

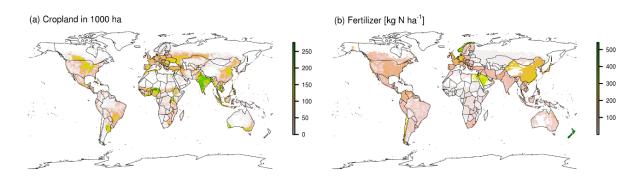
Supplement of

The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc)

Vera Porwollik et al.

Correspondence to: Vera Porwollik (verapor@pik-potsdam.de)

The copyright of individual parts of the supplement might differ from the article licence.


S1 Supplementary information to methods and data

S1.1 Crop functional types represented in LPJmL5.0-tillage-cc

Table S1.1 Crop functional types (CFTs) in LPJml5.0-tillage-cc and included in the study.

CFT	Simulated as
temperate cereals	wheat
rice	rice
tropical cereals	millet
pulses	field peas
temperate roots	sugar beet
tropical roots	cassava
maize	maize
sunflower	sunflower
soybean	soybean
groundnuts	groundnuts
rapeseed	rapeseed
sugarcane	sugarcane
others	maize in tropical and as wheat in temperate regions
managed grass	temperate C3, polar C3, and tropical C4 grass (managed grassland
	and pasture outputs not considered here)
bioenergy grass	not simulated here
bioenergy trees	not simulated here
cover crops	temperate C3, polar C3, and tropical C4 grass with daily allocation

S1.2 Model input data

5

Figure S1.2 Maps depict the spatial pattern of: (a) Physical cropland in 1000 hectares per grid cell, and (b) Mineral N fertilizer application rate in kg N ha⁻¹, both based on LUH2v2 (Hurtt et al., 2020) for the year 2010, which were used as model input data for the simulations and for post-processing model output data (white as no cropland).

10 S1.3 Overview simulation setup for management scenarios

Simulation	Abbrevi-	Tillage	Soil cover	Land use ^a	Number of	Climate ^b
step	ation	setting	cropland during	and other	years	input data
	main crop off-		managemen			
			season periods	t settings		
1. Spin-up:						
1.1.						
Potential					7000	repeated
natural	-	-	-	no land use	7000	(1901-1930)
vegetation						
1.2. Land	- tillage bare soil fallow		1 1 1 6 11	static at level	200	repeated
use			of 2010	390	(1901-1930)	
2. Land mana	agement scen	arios:				
2.1.	REF	tillaga	bare soil fallow	static at level	50	dynamic
Baseline	КЕГ	tillage	bare son fallow	of 2010	30	(1962-2011)
2.2. Cover	66			static at level	50	dynamic
crops	CC	tillage	cover crops of 2010		50	(1962-2011)
2.3. Cover				static at level		dynamic
crops with	CCNT	no-tillage	cover crops		50	•
no-tillage				of 2010		(1962-2011)
2.4. No-				static at level	-	dynamic
tillage	NT	NT no-tillage bare soil fallow		of 2010	50 of 2010	

Table S1.3 Spin-u	b and land management	t scenario modeling protoco	l using LPJml5.0-tillage-cc.

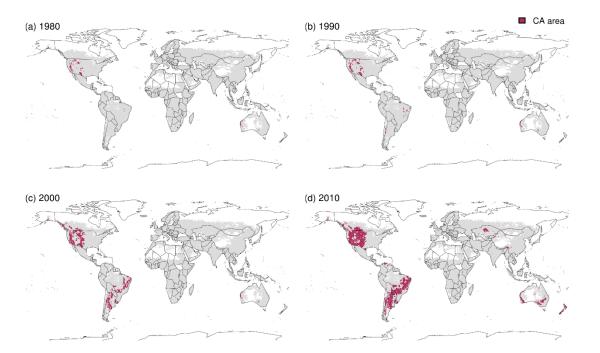
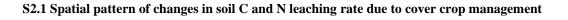
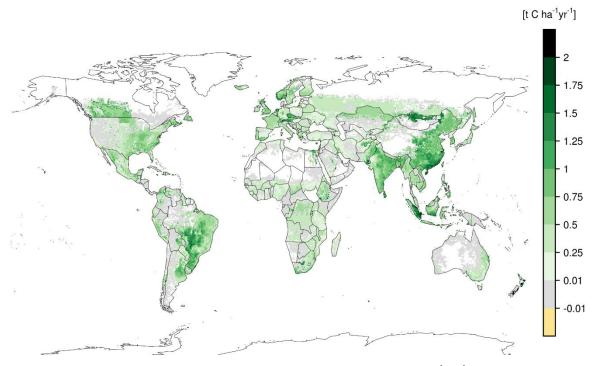
^a Hurtt et al. (2020)

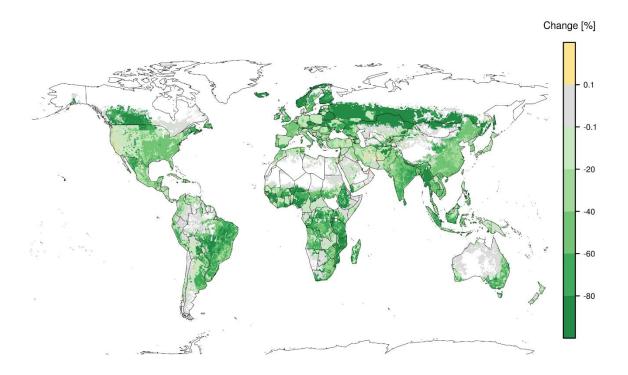
^b Becker et al. (2013); Tans and Keeling (2015)

S1.4 Conservation Agriculture area time series dataset (1974-2010)

- We applied a time series of the global annual CA cropland per grid cell covering the years 1974-2010 (Fig. S1.4). This dataset was obtained combining data of historical physical cropland (LUH2v2 by Hurtt et al. (2020) (years 1974-2010) (Sect. 2.4, Sect. S1.2), field size (Fritz et al., 2015) (year ~2005), water erosion (Nachtergaele et al., 2011) (year 2000), aridity index (FAO, 2015) (averaged for years 1965-1990), Gross National Income time series (World Bank, 2017) (years 1987-2010), and of national reported CA cropland for the years 1974-2010 (FAO, 2015).
- 20 2016). Input data to this time series were recycled as static value per grid cell with considered cropland, if available only for one time slice or else adjusted for the coverage of the entire CA area reporting period and the physical cropland data. In the case of missing national reported annual CA area values, these were interpreted as zero, if outside reporting periods, or gaps filled with the last reported value, if within. National reported CA area data were downscaled to the grid scale at 0.5 degree resolution, according to the likelihood of CA adoption on cropland using
- 25 methods described in Porwollik et al. (2019).

Historical annual shares of reported and mapped Conservation Agriculture area on global cropland rose from 0.2 % in the year 1974 to about 10 % in 2010 (FAO, 2016). During this period largest increases of CA area were reported for cropland in Northern and South America, but also for Australia, New Zealand, and Kazakhstan. For Africa and Asia adoption rates of CA practices were rather low (Kassam et al., 2018; Porwollik et al., 2019; Prestele et al., 2018). This CA cropland time series data as well has been included in Herzfeld et al. (2021) and Karstens et al. (2020), quantifying soil C responses to historical land-use change dynamics and land management, including tillage practices and sensitivity to main crop residue removal rates.

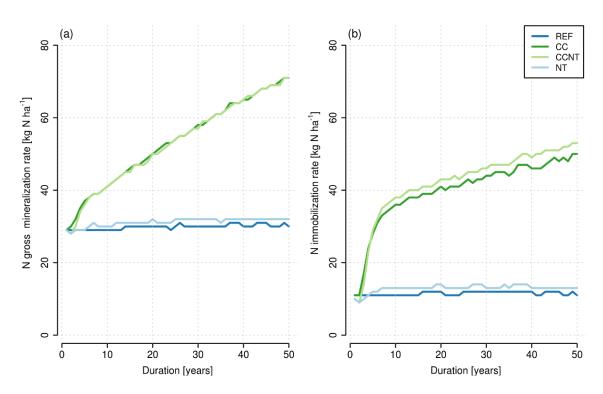





Figure S1.4 Maps (a-d) of global gridded physical cropland mapped with Conservation Agriculture (purple) and
conventional tillage practices (grey) per grid cell, here showing time slices of the annual gridded time series data
applied in this study for the years: 1980, 1990, 2000, and 2010, respectively, (white as no cropland).

S2 Supplementary information to simulated cropland management scenario results

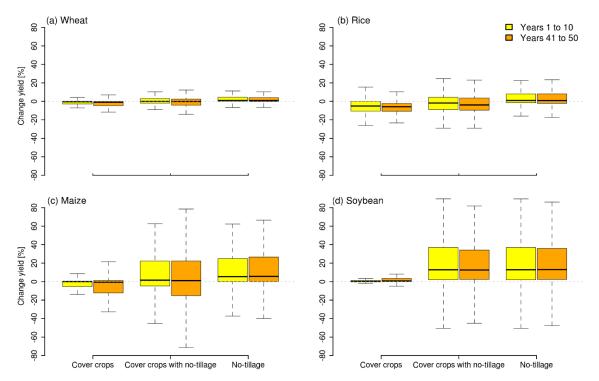
Figure S2.1.1 Map of average annual soil carbon sequestration rates in t C ha⁻¹ yr⁻¹ per grid cell obtained with cover crops (CC), as absolute difference to the soil carbon stock in the control scenario with bare fallow (REF) divided by the management duration (Eq. 1), per cropland hectare and grid cell in the 50th year of the simulation period (white as no cropland).

45 **Figure S2.1.2** Map displays the changes of soil N leaching rates from cropland as annual median relative difference in percent (%) per hectare and grid cell due to cover crops (CC) relative to the control scenario with bare fallow (REF) for the 50 year simulation period.


S2.2 Simulated responses to CCNT and NT on global cropland aggregated per decade

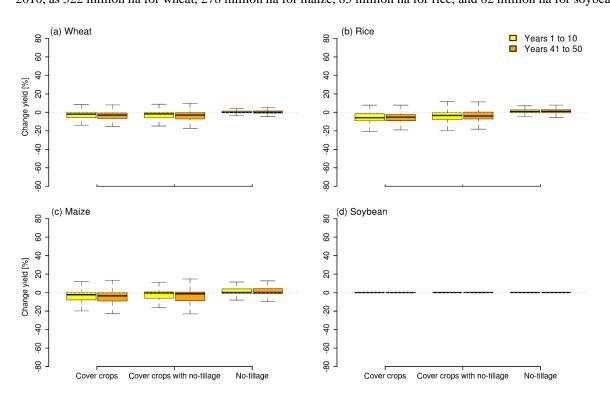
50

Table S2.2 (As Table 1 in Sect. 4.1) Changes of assessed agroecosystem variables due to simulated cover crops with no-tillage (CCNT), and no-tillage (NT), both compared to the baseline management scenario with conventional tillage and bare soil fallowing practices (REF), as area-weighted and aggregated median (and quartiles (Q1, Q3)) across global cropland or crop-specific area for the first and last decades of the 50 year simulation period.


Management			CNT	٨١	NT	
scenario:						
	Unit per year	First decade median (quartiles)	Last decade median (quartiles)	First decade median (quartiles)	Last decade median (quartiles)	
Soil C						
sequestration	t C ha ⁻¹	0.72 (0.24, 1.29)	0.54 (0.29, 0.83)	0.08 (0.04, 0.20)	0.01 (0, 0.05)	
rate						
N leaching rate	%	-57.9 (-80.6, -21.1)	-72.6 (-87.9, -52.2)	-13.8 (-38.1, 4.5)	-20.8 (-46.0, -0.8)	
Wheat yield	%	0.0 (-2.7, 2.3)	-0.4 (-4.9, 1.8)	0.8 (-0.01, 3.87)	0.8 (-0.2, 3.7)	
Rice yield	%	-2.2 (-8, 1.8)	-3.6 (-8, 2.3)	1.2 (-0.9, 5.3)	1.2 (-1.3, 5.6)	
Maize yield	%	1.1 (-4.7, 17.0)	0.8 (-13.6, 16.8)	4.52 (0, 20.4)	4.9 (-0.1, 21.3)	
Soybean yield	%	9.3 (1.1, 30.5)	9.3 (1.6, 28.6)	9.3 (1.1, 30.6)	9.6 (1.5, 30.1)	
Average						
change in yield	%	2	1.5	3.9	4.1	

S2.3 Soil N immobilization rate and gross N mineralization rate with management duration

Figure S2.3 Annual global aggregated area-weighted median: (a) Gross N mineralization rates, and (b) N immobilization rates for global cropland soils during the 50 year period as lines for each simulated management scenario (REF, CC, CCNT, and NT).



60

Figure S2.4.1 Panels (a-d) displaying changes in rainfed wheat, rice, maize, and soybean yields as boxplots of relative differences in percent (%) area-weighted by crop-specific physical cropland, due to alternative

management practices (CC, CCNT, and NT) compared to the baseline (REF) for the first (left bars, yellow) and last decades (right bars, orange) of the 50 year simulation period. Boxes' black midlines indicate the spatial median across the distribution of responses, the lower and upper edges of the boxes the first and third quartiles, and whiskers extending both to the minimum and maximum values within 1.5 times the interquartile range, respectively from each Q1 and Q3 (outliers, defined as values outside this range are not shown here). The boxplots show the distribution of responses per hectare across crop-specific rainfed physical cropland used here for the year 2010, as 322 million ha for wheat, 278 million ha for maize, 85 million ha for rice, and 82 million ha for soybean.

70

75

Figure S2.4.2 Panels (a-d) displaying changes in irrigated wheat, rice, maize, and soybean yields as boxplots of relative differences in percent (%) area-weighted by crop-specific physical cropland, due to alternative management practices (CC, CCNT, and NT) compared to the baseline (REF) for the first (left bars, yellow) and last decades (right bars, orange) of the 50 year simulation period. Boxes' black midlines indicate the spatial median across the distribution of responses, the lower and upper edges of the boxes the first and third quartiles, and whiskers extending both to the minimum and maximum values within 1.5 times the interquartile range, respectively from each Q1 and Q3 (outliers, defined as values outside this range are not shown here). The boxplots show the distribution across crop-specific rainfed physical cropland used here for the year 2010, as 47 million ha for wheat, 54 million ha for maize, 46 million ha for rice, and 10 million ha for soybean.

80 S2.5 Land management impacts on mapped CA area

Table S2.5 Calculated changes per management scenario (CC, CCNT, and NT), when estimates were remapped to the spatial and temporal evolving gridded pattern of the annual dynamic CA area during the years 1974-2010, area-weighted, and aggregated median (and quartiles (Q1, Q3)) per variable across total CA cropland (for soil C and N leaching rate) or crop-specific area (for average rainfed and irrigated yields) with CA.

U	nit Cov	ver crops Cover ci	op and no- No-t	illage
per	year media	n (quartiles) ti	llage median ((quartiles)

			median (quartiles)	
Soil C				
sequestration	t C ha ⁻¹	0.47 (0.01, 1.12)	0.85 (0.32, 1.42)	0.27 (0.15, 0.4)
rate				
N leaching rate	%	-38.1 (-68.4, -0.7)	-56.9 (-80.4, -13.4)	-18.4 (-46.8, 10.5)
Wheat yield	%	0 (-1.2, 0)	6.4 (0.2, 29.4)	7.4 (0.5, 30.6)
Rice yield	%	-5.3 (-10.8, 0)	5.6 (-3.1, 34.8)	10.9 (1.9, 42.9)
Maize yield	%	0.01 (-3.7, 1.1)	23.7 (3.3, 84.1)	31 (9, 94.6)
Soybean yield	%	0.2 (0, 2)	27.8 (3.1, 78.9)	28.9 (3.3, 81.1)
Average change in yield	%	-1.3	15.9	19.6

90

S2.6 Simulated responses to cover crop and tillage practices in comparison to values found in the literature

Table S2.6 Responses to cover crops (CC) in comparison to the control scenario with bare soil fallow (REF) on cropland during off-season between consecutive primary crop growing seasons, both with conventional tillage for soil C sequestration rate, as well as changes of N leaching rate and following main crop productivity in comparison to other studies' findings (see Sect. 2.5 for equations used). The time period indicated in the first column depicts the number of years since introduction of the cover crop practice as well as the management duration. The time period indicated for a value found in the literature correspond to the time frame of LPJml5.0-tillage-cc model outputs used to generate global aggregated area-weighted median (and quartiles (Q1, Q3)) responses of agroecosystem variables as provided in the second column of the table.

Time	Simulated	Literature	Unit per	Literature	Literature source
period	$\Delta \mathbf{C} \mathbf{C}$	estimate	hectare per	type	
(years)	median		year		
	(quartiles)				
Soil carb	on sequestratio	on rate (Eq. 1)			
12 - 50	0.55	0.01 - 0.46	t C ha ⁻¹ yr ⁻¹	Report	Paulsen (2020), range of annual soil C
	(0.26, 0.88)				sequestration rates by CC citing
					Poeplau and Don (2015) and two other
					experimental studies' results,
					summarized as: 0.1 to 0.46 for topsoil
					(0-15 cm depth) and 0.01 to 0.32 t C $$
					ha ⁻¹ yr ⁻¹ subsoil (15-75 cm depth),
					originally reported in kg C ha ⁻¹ yr ⁻¹
20 - 50	0.53	0.05 - 0.25	t C ha ⁻¹ yr ⁻¹	Review	Lal (2004), range of annual soil C
	(0.25, 0.84)				sequestration rates by CC, value from
					their Fig. 2, unit originally reported in
					kg C ha ⁻¹ yr ⁻¹

Time	Simulated	Literature	Unit per	Literature	Literature source
period	ΔCC	estimate	hectare per	type	
(years)	median		year		
	(quartiles)				
25 - 50	0.52	0.05 - 0.5	t C ha ⁻¹ yr ⁻¹	Review	Stockmann et al. (2013), range of
	(0.24, 0.82)				potential annual soil C sequestration
					rates by CC per climatic region based
					on Lal (2008), depth not indicated,
					also cited in Olin et al. (2015) cover
					crop simulation for 1.5 m soil depth
					stating maximum C sequestration rate
					in tropical humid region of 0.08 and
					over time diminishing to 0.01 kg C m ⁻
					² yr ⁻¹
1 - 50	0.55	0.125, 0.258,	t C ha ⁻¹ yr ⁻¹	Simulation	Sommer and Bossio (2014), annual
	(0.22, 0.90)	0.515			soil C sequestration rates for
					simulations of 'improved arable land
					management practices' for 0-25 cm
					depth, total global potential of 32-64
					Pg soil C accumulation on agricultural
					land after 87 years with cover crops,
					0.37 (0.74) PgC yr ⁻¹ C in their low
					(high) input scenarios as average
					annual C sequestration rates over the
					first 50 years, in their functions
					assuming 13.3 (26.2) Mg C ha-1
					cumulative C sequestration after 87
					years in their low (high) scenarios,
					respectively
1 - 50	0.55	0.32 ± 0.08	t C ha ⁻¹ yr ⁻¹	Meta-	Poeplau and Don (2015), value for
	(0.22, 0.90)			analysis	mean ± SD annual C sequestration
					rate, mean total SOC stock change of
					16.7 ± 1.5 Mg C ha ⁻¹ in the upper 22
					cm soil depth for 1-54 years
1 - 50	0.55	0.56	t C ha ⁻¹ yr ⁻¹	Meta-	Jian et al. (2020), value stated as mean
	(0.22, 0.90)			analysis	rate of C sequestration from cover
					cropping across all studies reported
					originally in Mg C ha ⁻¹ yr ⁻¹ ; based on
					5,241 data entries from 281 published
					studies, no indication of duration

Time	Simulated	Literature	Unit per	Literature	Literature source
period	ΔCC	estimate	hectare per	type	
(years)	median		year		
	(quartiles)				
Change 1	nitrogen leachi	ng rates (Eq. 2)			
1 - 17	-46	-50	%	Meta-	Thapa et al. (2018), value for CC
	(-68, -13)	(-61, -37)		analysis	grasses (99 % Confidence Interval
					(CI)), including data of Tonitto et al.
					(2006) below
2 - 7	-39	-50	%	Meta-	Valkama et al. (2015), value as
	(-61, -8)	(-60, -40)		analysis	average reduced N leaching loss (95
					% CI) for grasses as mainly non-
					leguminous CC, them also citing
					Quemada et al. (2013) for Southern European and US studies meta-
					analysis for non-leguminous CC
					effects in irrigated systems as well
					reporting 50 % per year as annual
					average across experiments and
					durations
2 - 3	-10	-70	%	Meta-	Tonitto et al. (2006), value as mean,
	(-36, -1)			analysis	95 % CI guessed from their Fig. 7
					about -78 to -62 %
Change y	yield maize (Eq	1. 2)			
1 - 50	-0.9	1	%	Meta-	Marcillo and Miguez (2017), update
	(-11, 0.4)	(0.99, 1.02)		analysis	of a former meta-analysis on corn
					yields with grass cover crops, for US
					and Canada, for publications on
					experiments between years 1965-
					2015 but no indication for duration
					found, these authors find neutral to
					positive effects but no significant
					differences, value as weighted mean
					(95 % CI) response ratio (yield with
15	0	12 06	0/	National	CC to yield without CC)
1 - 5	$\begin{pmatrix} 1 & 0 \end{pmatrix}$	1.3 - 9.6	%	National statistic	SARE (2019), report with data from National Cover Crop surveys
	(-1, 0)			statistic	National Cover Crop surveys conducted annually for crop years
					2012-2016 in US, range of annual
					2012 2010 m 00, range of annual

Time period (years)	Simulated ∆CC median (quartiles)	Literature estimate	Unit per hectare per year	Literature type	Literature source
					changes for corn yield with CC compared to without
Change y	yield soybean (Eq. 2)			
1 - 5	0	2.8 - 11.6	%	National	SARE (2019), report with data from
	(0, 0.3)			statistic	National Cover Crop surveys conducted annually for crop years 2012-2016 in US, range of annual changes for soybean yield with CC
					compared to without
Average	change of yield	ds across media	n changes of av	veraged rainfe	ed and irrigated yields of the four
assessed	following main	n crop types			
1 - 28	-2.1	-4	%	Meta-	Abdalla et al. (2019), meta-analysis on
				analysis	CC for n=102 of total 158 for non- legumes effects for experiments of different main crop types and vegetables
1 - 17	-2	not	%	Meta-	Thapa et al. (2018), non-legumes CC
		significantly different		analysis	effects on yields of different following main crop types, including data of Tonitto et al. (2006)
2 - 7	-1.5	-3	%	Meta- analysis	Valkama et al. (2015), for 'Nordic countries' as Denmark, Sweden Finland, Norway, on CC for spring cereals
2 - 3	-0.1	-3	%	Meta- analysis	Tonitto et al. (2006), non-legume CC effect on corn, sorghum, and vegetables experiments, USA and Canada, decline found not statistically significant

References

Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R. M., and Smith, P.: A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity, Global Change Biology, 25, 2530–2543, doi: https://doi.org/10.1111/gcb.14644, 2019.

- productivity, Global Change Biology, 25, 2530–2543, doi: https://doi.org/10.1111/gcb.14644, 2019.
 Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth System Science Data, 5, 71-99, doi: https://doi.org/10.5194/essd-5-71-2013, 2013.
- 105 FAO: Conservation Agriculture. AQUASTAT Main Database Food and Agriculture Organization of the United Nations (FAO), 2016.

FAO: FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). http://www.fao.org/geonetwork/srv/en/main.home?uuid=221072ae-2090-48a1-be6f-5a88f061431a FAO, Rome, Italy, 2015.

- Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-Sichra, U., Herrero, M., Becker-Reshef, I., Justice, C., Hansen, M., Gong, P., Abdel Aziz, S., Cipriani, A., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S., Gomez, A., Haffani, M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, A., Ortner, S., Rajak, D. R., Rocha, J., Schepaschenko, D., Schepaschenko, M., Terekhov, A., Tiangwa, A., Vancutsem, C.,
- Vintrou, E., Wenbin, W., van der Velde, M., Dunwoody, A., Kraxner, F., and Obersteiner, M.: Mapping global cropland and field size, Global Change Biology, 21, p.:1980-1992, doi: https://doi.org/10.1111/gcb.12838, 2015.
 Herzfeld, T., Heinke, J., Rolinski, S., and Müller, C.: Soil organic carbon dynamics from agricultural management practices under climate change, Earth System Dynamics, 12, 1037-1055, doi: 10.5194/esd-12-1037-2021, 2021.
 Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori,
- S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geoscientific Model Development, 13, 5425-5464, doi: https://doi.org/10.5194/gmd-13-5425-2020, 2020.
- 125 Jian, J., Du, X., Reiter, M. S., and Stewart, R. D.: A meta-analysis of global cropland soil carbon changes due to cover cropping, Soil Biology and Biochemistry, 143, 107735, doi: https://doi.org/10.1016/j.soilbio.2020.107735, 2020.

Karstens, K., Bodirsky, B. L., Dietrich, J. P., Dondini, M., Heinke, J., Kuhnert, M., Müller, C., Rolinski, S., Smith, P., Weindl, I., Lotze-Campen, H., and Popp, A.: Management induced changes of soil organic carbon on global

- croplands, Biogeosciences Discuss. [preprint], 2020, 1-30, doi: https://doi.org/10.5194/bg-2020-468, 2020.
 Kassam, A., Friedrich, T., and Derpsch, R.: Global spread of Conservation Agriculture, International Journal of Environmental Studies, 1-23, doi: https://doi.org/10.1080/00207233.2018.1494927, 2018.
 Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304, 1623-1627, doi: https://doi.org/10.1126/science.1097396, 2004.
- 135 Lal, R.: Soil carbon stocks under present and future climate with specific reference to European ecoregions, Nutrient Cycling in Agroecosystems, 81, 113-127, doi: https://doi.org/10.1007/s10705-007-9147-x, 2008.

Marcillo, G. S. and Miguez, F.: Corn yield response to winter cover crops: An updated meta-analysis, Journal of Soil and Water Conservation, 72, 226-239, doi: https://doi.org/10.2489/jswc.72.3.226 2017.

Nachtergaele, F. O., Petri, M., Biancalani, R., van Lynden, G., and van Velthuizen, H.: Global Land Degradation
 Information System (GLADIS). An information database for land degradation assessment at global level.
 Technical report of the LADA FAO/UNEP Project.
 http://www.fao.org/fileadmin/templates/solaw/files/thematic_reports/SOLAW_thematic_report_3_land_degradat
 ion.pdf, 2011.

Olin, S., Lindeskog, M., Pugh, T. A. M., Schurgers, G., Wårlind, D., Mishurov, M., Zaehle, S., Stocker, B. D.,

Smith, B., and Arneth, A.: Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching, Earth System Dynamics, 6, 745-768, doi: https://doi.org/10.5194/esd-6-745-2015, 2015.

Paulsen, H. M.: Inventory of techniques for carbon sequestration in agricultural soils, Thünen-Institute of Organic Farming, Germany 2020.

150 Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via cultivation of cover crops – A metaanalysis, Agriculture, Ecosystems and Environment, 200, 33-41, doi: https://doi.org/10.1016/j.agee.2014.10.024, 2015.

Porwollik, V., Rolinski, S., Heinke, J., and Müller, C.: Generating a rule-based global gridded tillage dataset, Earth System Science Data, 11, 823-843, doi: https://doi.org/10.5194/essd-11-823-2019, 2019.

155 Prestele, R., Hirsch, A. L., Davin, E. L., Seneviratne, S. I., and Verburg, P. H.: A spatially explicit representation of conservation agriculture for application in global change studies, Global Change Biology, 24, 4038–4053, doi: https://doi.org/10.1111/gcb.14307, 2018.

Quemada, M., Baranski, M., Nobel-de Lange, M. N. J., Vallejo, A., and Cooper, J. M.: Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield, Agriculture, Ecosystems and Environment, 174, 1-10, doi: https://doi.org/10.1016/j.agee.2013.04.018, 2013.

- SARE: Cover Crop Economics-Opportunities to Improve Your Bottom Line in Row Crops, USA, 2019. Sommer, R. and Bossio, D.: Dynamics and climate change mitigation potential of soil organic carbon sequestration, Journal of Environmental Management, 144, 83-87, doi: https://doi.org/10.1016/j.jenvman.2014.05.017, 2014.
- Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. d. R. d., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O'Donnell, A. G., Parton, W. J., Whitehead, D., and Zimmermann, M.: The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems and Environment, 164, 80-99, doi: https://doi.org/10.1016/j.agee.2012.10.001, 2013.
- Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide, National Oceanic & Atmospheric Administration. (NOAA/ESRL)., E. S. R. L. (Ed.), U.S. Department of Commerce, 2015.
 Thapa, R., Mirsky, S. B., and Tully, K. L.: Cover Crops Reduce Nitrate Leaching in Agroecosystems: A Global Meta-Analysis, Journal of environmental quality, 47, 1400-1411, doi: https://doi.org/10.2134/jeq2018.03.0107, 2018.
- 175 Tonitto, C., David, M. B., and Drinkwater, L.: Replacing Bare Fallows with Cover Crops in Fertilizer-Intensive Cropping Systems: A Meta-Analysis of Crop Yield and N Dynamics, Agriculture, Ecosystems and Environment, 112, 58-72, doi: https://doi.org/10.1016/j.agee.2005.07.003, 2006.

Valkama, E., Lemola, R., Känkänen, H., and Turtola, E.: Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries, Agriculture, Ecosystems and Environment, 203, 93-101, doi: https://doi.org/10.1016/j.agee.2015.01.023, 2015.

 93-101, doi: https://doi.org/10.1016/j.agee.2015.01.023, 2015.
 World Bank: World Development indicators- historical classification by income. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. 2017.