However, in the spring (Fig. 3e) open-ocean pCO2
finds its peak with a domain average of 439 µatm, which is
not reflected in the in situ dataset (Fig. 3d and e). Maximum
model pCO2 is found in the summer monsoon near upwelling
regions (Fig. 3h), with values attaining> 800 µatm in Oman.
Fall model pCO2 (Fig. 3k) still has elevated values averaging
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Figure 4. Taylor diagram of modeled vs. observed surface pCO2,
both annually and seasonally. Data are from merged SOCAT and
LDEO databases, corrected to the year 2005. Distance from ori-
gin (concentric solid lines) is normalized model standard deviation.
Angle from vertical axis is Pearson correlation coefficient. Distance
from observation point (black dot) is root-mean square deviation
(dashed blue lines). Color of each point denotes model bias; i.e.,
positive values are overestimates.

427 µatm but less than the summer period. Certain regions in
the model show persistent maxima in pCO2, such as the Gulf
of Oman and the Strait of Hormuz, which are not reflected
in the few data collected there. Model pCO2 values in the
Gulf of Aden increase during spring and then peak during
the summer, a pattern which is unclear from the data. Annual
and seasonal pCO2 means, with standard deviations in paren-
theses, are displayed in Table 3 for both the data and model.
Differences from interpolated model output and in situ data
are shown on the right column of Fig. 3 (Fig. 3c, f, i, and l).
Most differences show that model output is higher in value
than the data, averaging 24.6, 48.4, and 33.7 µatm higher for
the winter, spring, and fall seasons, respectively.

A Taylor diagram (Taylor, 2001) comparing in situ pCO2
data with model output shows the model’s relative perfor-
mance (Fig. 4). The distance from the origin is model vari-
ability normalized by standard deviation of the in situ data.
The angle created from the y axis is the Pearson correlation
coefficient between the model and in situ data. If the model
were to perfectly reproduce the data, it would appear at the
position (1,0), equivalent to a normalized standard deviation
of 1 and correlation coefficient of 1. For the entire dataset, as
well as for the spring and summer seasons, the model’s cor-
relation with data is ∼ 0.5. Winter and fall have lower values
at 0.2 and 0.06, respectively. Variability expressed as normal-
ized standard deviation shows that overall, and during spring
and summer periods, the model underestimates data variabil-
ity (∼ 0.5 µatm). During the winter and fall, however, the

model overestimates variability (1.1 and 1.6, respectively).
For all periods apart from summer, model pCO2 has a posi-
tive bias (9.1, 24.6, 48.4, and 33.7 µatm for the annual, win-
ter, spring, and fall, respectively). During the summer, the
model has a negative bias of −3.1 µatm.

The source of bias in pCO2 is linked to the four state vari-
ables SST, SSS, DIC, and TA. Comparisons with the model
are made with SST and SSS from the merged SOCAT–LDEO
database, while DIC and TA come from the ungridded GLO-
DAP product (Fig. S8 in the Supplement). In this case, model
SST and SSS (Fig. S8a and b) largely overlap with a 1 : 1
relationship but with slight positive biases of ∼ 0.4 oC and
0.3 psu. Removing these biases from the model results in a
pCO2 shift of −6.8 and −3.5 µatm for SST and SSS, re-
spectively. These deviations are close in magnitude to the
best-case measurement error of ∼ 2 µatm. Taylor diagrams
for SST and SSS (Fig. S9 in the Supplement) further show
the seasonal performance of these two variables. The model
performs best for SST (Fig. S9a) during the winter, with a
correlation of 0.93 and a normalized standard deviation of
0.97. The other seasons have lower correlations (0.74–0.81)
and reduced standard deviations (0.63–0.8) except for the fall
with a standard deviation of 1. SSS (Fig. S9b) has lower cor-
relations and standard deviations than SST, with all seasons
demonstrating a positive bias (0.02–0.39 psu). Correlation is
best in the winter at 0.89 and worst in the fall at 0.46. Model
variability in SSS is also less than the data, with standard de-
viations ranging from 0.33 to 0.72. Lower variability is most
likely due to the raw nature of the in situ data used here,
in opposition to the monthly averaged climatological forcing
and initial conditions of the model.

Ungridded DIC and TA data from GLODAP, though more
sparse (n= 334 data points with both DIC and TA at depths
≤ 50 m), show more deviation from the 1 : 1 line (Fig. S8c
and d) with overall negative biases of −15.8 µmolkg−1 and
−30.0 µmoleqkg−1 for DIC and TA. These biases result in
pCO2 perturbations of −33.8 and +45.7 µatm, respectively,
when accounted for individually. Since the buffering capacity
of seawater is related to the ratio of TA and DIC, when both
biases are considered, average pCO2 shifts +16.7 µatm. As a
result, while the DIC model bias lowers pCO2, the stronger
bias in TA is the most likely cause for the model’s overall
positive pCO2 bias, which may in part be due to the unre-
solved fast sinking rates of foraminifera in the model.

Direct comparisons between the in situ and model output
demonstrate the positive bias and middling correlations of
the model with respect to the data, as well as the model’s
tendency to underrepresent variability. As a result, it is neces-
sary to investigate how these shortcomings compare with al-
ternative pCO2 estimates in the AS. Figure 5 shows monthly
comparisons of the pCO2 probability distribution functions
from in situ data, model output, and L15. For most of the
year, the data (Fig. 5a) stays within a relatively narrow
range (375–425 µatm) except for the summer monsoon when
values can exceed 500 µatm and the median value has its
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Figure 5. Monthly probability density distributions of surface pCO2
(µatm) in (a) merged SOCAT–LDEO in situ data, (b) modeled
pCO2, and (c) L15 pCO2 climatology.

peak. In the model (Fig. 5b), pCO2 is almost entirely above
400 µatm, with the median value increasing during the spring
intermonsoon and peaking in June (453 µatm). Similar to the
data, the upper-bound variability in pCO2 peaks in August.
L15 (Fig. 5c), by contrast, has a tighter envelope of variabil-
ity, with 5–95 percentile values never going beyond the range
of 368–434 µatm. Median pCO2 in L15 peaks in the summer
like the data at 402 µatm, but there is no large increase in
upper-bound variability, with the 95 % upper bound in L15
reaching 434 µatm in September.

In summary, the survey of available data and compar-
ing it to the model output produces a few distinct features:
(1) available in situ data show that the majority of observa-
tions are skewed towards the summer monsoon during the
years 1995 and 1997; (2) most in situ data show CO2 out-
gassing in the AS; (3) the model has a net positive bias in
surface pCO2, driven by a joint DIC-TA bias which is slightly
stronger in TA; and (4) the model captures the high summer
monsoon pCO2 values better than the alternative L15 clima-
tology.

Figure 6. (a) Modeled annual mean air–sea CO2 flux density
(molCm−2 yr−1). (b–e) Seasonal flux density for winter (DJFM),
spring (AM), summer (JJAS), and fall (ON), respectively. Positive
is flux out of the ocean.

3.2 Air–sea CO2 flux, drivers of seasonal variability,
and flux intercomparison

Modeled annual mean atmospheric flux of CO2 (Fig. 6a)
shows outgassing (positive, red) throughout the entire do-
main, producing an average annual CO2 flux density rate
of 1.9 molCm−2 yr−1 and a total of 162.6 Tg C yr−1. Simi-
lar to pCO2, several hotspots appear in the geographic distri-
bution. Near the coast of Oman, the average flux density is
2.7, with 3.2 in Somalia and 2.4 along the coast of India, pro-
ducing a flux of 11.4, 32.9, and 4.9 Tg C yr−1, respectively.
The other regions, the north AS and oligotrophic central AS,
have average densities of 2.0 and 1.5 molCm−2 yr−1, with
total fluxes of 10.5 and 28.6 Tg C yr−1. The seasonal air–sea
flux (Fig. 6b–e) has minima during fall and winter, with an
increase in spring and a strong maximum during the sum-
mer monsoon. Omani and Somalian flux densities during the
summer monsoon are 5.8 and 5.9 molCm−2 yr−1, respec-
tively. The distribution of enhanced summer air–sea CO2 flux
coincides with the southwest monsoon winds (Fig. S10 in the
Supplement), as well as the band of cooler temperatures im-
pacting spatial pCO2 anomalies (see Sect. 3.3.1). The entire
domain fluxes of 32.0, 26.6, 90.9, and 13.1 Tg C yr−1 for the
winter, spring, summer, and fall periods, respectively, each
contribute 19.7, 16.3, 55.9, and 8.1 % of the annual total.

The variability in air–sea CO2 flux can be attributed to the
contributions of winds, 1pCO2, and interacting cross-terms,
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Figure 7. (a) Anomaly of air–sea CO2 flux during the summer mon-
soon (JJAS; molCm−2 yr−1). Summer flux anomaly contributions
due to (b) wind, (c) pCO2, and (d) cross-terms in Eq. (2).

as described in Eq. (2). The temporal anomalies for the sum-
mer monsoon, the period with the strongest CO2 flux signal,
are presented in Fig. 7. Most of the domain has positive but
variable strength anomalies in air–sea flux (Fig. 7a), aver-
aging 1.3 molCm−2 yr−1 with a standard deviation of 1.35.
The wind contribution to flux variability, κα (Fig. 7b), is also
positive in most of the domain except the Gulf of Aden and
the southeastern corner of the domain. The wind anomaly’s
magnitude and distribution closely match the total anomaly
in Fig. 7a, with a mean flux anomaly of 1.18 molCm−2 yr−1

and 0.96 standard deviation. The1pCO2 contribution to sea-
sonal flux anomaly (Fig. 7c) has a lower-magnitude effect
overall (mean flux anomaly 0.1, deviation 0.5, maximum
6.2 molCm−2 yr−1), with positive values north of 10◦ N and
slightly negative to the south. The maxima approaching
6.2 molCm−2 yr−1 are in the upwelling centers of Oman, So-
malia, and the Indian coast. Second-order cross-term values
(Fig. 7d) are almost all positive, with maxima also occurring
near upwelling centers similar to the1pCO2 term but weaker
in magnitude with an average of 0.04 molCm−2 yr−1.

The seasonal flux anomalies for all regions are displayed
in Fig. 8. The summer monsoon flux is so strong that it makes
the anomalies (black lines) for all the other seasons nega-
tive except for May in the spring. During the winter months
(DJFM), both wind and pCO2 terms produce negative flux
anomalies (ranging to −0.78 and −0.38 in the domain for
wind and pCO2, respectively; Fig. 8a), indicating the relative
lack of winds and minimum pCO2 values. In winter, while
the negative wind term is universally strongest, within the
upwelling regions the pCO2 term is 58 % (Fig. 8b) of the
wind term’s magnitude, and 49 % for the entire domain. The
spring intermonsoon, where many regions such as Somalia
and the central oligotrophic AS (Fig. 8d and e) experience
their pCO2 maximum, shows a positive pCO2 effect on flux
anomaly that is as large as or larger than the negative wind

effect (Somalian May pCO2 anomaly of 1.1 molCm−2 yr−1,
wind anomaly of 0.1). Summer monsoon winds represent the
majority contribution to CO2 flux variability, with a min-
imum 64.7 % contribution relative to the total anomaly in
India, a maximum of 112.8 % in the oligotrophic AS, and
90.8 % for the whole domain. By contrast, summer pCO2
and cross-terms contribute 6.0 % and 3.1 % to the domain’s
anomaly, respectively. Fall intermonsoon months resemble
the winter monsoon, with negative wind anomalies contribut-
ing most with small or negative pCO2 contributions. In most
scenarios, pCO2 contributes in the same direction as the
winds or little at all, with the notable exceptions of Oman,
oligotrophic AS, Somalia, and the domain during spring in-
termonsoon.

While strong monsoon winds dominate the timing of air–
sea CO2 flux, and the AS is always a source of CO2 due to
positive 1pCO2, differences in pCO2 between independent
sources can still result in a wide range of overall magnitudes.
In the AS, CO2 outgassing estimates vary from 7 TgCyr−1

(Goyet et al., 1998b) to > 90 TgCyr−1 (Sarma, 2003) and
everything in between (Somasundar et al., 1990), with each
study using their own pCO2 data and wind parameterizations.
Considering the important seasonal role of winds, the best
way to investigate the role of pCO2 variability is to keep
winds (and their flux parameterization) constant. Towards
this end, we use multiple pCO2 products to calculate CO2
flux with the same wind and parameterization as the model
(Fig. 9). As summarized in Table 1, pCO2 from TK09, L15,
GLODAP data, and Sarma (2003), interpolated to the WOA
1◦× 1◦ grid, is used in these calculations (except for TK09 in
which the coarse resolution reduced coverage). The original
applicability of the Sarma (2003) model is north of 10◦ N,
and so flux is calculated for this region, as well.

All calculations have their peak CO2 flux sometime in the
summer, confirming the role of winds in CO2 flux timing.
This study’s model consistently produces one of the higher
estimates with 120 TgCyr−1 (reduced from 162.6 due to re-
gridding) and 57 TgCyr−1 north of 10◦ N. The only estimate
higher than the model is GLODAP data in the region north
of 10◦ N with 65 TgCyr−1 possibly driven by summer mon-
soon sampling bias. The high model estimate is perhaps un-
surprising, considering the pCO2 bias. The range in estimates
of total CO2 flux is 57–120 TgCyr−1, resulting in a ratio of
2.1× variability. In the reduced domain of the AS north of
10◦ N, estimates range from 12.3 to 65.6, resulting in 5.3×
variability. The 5.3× ratio is quite high and is in part driven
by the low estimates from the Sarma (2003) model, which
are 12.3 and 17.6 using tracer data from WOA and ROMS,
respectively. Indeed, the Sarma (2003) model estimates have
negative CO2 flux for some months, which is not observed in
the original publication, and the total fluxes are quite smaller
than the 70 TgCyr−1 reported. If the two lower estimates are
removed, the range in air–sea CO2 flux in the domain north
of 10◦ N is 41–65 TgCyr−1, providing a ratio of 1.6 similar
to 2.1 for the whole domain. Even considering the model’s
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Figure 8. Monthly CO2 air–sea flux anomaly (molCm−2 yr−1) for (a) the domain, (b) Oman, (c) north AS, (d) oligotrophic central AS,
(e) Somali coast, and (f) Indian coast. Contributors to the flux are solubility and winds (kα, blue), pCO2 (red), and cross-terms (orange).
Gray regions indicate winter and summer monsoons.

Figure 9. (a) Monthly CO2 flux (TgCmonth−1) from the AS as calculated using pCO2 from TK09 (cyan), L15 (blue), model (black), and
GLODAP (red). (b) Monthly CO2 flux from 10◦ N and north using pCO2 from L15 (blue), model (black), GLODAP (red), Sarma using
model output (purple), and Sarma using WOA data (orange). Dashed line in (b) is the zero flux axis, and gray regions denote winter and
summer monsoons. Positive flux is out from the ocean surface.

pCO2 bias, as previously mentioned the GLODAP estimate
supersedes it in the region north of 10◦ N, as does the orig-
inal Sarma (2003) estimate of 70 TgCyr−1. Thus, while we
may think the model overestimates flux, it is still within the
range of previous studies in the AS.

3.3 The pCO2 distribution, seasonal cycle, and
underlying contributors

3.3.1 Spatial pCO2 distribution

Spatial pCO2 anomalies calculated from the annual mean
highlight the geographic hotspots of pCO2 inside the do-
main (Fig. 10a). The pCO2 anomalies range from −89 to
+415 µatm, indicative of a positive skew in the distribution.
Within the regions of analysis prescribed in this study, it is

clear that Oman, the Indian coast, and the north AS host en-
hanced pCO2, with average positive anomalies of 8.6, 21.5,
and 49 µatm, respectively. In contrast, both the oligotrophic
central AS and Somalian regions have negative pCO2 anoma-
lies (−13.7 and −2.9 µatm, respectively). The contributing
factors to these pCO2 anomalies, SST, DIC, TA, and SSS,
display differing distributions. SST (Fig. 10c) contributes to-
ward negative pCO2 anomalies in a southwest-to-northeast
band along the coasts of east Africa and the Arabian penin-
sula, up to the coasts of Pakistan and the northern coast
of India near Gujarat. The cold SST structure contributes a
−20 µatm effect on pCO2 and largely overlaps the stronger
summer monsoon winds (Fig. S10). The opposite trend is
found in the central oligotrophic and Indian regions, where
the average temperature contribution to pCO2 is 20 µatm de-
spite upwelling along the southern Indian coast. The distri-
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Figure 10. (a) Spatial anomaly of time-averaged surface pCO2
(µatm). Black boxes represent regions of analysis used in (b) to
show averaged contributions of four parameters to pCO2 variability.
The changes in pCO2 due to these variables are shown for (c) tem-
perature, (d) DIC, (e) TA, and (f) SSS.

bution of DIC-induced anomalies (Fig. 10d) shows a posi-
tive influence near coastal regions and the western AS off
the coast of Somalia (+25 µatm), whereas a strong minimum
is found in an oval region encompassing the central, open-
ocean AS (−36.6 µatm). TA effects (Fig. 10e) show a north–
south gradient similar to SSS, with positive contributions to
pCO2 of +20 µatm occurring in the north and −20 µatm to-
wards the south, resulting in magnitudes similar to SST con-
tributions. SSS contributions (Fig. 10f) show a similar distri-
bution as TA but are weaker in magnitude (± 10 µatm).

3.3.2 Seasonal pCO2 cycle

The previous section outlines the geographic regions within
the AS that have overall high or low pCO2 values, but in
order to investigate the strong seasonal monsoon cycle in
the AS, the decomposition of variables affecting monthly
pCO2 values is calculated at each model grid point and av-
eraged into each analysis region (Fig. 11). Regarding the
whole domain (Fig. 11a), pCO2 variability is similar to that
seen in Fig. 5b, with a spring pCO2 anomaly peak (20 µatm)
and minimum during fall and winter (−9.4 µatm). Tempera-
ture effects largely mirror the overall pCO2 cycle (May peak
30 µatm, January minimum −17 µatm). Change in pCO2 as-
sociated with DIC acts in opposition to temperature but with
lower magnitude (16 µatm in February, −8 µatm in June).

Both TA and SSS effects are negative for the first half of
the year before becoming slightly positive in the second half,
never reaching 10 µatm in magnitude.

Different pCO2 anomaly cycles can be found in the up-
welling regions of Oman, Somalia, and India (Fig. 11b, e,
and f). Here, a positive temperature peak appears in the
spring (27–45 µatm), which is then supplanted by a positive
DIC peak during the summer monsoon (41–81 µatm). In both
Oman and India, the summertime DIC peak is strong enough
to contribute to the annual pCO2 peak despite cooler tem-
peratures. In Somalia, the summertime DIC peak is not suf-
ficiently stronger than temperature (41 vs. −34 µatm) such
that in sum with the other terms maximum pCO2 is found
in the spring, not the summer, similar to the whole domain
and oligotrophic regions. Both TA and SSS effects in these
three regions are lower in magnitude (never exceeding 18.4
and 7.3 µatm for TA and SSS, respectively) and generally run
counter to DIC.

A completely different regime occurs in the north AS
(Fig. 11c). Here, while temperature effects (49 µatm in
June) create a similar spring–summertime peak in pCO2
(15.9 µatm) somewhat counteracted by DIC (−40 µatm), dur-
ing the winter monsoon temperature and DIC effects are both
maximal and in opposing amplitudes (−49.5 and 51.4 µatm
for SST and DIC, respectively). This occurs due to the con-
vective mixing that occurs during winter in the north AS,
where cooling temperatures lower pCO2, but subsurface wa-
ter introduces more DIC, resulting in a near-balance.

The oligotrophic central region (Fig. 11d), the largest in
area, has similar pCO2 and temperature impacts as the whole
domain, with the two largely overlapping. DIC, TA, and SSS
impacts also follow similar patterns but have slightly higher
magnitudes in the central AS, with DIC reaching 32 µatm.

3.4 Near-surface DIC budgets and cycling

SST’s effect on pCO2 reflects physical processes like surface
heating and cooling, mixing, and advection. DIC, by con-
trast, reflects both physical and biological processes because
in addition it is also impacted by photosynthesis, CaCO3
shell formation and dissolution, zooplankton respiration, de-
tritus remineralization (bacterial respiration), and air–sea ex-
change. Budgets of DIC fluxes in the upper 20 m (Fig. 12;
see Fig. S11 in the Supplement for a volume-specific DIC
flux) show that two major processes dominate: vertical cir-
culation (light blue lines) and net biological processes (ma-
genta lines). In the entire domain and all subregions, and for
all months, vertical circulation (advection and mixing) acts
as a source of DIC, with the sum of all biological processes
acting as a sink (NB the top 20 m does not constitute the
entire euphotic zone, so respiration and remineralization at
depth is not included). Maximum magnitudes of both ver-
tical circulation and biological flux occur during the sum-
mer monsoon for all regions except for the north AS where
they occur during the winter monsoon bloom (Fig. 12c).
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Figure 11. Time series of pCO2 anomalies (µatm) (black lines) for (a) the entire domain, (b) Oman, (c) north AS, (d) oligotrophic central
AS, (e) Somalia, and (f) India. Dashed gray lines indicate horizontal axis. Gray shading shows summer and winter monsoons. Additional
lines show change in pCO2 due to temperature (blue), DIC (red), TA (orange), and SSS (magenta).

The maximum DIC flux in the domain due to vertical cir-
culation is 1.76 Pg Cyr−1, whereas biological flux peaks at
−1.0 PgCyr−1. Biological fluxes are nearly phase-matched
with vertical circulation, though peaks in summer biological
flux lag vertical circulation by a month (Fig. 12d, e, and f).
Comparing the two flux terms, after normalizing biological
flux by vertical circulation flux, the relative strength of bio-
logical processes vs. vertical sources of DIC becomes appar-
ent. In the whole domain, biological flux ranges from−90 %
to −34.5 % of vertical flux, similar to Rixen et al. (2005).
As a result, biological fixation of carbon is generally weaker
than physical vertical delivery of DIC.

Air–sea flux (red lines) is always negative due to the high
pCO2 values, peaking during the summer monsoon. DIC
flux due to atmospheric escape, while reaching its maxi-
mum magnitude of ∼ 0.32 PgCyr−1 in June and July for the
whole domain (Fig. 12a), only surpasses biological flux in
May, when 0.23 Pg Cyr−1 is released to the atmosphere com-
pared to 0.15 PgC yr−1 in biological processes. Evaporation
and precipitation (brown lines) result in higher DIC for most
of the year in the entire domain and upwelling regions (i.e.,

net evaporation, averaging 0.07 PgCyr−1 in the domain) ex-
cept India where it is negative (net precipitation, averaging
−4.8× 10−3 PgCyr−1). The oligotrophic region’s evapora-
tion and precipitation flux (Fig. 12d) oscillates from being ei-
ther positive or negative four times during the year, with mag-
nitudes rivaling air–sea flux at times (5× 10−2 PgCyr−1).
Horizontal advection (dark blue lines) is negative on average
for the whole domain (−0.2 PgCyr−1), denoting net export
(Fig. 12a). The same pattern occurs for all subregions except
India with net horizontal import of surface DIC (Fig. 12f;
2.9× 10−3 PgCyr−1). The Omani upwelling region and the
oligotrophic region experience positive peaks of horizontal
import during the summer monsoon (27 and 56 TgCyr−1

for Omani and oligotrophic regions, respectively), though for
Somalia this period is the maximum DIC export, peaking at
220 TgCyr−1 in July.
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Figure 12. Time series of DIC fluxes (PgCyr−1) in the top 20 m for (a) the domain, (b) Oman, (c) north AS, (d) oligotrophic central AS,
(e) Somalia, and (f) India. Dashed gray line shows x= 0 axis. Gray shading denotes summer and winter monsoons.

4 Discussion

4.1 Model pCO2 vs. data

The pCO2 output from the model has a positive bias with re-
spect to the in situ data, as is clear from Figs. 3 to 5. The
question becomes whether the model bias precludes its use
in acquiring a reasonable air–sea CO2 flux estimate. Regard-
ing the direction of CO2 flux (positive outgassing or negative
uptake), since most in situ 1pCO2 data are already positive
(Fig. 2), an additional positive bias will not impact flux direc-
tion, reaffirming the previous findings of Sarma et al. (1998)
and subsequent work demonstrating that the AS is a source
of CO2 to the atmosphere. A positive model bias in pCO2
has been noted in previous modeling studies. For instance,
in the global data assimilation study of Valsala and Maksyu-
tov (2010), they found an overall positive bias in the north-
ern Indian Ocean, ∼+5–15 µatm above TK09 (compared to
our −3.1 to +48.4 µatm with respect to in situ data). Ad-
ditionally, that study found a similar underestimate near the
upwelling regions (summer negative bias in the model) of
the AS and overestimate elsewhere (their Figs. 3 and 4). In
Sreeush et al. (2019a), ROMS resulted in a systematic posi-

tive pCO2 bias, whereas the offline Ocean Transport Tracer
Model (OTTM) produced negative bias in pCO2 in compari-
son to TK09.

The search for the model bias source is hindered by the
lack of in situ data in the region. As already noted, GLO-
DAP has 334 locations with DIC and TA in the top 50 m.
The few available in situ data that do exist in the AS have a
number of deficiencies for the purpose of validating model
output. First, the data available are both old and concentrated
around the years 1995 and 1997. While the JGOFS stud-
ies were quintessential in diagnosing the seasonal cycle of
pCO2, they preclude being able to decipher the secular trend
in surface pCO2 due to increasing atmospheric CO2 con-
centrations. In our analysis, we estimated a +2 µatm yr−1

trend, close to that of Tjiputra et al. (2014), though finding
an interannual linear trend requires more data at regular in-
tervals. Second, due to the nature of strong upwelling in the
AS, previous cruise sampling also biases not only the sum-
mer months (≈70 % of data) but also places in the vicinity of
the Omani coast (Fig. 3g). As a result, it is difficult to deter-
mine to what extent the data are representative of the entire
AS. Consider that in the model, flux intensities are lower in
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the central, oligotrophic region (Fig. 6), but due to its surface
area the total flux (28.6 TgCyr−1) was close to that of Soma-
lia (32.9 TgCyr−1), an observation also made by Lendt et al.
(2003). Determining to what extent the model over- or under-
estimates CO2 flux due to pCO2 bias would require more in
situ sampling, which would need to be designed around solv-
ing the problems of areal coverage (outside of Oman and up-
welling zones) and temporal coverage (off-summer months
and recurrent over multiple years).

The distribution of model pCO2 is both similar to and dif-
ferent from previous data-based and modeling studies. Apart
from the aforementioned bias leading to heightened absolute
values (though Bates et al., 2006, have > 400 µatm for large
parts of the AS), the relatively enhanced pCO2 values near
Oman, along the west coast of India, and in the Gulf of Aden
have already been observed (Sabine et al., 2000; Bates et al.,
2006; Sarma et al., 2000; Körtzinger et al., 1997). These
same studies, however, note a minimum of pCO2 outside of
the summer monsoon near the southwest coast of India due to
freshwater influx, which is not replicated well in the model.
Additionally, elevated pCO2 near the Equator is not observed
(Sabine et al., 2000; Bates et al., 2006), although it can ap-
pear in other models (Valsala and Murtugudde, 2015). The
model’s seasonal pCO2 minimum during the winter monsoon
is also not reflective of results found elsewhere (Goyet et al.,
1998a, b; Bates et al., 2006; though many studies highlight
the north AS, where minimum model pCO2 occurs during the
spring). Instead, these papers state pCO2 is minimal during
the fall intermonsoon. Likewise, the large-scale spring max-
imum of pCO2 seen in the model is not found in these stud-
ies, except for in Louanchi et al. (1996), though this result is
somewhat anomalous since that study showed a pCO2 min-
imum during the summer monsoon. Thus, while the model
agrees with previous work insofar as the coastal regions im-
pacted by upwelling show enhanced pCO2, mismatches do
appear in the seasonal timing of maxima and minima, espe-
cially within certain subregions.

Despite the model’s limitations, its advantages are also
clear. Beyond the obvious increase in spatiotemporal cov-
erage, capturing the monsoon’s strong seasonal dynamics
helps the model where other approaches fall short. This is
especially illustrated in Fig. 5. Since upwelling regions are
limited in geographic extent near the coast, capturing their
high pCO2 values can be difficult for other approaches, such
as TK09 with its coarse grid. Even the L15 product, with
its finer grid, is unable to produce the higher pCO2 values
seen during the summer. Judging from these comparisons,
the trade-off appears to be that the model currently may pro-
duce less accurate pCO2 values outside of summer, but the
explicit resolving of upwelling allows for enhanced pCO2
values during the summer monsoon, the peak of CO2 flux.

4.2 Spatial distribution of air–sea CO2 flux and pCO2

The model results both affirm the conclusions of previous
studies in terms of CO2 flux direction and seasonality and
yet find difference in magnitudes. As previously stated, the
AS is an atmospheric CO2 source, with most flux occurring
(56 %) during the summer monsoon (Fig. 6). In our results,
however, there is no region during any of the seasons where
CO2 uptake takes place. While somewhat expected, this is
still in disagreement with some of the other pCO2 datasets
previously considered, such as in Sarma (2003), in which
negative 1pCO2 values appear, such as during the winter
monsoon near the south coast of India. The model’s posi-
tive pCO2 bias may be to blame for this, making it so that no
negative 1pCO2 appears. Despite the positive pCO2 bias, a
few other patterns are clear in comparison to other CO2 flux
estimates. Sabine et al. (2000) and Sarma (2003) both find
the maximum flux occurring during the summer monsoon
centered around the upwelling regions, which is also quite
visible in the model results (Fig. 6d). However, Bates et al.
(2006) found that a secondary maximum of flux occurs dur-
ing the winter monsoon, though due to the color scale in their
Fig. 6 it is difficult to ascertain much beyond CO2 outgassing
from the AS during all months of the year. Their secondary
max in flux may be partly attributable to higher wintertime
pCO2, as well.

The spatial decomposition of factors influencing pCO2
(Fig. 10) highlights how geographically DIC can be the
strongest factor, with SST and TA taking secondary roles
and SSS being a weak contributor. Since DIC and TA can
co-vary with salinity, when they are not normalized, their
distribution in the AS mirrors the north–south salinity gra-
dient (see Figs. 2 and 3 in Bates et al., 2006). Once corrected
for salinity, it is clear that the upwelling region of Oman
still has elevated DIC, whereas the central, oligotrophic AS
shows a DIC deficit. By contrast, the onshore–offshore gra-
dient in TA is weaker. Differences between coastal and off-
shore normalized DIC and TA in the AS have been previ-
ously observed (Millero et al., 1998b; Lendt et al., 2003), but
the stronger relative absence of DIC in the central AS and
its role in affecting pCO2 has not been emphasized. A simi-
lar analysis in the California Current upwelling system (Turi
et al., 2014) indicates near-compensation of DIC and temper-
ature in opposing directions, nearly overlapping each other.
In that scenario, DIC overpowers temperature at the coast,
with TA and SSS being secondary. For the AS, while the up-
welling regions of Oman and Somalia show temperature and
DIC working against each other, they are not as well com-
pensated for. Furthermore, the gradients of positive/negative
pCO2 contributions from temperature and DIC do not over-
lap, leading to the curious scenario in which temperature and
DIC both contribute positively to the pCO2 anomaly along
the Indian coast. The positioning of these gradients and the
surprising negative influence of DIC away from upwelling
regions perhaps underscores how the AS is rather unique,
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where strong seasonal upwelling winds mingle with strong
tropical heating and there is the influence of outflows from
marginal seas (Prasad et al., 2001; l’Hégaret et al., 2015).

4.3 Seasonality of air–sea CO2 flux, pCO2, and DIC

4.3.1 Air–sea CO2 Flux

The fact that model CO2 flux for the entire domain peaks
in summer despite a spring peak in pCO2 for the domain as
a whole (along with the Somalian and oligotrophic regions)
is the first sign that perhaps pCO2 is not the primary driver
in determining flux timing. The Reynolds decomposition of
CO2 flux terms (Fig. 8) clearly shows that a large proportion
of the summer flux is due to the arrival of the strong south-
west summer monsoon winds. The positive contributions due
to pCO2 occur in the usual upwelling regions, though their
contribution in magnitude is relatively muted and negative
in the southern portion of the AS. Cross-terms, while non-
zero, are inconsequential in determining the overall anomaly
in summer flux intensity, as has been seen elsewhere (Doney
et al., 2009b). Indeed, in a scenario in which the cross-term
contribution is at its maximum amplitude, the Omani up-
welling region during summer, the cross-term is not strong
enough to sway the direction of the flux anomaly.

The summer flux signal is such that in nearly all the re-
gions outside of summer, the anomaly is negative. Further-
more, the contribution of winds in particular is so strong that
it is the largest factor all year except for the spring intermon-
soon, when peak pCO2 is important relative to the effects
of wind (or lack thereof) in the central oligotrophic AS, So-
malia, and the averaged domain. This suggests that, on first
order, winds are the most important factor in determining
the seasonal air–sea flux cycle in the AS. We should keep in
mind, however, that these results conflict with the analysis of
Roobaert et al. (2019). In their global study of coastal waters,
while seasonal CO2 flux variability in the AS is relatively
high compared to other regions (their Fig. 6), the largest con-
tributions come from 1pCO2 and cross-terms (their Fig. 7),
especially near the Horn of Africa. As a result, further work
should be conducted to reduce uncertainty in sea surface
pCO2 values to determine whether winds, 1pCO2, or cross-
terms are significant drivers of air–sea flux. Additionally,
when considering the inconsistencies of models in estimat-
ing air–sea CO2 flux (Sarma et al., 2013), uncertainties from
incomplete representation of winds and the various parame-
terizations of piston velocity must be considered in addition
to pCO2, especially in light of recent work in the field (Ho
et al., 2006; Wanninkhof, 2014; Roobaert et al., 2018).

Wind parameterizations notwithstanding, once winds are
controlled in our metaanalysis (Fig. 9) it appears that on bal-
ance (1) gridded data-based pCO2 products will underesti-
mate the upwelling zone maxima of pCO2 and CO2 flux dur-
ing the summer, (2) the model overestimates pCO2 the rest
of the year, eventually contributing to a possible overesti-

mate of CO2 flux, and (3) this leaves reality somewhere in
between. The only way to rectify these differences and ar-
rive at a more accurate estimate will be to conduct sufficient
in situ sampling of DIC, TA, and pCO2 in more regions than
the upwelling zones, as well as preferably outside of the sum-
mer and over the course of multiple years. With the advent of
ARGO floats with pH sensors, and the advancement of tech-
nology for other variables such as TA, the possibility emerges
of using autonomous sampling platforms to expand beyond
the limitations of shipboard measurements to fill the data gap
in the AS carbon system.

4.3.2 The pCO2 seasonality

Decomposition of seasonal pCO2 anomalies within regions
portrays a slightly different picture where temperature is the
dominant force, with DIC countervailing in the upwelling re-
gions. Not only is this seasonal cycle more akin to that seen
in the California Current (Turi et al., 2014), the dueling role
of these two forces is also reflected in a similar analysis by
Sreeush et al. (2019a) for pH instead of pCO2 in the AS. In-
terestingly, in that study both ROMS and OTTM were com-
pared side-by-side, and in OTTM, TA played a larger role
than in ROMS. Similarly, in Valsala and Maksyutov (2013),
TA played an important role in regulating interannual pCO2
variability in the AS. A preliminary TA budget of the model
(Fig. S12 in the Supplement) shows that while vertical cir-
culation and biological processes dominate the seasonal cy-
cle of near-surface DIC, TA has multiple forces influencing
its time evolution. However, the magnitude of the fluxes are
∼

1
5 those of DIC, indicating that TA is less seasonally vari-

able than DIC (reflected also in Fig. 11). These results, from
another model, as well as the low variability in this model’s
TA, raise the possibility that TA’s importance is underesti-
mated in the current study.

Zooming out from the upwelling regions and looking at
the whole AS, the dominance of temperature on the seasonal
pCO2 cycle is clear. In the domain average, temperature ef-
fects nearly overlap with the overall pCO2 anomaly. This
result brings back into focus the seasonal timing of pCO2
minima and maxima in the model vis à vis previous work.
In the earlier studies, which either use data directly or build
statistical models from those data, there is no spring inter-
monsoon pCO2 maximum driven by heating. Indeed, Sabine
et al. (2000) noted that pCO2 in the spring was much lower
than would be expected given the SST but attributed this to
drawdown due to biological production. The model, how-
ever, indicates that this is precisely the season when biologi-
cal production is at its lowest. The presence of these spring-
time maxima can be seen in other models, as is visible in the
results of Valsala and Maksyutov (2010) and a synthesis by
Sarma et al. (2013). Since the model indicates temperature
is producing the maxima, it reduces the concern that erro-
neous DIC or TA values in the model are driving this signal.
The model SST matches well with the in situ data (Figs. S8
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and S9), and the forcing datasets for SST and heat flux corre-
spond to data that predate or include the pCO2 sampling pe-
riod (i.e., before 2000), so a climate change bias is unlikely.
What might be more likely, then, is a sampling bias towards
summertime Oman, one of the few areas in the AS with a
summertime instead of springtime pCO2 max. Such a bias
could possibly obscure what is happening in the rest of the
AS. Regardless, the discrepancy between models and obser-
vations during the spring period can be added as yet another
reason to conduct more in situ sampling to either confirm or
disavow whether the model results are spurious.

4.3.3 DIC seasonality

The potential for biological control in setting pCO2 has been
found in Sri Lanka near the AS (Chakraborty et al., 2018). In
this study, it was found that the source water in Sri Lanka was
sufficiently low in DIC relative to inorganic nutrients that
upwelling actually reduced surface pCO2. In a similar vein,
Takahashi et al. (2002) found, using a metric comparing tem-
perature and “biological” effects (i.e., everything else), that
the AS’s pCO2 is reduced more by biological production than
temperature effects. Conducting this analysis on the model
output (Fig. S13 in the Supplement), it appears that “bio-
logical” control appears dominant over the upwelling areas
(Omani coast, coast of Somalia, India) and near the Equa-
tor east of 60◦ E, but for the majority of the AS temperature
dominates. This cursory analysis aside, as is evident in the
results of Chakraborty et al. (2018), the more useful compar-
ison is in determining whether biological production is suffi-
cient to outweigh DIC enhancement from subsurface water.

In summary, the results in Fig. 12 indicate that for the en-
tire AS, DIC enhancement by vertical circulation (both ad-
vection and mixing) brings more DIC into the near-surface
than is removed by net biological processes, and so no bio-
logically induced decrease in pCO2 occurs in the final pCO2
signal. The timing of biological drawdown, occurring at the
same time or lagging vertical circulation, is consistent with
the general phenology of blooms and similar to previous find-
ings (Louanchi et al., 1996; Rixen et al., 2006; Sharada et al.,
2008). The result that biological cycling of carbon is much
larger than the air–sea flux of CO2 also corroborates the re-
sults of Lendt et al. (2003), who found net community pro-
duction to be ∼ 3.6 times larger than CO2 emission. The
relatively low impact of horizontal advection is an interest-
ing detail to consider; in other upwelling systems, significant
proportions of water and biological production are advected
offshore (Nagai et al., 2015). Lendt et al. (2003) suggest up-
welled nitrate is assimilated and does not arrive in the central
AS, while Resplandy et al. (2011) show that a large fraction
of total nutrients in the central AS come from the upwelling
zones. Thus, although water may be advected offshore, the
relevant timescale for DIC cycling processes (i.e., air–sea
emission, biological uptake) may be short enough so that hor-
izontal export of enhanced DIC (keep in mind the onshore–

offshore normalized DIC gradient) from the upwelling re-
gions does not significantly contribute to the central AS or
other regions.

5 Conclusions

In this study, we used a regional circulation model coupled
with a biogeochemical model to investigate the annual mag-
nitude, seasonal cycle, and drivers of air–sea CO2 flux in the
AS, primarily winds and 1pCO2. This effort was made to
complement previous flux estimates, for which limited data
or insufficient model resolutions have produced contrasting
results. Consistent with previous work, we find that the AS
is a source of CO2 to the atmosphere for the entire year, with
the bulk occurring during the summer monsoon. Our esti-
mate of flux, ∼ 160 TgCyr−1, with concentrated flux den-
sities up to 6 molCm−2 yr−1 in the upwelling regions, is
larger than most previous reports but not inconsistent with
the range of other findings (Sarma, 2003; Naqvi et al., 2005;
Sarma et al., 2013) . Since the AS lacks carbon data, here we
subjected the model to validation with raw data instead of
smoothed climatologies. The model is shown to have a posi-
tive bias in pCO2, attributed to TA and DIC, with TA bias be-
ing stronger. Despite this, pCO2 variability compares favor-
ably to alternative products in the region. The bias results in
strongly positive1pCO2 throughout the domain year-round.
While positive 1pCO2 values have been observed before in
the AS, we likely overestimate CO2 flux outside of the sum-
mer monsoon.

The majority of flux occurs during the summer as opposed
to a modeled spring pCO2 maximum due to the influence of
winds. A Reynolds decomposition of both pCO2 and wind
variability shows that the intense winds of the summer mon-
soon contribute 90 % of that season’s flux anomaly. In fact,
winds play a more important role than the increase in pCO2
in the upwelling regions. Even though winds represent such a
major variable in determining AS CO2 flux timing, the vari-
ability in total flux due to different pCO2 products leads to a
2× range in magnitude. These results suggest that in addition
to the expected increase in surface ocean pCO2 due to an-
thropogenic climate change, possible changes in the timing,
location, and magnitude of monsoon winds (Lachkar et al.,
2018; Praveen et al., 2020) will have downstream impacts on
seasonal air–sea flux.

An important result of this modeling study is that temper-
ature drives a springtime maximum of pCO2 in the AS. This
maximum has been observed in lower-resolution models but
is not found in the in situ data. Due to the fact that tempera-
ture is not sensitive to biological processes like DIC and TA,
this discrepancy suggests that more sampling is necessary to
determine whether it is an artifact of spotty sampling or an in-
herent problem in models unrelated to resolving coastal up-
welling. Additionally, we find that spatial gradients of DIC
and temperature do not overlap as they do elsewhere in the
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ocean. Instead, temperature follows a southwest–northeast
monsoon wind pattern, whereas DIC is enhanced nearest to
the coasts. The resulting apparent deficit of normalized DIC
in the central, oligotrophic AS has not been emphasized pre-
viously. Finally, we find that despite the intense biological
activity in the AS, primary production by phytoplankton is
insufficient to counter the increased carbon supply provided
by vertical circulation during bloom periods.

Models can be used to expand spatiotemporal coverage
when data are scarce. However, models’ limitations of-
ten manifest when there are no new data to test their fi-
delity. Limitations in the spatiotemporal coverage of exist-
ing datasets stem from biases in sampling during the sum-
mer monsoon, sampling close to the Omani upwelling re-
gion, and sampling limited in scope to the years of JGOFS
expeditions of the 1990s. In order to fully characterize the
pCO2 cycle outside of summer in the rest of the AS, as well
as to determine the secular trend of surface pCO2 due to an-
thropogenic carbon additions to the atmosphere, more in situ
data of the carbon system (e.g., DIC, TA, pCO2), from ship-
board measurements or autonomous sampling platforms, are
sorely needed. Finally since 1pCO2 is generally positive in
the AS, the direction of air–sea CO2 exchange examined here
is robust to model error, whereas other important indicators
such as pH and aragonite saturation, �a, which at important
thresholds of low values have deleterious impacts for vari-
ous biological taxa (Doney et al., 2009a; Bednaršek et al.,
2019, 2021) will be less so. These data are thus critical for
resolving the possible responses of the carbon system in the
AS to ongoing climate change, whether from changes in tim-
ing or magnitude of monsoon wind forcing, the impact of
increased surface heating on stratification and vertical circu-
lation, or changing levels of primary and fisheries produc-
tivity with altered carbonate solubility. Without this baseline
information, it will be difficult to predict what the future has
in store for the AS carbon system.

Code availability. ROMS-AGRIF is provided by https://www.
croco-ocean.org (last access: 1 February 2022).

Data availability. Model output used in this study
can be accessed and cited from the following:
https://doi.org/10.5281/zenodo.5937512 (de Verneil, 2022).
The Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2016) can be
downloaded from https://www.socat.info/index.php/version-2019/
(last access: 1 February 2022). The Lamont–Doherty Earth
Observatory pCO2 database can be downloaded from
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/
oceans/LDEO_Underway_Database/ (last access: 1 Febru-
ary 2022). The Simple Ocean Data Assimilation (SODA)
reanalysis data can be downloaded from http://apdrc.soest.hawaii.
edu/datadoc/soda_2.2.4.php (last access: 1 February 2022).
The World Ocean Atlas 2009 can be downloaded from
https://www.ncei.noaa.gov/data/oceans/woa/WOA09/DATA/

(last access: 1 February 2022). The Comprehensive
Ocean-Atmosphere Data Set (COADS) can be down-
loaded from http://iridl.ldeo.columbia.edu/SOURCES/
.DASILVA/.SMD94/.halfbyhalf/.climatology/ (last ac-
cess: 1 February 2022). The Scatterometer Climatol-
ogy of Ocean Winds (SCOW) can be downloaded from
https://chapman.ceoas.oregonstate.edu/scow/index.html (last
access: 1 February 2022). AVHRR SST data can be down-
loaded from https://www.ncei.noaa.gov/data/oceans/pathfinder/
Version5.0_Climatologies/1982_2008/Monthly/ (last access:
1 February 2022). NPP data can be downloaded from https:
//sites.science.oregonstate.edu/ocean.productivity/custom.php (last
access: 1 February 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-907-2022-supplement.

Author contributions. AdV, ZL, and ML conceived the study, AdV
and ZL ran the model, AdV, ZL, SS, and ML conducted analysis,
AdV generated figures and text, and ZL, SS, and ML revised figures
and text.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Support for this research comes from the Cen-
ter for Prototype Climate Modeling (CPCM), the New York Univer-
sity Abu Dhabi (NYUAD) Research Institute. Computations were
conducted at the High Performance Cluster (HPC) at NYUAD,
Dalma. We deeply thank both Benoit Merchand and Muataz Al Bar-
wani for their technical support. We are also grateful for the work of
two anonymous reviewers and associate editor Peter Landschützer,
who greatly improved the manuscript.

Financial support. This research has been supported by Tamkeen
under the NYU Abu Dhabi Research Institute (grant nos. G110 and
CG009).

Review statement. This paper was edited by Peter Landschützer
and reviewed by two anonymous referees.

References

Acharya, S. S. and Panigrahi, M. K.: Eastward shift and mainte-
nance of Arabian Sea oxygen minimum zone: Understanding the
paradox, Deep-Sea Res. Pt. I, 115, 240–252, 2016.

https://doi.org/10.5194/bg-19-907-2022 Biogeosciences, 19, 907–929, 2022

https://www.croco-ocean.org
https://www.croco-ocean.org
https://doi.org/10.5281/zenodo.5937512
https://www.socat.info/index.php/version-2019/
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/LDEO_Underway_Database/
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/LDEO_Underway_Database/
http://apdrc.soest.hawaii.edu/datadoc/soda_2.2.4.php
http://apdrc.soest.hawaii.edu/datadoc/soda_2.2.4.php
https://www.ncei.noaa.gov/data/oceans/woa/WOA09/DATA/
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.halfbyhalf/.climatology/
http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.halfbyhalf/.climatology/
https://chapman.ceoas.oregonstate.edu/scow/index.html
https://www.ncei.noaa.gov/data/oceans/pathfinder/Version5.0_Climatologies/1982_2008/Monthly/
https://www.ncei.noaa.gov/data/oceans/pathfinder/Version5.0_Climatologies/1982_2008/Monthly/
https://sites.science.oregonstate.edu/ocean.productivity/custom.php
https://sites.science.oregonstate.edu/ocean.productivity/custom.php
https://doi.org/10.5194/bg-19-907-2022-supplement


926 A. de Verneil et al.: Arabian Sea Air–Sea CO2 flux

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K.
M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D.,
Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C.,
Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.
R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A.,
Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle,
R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Feather-
stone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J.,
Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss,
B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V.,
Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Land-
schützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke,
A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S.,
Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S.,
Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger,
R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A.
C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-
decade record of high-quality fCO2 data in version 3 of the Sur-
face Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–
413, https://doi.org/10.5194/essd-8-383-2016, 2016.

Bates, N. R., Pequignet, A. C., and Sabine, C. L.: Ocean
carbon cycling in the Indian Ocean: 1. Spatiotempo-
ral variability of inorganic carbon and air–sea CO2
gas exchange, Global Biogeochem. Cy., 20, GB3020,
https://doi.org/10.1029/2005GB002491, 2006.

Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri,
F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Ne-
zlin, N. P., Sutula, M., and Weisberg, S. B.: Systematic Re-
view and Meta-Analysis Toward Synthesis of Thresholds of
Ocean Acidification Impacts on Calcifying Pteropods and In-
teractions With Warming, Frontiers in Marine Science, 6, 227,
https://doi.org/10.3389/fmars.2019.00227, 2019.

Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M.,
Chan, K. Y. K., Dupont, S., Padilla-Gamiño, J. L., Spicer,
J. I., Kessouri, F., Roethler, M., Sutula, M., and Weisberg,
S. B.: Synthesis of Thresholds of Ocean Acidification Im-
pacts on Echinoderms, Frontiers in Marine Science, 8, 261,
https://doi.org/10.3389/fmars.2021.602601, 2021.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-
rived from satellite-based chlorophyll concentration, Limnol.
Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001,
1997.

Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using
Simple Ocean Data Assimilation (SODA), Mon. Weather Rev.,
136, 2999–3017, 2008.

Casey, K. S. and Cornillon, P.: A comparison of satellite and in
situ–based sea surface temperature climatologies, J. Climate, 12,
1848–1863, 1999.

Chakraborty, K., Valsala, V., Gupta, G., and Sarma, V.: Dominant
biological control over upwelling on pCO2 in sea east of Sri
Lanka, J. Geophys. Res.-Biogeo., 123, 3250–3261, 2018.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon
and Other Biogeochemical Cycles, in: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I

to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G. K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., Midgley, P. M., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 2013.

Curry, W., Ostermann, D., Guptha, M., and Ittekkot, V.:
Foraminiferal production and monsoonal upwelling in the Ara-
bian Sea: evidence from sediment traps, Geological Society, Lon-
don, Special Publications, 64, 93–106, 1992.

da Silva, A. M., Young, C. C., and Levitus, S.: Atlas of surface ma-
rine data 1994, Vol. 4: Anomalies of fresh water fluxes, NOAA
Atlas, NESDIS, U.S. Department of Commerce, NOAA, NES-
DIS, 9, 1994.

de Verneil, A.: Evaluating the Arabian Sea as a regional source of
atmospheric CO2: seasonal variability and drivers, Zenodo [Data
set], https://doi.org/10.5281/zenodo.5937512, 2022.

Dickson, A. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media,
Deep-Sea Res. Pt. I, 34, 1733–1743, 1987.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kley-
pas, J. A.: Ocean Acidification: The Other CO2
Problem, Annu. Rev. Mar. Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, pMID:
21141034, 2009a.

Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K.,
Mahowald, N., Moore, J. K., and Wanninkhof, R.: Mechanisms
governing interannual variability in upper-ocean inorganic car-
bon system and air–sea CO2 fluxes: Physical climate and atmo-
spheric dust, Deep-Sea Res. Pt. II, 56, 640–655, 2009b.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin,
S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R.,
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan,
S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie,
L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritza-
lis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V.,
Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K.,
Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,
Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poul-
ter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger,
J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tan-
hua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G.,
Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.:
Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–
3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

Goyet, C., Metzl, N., Millero, F., Eischeid, G., O’sullivan, D., and
Poisson, A.: Temporal variation of the sea surface CO2/carbonate
properties in the Arabian Sea, Mar. Chem., 63, 69–79, 1998a.

Goyet, C., Millero, F. J., O’Sullivan, D., Eischeid, G., McCue, S.,
and Bellerby, R.: Temporal variations of pCO2 in surface seawa-
ter of the Arabian Sea in 1995, Deep-Sea Res. Pt. I, 45, 609–623,
1998b.

Gruber, N., Frenzel, H., Doney, S. C., Marchesiello, P.,
McWilliams, J. C., Moisan, J. R., Oram, J. J., Plattner, G.-K.,
and Stolzenbach, K. D.: Eddy-resolving simulation of plankton

Biogeosciences, 19, 907–929, 2022 https://doi.org/10.5194/bg-19-907-2022

https://doi.org/10.5194/essd-8-383-2016
https://doi.org/10.1029/2005GB002491
https://doi.org/10.3389/fmars.2019.00227
https://doi.org/10.3389/fmars.2021.602601
https://doi.org/10.4319/lo.1997.42.1.0001
https://doi.org/10.5281/zenodo.5937512
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.5194/essd-12-3269-2020


A. de Verneil et al.: Arabian Sea Air–Sea CO2 flux 927

ecosystem dynamics in the California Current System, Deep-Sea
Res. Pt. I, 53, 1483–1516, 2006.

Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced
reduction of biological production in eastern boundary upwelling
systems, Nat. Geosci., 4, 787–792, 2011.

Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., and
Plattner, G.-K.: Rapid progression of ocean acidification in the
California Current System, Science, 337, 220–223, 2012.

Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar,
Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plat-
tner, G.-K.: Spatiotemporal variability and long-term trends of
ocean acidification in the California Current System, Biogeo-
sciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013,
2013.

Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey,
M., and Hill, P.: Measurements of air-sea gas exchange at
high wind speeds in the Southern Ocean: Implications for
global parameterizations, Geophys. Res. Lett., 33, L16611,
https://doi.org/10.1029/2006GL026817, 2006.

Hood, R. R., Urban, E. R., McPhaden, M. J., Su, D., and Raes, E.:
The 2nd International Indian Ocean Expedition (IIOE-2): Moti-
vating New Exploration in a Poorly Understood Basin, Limnol-
ogy and Oceanography Bulletin, 25, 117–124, 2016.

Keeling, C. D.: Carbon dioxide in surface ocean waters:
4. Global distribution, J. Geophys. Res., 73, 4543–4553,
https://doi.org/10.1029/JB073i014p04543, 1968.

Keeling, C. D., Brix, H., and Gruber, N.: Seasonal and long-
term dynamics of the upper ocean carbon cycle at Station
ALOHA near Hawaii, Global Biogeochem. Cy., 18, GB4006,
https://doi.org/10.1029/2004GB002227, 2004.

Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the his-
tory of anthropogenic CO2 concentrations in the ocean, Nature,
462, 346–349, 2009.

Körtzinger, A., Duinker, J. C., and Mintrop, L.: Strong CO2 emis-
sions from the Arabian Sea during south-west monsoon, Geo-
phys. Res. Lett., 24, 1763–1766, 1997.

Kumar, S. P., Ramaiah, N., Gauns, M., Sarma, V., Muraleedharan,
P., Raghukumar, S., Kumar, M. D., and Madhupratap, M.: Physi-
cal forcing of biological productivity in the Northern Arabian Sea
during the Northeast Monsoon, Deep-Sea Res. Pt. II, 48, 1115–
1126, 2001.

Lachkar, Z. and Gruber, N.: Response of biological production and
air–sea CO2 fluxes to upwelling intensification in the Califor-
nia and Canary Current Systems, J. Marine Syst., 109, 149–160,
2013.

Lachkar, Z., Smith, S., Lévy, M., and Pauluis, O.: Eddies reduce
denitrification and compress habitats in the Arabian Sea, Geo-
phys. Res. Lett., 43, 9148–9156, 2016.

Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening
of the Arabian Sea oxygen minimum zone in response to increase
in Indian monsoon wind intensity, Biogeosciences, 15, 159–186,
https://doi.org/10.5194/bg-15-159-2018, 2018.

Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C.,
Bakker, D. C., Van Heuven, S., Hoppema, M., Metzl, N.,
Sweeney, C., Takahashi, T., Tilbrook, B., and Wanninkhof, R.:
The reinvigoration of the Southern Ocean carbon sink, Science,
349, 1221–1224, 2015.

Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical
mixing: A review and a model with a nonlocal boundary layer
parameterization, Rev. Geophys., 32, 363–403, 1994.

Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G.,
Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., and Key,
R. M.: Global relationships of total alkalinity with salinity and
temperature in surface waters of the world’s oceans, Geophys.
Res. Lett., 33, L19605, https://doi.org/10.1029/2006GL027207,
2006.

Lendt, R., Thomas, H., Hupe, A., and Ittekkot, V.: Re-
sponse of the near-surface carbonate system of the north-
western Arabian Sea to the southwest monsoon and re-
lated biological forcing, J. Geophys. Res.-Oceans, 108, 3222,
https://doi.org/10.1029/2000JC000771, 2003.

Lévy, M., Shankar, D., André, J.-M., Shenoi, S., Durand, F., and
de Boyer Montégut, C.: Basin-wide seasonal evolution of the In-
dian Ocean’s phytoplankton blooms, J. Geophys. Res.-Oceans,
112, C12014, https://doi.org/10.1029/2007JC004090, 2007.

L’Hégaret, P., Duarte, R., Carton, X., Vic, C., Ciani, D., Baraille,
R., and Corréard, S.: Mesoscale variability in the Arabian
Sea from HYCOM model results and observations: impact
on the Persian Gulf Water path, Ocean Sci., 11, 667–693,
https://doi.org/10.5194/os-11-667-2015, 2015.

Louanchi, F., Metzl, N., and Poisson, A.: Modelling the monthly sea
surface fCO2 fields in the Indian Ocean, Mar. Chem., 55, 265–
279, 1996.

Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: En-
hanced CO2 outgassing in the Southern Ocean from a positive
phase of the Southern Annular Mode, Global Biogeochem. Cy.,
21, GB2026, https://doi.org/10.1029/2006GB002900, 2007.

Mahadevan, A., Lévy, M., and Mémery, L.: Mesoscale variability of
sea surface pCO2: What does it respond to?, Global Biogeochem.
Cy., 18, GB1017, https://doi.org/10.1029/2003GB002102, 2004.

Mahadevan, A., Tagliabue, A., Bopp, L., Lenton, A., Mémery,
L., and Lévy, M.: Impact of episodic vertical fluxes on
sea surface pCO2, Philos. T. R. Soc. A, 369, 2009–2025,
https://doi.org/10.1098/rsta.2010.0340, 2011.

Marchesiello, P., Debreu, L., and Couvelard, X.: Spurious diapycnal
mixing in terrain-following coordinate models: The problem and
a solution, Ocean Model., 26, 156–169, 2009.

Mehrbach, C., Culberson, C., Hawley, J., and Pytkowicx, R.: Mea-
surement of the apparent dissociation constants of carbonic acid
in seawater at atmospheric pressure 1, Limnol. Oceanogr., 18,
897–907, 1973.

Millero, F. J.: Thermodynamics of the carbon dioxide system in the
oceans, Geochim. Cosmochim. Acta, 59, 661–677, 1995.

Millero, F. J., Degler, E. A., O’Sullivan, D. W., Goyet, C., and Eis-
cheid, G.: The carbon dioxide system in the Arabian Sea, Deep-
Sea Res. Pt. II, 45, 2225–2252, 1998a.

Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in
the surface waters of the major oceans, Mar. Chem., 60, 111–130,
https://doi.org/10.1016/S0304-4203(97)00084-4, 1998b.

Morrison, J. M., Codispoti, L., Smith, S. L., Wishner, K., Flagg, C.,
Gardner, W. D., Gaurin, S., Naqvi, S., Manghnani, V., Prosperie,
L., Prosperie, L., and Gundersen, J. S.: The oxygen minimum
zone in the Arabian Sea during 1995, Deep-Sea Res. Pt. II, 46,
1903–1931, 1999.

Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C.,
and Plattner, G.-K.: Dominant role of eddies and filaments in the

https://doi.org/10.5194/bg-19-907-2022 Biogeosciences, 19, 907–929, 2022

https://doi.org/10.5194/bg-10-193-2013
https://doi.org/10.1029/2006GL026817
https://doi.org/10.1029/JB073i014p04543
https://doi.org/10.1029/2004GB002227
https://doi.org/10.5194/bg-15-159-2018
https://doi.org/10.1029/2006GL027207
https://doi.org/10.1029/2000JC000771
https://doi.org/10.1029/2007JC004090
https://doi.org/10.5194/os-11-667-2015
https://doi.org/10.1029/2006GB002900
https://doi.org/10.1029/2003GB002102
https://doi.org/10.1098/rsta.2010.0340
https://doi.org/10.1016/S0304-4203(97)00084-4


928 A. de Verneil et al.: Arabian Sea Air–Sea CO2 flux

offshore transport of carbon and nutrients in the California Cur-
rent System, J. Geophys. Res.-Oceans, 120, 5318–5341, 2015.

Naqvi, S. W. A., Gupta, R. S., and Kumar, M. D.: Carbon dioxide
and nitrous oxide in the Arabian Sea, Geophysical Monograph
Series, American Geophysical Union, Washington, DC, 75, 85–
92, https://doi.org/10.1029/GM075p0085, 1993.

Naqvi, S. W. A., Bange, H. W., Gibb, S. W., Goyet, C., Hat-
ton, A. D., and Upstill-Goddard, R. C.: Biogeochemical ocean–
atmosphere transfers in the Arabian Sea, Prog. Oceanogr., 65,
116–144, 2005.

Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker,
S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely,
R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E.,
Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lau-
vset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil,
B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M.,
Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 –
an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461,
https://doi.org/10.5194/essd-11-1437-2019, 2019.

Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean
carbonate system: mocsy 2.0, Geosci. Model Dev., 8, 485–499,
https://doi.org/10.5194/gmd-8-485-2015, 2015.

Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Rou-
tine uncertainty propagation for the marine carbon dioxide sys-
tem, Mar. Chem., 207, 84–107, 2018.

Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in
the oxygen minimum zone (OMZ), Biogeosciences, 8, 239–252,
https://doi.org/10.5194/bg-8-239-2011, 2011.

Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr,
A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J.,
Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin,
J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C.,
Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet,
C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M.,
Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen,
T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P.,
Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat,
L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Naka-
date, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin,
X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson,
A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V.
S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjel-
van, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Tel-
szewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark,
D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong,
C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled
Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5,
125–143, https://doi.org/10.5194/essd-5-125-2013, 2013.

Prasad, T., Ikeda, M., and Kumar, S. P.: Seasonal spreading of the
Persian Gulf Water mass in the Arabian Sea, J. Geophys. Res.-
Oceans, 106, 17059–17071, 2001.

Praveen, V., Valsala, V., Ajayamohan, R., and Balasubramanian, S.:
Oceanic Mixing over the Northern Arabian Sea in a Warming
Scenario: Tug of War between Wind and Buoyancy Forces, J.
Phys. Oceanogr., 50, 945–964, 2020.

Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Ku-
mar, D.: Contribution of mesoscale processes to nutrient bud-
gets in the Arabian Sea, J. Geophys. Res.-Oceans, 116, C11,
https://doi.org/10.1029/2011JC007006, 2011.

Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Ef-
fects of Eddy-Driven Subduction on Ocean Biological
Carbon Pump, Global Biogeochem. Cy., 33, 1071–1084,
https://doi.org/10.1029/2018GB006125, 2019.

Risien, C. M. and Chelton, D. B.: A global climatology of surface
wind and wind stress fields from eight years of QuikSCAT scat-
terometer data, J. Phys. Oceanogr., 38, 2379–2413, 2008.

Rixen, T., Guptha, M., and Ittekkot, V.: Deep ocean fluxes and their
link to surface ocean processes and the biological pump, Prog.
Oceanogr., 65, 240–259, 2005.

Rixen, T., Goyet, C., and Ittekkot, V.: Diatoms and their influ-
ence on the biologically mediated uptake of atmospheric CO2
in the Arabian Sea upwelling system, Biogeosciences, 3, 1–13,
https://doi.org/10.5194/bg-3-1-2006, 2006.

Roobaert, A., Laruelle, G. G., Landschützer, P., and Regnier, P.:
Uncertainty in the global oceanic CO2 uptake induced by wind
forcing: quantification and spatial analysis, Biogeosciences, 15,
1701–1720, https://doi.org/10.5194/bg-15-1701-2018, 2018.

Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou,
L., and Regnier, P.: The spatiotemporal dynamics of the sources
and sinks of CO2 in the global coastal ocean, Global Bio-
geochem. Cy., 33, 1693–1714, 2019.

Sabine, C., Wanninkhof, R., Key, R., Goyet, C., and Millero,
F. J.: Seasonal CO2 fluxes in the tropical and subtropical Indian
Ocean, Mar. Chem., 72, 33–53, 2000.

Sarma, V.: Monthly variability in surface pCO2 and net air–sea CO2
flux in the Arabian Sea, J. Geophys. Res.-Oceans, 108, 3255,
https://doi.org/10.1029/2001JC001062, 2003.

Sarma, V., Kumar, M. D., and George, M.: The central and eastern
Arabian Sea as a perennial source of atmospheric carbon dioxide,
Tellus B, 50, 179–184, 1998.

Sarma, V., Swathi, P., Kumar, M. D., Prasannakumar, S., Bhat-
tathiri, P., Madhupratap, M., Ramaswamy, V., Sarin, M.,
Gauns, M., Ramaiah, N., Sardessai, S., and de Sousa, S.
N.: Carbon budget in the eastern and central Arabian Sea:
An Indian JGOFS synthesis, Global Biogeochem. Cy., 17,
1102,https://doi.org/10.1029/2002GB001978, 2003.

Sarma, V. V. S. S., Dileep, K. M., Gauns, M., and Mad-
hupratap, M.: Seasonal controls on surface pCO2 in
the central and eastern Arabian Sea, Academy Proceed-
ings in Earth and Planetary Sciences, 109, 471–479,
available at: http://proxy.library.nyu.edu/login?url=https:
//www.proquest.com/docview/214115753?accountid=12768
(last access: 1 February 2022), copyright – Indian Academy
of Sciences 2000; Last updated: 11 August 2010; Subject-
sTermNotLitGenreText – Arabian Sea, 2000.

Sarma, V. V. S. S., Lenton, A., Law, R. M., Metzl, N., Pa-
tra, P. K., Doney, S., Lima, I. D., Dlugokencky, E., Ra-
monet, M., and Valsala, V.: Sea–air CO2 fluxes in the Indian
Ocean between 1990 and 2009, Biogeosciences, 10, 7035–7052,
https://doi.org/10.5194/bg-10-7035-2013, 2013.

Schott, F. A. and McCreary Jr., J. P.: The monsoon circulation of
the Indian Ocean, Prog. Oceanogr., 51, 1–123, 2001.

Sharada, M., Swathi, P., Yajnik, K., and Devasena, C. K.: Role of bi-
ology in the air-sea carbon flux in the Bay of Bengal and Arabian
Sea, J. Earth Syst. Sci., 117, 429–447, 2008.

Shchepetkin, A. F. and McWilliams, J. C.: The regional
oceanic modeling system (ROMS): a split-explicit, free-surface,

Biogeosciences, 19, 907–929, 2022 https://doi.org/10.5194/bg-19-907-2022

https://doi.org/10.1029/GM075p0085
https://doi.org/10.5194/essd-11-1437-2019
https://doi.org/10.5194/gmd-8-485-2015
https://doi.org/10.5194/bg-8-239-2011
https://doi.org/10.5194/essd-5-125-2013
https://doi.org/10.1029/2011JC007006
https://doi.org/10.1029/2018GB006125
https://doi.org/10.5194/bg-3-1-2006
https://doi.org/10.5194/bg-15-1701-2018
https://doi.org/10.1029/2001JC001062
https://doi.org/10.1029/2002GB001978
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/docview/214115753?accountid=12768
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/docview/214115753?accountid=12768
https://doi.org/10.5194/bg-10-7035-2013


A. de Verneil et al.: Arabian Sea Air–Sea CO2 flux 929

topography-following-coordinate oceanic model, Ocean Model.,
9, 347–404, 2005.

Smith, S. L.: The Arabian Sea of the 1990s: New biogeochemical
understanding, Prog. Oceanogr., 2, 113–115, 2005.

Somasundar, K., Rajendran, A., Kumar, M. D., and Gupta, R. S.:
Carbon and nitrogen budgets of the Arabian Sea, Mar. Chem.,
30, 363–377, 1990.

Sreeush, M. G., Rajendran, S., Valsala, V., Pentakota, S., Prasad, K.,
and Murtugudde, R.: Variability, trend and controlling factors of
Ocean acidification over Western Arabian Sea upwelling region,
Mar. Chem., 209, 14–24, 2019a.

Sreeush, M. G., Valsala, V., Santanu, H., Pentakota, S., Prasad, K.,
Naidu, C., and Murtugudde, R.: Biological production in the In-
dian Ocean upwelling zones – Part 2: Data based estimates of
variable compensation depth for ocean carbon models via cyclo-
stationary Bayesian Inversion, Deep-Sea Res. Pt. II, 179, 104619,
https://doi.org/10.1016/j.dsr2.2019.07.007, 2019b.

Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl,
N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine,
C., Olafsson, J., and Nojiri, Y.: Global sea–air CO2 flux based on
climatological surface ocean pCO2, and seasonal biological and
temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622, 2002.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C.,
Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez,
F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl,
N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnar-
son, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R.,
Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Cli-
matological mean and decadal change in surface ocean pCO2,
and net sea–air CO2 flux over the global oceans, Deep-Sea Res.
Pt. II, 56, 554–577, 2009.

Takahashi, T., Sutherland, S. C., and Kozyr, A.: Global Ocean Sur-
face Water Partial Pressure of CO2 Database: Measurements
Performed During 1957–2018 (LDEO Database Version 2018)
(NCEI Accession 0160492), NOAA National Centers for Envi-
ronmental Information, 2019.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
2001.

Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T.,
Segschneider, J., Totterdell, I., and Heinze, C.: Long-term surface
pCO2 trends from observations and models, Tellus B, 66, 23083,
https://doi.org/10.3402/tellusb.v66.23083, 2014.

Turi, G., Lachkar, Z., and Gruber, N.: Spatiotemporal variability and
drivers of pCO2 and air–sea CO2 fluxes in the California Current
System: an eddy-resolving modeling study, Biogeosciences, 11,
671–690, https://doi.org/10.5194/bg-11-671-2014, 2014.

Valsala, V. and Maksyutov, S.: Simulation and assimilation of
global ocean pCO2 and air–sea CO2 fluxes using ship obser-
vations of surface ocean pCO2 in a simplified biogeochemical
offline model, Tellus B, 62, 821–840, 2010.

Valsala, V. and Maksyutov, S.: Interannual variability of the air–sea
CO2 flux in the north Indian Ocean, Ocean Dynam., 63, 165–
178, 2013.

Valsala, V. and Murtugudde, R.: Mesoscale and intraseasonal air–
sea CO2 exchanges in the western Arabian Sea during boreal
summer, Deep-Sea Res. Pt. I, 103, 101–113, 2015.

Valsala, V., Sreeush, M. G., and Chakraborty, K.: The IOD Impacts
on the Indian Ocean Carbon Cycle, J. Geophys. Res.-Oceans,
125, e2020JC016485, https://doi.org/10.1029/2020JC016485,
2020.

Van Heuven, S., Pierrot, D., Rae, J., Lewis, E., and Wallace,
D.: MATLAB program developed for CO2 system calcula-
tions, ORNL/CDIAC-105b, Carbon Dioxide Information Anal-
ysis Center, Oak Ridge National Laboratory, US Department of
Energy, Oak Ridge, Tennessee, 530, 2011.

Vic, C., Roullet, G., Carton, X., and Capet, X.: Mesoscale dynamics
in the Arabian Sea and a focus on the Great Whirl life cycle: A
numerical investigation using ROMS, J. Geophys. Res.-Oceans,
119, 6422–6443, https://doi.org/10.1002/2014JC009857, 2014.

Wanninkhof, R.: Relationship between wind speed and gas ex-
change over the ocean, J. Geophys. Res.-Oceans, 97, 7373–7382,
1992.

Wanninkhof, R.: Relationship between wind speed and gas ex-
change over the ocean revisited, Limnol. Oceanogr.-Meth., 12,
351–362, 2014.

Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, 1974.

Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and
Dickson, A. G.: Total alkalinity: The explicit conservative ex-
pression and its application to biogeochemical processes, Mar.
Chem., 106, 287–300, 2007.

https://doi.org/10.5194/bg-19-907-2022 Biogeosciences, 19, 907–929, 2022

https://doi.org/10.1016/j.dsr2.2019.07.007
https://doi.org/10.3402/tellusb.v66.23083
https://doi.org/10.5194/bg-11-671-2014
https://doi.org/10.1029/2020JC016485
https://doi.org/10.1002/2014JC009857

	Abstract
	Introduction
	Methods
	The pCO2 data
	Model details and setup
	Domains of analysis
	Analysis of air–sea CO2 flux, pCO2, and DIC variability
	Air–sea CO2 variability
	pCO2 variability
	DIC budget


	Results
	Model validation and pCO2 data-model comparisons
	Air–sea CO2 flux, drivers of seasonal variability, and flux intercomparison
	The pCO2 distribution, seasonal cycle, and underlying contributors
	Spatial pCO2 distribution
	Seasonal pCO2 cycle

	Near-surface DIC budgets and cycling

	Discussion
	Model pCO2 vs. data
	Spatial distribution of air–sea CO2 flux and pCO2
	Seasonality of air–sea CO2 flux, pCO2, and DIC
	Air–sea CO2 Flux
	The pCO2 seasonality
	DIC seasonality


	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

