
Biogeosciences, 19, 93–115, 2022
https://doi.org/10.5194/bg-19-93-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Derivation of seawater pCO2 from net community production
identifies the South Atlantic Ocean as a CO2 source
Daniel J. Ford1,2, Gavin H. Tilstone1, Jamie D. Shutler2, and Vassilis Kitidis1

1Plymouth Marine Laboratory, Plymouth, UK
2College of Life and Environmental Sciences, University of Exeter, Penryn, UK

Correspondence: Daniel J. Ford (dfo@pml.ac.uk)

Received: 30 June 2021 – Discussion started: 2 August 2021
Revised: 9 November 2021 – Accepted: 15 November 2021 – Published: 6 January 2022

Abstract. A key step in assessing the global carbon bud-
get is the determination of the partial pressure of CO2 in
seawater (pCO2 (sw)). Spatially complete observational fields
of pCO2 (sw) are routinely produced for regional and global
ocean carbon budget assessments by extrapolating sparse in
situ measurements of pCO2 (sw) using satellite observations.
As part of this process, satellite chlorophyll a (Chl a) is of-
ten used as a proxy for the biological drawdown or release of
CO2. Chl a does not, however, quantify carbon fixed through
photosynthesis and then respired, which is determined by net
community production (NCP).

In this study, pCO2 (sw) over the South Atlantic Ocean
is estimated using a feed forward neural network (FNN)
scheme and either satellite-derived NCP, net primary pro-
duction (NPP) or Chl a to compare which biological proxy
produces the most accurate fields of pCO2 (sw). Estimates
of pCO2 (sw) using NCP, NPP or Chl a were similar, but
NCP was more accurate for the Amazon Plume and up-
welling regions, which were not fully reproduced when using
Chl a or NPP. A perturbation analysis assessed the potential
maximum reduction in pCO2 (sw) uncertainties that could be
achieved by reducing the uncertainties in the satellite bio-
logical parameters. This illustrated further improvement us-
ing NCP compared to NPP or Chl a. Using NCP to estimate
pCO2 (sw) showed that the South Atlantic Ocean is a CO2
source, whereas if no biological parameters are used in the
FNN (following existing annual carbon assessments), this re-
gion appears to be a sink for CO2. These results highlight that
using NCP improved the accuracy of estimating pCO2 (sw)
and changes the South Atlantic Ocean from a CO2 sink to
a source. Reducing the uncertainties in NCP derived from
satellite parameters will ultimately improve our understand-

ing and confidence in quantification of the global ocean as a
CO2 sink.

1 Introduction

Since the industrial revolution, anthropogenic CO2 emissions
have resulted in an increase in atmospheric CO2 concentra-
tions (Friedlingstein et al., 2020; IPCC, 2013). By acting as a
sink for CO2, the oceans have buffered the increase in anthro-
pogenic atmospheric CO2, without which the atmospheric
concentration would be 42 %–44 % higher (DeVries, 2014).
The long-term absorption of CO2 by the oceans is altering the
marine carbonate chemistry of the ocean, resulting in a low-
ering of pH, a process known as ocean acidification (Raven
et al., 2005). Observational fields of the partial pressure of
CO2 in seawater (pCO2 (sw)) are one of the key datasets
needed to routinely assess the strength of the oceanic CO2
sink (Friedlingstein et al., 2020; Landschützer et al., 2014,
2020; Rödenbeck et al., 2015; Watson et al., 2020b). These
methods are reliant on the extrapolation of sparse in situ ob-
servations of pCO2 (sw) using satellite observations of param-
eters which account for the variability of, and the controls
on, pCO2 (sw) (Shutler et al., 2020). These parameters include
sea surface temperature (SST; e.g. Landschützer et al., 2013;
Stephens et al., 1995), salinity and chlorophyll a (Chl a) (Rö-
denbeck et al., 2015). SST and salinity control pCO2 (sw) by
changing the solubility of CO2 in seawater (Weiss, 1974),
whilst biological processes such as photosynthesis and respi-
ration contribute by modulating its concentration.

Chl a is routinely used as a proxy for the biological activ-
ity (Rödenbeck et al., 2015), but it does not distinguish be-
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tween carbon fixation through photosynthesis and the carbon
respired by the plankton community. Net primary produc-
tion (the net carbon fixation rate; NPP) is determined by the
standing stock of phytoplankton, for which the Chl a concen-
tration is used as a proxy, and modified by the photosynthetic
rate and the available light in the water column (Behrenfeld
et al., 2016). Photosynthetic rates are, in turn, modified by
ambient nutrient and temperature conditions (Behrenfeld and
Falkowski, 1997; Marañón et al., 2003). Elevated Chl a does
not always equate to elevated NPP (Poulton et al., 2006), and
for the same Chl a concentrations, NPP can vary depending
on the health and metabolic state of the plankton community.
All of these controls are captured by the net community pro-
duction (NCP), which is the metabolic balance of the plank-
ton community resulting from the carbon fixed through pho-
tosynthesis and that lost through respiration. Where NCP is
positive, the plankton community is autotrophic, which im-
plies that there is a drawdown of CO2 from seawater (since
the plankton reduce the CO2 in the water column). Where
NCP is negative, the community is heterotrophic, implying a
release of CO2 into the ocean (as the plankton produce or re-
lease CO2), which can then be released into the atmosphere
(Jiang et al., 2019; Schloss et al., 2007). Using NCP to esti-
mate pCO2 (sw) compared to Chl a should theoretically lead
to an improvement in the derivation of pCO2 (sw).

Many studies have used satellite Chl a to estimate
pCO2 (sw) at both regional (Benallal et al., 2017; Chierici
et al., 2012; Moussa et al., 2016) and global scales (Land-
schützer et al., 2014; Liu and Xie, 2017). Chierici et al.
(2012) attempted to use satellite NPP to estimate pCO2 (sw)
in the southern Pacific Ocean, but there was no significant
improvement over using satellite Chl a. This is not surpris-
ing as NPP captures more of the biological signal but still
lacks any inclusion of respiration, which results in the re-
lease of CO2 into the water column. To our knowledge the
use of satellite NCP to estimate pCO2 (sw) has not been at-
tempted before and could be a means of improving estimates
of pCO2 (sw) as long as satellite NCP observations are accu-
rate (Ford et al., 2021b; Tilstone et al., 2015). These satellite
measurements may improve the estimation of pCO2 (sw) as
NCP includes the full biological control on pCO2 (sw). This
is particularly important in regions where in situ pCO2 (sw)
observations are sparse and where interpolation and neural
network techniques are therefore likely to struggle (Watson
et al., 2020b).

The South Atlantic Ocean is undersampled with limited
pCO2 (sw) observations (e.g. Fay and McKinley, 2013; Wat-
son et al., 2020b). The region is varied and dynamic as it
includes the seasonal equatorial upwelling, high biological
activity on the south-western (Dogliotti et al., 2014) and
south-eastern shelves (Lamont et al., 2014), and the propa-
gation of the Amazon Plume into the western equatorial At-
lantic (Ibánhez et al., 2015). This dynamic biogeochemical
variability in conjunction with a comprehensive database of
satellite observation-based data with associated uncertainties

(Ford et al., 2021b) provides the potential to identify the im-
provement to pCO2 (sw) estimates that could be made from
using NCP.

The objective of this paper is to compare the estimation
of pCO2 (sw) using either NCP, NPP or Chl a to determine
which biological descriptor produces the most accurate and
complete pCO2 (sw) fields. A 16-year time series of pCO2 (sw)
was generated for the South Atlantic Ocean using satellite
NCP, NPP or Chl a, as the biological input, alongside two ap-
proaches with no biological input parameters. Regional dif-
ferences in the resulting pCO2 (sw) fields are assessed. The
seasonal and interannual variabilities in pCO2 (sw) estimated
from NCP, NPP, Chl a and the approaches with no biological
parameters were also compared. A perturbation analysis was
conducted to evaluate the potential reduction in the uncer-
tainty in the pCO2 (sw) fields when estimated from NCP, NPP
or Chl a. This is discussed in the context of reducing uncer-
tainties in these input variables for future improvements in
spatially complete fields of pCO2 (sw) and the effect on esti-
mates of the oceanic carbon sink.

2 Methods

2.1 Surface Ocean CO2 Atlas (SOCAT) pCO2 (sw) and
atmospheric CO2

SOCATv2020 (Bakker et al., 2016; Pfeil et al., 2013) in-
dividual fugacity of CO2 in seawater (fCO2 (sw)) observa-
tions were downloaded from https://www.socat.info/index.
php/data-access/, last access: 17 June 2020. Data were ex-
tracted from 2002 to 2018 for the South Atlantic Ocean
(10◦ N–60◦ S, 25◦ E–80◦W; Fig. 1b). The individual cruise
observations were collected from different depths and are
not representative of the fCO2 (sw) in the top ∼ 100 µm of the
ocean, where gas exchange occurs (Goddijn-Murphy et al.,
2015; Woolf et al., 2016). Therefore, the SOCAT observa-
tions were reanalysed to a standard temperature data set and
depth (Reynolds et al., 2002) that is considered representa-
tive of the bottom of the mass boundary layer (Woolf et al.,
2016). This was achieved using the “fe_reanalyse_socat”
utility in the open-source FluxEngine toolbox (Holding et al.,
2019; Shutler et al., 2016), which follows the methodol-
ogy described in Goddijn-Murphy et al. (2015). The reanal-
ysed fCO2 (sw) observations were converted to pCO2 (sw) and
gridded onto 1◦ monthly grids following SOCAT protocols
(Sabine et al., 2013). The uncertainties in the in situ data
were taken as the standard deviation of the observations in
each grid cell or where a single observation exists were set
as 5 µatm following Bakker et al. (2016).

Monthly 1◦ grids of atmospheric pCO2 (pCO2 (atm)) were
extracted from v5.5 of the global estimates of pCO2 (sw) data
set (Landschützer et al., 2016, 2017). pCO2 (atm) was esti-
mated using the dry mixing ratio of CO2 from the NOAA-
ESRL marine boundary layer reference (https://www.esrl.
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Figure 1. (a) Map of the eight static biogeochemical provinces in the South Atlantic Ocean, following Longhurst et al. (1995) and Longhurst
(1998). Markers and letters indicate the locations of time series extracted from Fig. 3. The four Atlantic Meridional Transect (AMT) cruise
tracks are also overlaid. (b) Map showing the spatial distribution of the SOCATv2020 data set used, where the data frequency is the number
of available months of data within each 1◦ pixel. The province areas acronyms are listed as follows: WTRA is western tropical Atlantic;
ETRA is eastern equatorial Atlantic; SATL is South Atlantic Gyre; BRAZ is Brazilian current coastal; BENG is Benguela Current coastal
upwelling; FKLD is Southwest Atlantic shelves; SSTC is South Subtropical Convergence; SANT is sub-Antarctic and ANTA is Antarctic.

Table 1. Uncertainties in the input parameters of the feed forward neural network used in Monte Carlo uncertainty propagation and pertur-
bation analysis.

Parameter Algorithm uncertainty Reference

Chlorophyll a 0.15log10(mgm−3) Ford et al. (2021b)
Net primary production 0.20log10(mgCm−2 d−1) Ford et al. (2021b)
Net community production 45 mmolO2 m−2 d−1 Ford et al. (2021b)
SST 0.41 ◦C Ford et al. (2021b)
pCO2 (atm) 1 µatm Takahashi et al. (2009)

noaa.gov/gmd/ccgg/mbl/, last access: 25 September 2020),
Optimum Interpolated SST (Reynolds et al., 2002) and sea
level pressure following Dickson et al. (2007).

2.2 Moderate Resolution Imaging Spectroradiometer
on Aqua (MODIS-A) satellite observations

The 4 km resolution monthly mean Chl a was calcu-
lated from MODIS-A level-1 granules, retrieved from Na-
tional Aeronautics and Space Administration (NASA) Ocean
Color website (https://oceancolor.gsfc.nasa.gov/, last access:
10 December 2020) using SeaDAS v7.5 and applying the
standard OC3-CI Chl a algorithm (https://oceancolor.gsfc.
nasa.gov/atbd/chlor_a/, last access: 15 December 2020). In
addition, monthly mean MODIS-A SST and photosyntheti-
cally active radiation (PAR) were also downloaded from the
NASA Ocean Color website. Mean monthly NPP were gen-
erated from MODIS-A Chl a, SST and PAR using the wave-
length resolving model (Morel, 1991) with the lookup table
described in Smyth et al. (2005). Coincident mean monthly
NCP values using the algorithm NCP-D described in Tilstone

et al. (2015) were generated using the MODIS-A NPP and
SST data. Further details of the satellite algorithms are given
in O’Reilly et al. (1998), O’Reilly and Werdell (2019), and
Hu et al. (2012) for Chl a, Smyth et al. (2005) and Tilstone
et al. (2005, 2009) for NPP, and Tilstone et al. (2015) for
NCP. These satellite algorithms were shown to be the most
accurate for the South Atlantic Ocean in an algorithm inter-
comparison, which accounted for the uncertainties in both in
situ, model and input data (Ford et al., 2021b). All monthly
mean data were generated between July 2002 and Decem-
ber 2018 and were re-gridded onto the same 1◦ grid as the
pCO2 (sw) observations. The assessed uncertainties from the
literature for each of the input parameters used are given in
Table 1.

2.3 Feed forward neural network scheme

The South Atlantic Ocean was partitioned into eight bio-
geochemical provinces (Fig. 1a), following Longhurst et al.
(1995) and Longhurst (1998). The pCO2 (sw) observations
in the eastern equatorial Atlantic were sparse, and therefore

https://doi.org/10.5194/bg-19-93-2022 Biogeosciences, 19, 93–115, 2022

https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://www.esrl.noaa.gov/gmd/ccgg/mbl/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/


96 D. J. Ford et al.: Derivation of seawater pCO2 from net community production

Table 2. The input parameters of the neural network variants described in Sects. 2.3. and 2.6. xCO2 is the atmospheric mixing ratio of CO2.

Neural network variant Input parameters

SA-FNNNCP pCO2 (atm), SST and NCP
SA-FNNNPP pCO2 (atm), SST and NPP
SA-FNNCHLA pCO2 (atm), SST and Chl a
SA-FNNNO-BIO-1 pCO2 (atm) and SST
SA-FNNNO-BIO-2 pCO2 (atm), SST, salinity and mixed layer depth
W2020 (Watson et al., 2020a) xCO2 (atm), SST, salinity and mixed layer depth

the equatorial region was merged into one province. In each
province the available monthly pCO2 (sw) observations were
matched to temporally and spatially coincident pCO2 (atm),
MODIS-A, NCP and SST to provide training data for the
feed forward neural network (FNN). Observations in coastal
regions (< 200 m water depth) were removed from the analy-
sis, due to the increased uncertainty in ocean colour observa-
tions in these areas (e.g. Lavender et al., 2004). Due to con-
straints on the coverage of ocean colour data, no data were
available in austral winter below ∼ 50◦ S.

The coincident observations in each province were ran-
domly split into three datasets: (1) a training data set (50 %
of the observations) used to train the FNNs; (2) a validation
data set (30 % of the observations) used to assess the perfor-
mance of the FNN and to prevent the networks from overfit-
ting; and (3) an independent test data set (20 % of the obser-
vations) to assess the final performance of the FNN, with ob-
servations that are independent of the network training. The
optimal split (ropt) method of Amari et al. (1997) was used
to partition the input data into these three sets, as follows:

ropt = 1−
1
√

2m
, (1)

where m is number of input parameters. For our three input
parameters, an optimal split of 60 % training data to 40 %
validation data would occur, where we removed 10 % from
each data set to provide a further independent test data set. A
pre-training step was used to determine the optimum num-
ber of hidden neurons in the FNN (Benallal et al., 2017;
Landschützer et al., 2013; Moussa et al., 2016) to provide
the best fit for the observations, whilst preventing overfitting
(Demuth et al., 2008).

The FNNs consist of one hidden layer with between 2
and 30 nodes depending on the pre-training step and one
output layer. The networks were trained using the optimum
number of hidden neurons, in an iterative process until the
root mean square difference (RMSD) remained unchanged
for six iterations. The best-performing FNN, with the low-
est RMSD, was then used to estimate pCO2 (sw). The uncer-
tainties in the input parameters were propagated through the
FNN, using a Monte Carlo uncertainty propagation, where
1000 calculations were made perturbing the input parame-
ters, using random noise for their uncertainty (Table 1). The

output from the eight province FNNs was then combined,
and weighted statistics, which account for both the satellite
and in situ uncertainty, were used to assess the overall perfor-
mance of the FNN (as also used in Ford et al., 2021b). The
combined eight-FNN approach will hereafter be referred to
as SA-FNN.

The approach to training the FNNs was repeated replac-
ing NCP with Chl a or NPP sequentially (Table 2) to deter-
mine if there was an improvement by using NCP. Chl a and
NPP estimates were log10-transformed before input into the
FNN, due to their respective uncertainties being determined
in log10 space (Table 1). A baseline SA-FNN with no bio-
logical parameters as input was trained using pCO2 (atm) and
MODIS-A SST (SA-FNNNO-BIO-1; Table 2). A second SA-
FNN with no biological parameters (SA-FNNNO-BIO-2; Ta-
ble 2) was trained with the addition of sea surface salinity and
mixed layer depth from the Copernicus Marine Environment
Modelling Service (https://resources.marine.copernicus.eu/,
last access: 20 August 2020) global ocean physics reanal-
ysis product (GLORYS12V1). This parameter combination
(pCO2 (atm), SST, salinity and mixed layer depth) has recently
been included within a neural network scheme to estimate
global fields of pCO2 (sw) (Watson et al., 2020b).

Following these methods, a monthly mean time series of
pCO2 (sw) was generated in the South Atlantic Ocean, ap-
plying the SA-FNN approach using NCP (SA-FNNNCP),
NPP (SA-FNNNPP), Chl a (SA-FNNCHLA) or no biolog-
ical parameters (SA-FNNNO-BIO-1 and SA-FNNNO-BIO-2).
The pCO2 (sw) fields were spatially averaged using a
3 pixel× 3 pixel filter but were not averaged temporally as
in previous studies (Landschützer et al., 2014, 2016) because
averaging temporally could mask features that occur within
single months of the year. The uncertainties in the input pa-
rameters (Table 1) were propagated through the neural net-
work on a per-pixel basis and combined in quadrature with
the RMSD of the test data set to produce a combined uncer-
tainty budget for each pixel, assuming all sources of uncer-
tainty are independent and uncorrelated (BIPM, 2008; Tay-
lor, 1997).

2.4 Atlantic Meridional Transect in situ data

To assess the accuracy of the SA-FNN, coincident in situ
measurements of NCP, NPP, Chl a, SST, pCO2 (atm) and
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pCO2 (sw), with uncertainties, were provided by Atlantic
Meridional Transects 20, 21, 22 and 23 in 2010, 2011, 2012
and 2013, respectively. All the Atlantic Meridional Transect
data described in this section can be obtained from the British
Oceanographic Data Centre (https://www.bodc.ac.uk/, last
access: 11 April 2020). Chl a was computed following
the methods of Brewin et al. (2016), using underway con-
tinuous spectrophotometric measurements from AMT 22,
and uncertainties were estimated as ∼ 0.06 log10(mgm−3)

(Ford et al., 2021b). 14C-based NPP measurements were
made based on dawn-to-dusk simulated in situ incuba-
tions, following the methods given in Tilstone et al. (2017),
at 56 stations with a per-station uncertainty. Uncertainties
ranged between 8 and 213 mgCm−2 d−1 and were on av-
erage 53 mgCm−2 d−1. NCP was estimated using in vitro
changes in dissolved O2, following the methods of Gist
et al. (2009) and Tilstone et al. (2015) at 51 stations with
a per-station uncertainty calculated. Uncertainties ranged
between 5 and 25 mmolO2 m−2 d−1 and were on average
14 mmolO2 m−2 d−1.

Underway measurements of pCO2 (sw) and pCO2 (atm)
were performed continuously, following the methods of Ki-
tidis et al. (2017). SST was continuously measured alongside
all observations (Sea-Bird SBE45), with a factory-calibrated
uncertainty of ± 0.01 ◦C. The mean of underway pCO2 (sw),
pCO2 (atm), SST and Chl a were taken ± 20 min around
each station where NCP and NPP were measured. These
pCO2 (sw) observations (N ≈ 200) were removed from the
SOCATv2020 data set so that the Atlantic Meridional Tran-
sect data remained independent from the training and valida-
tion datasets.

2.5 Perturbation analysis

Following the approach of Saba et al. (2011), a perturbation
analysis was conducted to evaluate the potential reduction
in SA-FNN pCO2 (sw) RMSD that could be attributed to the
input parameters. The analysis indicates the maximum re-
duction in RMSD that could be achieved if uncertainties in
the input parameters were reduced to ∼ 0. Each of the input
parameters – NCP, SST and pCO2 (atm) – can have three pos-
sible values for each in situ pCO2 (sw) observation (original
value, original± uncertainty; Table 1), enabling 27 pertur-
bations of the input data as input to the SA-FNN. For each
in situ pCO2 (sw) observation, the 27 perturbations of SA-
FNN pCO2 (sw) were examined, and the perturbation that pro-
duced the lowest RMSD and bias combination was selected.
The RMSD and bias were calculated between all the in situ
pCO2 (sw) and the selected perturbations. The percentage dif-
ference between this RMSD and the original RMSD when
training the SA-FNN was calculated to indicate the maxi-
mum achievable reduction. This approach was conducted for
two scenarios: (1) uncertainty in individual input parame-
ters (NCP, SST and pCO2 (atm)) and (2) uncertainty in all in-
put parameters together. The approach was conducted on all

three training datasets and on the Atlantic Meridional Tran-
sect in situ data. The analysis was repeated sequentially re-
placing NCP with Chl a and NPP to determine if there was a
greater maximum reduction in RMSD using NCP. The analy-
sis was also conducted allowing for a 10 % reduction in input
parameter uncertainties to indicate the short-term reduction
in pCO2 (sw) RMSD that could be achieved by reducing the
input parameter uncertainties.

2.6 Comparison of the SA-FNNNCP with the
SA-FNNNO-BIO, SA-FNNCHLA, SA-FNNNPP and
state-of-the-art data for the South Atlantic

The most comprehensive pCO2 (sw) fields to date are from
Watson et al. (2020a, b). The “standard method” pCO2 (sw)
fields within the Watson et al. (2020a, b) data were pro-
duced by extrapolating the in situ reanalysed SOCATv2019
pCO2 (sw) observations using a self-organising-map feed for-
ward neural network approach (Landschützer et al., 2016),
hereafter referred to as “W2020”. A time series was ex-
tracted from the W2020 data, coincident with SA-FNNNCP,
SA-FNNNPP, SA-FNNCHLA and the two SA-FNNNO-BIO
variants. For the six methods, a monthly climatology ref-
erenced to the year 2010 was computed, assuming an at-
mospheric CO2 increase of 1.5 µatmyr−1 (Takahashi et al.,
2009; Zeng et al., 2014). The climatology should be insensi-
tive to the assumed rise in atmospheric CO2 due to the ref-
erence year being central to the time series. The standard de-
viation of this climatology was also computed on a per-pixel
basis.

The stations (Fig. 1) are representative of locations from
previous literature that analysed the variability of in situ
pCO2 (sw) in the South Atlantic Ocean. For each station, the
monthly climatology of pCO2 (sw), representing the average
seasonal cycle of pCO2 (sw), and the standard deviation of the
climatology, as an indication of the interannual variability,
were extracted from the six approaches. The pCO2 (sw) value
for each station was the statistical mean of the four nearest
data points weighted by their respective proximity to the sta-
tion coordinate. In situ pCO2 (sw) observations from the SO-
CATv2020 Flag E data set were also extracted for stations A
and B (Fig. 1a), and a climatology was generated. These ob-
servations represent data from the Prediction and Research
Moored Array in the Atlantic (PIRATA) buoys at these loca-
tions (Bourlès et al., 2008).

The station climatologies for the SA-FNNNO-BIO-1,
SA-FNNNO-BIO-2, W2020, SA-FNNCHLA and SA-FNNNPP
were compared to the SA-FNNNCP, by testing for signifi-
cant differences in the seasonal cycle and annual pCO2 (sw)
(offset). The seasonal cycles (seasonality) were compared
using a non-parametric Spearman correlation and deemed
statistically different where the correlation was not signifi-
cant (α < 0.05). A non-parametric Kruskal–Wallis test was
used to test for significant (α < 0.05) differences in the an-
nual pCO2 (sw), indicating an offset between the two tested
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climatologies. The Southern Ocean station (station H) was
excluded from the statistical analysis due to missing data in
the SA-FNN.

2.7 Estimation of the bulk CO2 flux

The flux of CO2 (F ) between the atmosphere and ocean (air–
sea) can be expressed in a bulk parameterisation as

F = k(αwpCO2 (sw)−αspCO2 (atm)), (2)

where k is the gas transfer velocity, and αw and αs are the
solubility of CO2 at the base and top of the mass bound-
ary layer at the sea surface, respectively (Woolf et al., 2016).
k was estimated from ERA5 monthly reanalysis wind speed
(downloaded from the Copernicus Climate Data Store; https:
//cds.climate.copernicus.eu/, last access: 12 March 2020) fol-
lowing the parameterisation of Nightingale et al. (2000). The
parameter αw was estimated as a function of SST and sea sur-
face salinity (Weiss, 1974) using the monthly Optimum Inter-
polated SST (Reynolds et al., 2002) and sea surface salinity
from the Copernicus Marine Environment Modelling Service
global ocean physics reanalysis product (GLORYS12V1).
The αs parameter was estimated using the same temperature
and salinity datasets but included a gradient from the base to
the top of mass boundary layer of −0.17 K (Donlon et al.,
1999) and+0.1 salinity units (Woolf et al., 2016). pCO2 (atm)
was estimated using the dry mixing ratio of CO2 from the
NOAA-ESRL marine boundary layer reference, Optimum
Interpolated SST (Reynolds et al., 2002) applying a cool
skin bias (0.17 K; Donlon et al., 1999) and sea level pres-
sure following Dickson et al. (2007). Spatially and tempo-
rally complete pCO2 (sw) fields, which are representative of
pCO2 (sw) at the base of the mass boundary layer, were ex-
tracted from the SA-FNNNCP, SA-FNNNPP, SA-FNNCHLA,
SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and W2020.

The monthly CO2 flux was calculated using the open-
source FluxEngine toolbox (Holding et al., 2019; Shutler
et al., 2016) between 2003 and 2018 for the six pCO2 (sw)
inputs, using the “rapid transport” approximation (described
in Woolf et al., 2016). The net annual flux was determined for
the South Atlantic Ocean (10◦ N–44◦ S, 25◦ E–70◦W) using
the “fe_calc_budgets.py” utility within FluxEngine with the
supplied area and land percentage masks. The mean net an-
nual flux was calculated as the mean of the 15-year net an-
nual fluxes. Positive net fluxes indicate a net source to the
atmosphere, and negative net fluxes represent a sink.

3 Results

3.1 SA-FNN performance and perturbation analysis

The performance of the SA-FNN trained using pCO2 (atm),
SST and NCP for the three training datasets is given in Fig. 2.
The SA-FNNNCP had an accuracy (RMSD) of 21.68 µatm

and a precision (bias) of 0.87 µatm, which was determined
with the independent test data (N = 1300). Training the SA-
FNN using Chl a or NPP instead of NCP resulted in a similar
performance (Appendix A Figs. A1 and A2). The RMSD for
the independent test data was within ∼ 1.5 µatm for Chl a
(19.88 µatm), NPP (20.48 µatm) and NCP (21.68 µatm), and
bias was near zero.

The reduction in pCO2 (sw) RMSD that could be achieved
if input parameter uncertainties were reduced to ∼ 0 was as-
sessed using the perturbation analysis (Table 3, Appendix A
Table A1). This showed that a reduction in pCO2 (sw) RMSD
of 36 % was achieved by eliminating satellite NCP uncertain-
ties, 34 % was achieved by eliminating satellite NPP uncer-
tainties and 19 % was achieved by eliminating satellite Chl a
uncertainties. The bias remained near zero for all parame-
ters, indicating good precision of the SA-FNN approach (not
shown). Applying the Atlantic Meridional Transect in situ
data as input to the SA-FNN and using the perturbation anal-
ysis, a decrease in pCO2 (sw) RMSD of 25 % for NCP, 13 %
for NPP and 7 % for Chl a was observed.

The reduction in pCO2 (sw) RMSD from reducing input
parameter uncertainties by 10 % was also assessed through
the perturbation analysis (Table 4). This indicated a decrease
in pCO2 (sw) RMSD of 8 % for NCP, 5 % for NPP and 2 %
for Chl a, again indicating that improving NCP uncertainties
has the largest impact on improving the estimated pCO2 (sw)
fields.

3.2 Comparison between SA-FNNNCP and other
methods

The monthly climatologies of pCO2 (sw) generated us-
ing the SA-FNNNCP and referenced to the year 2010
showed differences with two published climatologies, es-
pecially in the equatorial region (Appendix B). The
monthly climatology for eight stations (Fig. 1) was ex-
tracted from the SA-FNNNCP, SA-FNNNPP, SA-FNNCHLA,
SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and the W2020 to as-
sess differences between the pCO2 (sw) estimates (Fig. 3).
The SA-FNNNCP and SA-FNNNO-BIO-1 showed significant
divergence in the equatorial Atlantic (Figs. 3b, f, g and 4).
At the eastern equatorial station, the interannual variability
in pCO2 (sw) from the SA-FNNNCP was high, and a min-
imum occurred between January and April, which gradu-
ally increased to a maximum in September and October
(Fig. 3b). The SA-FNNNO-BIO-1 showed no seasonality in
the pCO2 (sw) and was consistently below the SA-FNNNCP
pCO2 (sw). The Gulf of Guinea station showed a similar vari-
ability in the SA-FNNNCP pCO2 (sw) except that the max-
ima was lower at this station (Fig. 3f). The SA-FNNNO-BIO-1
indicated pCO2 (sw) below the SA-FNNNCP throughout the
year. The greatest divergence occurred near the Amazon
Plume (Fig. 3g) where SA-FNNNCP pCO2 (sw) was below or
at pCO2 (atm) for all months and there was a large interan-
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Figure 2. Scatter plots showing the combined performance of the eight feed forward neural networks trained using NCP for each biogeochem-
ical province (Fig. 1) using four separate training and validation datasets: (a) training, (b) validation, (c) independent test and (d) Atlantic
Meridional Transect (AMT) in situ. The data points are highlighted in red to distinguish them from the error bars in blue. The blue dashed
line is the type II regression, and the black dashed line is the 1 : 1 line. Horizontal error bars indicate the uncertainty of the SOCATv2020
pCO2 (sw). Vertical error bars indicate the uncertainty attributed to the input parameter uncertainty propagated through the feed forward
neural networks. The statistics within each plot are the root mean square difference (RMSD), slope and intercept of the type II regression,
coefficient of determination (R2), Pearson correlation coefficient (R), bias and number of samples (N ).

Table 3. The percentage reduction in pCO2 (sw) RMSD by reducing NCP, NPP and Chl a uncertainties to ∼ 0 as described in Sect. 2.5. The
full results can be found in Appendix Table A1.

Parameter Training [%] Validation [%] Independent test [%] AMT in situ [%]

NCP 32 40 36 25
NPP 31 37 36 13
Chl a 17 21 20 7

nual variability in pCO2 (sw). The SA-FNNNO-BIO-1 displayed
higher pCO2 (sw) and a lower interannual variability (Fig. 3g).

The SA-FNNNCP and SA-FNNNO-BIO-1 showed no signif-
icant difference in the seasonal patterns of pCO2 (sw) at sta-
tions south of 20◦ S (Figs. 3c–e and 4). There was, however,
a significant offset at some stations where the SA-FNNNCP
generally exhibited lower pCO2 (sw) in austral summer and
a higher interannual variation. The SA-FNNNCP was signif-
icantly different to W2020 and SA-FNNNO-BIO-2 at similar
stations to those at which SA-FNNNO-BIO-1 was different
(Figs. 3 and 4).

The SA-FNNNCP and SA-FNNCHLA showed significant
differences in pCO2 (sw) values in the south Benguela

and Amazon Plume. In south Benguela (Figs. 3e and 4),
SA-FNNNCP had pCO2 (sw) maxima in austral summer,
whereas the SA-FNNCHL maximum occurs in austral winter.
In the Amazon Plume there was significant offset between
the two methods, and the SA-FNNCHL resulted in lower
pCO2 (sw) compared to the SA-FNNNCP (Figs. 3g and 4).
The SA-FNNNCP and SA-FNNNPP had a significant offset
at the eastern equatorial station (Figs. 3c and 4), where the
SA-FNNNPP indicated lower pCO2 (sw). For the other sta-
tions, no significant differences were observed.
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Table 4. The percentage reduction in pCO2 (sw) RMSD by reducing NCP, net primary production and chlorophyll a uncertainties by 10 % as
described in Sect. 2.5.

Parameter Training [%] Validation [%] Independent test [%] AMT in situ [%]

NCP 7 8 8 3
NPP 5 6 5 1.5
Chl a 2 2 2 0.5

Figure 3. Monthly climatologies of pCO2 (sw) referenced to the year 2010 for the eight stations marked in Fig. 1 from the SA-FNNNCP,
SA-FNNNPP, SA-FNNCHLA, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2 and W2020 (Watson et al., 2020b). Light blue lines in Fig. 3a and b
indicate the in situ pCO2 (sw) observations from PIRATA buoys. The atmospheric CO2 increase was set as 1.5 µatmyr−1. Black dashed
line indicates the atmospheric pCO2 (∼ 380 µatm). Error bars indicate the 2 standard deviations of the climatology (∼ 95 % interval), where
larger error bars indicate a larger interannual variability. Red circles indicate the literature values of pCO2 (sw) described in Sect. 4.2. Note
the different y-axis limits in each plot.

4 Discussion

4.1 Assessment of biological parameters to estimate
pCO2 (sw)

In this paper, the differences in estimating pCO2 (sw) us-
ing FNNs with satellite-derived NCP, NPP or Chl a

were assessed. The SA-FNNNCP had an overall accuracy
(21.68 µatm; Fig. 2) that is consistent with other approaches
that have been developed for the Atlantic (22.83 µatm; Land-
schützer et al., 2013) and slightly lower than the published
global result of 25.95 µatm (Landschützer et al., 2014).
Training the SA-FNN using Chl a or NPP showed compa-
rable broadscale accuracy to NCP. When the uncertainties in
the input parameters were investigated, however, differences
in the estimates of pCO2 (sw) were apparent. The perturbation
analysis indicated that up to a 36 % improvement in estimat-

ing pCO2 (sw) could be achieved if NCP data uncertainties
were reduced (Table 3). A similar improvement could be ob-
tained if the NPP uncertainties were reduced (Table 3). Ford
et al. (2021b) showed that up to 40 % of the uncertainty in
satellite NCP is attributed to the uncertainty in satellite NPP,
which is an input to the NCP approach. This suggests that
improvements in estimating NPP from satellite data will lead
to a further improvement in estimating pCO2 (sw) from NCP.
These improvements could be achieved through better esti-
mates of the water column light field (e.g. Sathyendranath
et al., 2020) and the vertical variability of input parameters
or assignment of photosynthetic parameters (e.g. Kulk et al.,
2020), for example. For a discussion on improving satellite
NPP estimates we refer the reader to Lee et al. (2015).

To uncouple the Chl a, NPP, and NCP estimates and their
uncertainties, the perturbation analysis was also conducted
on Atlantic Meridional Transect in situ observations. This
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Figure 4. Statistical comparison of the SA-FNNNCP with the W2020, SA-FNNNO-BIO-1, SA-FNNNO-BIO-2, SA-FNNCHLA and
SA-FNNNPP climatologies, where yellow blocks indicate a significant difference (α = 0.05). Seasonality indicates a difference in the sea-
sonal cycle, and offset indicates a difference between the mean pCO2 (sw) of the climatologies.

showed that reducing in situ NCP uncertainties provided the
greatest reduction in pCO2 (sw) RMSD, which was 3 times
the reduction achievable using Chl a (Tables 3 and 4). This
indicates that the optimal predictive power of Chl a to esti-
mate pCO2 (sw) has been reached and that to achieve further
improvements in estimates of pCO2 (sw) and reduction in its
associated uncertainty requires the use of NCP.

A reduction of input uncertainties to ∼ 0 is near impos-
sible, but a reduction by 10 % could be feasible (e.g. NCP
uncertainty reduced from 45 to 40.5 mmolO2 m−2 d−1; Ta-
ble 1). A perturbation analysis conducted for this showed
similar results, with NCP producing the greatest reduction in
pCO2 (sw) RMSD of 8 % compared to 2 % for Chl a (Table 4).
Thus, reducing NCP uncertainties will provide a greater im-
provement in pCO2 (sw) compared to reducing the uncertain-
ties in Chl a.

These improvements in estimating NCP could be achieved
through many components. Ford et al. (2021b) showed that
40 % of satellite NCP uncertainties were attributed to in
situ NCP uncertainties. The in situ bottle incubation mea-
surements could be improved using the principles of Fidu-
cial Reference Measurements (FRM; Banks et al., 2020),
which are traceable to metrology standards, referenced to
inter-comparison exercises, with a full uncertainty budget.
This becomes complicated, however, when considering the
number of different methods to measure NCP and the large
divergence between them (Robinson et al., 2009). A re-
view of these methods has already been conducted (Duarte
et al., 2013; Ducklow and Doney, 2013; Williams et al.,
2013). The methods broadly fall into the following cate-

gories: (a) in vitro incubations of samples under light/dark
treatments (Gist et al., 2009) and (b) in situ observations
of oxygen-to-argon (O2/Ar) ratios (Kaiser et al., 2005) or
the observed isotopic signature of oxygen (Kroopnick, 1980;
Luz and Barkan, 2000). All of these methods are subject to,
but do not account for, the photochemical sink, which may
lead to underestimation of in vitro NCP by up to 22 % (Ki-
tidis et al., 2014). Independent ground measurements that
use accepted protocols for the in vitro method are currently
made on the Atlantic Meridional Transect; however, a com-
munity consensus should consider a consistent methodology
for NCP. Increasing the number of such observations for the
purpose of algorithm development would further constrain
the NCP but also provide observations across the lifetime of
newly launched satellites. The uncertainties on each in vitro
measurement are assessed through replicate bottles which
could be used to calculate a full uncertainty budget for each
NCP measurement when combined with analytical uncer-
tainties.

Serret et al. (2015) indicated that NCP is controlled by
both the heterogeneity in NPP and respiration. The satellite
NCP algorithm applied in this study accounts for some of
the heterogeneity in respiration, through an empirical SST-
to-NCP relationship (Tilstone et al., 2015). Quantifying the
variability in respiration could further improve NCP esti-
mates when coupled with NPP rates from satellite observa-
tions.
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4.2 Accuracy of SA-FNNNCP pCO2 (sw) at seasonal and
interannual scales

The seasonal and interannual variability of pCO2 (sw) es-
timated using the SA-FNNNCP was compared with the
SA-FNNNO-BIO, W2020 (Watson et al., 2020b), SA-FNNCHL
and SA-FNNNPP at eight stations. The stations (Fig. 1) rep-
resent locations of previous studies into in situ pCO2 (sw)
variability, allowing comparisons with literature values.
Significant differences between the SA-FNNNCP and
SA-FNNNO-BIO were observed at four stations (Fig. 4), es-
pecially in the equatorial Atlantic.

At 8◦ N, 38◦W (Fig. 3a), Lefèvre et al. (2020) reported
pCO2 (sw) to be stable at ∼ 400 µatm, between June and Au-
gust 2013, and to decrease in September to ∼ 360 µatm,
which is attributed to the Amazon Plume propagating into
the western equatorial Atlantic (Coles et al., 2013). Bruto
et al. (2017) indicated, however, that elevated pCO2 (sw) at
∼ 430 µatm was observed in September for 2008 to 2011.
The error bars on the PIRATA buoy pCO2 (sw) observations
(Fig. 3a) clearly highlight the differences between Lefèvre
et al. (2020) and Bruto et al. (2017), but there are less than
4 years of monthly observations available, which do not re-
solve the full seasonal cycle. For the station in the Ama-
zon Plume at 4◦ N, 50◦W (Fig. 3g), where the effects of the
plume extend northwest towards the Caribbean (Coles et al.,
2013; Varona et al., 2019), Lefèvre et al. (2017) indicated that
this region acts as a sink for CO2 (pCO2 (sw)< pCO2 (atm)),
especially between May and July, coincident with maximum
discharge from the Amazon River (Dai and Trenberth, 2002).
Valerio et al. (2021) indicated pCO2 (sw) varied at and below
pCO2 (atm) at 4◦ N, 50◦W, consistent with the SA-FNNNCP.
The interannual variability of pCO2 (sw) has been shown to be
high in this region in all months (Lefèvre et al., 2017). The
SA-FNNNCP provided a better representation of the seasonal
and interannual variability induced by the Amazon River dis-
charge and associated plume at these two stations compared
to the SA-FNNNO-BIO, although differences were small at
8◦ N, 38◦W.

The station in the eastern tropical Atlantic at 6◦ S, 10◦W
(Fig. 3b) is under the influence of the equatorial upwelling
(Lefèvre et al., 2008), which is associated with the upwelling
of CO2-rich waters between June and September. Lefèvre
et al. (2008) indicated that peak pCO2 (sw) of∼ 440 µatm was
observed in September and remained stable until December,
before decreasing to a minima of∼ 360 µatm in May (Parard
et al., 2010). Lefèvre et al. (2016) showed, however, that the
influence of the equatorial upwelling does not reach the buoy
in all years, and in some years lower pCO2 (sw) is observed.
The PIRATA buoy observations (Fig. 3b) clearly show this
seasonality but also highlight the interannual variability in in
situ pCO2 (sw). Further north at 4◦ N, 10◦W (Fig. 3f), Koffi
et al. (2010) suggested that this region follows a similar sea-
sonal cycle as the station at 6◦ S, 10◦W but that pCO2 (sw)
is ∼ 30 µatm lower (Koffi et al., 2016). The interannual vari-

ability in SA-FNNNCP pCO2 (sw) clearly shows the influence
of the equatorial upwelling at these stations, with latitudinal
gradients in pCO2 (sw) during the upwelling period (Lefèvre
et al., 2016), but struggles to identify elevated pCO2 (sw) be-
tween December and April shown by the PIRATA buoy ob-
servations (Fig. 3b). By contrast, the SA-FNNNO-BIO-1 in-
dicated little influence from the equatorial upwelling and a
depressed pCO2 (sw) during the upwelling season.

The two methods converge on the seasonal cycle at the re-
maining stations, although significant offsets in the mean an-
nual pCO2 (sw) remain. The station at 35◦ S, 18◦W (Fig. 3c)
has consistently been implied as a sink for CO2. Lencina-
Avila et al. (2016) showed the region to have 340 µatm
pCO2 (sw) and to be a sink for CO2 between October and
December. Similarly, Kitidis et al. (2017) implied that the
region is a sink for CO2 during March to April. The re-
gion has depressed pCO2 (sw) due to high biological activ-
ity that originates from the Patagonian Shelf and the South
Subtropical Convergence Zone. The station at 45◦ S, 50◦W
(Fig. 3d) has also been implied as a strong but highly variable
sink, where pCO2 (sw) can be between∼ 280 and∼ 380 µatm
during austral spring and is constant at ∼ 310 µatm during
austral autumn (Kitidis et al., 2017). The SA-FNNNCP and
SA-FNNNO-BIO-1 methods reproduced the seasonal variabil-
ity in the pCO2 (sw) at these two stations accurately, but only
the SA-FNNNCP captures the magnitude of the depressed
pCO2 (sw) at 45◦ S.

Within the southern Benguela upwelling system,
pCO2 (sw) at station 33◦ S, 17◦ E (Fig. 3e) is influenced by
gradients in the seasonal upwelling (Hutchings et al., 2009).
Santana-Casiano et al. (2009) showed that pCO2 (sw) varies
from∼ 310 µatm in July to∼ 340 µatm in December and that
the region is a CO2 sink through the year. González-Dávila
et al. (2009) suggested, however, that this CO2 sink is highly
variable during upwelling events and that recently upwelled
waters act as a source (pCO2 (sw)> pCO2 (atm)) of CO2
to the atmosphere (Gregor and Monteiro, 2013). Arnone
et al. (2017) indicated elevated pCO2 (sw) during austral
spring and autumn at the station, with a ∼ 40 µatm seasonal
cycle amplitude. The SA-FNNNCP and SA-FNNNO-BIO-1
were able to reproduce the seasonal cycle, although the
SA-FNNNCP correctly represented the seasonal magnitude
in pCO2 (sw) as reported by Santana-Casiano et al. (2009)
and Arnone et al. (2017).

In summary, for these stations, the SA-FNNNCP bet-
ter represents the seasonality and the interannual variabil-
ity of pCO2 (sw) in the South Atlantic Ocean compared to
the SA-FNNNO-BIO-1, especially in the equatorial Atlantic.
The SA-FNNNO-BIO-2 also displayed significant differences
compared to SA-FNNNCP, indicating that the variability in
pCO2 (sw) has a strong biological contribution which is not
fully represented and explained by the additional physi-
cal parameters included in the FNN. The SA-FNNNO-BIO-2
and W2020 both displayed significant differences compared
to the SA-FNNNCP at specific stations (Fig. 4). There are
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methodological differences between these approaches, how-
ever. The SA-FNN method uses only in situ pCO2 (sw) ob-
servations from the South Atlantic Ocean to train the FNNs.
The W2020 uses global in situ pCO2 (sw) observations to train
FNNs for 16 provinces with similar seasonal cycles (Land-
schützer et al., 2014; Watson et al., 2020b). The W2020 will
therefore be weighted to pCO2 (sw) variability in regions of
relatively abundant in situ observations (i.e. Northern Hemi-
sphere) and may not be fully representative of the South At-
lantic Ocean. This would explain the SA-FNNNO-BIO-2 and
W2020 differences, when driven using the same input vari-
ables.

Comparing the SA-FNNNCP and SA-FNNCHLA there were
two significant differences (Fig. 4). A difference in the sea-
sonal cycle in the southern Benguela (Fig. 3e) was ob-
served. Santana-Casiano et al. (2009) showed that the min-
ima pCO2 (sw) in July and maxima in December, consis-
tent with the SA-FNNNCP and SA-FNNNPP, whereas the
SA-FNNCHL estimated the opposite scenario. Lamont et al.
(2014) reported Chl a concentrations to remain consis-
tent in May and October, but NPP rates were significantly
higher in October, associated with increased surface PAR
and enhanced upwelling. The disconnect between Chl a and
NPP can also be observed in the satellite observations (Ap-
pendix C Fig. C1), limiting the ability of Chl a to esti-
mate pCO2 (sw), which is highlighted by the failure of the
SA-FNNCHLA to identify the seasonal pCO2 (sw) cycle.

A Chl a-to-NPP disconnect has also been reported in the
Amazon Plume (Smith and Demaster, 1996), where Chl a
concentrations can be similar but NPP rates significantly
different due to light limitation caused by suspended sed-
iments. A significant offset between the SA-FNNNCP and
SA-FNNCHLA was observed in this region (Figs. 3g and 4).
Lefèvre et al. (2017) reported pCO2 (sw) values ranging from
400±∼ 10 µatm in January to ∼ 240±∼ 70 µatm in May.
Although, the SA-FNNNCP January estimates are consistent,
the May estimates are higher than these in situ measure-
ments. These observations were made further north (6◦ N)
where the turbidity within the plume has decreased suffi-
ciently for irradiance to elevate NPP rates (Smith and De-
master, 1996), which decrease pCO2 (sw). Chl a remains rel-
atively consistent across the plume (not shown), suggest-
ing a disconnect between Chl a and NPP at 4◦ N, 50◦W,
which would lead to lower pCO2 (sw) estimates by the
SA-FNNCHLA, where NPP rates are low due to light limi-
tation (Chen et al., 2012; Smith and Demaster, 1996). Respi-
ration would be elevated from the decomposition of riverine
organic material reducing NCP further (Cooley et al., 2007;
Jiang et al., 2019; Lefèvre et al., 2017). It is noted that the
Amazon Plume is a dynamic region with transient, localised
biological and pCO2 (sw) features (Cooley et al., 2007; Ibán-
hez et al., 2015; Lefèvre et al., 2017; Valerio et al., 2021) that
may be masked by the coarse resolution of estimates avail-
able using satellite data. The SA-FNNNCP, however, agreed

with in situ pCO2 (sw) observations at 4◦ N, 50◦W, where
pCO2 (sw) varied at or below pCO2 (atm) (Valerio et al., 2021).

Though the differences between the SA-FNNNCP and
SA-FNNCHLA may appear small, the Amazon Plume and
Benguela Upwelling have a higher intensity in the CO2
flux per unit area compared to the open ocean, illustrat-
ing a disproportionate contribution to the overall global
CO2 sink than their small areal coverage implies (Laru-
elle et al., 2014). The differences in the pCO2 (sw) estimates
result in a 22 TgCyr−1 alteration in the annual CO2 flux
for the South Atlantic Ocean (SA-FNNNCP=+14 TgCyr−1;
SA-FNNCHLA=−9 TgCyr−1; Fig. 5f). This unequivocally
reinforces the use of NCP to improve basin-scale estimates
of pCO2 (sw), especially in regions where Chl a, NPP and
NCP become disconnected.

Recent assessments of the strength of the global oceanic
CO2 sink have been made using pCO2 (sw) fields estimated
using no biological parameters as input (Watson et al.,
2020b). Our results indicate that the SA-FNNNCP more ac-
curately represented the pCO2 (sw) variability in the South
Atlantic Ocean compared to the SA-FNNNO-BIO-2, which in-
cluded additional physical parameters. Estimating the South
Atlantic Ocean net CO2 flux with the SA-FNNNCP pCO2 (sw)
produced a 14 TgCyr−1 source compared to a 10 TgCyr−1

sink indicated by the SA-FNNNO-BIO-2 (Fig. 5f). The in-
cremental inclusion of parameters to account for the bio-
logical signal starting with Chl a (−9 TgCyr−1), then NPP
(−7 TgCyr−1) and then NCP (+14 TgCyr−1) switched the
South Atlantic Ocean from a CO2 sink to a source, which
is driven by differences in the pCO2 (sw) estimates in regions
that are biologically controlled. This 21 TgCyr−1 difference
between the SA-FNNNCP and SA-FNNNPP is due to addi-
tional outgassing in the equatorial Atlantic provinces of the
WTRA and ETRA (Figs. 1a and 5f). Compared to the in
situ pCO2 (sw) observations at the equatorial stations (Fig. 3a
and b), it is likely that the outgassing is still underestimated
by the SA-FNNNCP but does improve these estimates within
the upwelling season (June–September).

The W2020 identified the South Atlantic Ocean as a
source for CO2 of 15 TgCyr−1, which is consistent with the
SA-FNNNCP (Fig. 5f). The SA-FNNNCP, however, indicated
the equatorial Atlantic (10◦ N to 20◦ S) as a 20 TgCyr−1

stronger source and south of 20◦ S (20◦ S to 44◦ S) as a
20 TgCyr−1 stronger sink. These differences indicate that
biologically induced variability in pCO2 (sw) would not be
captured by the W2020 and could reduce the variability in
the global ocean CO2 sink. A further SA-FNN trained with
pCO2 (atm), SST, salinity, mixed layer depth and NCP indi-
cated a similar CO2 source of 12 TgCyr−1 (data not shown)
as the SA-FNNNCP for the South Atlantic Ocean, highlight-
ing that additional physical parameters cannot fully account
for the biological contribution to the variability in pCO2 (sw).
This further confirms the importance of using NCP within
estimates of the global ocean CO2 sink.
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Figure 5. Long-term average annual mean CO2 flux for the South Atlantic Ocean, using pCO2 (sw) estimates from (a) SA-FNNNCP,
(b) W2020 (Watson, et al., 2020a), (c) SA-FNNNO-BIO-2, (d) SA-FNNCHLA and (e) SA-FNNNPP. (f) Bar chart displaying the mean annual
CO2 flux for different regions of the South Atlantic Ocean including 10◦ N to 44◦ S (whole South Atlantic Ocean), 10◦ N to 20◦ S, and 20 to
44◦ S, alongside the WTRA and ETRA biogeochemical provinces (Fig. 1a).

5 Conclusions

In this paper, we compare neural network models of
pCO2 (sw) parameterised separately using either satellite
Chl a, NPP or NCP as biological proxies to estimate com-
plete fields of pCO2 (sw). The results suggest that using NCP
improved the estimation of pCO2 (sw). The differences be-
tween satellite Chl a, NPP or NCP were initially small, but
the use of a perturbation analysis to assess the uncertainties
in these parameters showed that NCP has a greater poten-
tial uncertainty reduction of up to ∼ 36 % of the RMSD,
compared to a ∼ 19 % for Chl a. These results were veri-
fied using in situ observations from the Atlantic Meridional
Transect, which resulted in a 25 % improvement in pCO2 (sw)
RMSD when the in situ NCP uncertainties were reduced to
∼ 0, compared to 7 % for Chl a and 13 % for NPP.

Monthly climatological estimates of pCO2 (sw) at eight sta-
tions in the South Atlantic Ocean, calculated using satel-
lite NCP, were compared with the NPP and the Chl a ap-
proaches and two neural networks that do not use biolog-
ical parameters. The NCP approach significantly improved
on both approaches with no biological parameters at four
stations in reconstructing the seasonal and interannual vari-
ability, compared to in situ pCO2 (sw) observations. At the
remaining four stations, differences were also observed, al-
though these were not statistically significant. In the eastern

equatorial Atlantic, in the upwelling region, a significant dif-
ference between the NCP and NPP approaches occurred. Sig-
nificant differences between the NCP and Chl a approaches
were also observed in the Benguela upwelling and Amazon
Plume, where pCO2 (sw) from Chl a suggested that photosyn-
thetic rates were not solely controlled by Chl a. Using NCP
to estimate pCO2 (sw) the South Atlantic Ocean was charac-
terised as a net source of CO2, whereas methods that only
include physical controls have indicated the region to be a
small sink for CO2. Sequentially using Chl a to estimate
pCO2 (sw) and then NPP incrementally reduced the South At-
lantic CO2 sink, and finally using NCP the area switched to
being a source of CO2. These results indicate that in regions
where biological activity is important in controlling the vari-
ability in pCO2 (sw), the use of NCP, which is available from
satellite data, is important for quantifying the ocean carbon
pump and for providing data in areas that are sparsely cov-
ered by observations such as the Southern Ocean.
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Appendix A: Feed forward neural network training and
perturbation analysis

Table A1. The percentage reduction in root mean square difference (RMSD) attributable to the uncertainties in the input parameter for each
training and validation data set determined from a perturbation analysis as described in Sect. 2.5.

Parameter Training [%] Validation [%] Independent test [%] AMT in situ [%]

NCP ALL 33 42 38 28
SST 10 12 10 0.5
Net community production 32 40 36 25
pCO2 (atm) 6 7 6 9

Net primary production ALL 34 40 40 17
SST 9 10 10 0.4
Net primary production 31 37 36 13
pCO2 (atm) 6 6 6 9

Chlorophyll a ALL 22 26 25 29
SST 9 10 9 0.4
Chlorophyll a 17 21 20 7
pCO2 (atm) 8 9 9 16

Figure A1. Scatter plots showing the combined performance of the eight feed forward neural networks trained using chlorophyll a for four
separate training and validation datasets: (a) training, (b) validation, (c) independent test and (d) Atlantic Meridional Transect (AMT) in
situ. The blue dashed line is the type II regression, and the black dashed line is the 1 : 1 line. Horizontal error bars indicate the uncertainty of
the SOCATv2020 pCO2 (sw). Vertical error bars indicate the uncertainty attributed to the input parameter uncertainty propagated through the
feed forward neural networks. The statistics within each plot are the root mean square difference (RMSD), slope and intercept of the type II
regression, coefficient of determination (R2), Pearson correlation coefficient (R), bias and number of samples (N ).
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Figure A2. Scatter plots showing the combined performance of the eight feed forward neural networks trained using net primary production
for four separate training and validation datasets: (a) training, (b) validation, (c) independent test and (d) Atlantic Meridional Transect (AMT)
in situ. The blue dashed line is the type II regression, and the black dashed line is the 1 : 1 line. Horizontal error bars indicate the uncertainty
of the SOCATv2020 pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter uncertainty propagated
through the feed forward neural networks. The statistics within each plot are the root mean square difference (RMSD), slope and intercept
of the type II regression, coefficient of determination (R2), Pearson correlation coefficient (R), bias and number of samples (N ).

Figure A3. Scatter plots showing the combined performance of the eight feed forward neural networks trained using no biological parameters
(SA-FNNNO-BIO-1) for three separate training and validation datasets: (a) training, (b) validation and (c) independent test. The blue dashed
line is the type II regression, and the black dashed line is the 1 : 1 line. Horizontal error bars indicate the uncertainty of the SOCATv2020
pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter uncertainty propagated through the feed
forward neural networks. The statistics within each plot are the root mean square difference (RMSD), slope and intercept of the type II
regression, coefficient of determination (R2), Pearson correlation coefficient (R), bias and number of samples (N ).
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Figure A4. Scatter plots showing the combined performance of the eight feed forward neural networks trained using no biological parameters
(SA-FNNNO-BIO-2) for three separate training and validation datasets: (a) training, (b) validation and (c) independent test. The blue dashed
line is the type II regression, and the black dashed line is the 1 : 1 line. Horizontal error bars indicate the uncertainty of the SOCATv2020
pCO2 (sw). Vertical error bars indicate the resulting uncertainty attributed to the input parameter uncertainty propagated through the feed
forward neural networks. The statistics within each plot are the root mean square difference (RMSD), slope and intercept of the type II
regression, coefficient of determination (R2), Pearson correlation coefficient (R), bias and number of samples (N ).

Appendix B: Climatology comparison

A monthly climatology was generated from the SA-FNNNCP
monthly time series (Fig. B1), referenced to the year 2010,
assuming an atmospheric CO2 increase of 1.5 µatmyr−1

(Takahashi et al., 2009; Zeng et al., 2014). The standard de-
viation of the monthly climatology was computed, as an in-
dication of the interannual variations in the climatology. The
ability of the SA-FNNNCP to estimate the spatial distribution
of pCO2 (sw) was compared to two methods.

Firstly, the SA-FNNNCP climatology was compared to the
climatology from Woolf et al. (2019), produced following
the statistical “ordinary block kriging” approach described
in Goddijn-Murphy et al. (2015), using the SOCATv4 re-
analysed data. The method provides an interpolation uncer-
tainty where in regions of sparse data this becomes larger.
Figure B2 shows the methods produce similar climatologi-
cal pCO2 (sw) values for the South Atlantic Ocean, with some
clear differences along the African coastline, and equatorial
region.

Secondly, the SA-FNNNCP was compared to a climatol-
ogy calculated from the standard method, a self-organising-
map feed forward neural network presented in Watson et al.
(2020b; W2020). Figure B3 shows the methods produce sim-
ilar climatological pCO2 (sw) values for the South Atlantic
Ocean; however, clear differences in the equatorial region oc-
cur across all months. In the central South Atlantic Ocean,
artefacts form the self-organising map can be seen during
January and February.
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Figure B1. Monthly climatologies of pCO2 (sw) between July 2002 and December 2018 estimated by the SA-FNNNCP approach referenced
to 2010. The atmospheric CO2 increase was set as 1.5 µatmyr−1. The colour scale is centred on the atmospheric concentration for 2010
(∼ 380 µatm). Red shaded areas indicate oversaturated regions, and blue shaded areas indicate undersaturated regions. Light green areas
indicate where no input data to compute pCO2 (sw) are available.

Figure B2. Monthly comparison between pCO2 (sw) climatology estimated by the SA-FNNNCP and Woolf et al. (2019) climatology ref-
erenced to 2010 (SA-FNNNCP pCO2 – Woolf pCO2). Red (Blue) shades indicate regions where SA-FNN is greater (less) than the Woolf
climatology.

Biogeosciences, 19, 93–115, 2022 https://doi.org/10.5194/bg-19-93-2022



D. J. Ford et al.: Derivation of seawater pCO2 from net community production 109

Figure B3. Monthly comparison between pCO2 (sw) climatologies estimated by the SA-FNNNCP and W2020 (Watson et al., 2020a) clima-
tology referenced to 2010 (SA-FNNNCP pCO2 – W2020 pCO2). Red (Blue) shades indicate regions where SA-FNNNCP is greater (less)
than the W2020 climatology.

Appendix C: Biological parameter climatologies

Figure C1. Monthly climatologies of the biological parameters (Chl a, NPP and NCP) for the eight stations (Fig. 1a). Chl a and NPP scale
on the left axis, and NCP on the right. Note the different axis limits on each plot.
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Data availability. Moderate Resolution Imaging Spectroradiome-
ter on Aqua (MODIS-A) estimates of chlorophyll a (NASA
OBPG, 2017a), photosynthetically active radiation (NASA OBPG,
2017b) and sea surface temperature (NASA OBPG, 2015) are
available from the National Aeronautics Space Administration
(NASA) Ocean Color website (https://oceancolor.gsfc.nasa.gov/,
NASA OBPG, 2015, 2017a, b). Modelled sea surface salin-
ity and mixed layer depth from the Copernicus Marine Envi-
ronment Modelling Service (CMEMS) global ocean physics re-
analysis product (GLORYS12V1) are available from CMEMS
(CMEMS, 2021). ERA5 monthly reanalysis wind speeds are avail-
able from the Copernicus Climate Data Store (Hersbach et al.,
2019). pCO2 (atm) data are available from v5.5 of the global esti-
mates of pCO2 (sw) data set (Landschützer et al., 2016, 2017). In situ
observations of fCO2 (sw) from v2020 of the Surface Ocean CO2
Atlas (SOCAT) are available from https://www.socat.info/index.
php/version-2020/ (Bakker et al., 2016). In situ Atlantic Merid-
ional Transect data can be obtained from the British Oceanographic
Data Centre (https://www.bodc.ac.uk/, last access: 11 April 2020).
pCO2 (sw) estimates from the W2020 are available from
https://doi.org/10.1594/PANGAEA.922985 (Watson et al., 2020a).
pCO2 (sw) estimates generated by the SA-FNNNCP, SA-FNNNPP,
SA-FNNCHLA, SA-FNNNO-BIO-2 and SA-FNNNO-BIO-1 are avail-
able from Pangaea (https://doi.org/10.1594/PANGAEA.935936;
Ford et al., 2021a).

Author contributions. DJF, GHT, JDS and VK conceived and di-
rected the research. DJF developed the code and prepared the
manuscript. GHT, JDS and VK provided comments that shaped the
final paper.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Daniel J. Ford was supported by a NERC
GW4+ Doctoral Training Partnership studentship from the UK
Natural Environment Research Council (NERC; NE/L002434/1).
Gavin H. Tilstone and Vassilis Kitidis were supported by the
AMT4OceanSatFlux (4000125730/18/NL/FF/gp) contract from the
European Space Agency and NERC National Capability funding to
Plymouth Marine Laboratory for the Atlantic Meridional Transect
(CLASS-AMT).

We would like to thank the captain and crew of RRS Discov-
ery, RRS James Clark Ross and RRS James Cook for conducting
the Atlantic Meridional Transects (AMT). We also thank the Natu-
ral Environment Research Council Earth Observation Data Acquisi-
tion and Analysis Service (NEODAAS) for use of the Linux cluster
to process the MODIS-A satellite imagery. We also thank Giorgio
Dall’Olmo for collecting the in situ Chl a data on AMT 22, as well
as Pablo Serret and Jose Lozano for collecting the in situ NCP data
on AMTs 22 and 23.

The Surface Ocean CO2 Atlas (SOCAT) is an international ef-
fort, endorsed by the International Ocean Carbon Coordination
Project (IOCCP), the Surface Ocean – Lower Atmosphere Study
(SOLAS) and the Integrated Marine Biosphere Research (IM-
BeR) programme, to deliver a uniformly quality-controlled sur-
face ocean CO2 database. The many researchers and funding agen-
cies responsible for the collection of data and quality control are
thanked for their contributions to SOCAT. The AMT is funded
by NERC through its National Capability Long-term Single Cen-
tre Science Programme, Climate Linked Atlantic Sector Science
(NE/R015953/1). This study contributes to the international IMBeR
project and is contribution number 366 of the AMT programme. We
thank Jonathan Sharp and an anonymous reviewer for their valuable
comments that improved the final paper.

Financial support. Daniel J. Ford was supported by NERC GW4+
Doctoral Training Partnership grant NE/L002434/1. Gavin H. Til-
stone and Vassilis Kitidis were supported by ESA grant
4000125730/18/NL/FF/gp (AMT4OceanSatFlux) and NERC grant
NE/R015953/1 (AMT).

Review statement. This paper was edited by Peter Landschützer
and reviewed by Jonathan Sharp and one anonymous referee.

References

Amari, S. I., Murata, N., Müller, K. R., Finke, M., and
Yang, H. H.: Asymptotic statistical theory of overtrain-
ing and cross-validation, I T. Neural Networ., 8, 985–996,
https://doi.org/10.1109/72.623200, 1997.

Arnone, V., González-Dávila, M., and Magdalena Santana-Casiano,
J.: CO2 fluxes in the South African coastal region, Mar. Chem.,
195, 41–49, https://doi.org/10.1016/j.marchem.2017.07.008,
2017.

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K.
M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D.,
Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C.,
Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.
R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A.,
Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle,
R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Feather-
stone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J.,
Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss,
B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V.,
Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Land-
schützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke,
A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S.,
Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S.,
Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger,
R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A.
C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-
decade record of high-quality fCO2 data in version 3 of the Sur-

Biogeosciences, 19, 93–115, 2022 https://doi.org/10.5194/bg-19-93-2022

https://oceancolor.gsfc.nasa.gov/
https://www.socat.info/index.php/version-2020/
https://www.socat.info/index.php/version-2020/
https://www.bodc.ac.uk/
https://doi.org/10.1594/PANGAEA.922985
https://doi.org/10.1594/PANGAEA.935936
https://doi.org/10.1109/72.623200
https://doi.org/10.1016/j.marchem.2017.07.008


D. J. Ford et al.: Derivation of seawater pCO2 from net community production 111

face Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–
413, https://doi.org/10.5194/essd-8-383-2016, 2016.

Banks, A. C., Vendt, R., Alikas, K., Bialek, A., Kuusk, J., Lere-
bourg, C., Ruddick, K., Tilstone, G., Vabson, V., Donlon,
C., and Casal, T.: Fiducial reference measurements for satel-
lite ocean colour (FRM4SOC), Remote Sens.-basel, 12, 1322,
https://doi.org/10.3390/RS12081322, 2020.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-
rived from satellite-based chlorophyll concentration, Limnol.
Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001,
1997.

Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T.
K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D.
A., and Brown, M. B.: Revaluating ocean warming impacts
on global phytoplankton, Nat. Clim. Change, 6, 323–330,
https://doi.org/10.1038/nclimate2838, 2016.

Benallal, M. A., Moussa, H., Lencina-Avila, J. M., Touratier,
F., Goyet, C., El Jai, M. C., Poisson, N., and Poisson, A.:
Satellite-derived CO2 flux in the surface seawater of the Austral
Ocean south of Australia, Int. J. Remote Sens., 38, 1600–1625,
https://doi.org/10.1080/01431161.2017.1286054, 2017.

BIPM: Evaluation of measurement data—Guide to the expression
of uncertainty in measurement, available at: http://www.bipm.
org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
(last access: 10 March 2020), 2008.

Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F.,
Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi,
A., Moura, A. D., Servain, J., and Trotte, J.: THE PI-
RATA PROGRAM, B. Am. Meteorol. Soc., 89, 1111–1126,
https://doi.org/10.1175/2008BAMS2462.1, 2008.

Brewin, R. J. W., Dall’Olmo, G., Pardo, S., van Dongen-Vogels,
V., and Boss, E. S.: Underway spectrophotometry along the At-
lantic Meridional Transect reveals high performance in satel-
lite chlorophyll retrievals, Remote Sens. Environ., 183, 82–97,
https://doi.org/10.1016/j.rse.2016.05.005, 2016.

Bruto, L., Araujo, M., Noriega, C., Veleda, D., and Lefèvre,
N.: Variability of CO2 fugacity at the western edge of
the tropical Atlantic Ocean from the 8◦ N to 38◦W
PIRATA buoy, Dynam. Atmos. Oceans, 78, 1–13,
https://doi.org/10.1016/j.dynatmoce.2017.01.003, 2017.

Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., and He, X.:
Strong sources of CO2 in upper estuaries become sinks of
CO2 in large river plumes, Curr. Opin. Env. Sust., 4, 179–185,
https://doi.org/10.1016/j.cosust.2012.02.003, 2012.

Chierici, M., Signorini, S. R., Mattsdotter-Björk, M., Fransson, A.,
and Olsen, A.: Surface water fCO2 algorithms for the high-
latitude Pacific sector of the Southern Ocean, Remote Sens. En-
viron., 119, 184–196, https://doi.org/10.1016/j.rse.2011.12.020,
2012.

CMEMS: Copernicus Marine Modelling Service global ocean
physics reanalysis product (GLORYS12V1), CMEMS [data set],
https://doi.org/10.48670/moi-00021, 2021.

Coles, V. J., Brooks, M. T., Hopkins, J., Stukel, M. R.,
Yager, P. L., and Hood, R. R.: The pathways and prop-
erties of the Amazon river plume in the tropical North
Atlantic Ocean, J. Geophys. Res.-Oceans, 118, 6894–6913,
https://doi.org/10.1002/2013JC008981, 2013.

Cooley, S. R., Coles, V. J., Subramaniam, A., and Yager,
P. L.: Seasonal variations in the Amazon plume-related at-

mospheric carbon sink, Global Biogeochem. Cy., 21, 1–15,
https://doi.org/10.1029/2006GB002831, 2007.

Dai, A. and Trenberth, K. E.: Estimates of freshwater dis-
charge from continents: Latitudinal and seasonal variations,
J. Hydrometeorol., 3, 660–687, https://doi.org/10.1175/1525-
7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.

Demuth, H., Beale, M., and Hagan, M.: Neural Network Toolbox 6
Users Guide, The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA, 2008.

DeVries, T.: The oceanic anthropogenic CO2 sink: Stor-
age, air–sea fluxes, and transports over the indus-
trial era, Global Biogeochem. Cy., 28, 631–647,
https://doi.org/10.1002/2013GB004739, 2014.

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide
to Best Practices for Ocean CO2 Measurements, PICES Special
Publication, IOCCP Report No. 8, 2007.

Dogliotti, A. I., Lutz, V. A., and Segura, V.: Estimation
of primary production in the southern Argentine conti-
nental shelf and shelf-break regions using field and re-
mote sensing data, Remote Sens. Environ., 140, 497–508,
https://doi.org/10.1016/j.rse.2013.09.021, 2014.

Donlon, C. J., Nightingale, T. J., Sheasby, T., Turner, J., Robinson,
I. S., and Emergy, W. J.: Implications of the oceanic thermal skin
temperature deviation at high wind speed, Geophys. Res. Lett.,
26, 2505–2508, https://doi.org/10.1029/1999GL900547, 1999.

Duarte, C. M., Regaudie-de-Gioux, A., Arrieta, J. M.,
Delgado-Huertas, A., and Agustí, S.: The Oligotrophic
Ocean Is Heterotrophic, Annu. Rev. Mar. Sci., 5, 551–569,
https://doi.org/10.1146/annurev-marine-121211-172337, 2013.

Ducklow, H. W. and Doney, S. C.: What Is the Metabolic
State of the Oligotrophic Ocean? A Debate, Annu. Rev.
Mar. Sci., 5, 525–533, https://doi.org/10.1146/annurev-marine-
121211-172331, 2013.

Fay, A. R. and McKinley, G. A.: Global trends in surface ocean
pCO2 from in situ data, Global Biogeochem. Cy., 27, 541–557,
https://doi.org/10.1002/gbc.20051, 2013.

Ford, D., Tilstone, G. H., Shutler, J. D., and Kitidis, V.:
Interpolated surface ocean carbon dioxide partial pres-
sure for the South Atlantic Ocean (2002–2018) using
different biological parameters, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.935936, 2021a.

Ford, D., Tilstone, G. H., Shutler, J. D., Kitidis, V., Lobanova,
P., Schwarz, J., Poulton, A. J., Serret, P., Lamont, T., Chuqui,
M., Barlow, R., Lozano, J., Kampel, M., and Brandini, F.:
Wind speed and mesoscale features drive net autotrophy in the
South Atlantic Ocean, Remote Sens. Environ., 260, 112435,
https://doi.org/10.1016/j.rse.2021.112435, 2021b.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin,
S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R.,
Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan,
S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie,
L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritza-
lis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V.,
Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K.,
Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre,
N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I.,

https://doi.org/10.5194/bg-19-93-2022 Biogeosciences, 19, 93–115, 2022

https://doi.org/10.5194/essd-8-383-2016
https://doi.org/10.3390/RS12081322
https://doi.org/10.4319/lo.1997.42.1.0001
https://doi.org/10.1038/nclimate2838
https://doi.org/10.1080/01431161.2017.1286054
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://doi.org/10.1175/2008BAMS2462.1
https://doi.org/10.1016/j.rse.2016.05.005
https://doi.org/10.1016/j.dynatmoce.2017.01.003
https://doi.org/10.1016/j.cosust.2012.02.003
https://doi.org/10.1016/j.rse.2011.12.020
https://doi.org/10.48670/moi-00021
https://doi.org/10.1002/2013JC008981
https://doi.org/10.1029/2006GB002831
https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2
https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2
https://doi.org/10.1002/2013GB004739
https://doi.org/10.1016/j.rse.2013.09.021
https://doi.org/10.1029/1999GL900547
https://doi.org/10.1146/annurev-marine-121211-172337
https://doi.org/10.1146/annurev-marine-121211-172331
https://doi.org/10.1146/annurev-marine-121211-172331
https://doi.org/10.1002/gbc.20051
https://doi.org/10.1594/PANGAEA.935936
https://doi.org/10.1016/j.rse.2021.112435


112 D. J. Ford et al.: Derivation of seawater pCO2 from net community production

Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poul-
ter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger,
J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tan-
hua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G.,
Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.:
Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–
3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

Gist, N., Serret, P., Woodward, E. M. S., Chamberlain, K.,
and Robinson, C.: Seasonal and spatial variability in plank-
ton production and respiration in the Subtropical Gyres of
the Atlantic Ocean, Deep-See Res. Pt. II, 56, 931–940,
https://doi.org/10.1016/j.dsr2.2008.10.035, 2009.

Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D.,
and Donlon, C.: The OceanFlux Greenhouse Gases methodol-
ogy for deriving a sea surface climatology of CO2 fugacity in
support of air–sea gas flux studies, Ocean Sci., 11, 519–541,
https://doi.org/10.5194/os-11-519-2015, 2015.

González-Dávila, M., Santana-Casiano, J. M., and Ucha,
I. R.: Seasonal variability of fCO2 in the Angola-
Benguela region, Prog. Oceanogr., 83, 124–133,
https://doi.org/10.1016/j.pocean.2009.07.033, 2009.

Gregor, L. and Monteiro, P. M. S.: Is the southern benguela a
significant regional sink of CO2?, S. Afr. J. Sci., 109, 1–5,
https://doi.org/10.1590/sajs.2013/20120094, 2013.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-
N.: ERA5 monthly averaged data on single levels from 1979 to
present, Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7,
2019.

Holding, T., Ashton, I. G., Shutler, J. D., Land, P. E., Nightin-
gale, P. D., Rees, A. P., Brown, I., Piolle, J.-F., Kock, A.,
Bange, H. W., Woolf, D. K., Goddijn-Murphy, L., Pereira, R.,
Paul, F., Girard-Ardhuin, F., Chapron, B., Rehder, G., Ardhuin,
F., and Donlon, C. J.: The FluxEngine air–sea gas flux tool-
box: simplified interface and extensions for in situ analyses and
multiple sparingly soluble gases, Ocean Sci., 15, 1707–1728,
https://doi.org/10.5194/os-15-1707-2019, 2019.

Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for
oligotrophic oceans: A novel approach based on three-band
reflectance difference, J. Geophys. Res.-Oceans, 117, 1–25,
https://doi.org/10.1029/2011JC007395, 2012.

Hutchings, L., van der Lingen, C. D., Shannon, L. J., Crawford,
R. J. M., Verheye, H. M. S., Bartholomae, C. H., van der Plas,
A. K., Louw, D., Kreiner, A., Ostrowski, M., Fidel, Q., Bar-
low, R. G., Lamont, T., Coetzee, J., Shillington, F., Veitch, J.,
Currie, J. C., and Monteiro, P. M. S.: The Benguela Current:
An ecosystem of four components, Prog. Oceanogr., 83, 15–32,
https://doi.org/10.1016/j.pocean.2009.07.046, 2009.

Ibánhez, J. S. P., Diverrès, D., Araujo, M., and Lefèvre,
N.: Seasonal and interannual variability of sea–air CO2
fluxes in the tropical Atlantic affected by the Amazon
River plume, Global Biogeochem. Cy., 29, 1640–1655,
https://doi.org/10.1002/2015GB005110, 2015.

IPCC: Climate Change 2013: The Physical Science Basis. Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. B., Allen, S.
K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, UK, 2013.

Jiang, Z.-P., Cai, W.-J., Lehrter, J., Chen, B., Ouyang, Z., Le, C.,
Roberts, B. J., Hussain, N., Scaboo, M. K., Zhang, J., and Xu, Y.:
Spring net community production and its coupling with the CO2
dynamics in the surface water of the northern Gulf of Mexico,
Biogeosciences, 16, 3507–3525, https://doi.org/10.5194/bg-16-
3507-2019, 2019.

Kaiser, J., Reuer, M. K., Barnett, B., and Bender, M. L.: Marine pro-
ductivity estimates from continuous O2/Ar ratio measurements
by membrane inlet mass spectrometry, Geophys. Res. Lett., 32,
L19605, https://doi.org/10.1029/2005GL023459, 2005.

Kitidis, V., Tilstone, G. H., Serret, P., Smyth, T. J., Torres, R., and
Robinson, C.: Oxygen photolysis in the Mauritanian upwelling:
Implications for net community production, Limnol. Oceanogr.,
59, 299–310, https://doi.org/10.4319/lo.2014.59.2.0299, 2014.

Kitidis, V., Brown, I., Hardman-mountford, N., and
Lefèvre, N.: Surface ocean carbon dioxide during the
Atlantic Meridional Transect (1995–2013); evidence
of ocean acidification, Prog. Oceanogr., 158, 65–75,
https://doi.org/10.1016/j.pocean.2016.08.005, 2017.

Koffi, U., Lefèvre, N., Kouadio, G., and Boutin, J.: Surface
CO2 parameters and air–sea CO2 flux distribution in the east-
ern equatorial Atlantic Ocean, J. Marine Syst., 82, 135–144,
https://doi.org/10.1016/j.jmarsys.2010.04.010, 2010.

Koffi, U., Kouadio, G., and Kouadio, Y. K.: Estimates and Variabil-
ity of the Air-Sea CO2 Fluxes in the Gulf of Guinea during the
2005-2007 Period, Open Journal of Marine Science, 06, 11–22,
https://doi.org/10.4236/ojms.2016.61002, 2016.

Kroopnick, P.: Isotopic fractionations during oxygen con-
sumption and carbonate dissolution within the North At-
lantic Deep Water, Earth Planet. Sc. Lett., 49, 485–498,
https://doi.org/10.1016/0012-821X(80)90089-8, 1980.

Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman,
H. A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M.,
Figueiras, F. G., Furuya, K., González-Benítez, N., Gudfinns-
son, H. G., Gudmundsson, K., Huang, B., Isada, T., Kovač, Ž.,
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