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Abstract. Vegetation attenuates the microwave emission
from the land surface. The strength of this attenuation is
quantified in models in terms of the parameter vegetation op-
tical depth (VOD) and is influenced by the vegetation mass,
structure, water content, and observation wavelength. Earth
observation satellite sensors operating in the microwave fre-
quencies are used for global VOD retrievals, enabling the
monitoring of vegetation at large scales. VOD has been used
to determine above-ground biomass, monitor phenology, or
estimate vegetation water status. VOD can be also used for
constraining land surface models or modelling wildfires at
large scales. Several VOD products exist, differing by fre-
quency/wavelength, sensor, and retrieval algorithm. Numer-
ous studies present correlations or empirical functions be-
tween different VOD datasets and vegetation variables such
as the normalized difference vegetation index, leaf area in-
dex, gross primary production, biomass, vegetation height,
or vegetation water content. However, an assessment of the
joint impact of land cover, vegetation biomass, leaf area, and
moisture status on the VOD signal is challenging and has not
yet been done.

This study aims to interpret the VOD signal as a multi-
variate function of several descriptive vegetation variables.
The results will help to select VOD at the most suitable wave-
length for specific applications and can guide the develop-
ment of appropriate observation operators to integrate VOD

with large-scale land surface models. Here we use VOD from
the Land Parameter Retrieval Model (LPRM) in the Ku, X,
and C bands from the harmonized Vegetation Optical Depth
Climate Archive (VODCA) dataset and L-band VOD derived
from Soil Moisture and Ocean Salinity (SMOS) and Soil
Moisture Active Passive (SMAP) sensors. The leaf area in-
dex, live-fuel moisture content, above-ground biomass, and
land cover are able to explain up to 93 % and 95 % of the vari-
ance (Nash–Sutcliffe model efficiency coefficient) in 8-daily
and monthly VOD within a multi-variable random forest re-
gression. Thereby, the regression reproduces spatial patterns
of L-band VOD and spatial and temporal patterns of Ku-,
X-, and C-band VOD. Analyses of accumulated local effects
demonstrate that Ku-, X-, and C-band VOD are mostly sensi-
tive to the leaf area index, and L-band VOD is most sensitive
to above-ground biomass. However, for all VODs the global
relationships with vegetation properties are non-monotonic
and complex and differ with land cover type. This indicates
that the use of simple global regressions to estimate sin-
gle vegetation properties (e.g. above-ground biomass) from
VOD is over-simplistic.
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1 Introduction

Vegetation optical depth (VOD) describes the attenuation
of microwave radiation in the vegetation layer. Quantify-
ing this attenuation effect is important for an accurate re-
trieval of surface soil moisture from passive microwave satel-
lite observations (Wang, 1985; Njoku and Entekhabi, 1996).
In the radiative transfer equation for microwave emissions,
the opacity of the vegetation layer (i.e. the VOD) is also
commonly referred to as τ (Jackson et al., 1982). VOD
can be retrieved e.g. from the passive microwave radiative
transfer equation using measurements of passive microwaves
(Jackson and Schmugge, 1991; Owe et al., 2008; Sawada
et al., 2016). However, VOD is a parameter in these mi-
crowave radiative transfer models for vegetation, and hence
it is not directly measurable and verifiable with in situ mea-
surements. Therefore, different authors have correlated VOD
with different vegetation properties to understand the sensi-
tivity of VOD to vegetation properties (Jones et al., 2011;
Rodríguez-Fernández et al., 2018; Konings et al., 2019a).
Generally, the opacity of passive microwaves in the vege-
tation layer increases with increasing vegetation water con-
tent, but this relationship varies with vegetation structure in-
cluding leaf and woody components and wavelength (Jack-
son and Schmugge, 1991; Wigneron et al., 1993; Njoku and
Entekhabi, 1996). Based on radiometer measurements over
various crops and a wide range of wavelengths (0.8–30 cm),
Jackson and Schmugge (1991) report a clear linear relation-
ship of VOD to vegetation water content (VWC):

VOD= b ·VWC, (1)

where the parameter b depends on vegetation type and wave-
length. The authors find that b exponentially decreases with
increasing wavelength, which implies that vegetation opac-
ity (the VOD) is smaller for longer wavelengths (i.e. L band)
than for shorter wavelengths (i.e. Ku, X, and C bands). The
parameter b is usually kept constant for one vegetation type
and wavelength, which might be insufficient due to its possi-
ble dependency on polarization. In addition, neglecting sur-
face soil roughness can lead to an underestimation of VOD,
especially when the vegetation does not completely cover the
ground (Togliatti et al., 2022).

The vegetation water content can also be expressed as a
product of above-ground biomass (AGB) and a parameter of
relative water content, often referred to as live-fuel moisture
content (LFMC) (Konings et al., 2019b),

VOD= b ·AGB ·LFMC, (2)

whereby LFMC is defined as the ratio of water mass in
the vegetation to the dry mass of the vegetation usually ex-
pressed in percentage (Konings et al., 2019b),

LFMC=
Mf−Md

Md
· 100, (3)

with Mf as the fresh mass of vegetation and Md as the dry
mass of vegetation.

Based on these relationships, many studies use VOD to
estimate AGB or other vegetation properties. For example,
Liu et al. (2015) use Ku-band VOD to estimate long-term
changes in global AGB, finding a gain of above-ground
biomass carbon considering forest and non-forest vegeta-
tion for 1993–2012. Rodríguez-Fernández et al. (2018) cor-
relate spatial patterns in AGB and yearly averaged values
of L-band VOD from the Soil Moisture and Ocean Salinity
(SMOS) mission with the INRA-CESBIO (Institut National
de la Recherche Agronomique Centre d’Etudes Spatiales de
la Biosphère) algorithm (SMOS-IC) for Africa with corre-
lation coefficients up to 0.85. They find linear relationships
between VOD and AGB within single land cover classes, but
the relationship across land cover classes is shown to be non-
linear, with a weaker non-linearity for L-band VOD com-
pared to Ku-/X-/C-band VOD. Chaparro et al. (2018) use
the L band from the Soil Moisture Active Passive mission
(SMOS) derived with the multi-temporal dual-channel algo-
rithm (MT-DCA) to determine crop biomass of the north-
central USA. Both Rodríguez-Fernández et al. (2018) and
Chaparro et al. (2018) find better results for pixels with
higher homogeneity in land cover types or even plant types,
implying that relationships between VOD and vegetation
properties change with land cover and plant types. X. Li et
al. (2021) find a high correlation of L-band VOD and AGB
leading to the conclusion that long-wave VOD is more sensi-
tive to woody parts of the vegetation than short-wave VOD.
However, Konings et al. (2021) show that the relation be-
tween L-band VOD and AGB dominates in space but that
short-term temporal dynamics in VOD are dominated by
VWC. As a proxy for vegetation water status, VOD can be re-
lated to LFMC or VWC or both (Fan et al., 2018; Konings et
al., 2019b; Frappart et al., 2020) and can be used to estimate
leaf water potential (Konings and Gentine, 2017; Momen et
al., 2017; Zhang et al., 2019).

Furthermore, VOD is frequently compared with other veg-
etation properties such as canopy greenness, the leaf area in-
dex (LAI), or plant productivity. For example, VOD shows
similar temporal patterns to the normalized difference veg-
etation index (NDVI) and LAI (Liu et al., 2011; Momen
et al., 2017; Bousquet et al., 2021). In spatial comparisons,
the vegetation indices and variables tend to saturate over
densely vegetated areas. This saturation is less distinct for
VOD (Rodríguez-Fernández et al., 2018) due to the ability
of microwaves to penetrate deeper into the vegetation layer.
Therefore, VOD provides complementary information to the
usually visible–infrared-based metrics (Jones et al., 2011).
For example, metrics sensitive to biomass or water content
shifts can be derived from VOD (Jones et al., 2011, 2014).
VOD can also be used for assessing land surface phenology
(Jones et al., 2011). VOD and temporal changes in VOD are
also correlated with gross primary production (GPP) (Teub-
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ner et al., 2018), which allows VOD to be used as a predictor
of GPP (Teubner et al., 2019, 2021; Wild et al., 2022).

Recently, several new VOD datasets have become avail-
able for the X band from the Advanced Microwave Scanning
Radiometer – Earth Observing System sensor (AMSR-E)
and Advanced Microwave Scanning Radiometer 2 (AMSR2)
sensors (Du et al., 2017; Wang et al., 2021) and for the L band
from the SMOS (van der Schalie et al., 2016; Fernandez-
Moran et al., 2017; Al Bitar et al., 2017; Wigneron et
al., 2018, 2021) and Soil Moisture Active Passive sen-
sors (SMAP; Konings et al., 2017). VOD was also re-
trieved jointly from several sensors (van der Schalie et
al., 2017), and harmonized long-term multi-sensor datasets
have been produced (e.g. Vegetation Optical Depth Climate
Archive, VODCA, Moesinger et al., 2020). A recent com-
parison study by Li et al. (2021) of different X-, C-, and
L-band VOD datasets and Moderate Resolution Imaging
Spectroradiometer-derived (MODIS) vegetation indices like
NDVI and the enhanced vegetation index (EVI) as well as
tree height and AGB showed that X-band VOD is more suit-
able to detect temporal variations of the green vegetation
parts, especially for less densely vegetated areas, than C-
and L-band VOD. Additionally, Li et al. (2021) as well as
Moesinger et al. (2022) found time lags between VOD and
vegetation indices and climate variables, which are not yet
fully understood. This shows the need to include further eco-
logical parameters or vegetation variables which could ac-
count for a delayed response of VOD to temporal changes in
the vegetation indices. Approaches with the ability to con-
sider VOD variations caused by vegetation water content
have been developed, which are more complex than simple
regression functions (e.g. Momen et al., 2017). Momen et
al. (2017) were able to estimate VOD by using two predic-
tors, LAI and leaf water potential. Among others, the stud-
ies by Momen et al. (2017) and Teubner et al. (2019) show
that the water content of the vegetation influences VOD and
therefore affects not only the relation between vegetation in-
dices and VOD but also the relation between VOD and AGB.

The increasing availability of VOD data for vegetation
studies also increases the possibilities for assimilating or
integrating VOD with ecosystem or land surface models
(LSMs) (Scholze et al., 2019; Kumar et al., 2020). There-
fore, observation operators are needed that link the mod-
elled vegetation properties with the satellite-retrieved VOD.
Scholze et al. (2019) use the sum of an empirical AGB func-
tion and a linear term for LAI to describe annual SMOS-IC
L-band VOD within the carbon cycle data assimilation sys-
tem (CCDAS) for estimating European carbon fluxes. Ku-
mar et al. (2020) use cumulative distribution function (CDF)
matching to convert VODCA X- and C-band VOD and
SMAP L-band VOD to LAI, which is then assimilated into
the Noah-MP (Multiparameterization) LSM. X- and L-band
VOD showed partially complementary improvements in the
modelled land surface variables. Both studies by Scholze et
al. (2019) and Kumar et al. (2020) find an improvement in

the model results by incorporating passive microwave data,
demonstrating the benefits of the vegetation information con-
tained in VOD. In another model-data-fusion approach, Liu
et al. (2021) use VOD to derive plant hydraulic parameters
for a soil–plant system model that accounts for the hydraulic
state of the vegetation explicitly. However, as VOD reflects
both dynamics in biomass and water content (Jackson and
Schmugge, 1991; Konings et al., 2021), relations between
VOD and AGB or LAI as observation operators are simplifi-
cations and demonstrate the need for a more detailed under-
standing of the effects of vegetation properties on VOD.

The increasing use of VOD for ecosystem studies
(e.g. Dorigo et al., 2021) and land surface modelling poses
the question of how different vegetation properties affect
VOD in both time and space. Hence, a more detailed in-
vestigation of the relative effects of vegetation properties on
VOD could improve the understanding of the VOD signal in
terms of interpretation of the corresponding vegetation sta-
tus. Such investigations will also help to identify a suitable
VOD dataset for a specific ecological application in addition
to the technical aspects of the datasets like the observation
resolution depending on wavelength, errors, and artefacts in-
duced by the retrieval algorithm or the observation time de-
pending on overpass times of the satellites.

Furthermore, due to the high temporal resolution and tem-
poral coverage of VOD datasets (partly since 1987), global
analyses of vegetation properties and status as well as land
cover change can be conducted for enhanced understanding
of long-term environmental changes and to improve model
predictions.

Here we aim to assess VOD in response to multiple vegeta-
tion properties at large (i.e. inter-continental) scales. Specifi-
cally, our objectives are to predict VOD from LFMC, LAI,
and AGB by using two machine learning regression ap-
proaches and to investigate the relationship between VOD
and the predictors. This objective goes beyond previous em-
pirical studies that compared VOD with vegetation proper-
ties based on bivariate correlations or regressions but not by
estimating VOD within a multi-variate framework.

We use random forests (RFs) and generalized additive
models (GAMs) to predict VOD from LFMC, LAI, AGB,
and land cover. Accumulated local effect (ALE) curves are
used to assess the sensitivities of VOD to these proper-
ties. While GAM is suitable to capture non-linear and non-
monotonic relationships with additive effects of the predic-
tors, a random forest (RF) approach can predict more com-
plex interactions but is less suitable to capture a possible ad-
ditive behaviour. Therefore, comparing both machine learn-
ing algorithms gives insights into the structure of the relation-
ship between VOD and vegetation properties and provides
confidence in the findings. Additionally, we inspect how dif-
ferent temporal resolutions (i.e. 8-daily and monthly data)
affect the relationships between VOD and vegetation proper-
ties for identifying the role of vegetation variables at quasi-
weekly and seasonal timescales. The analyses are carried out
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for five VOD datasets, which differ in wavelength but were
derived with the same algorithm (Land Parameter Retrieval
Model, LPRM) (van der Schalie et al., 2016, 2017) to ex-
clude differences due to retrieval algorithms.

2 Data and methods

2.1 Datasets

2.1.1 VOD data

An overview of the datasets is given in Table 1 and Fig. 1.
All used VOD datasets are derived from passive sensors us-
ing the LPRM algorithm (van der Schalie et al., 2016) to re-
duce the degrees of freedom of this analysis. Thereby, for
each wavelength a different parametrization was used with
the exception of the retrieval of X- and C-band VOD where
an identical implementation of single-scattering albedo was
applied. For roughness a constant parametrization is used
for the Ku band, but a dynamical parameter is used for the
other wavelengths. Hence the parametrization essentially dif-
fers for the wavelengths. This can affect the similarity of the
datasets but is necessary to allow for valid retrievals in gen-
eral.

The VODCA dataset (Moesinger et al., 2020) provides
harmonized long-term records of short-wave VOD for the
Ku, X, and C band (further named Ku-VOD, X-VOD, and C-
VOD, respectively), using data from the AMSR-E, AMSR2,
Special Sensor Microwave Imager (SSM/I), Tropical Rain-
fall Measuring Mission (TRMM) Microwave Imager (TMI),
and WindSat sensors. Unfortunately, Ku-VOD is only avail-
able until 1 August 2017 due to a bias in the AMSR2 Ku-
band VOD causing unexpected low values of the VOD re-
trievals after this date (Moesinger et al., 2020), which is not
fixed in version 01.0. Therefore, all datasets are analysed un-
til 31 July 2017.

Two LPRM-derived L-band VOD datasets are used as
long-wave VOD, one sensed with SMAP, the other with
SMOS (van der Schalie et al., 2016; further named SMAP L-
VOD and SMOS L-VOD, respectively). The SMAP satellite
was launched in January 2015, and therefore SMAP L-VOD
defines the start date of the analysis of all datasets.

All VOD datasets are provided as daily data with a spa-
tial resolution of 0.25◦ on a global scale. As VOD generally
decreases with increasing wavelength, the five VOD datasets
have different dynamic ranges. As we are not interested in
the absolute value but only the temporal dynamics and spatial
patterns, the VOD datasets were globally normalized using a
minimum and maximum value to a range of 0 to 1 based on
the available global data within the time span 2015–2017 to
provide comparability. For normalization we use the scikit-
learn function “MinMaxScaler”. The normalized VOD data
form the basis of Fig. 1d–h. These maps of temporally aver-
aged VOD data show different patterns and scales even after

the normalization process. This illustrates that VOD data de-
rived from different wavelengths and sensors are not related
to the same vegetation properties, indicating the need for this
study.

2.1.2 Predictor data

Following the relationship between VOD, LFMC, and AGB
as shown in Eq. (2), proxies related to biomass (AGB and
LAI), water content (LFMC), and the structure parameter
(plant types) are used as predictors for VOD.

As proxies for woody and non-woody biomass, we used
a map of AGB and a time series of LAI. The ESA Cli-
mate Change Initiative (CCI) AGB map (Santoro and Car-
tus, 2019) for the year 2017 with a 100 m spatial resolu-
tion is used as a predictor of woody biomass. This AGB
map describes the oven-dry mass of woody parts of living
trees per pixel. Thereby only above-ground mass is consid-
ered, i.e. stem and bark as well as twigs and branches but not
stumps and roots.

LAI is used as a proxy for canopy biomass. Specifically,
we use the MOD15A2H Version 6 dataset from MODIS,
which is available at a 500 m spatial and 8-daily temporal
resolution on a global scale (Myneni et al., 2015). We ex-
cluded LAI retrievals under (partial) cloud cover, snow, or a
high solar zenith angle.

For LFMC, we used a product derived from MODIS
MCD43A2 Collection 6 reflectance data for the western
USA, South Africa, and Australia (Fig. 1b) at a 500 m spatial
and 4-daily temporal resolution using the approach described
in Yebra et al. (2018). The extent of the western USA region
is determined for the purpose of covering California, where-
for the MODIS tiles h08v04, h08v05, and h09v04 were nec-
essary and the tile h09v05 was not considered in favour of
computational resources. Yebra et al. (2018) use three radia-
tive transfer models (RTMs) for the simulation of spectra cor-
responding to different LFMC values. More specifically, they
use PROSPECT 1 (Platform for Resource Observation and
in-Situ Prospecting for Exploration, Commercial exploita-
tion and Transportation) coupled to SAILH 1 (Scattering
by Arbitrary Inclined Leaves for homogenous canopies) and
GeoSail to simulate the spectra of grasslands/shrublands and
forest, respectively. Based on these simulations three differ-
ent lookup tables (LUTs) were generated. For a given loca-
tion they use the MODIS land cover product (MCD12Q1
Collection 5) to select the LUT corresponding to the spe-
cific fuel type characterizing that location. That fuel specific
LUT is used to invert the RTM and retrieve LFMC from the
MODIS spectra. The results were evaluated with LFMC field
measurements, and the model achieved an explained vari-
ance of 58 % and an RMSE of 40 % for Australia (Yebra
et al., 2018). For Europe, we used the LFMC product pro-
duced by the European Union Joint Research Centre (JRC)
and which is included in the European Forest Fire Informa-
tion System (EFFIS). This product follows the same method-
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Figure 1. Overview of the datasets used for (a) above-ground biomass (AGB) for 2017 based on the ESA CCI biomass dataset; (b) live-fuel
moisture content (LFMC) derived from MODIS, whereby grey indicates areas of non-available data; (c) the leaf area index (LAI) derived
from MODIS; (d) Ku-band VOD (Ku-VOD) from VODCA; (e) X-band VOD (X-VOD) from VODCA; (f) C-band VOD (C-VOD) from
VODCA; (g) L-band VOD from SMAP (SMAP L-VOD); (h) L-band VOD from SMOS (SMOS L-VOD); and (i) the dominant land cover
class for 2016 based on the ESA CCI Land Cover map. LAI, LFMC, and VOD maps are temporal averages over the period January 2015–
July 2017, whereby the VOD maps are based on data scaled to 0–1 for the available range within the mentioned time span. Note that LFMC
is only available for the western USA, South Africa, Europe, and Australia.

ology as Yebra et al. (2018) but uses EFFIS’s fuel type map
to select the LUT and MODIS MCD43A2 Collection 5 data
to invert the RTM before 2016. Therefore, for those years,
the LFMC estimates are produced with a temporal resolu-
tion of 8 d. Following Eq. (3), LFMC can range from 0 %
up to more than 400 %. A value over 100 % means that the
vegetation holds more water compared to the dry mass. This
depends on the part of a plant and on the vegetation type.

The LAI, LFMC, and AGB datasets were resampled to
a 0.25◦ resolution to match the VOD spatial extent using a
first-order conservative remapping.

We used the land cover map by the European Space
Agency (ESA) Climate Change Initiative (CCI; ESA, 2017)
and its continuation from the Copernicus Climate Change
Service, which provide yearly data for the period 1992–2018
at a 300 m spatial resolution. The land cover classes were
converted to fractions of plant functional types and aggre-
gated to a 0.25◦ spatial resolution using the cross-walking
approach as described in Poulter et al. (2015). Specifically,
we made use of the fractions per 0.25◦ grid cell of broadleaf
evergreen (treeBE), needleleaf evergreen (treeNE), and de-
ciduous (treeD) trees; shrublands (shrub); croplands (crop);
and herbaceous vegetation (herb). Deciduous trees were not
further segregated into broadleaf and needleleaf trees as
especially the latter would result in only a small sample
when intersected with the VOD data. In another test, we
also combined the fractional coverage of all tree plant func-
tional types (PFTs) (treeAll= treeBE+ treeNE+ treeD) and
of short vegetation (short= shrub+ herb+ crop).

2.1.3 Data combination

All datasets were cropped to the extent of the LFMC data
(Australia, Europe, western USA, South Africa) for further
analyses. This implies that the “global” models as stated in
the following are indeed inter-continental models restricted
to the spatial extent of the LFMC dataset which mainly cover
drylands except for Europe. To provide comparability of the
analyses of the different VOD datasets, only the overlapping
time span is used (January 2015–July 2017). The rather short
time period does not impede the framework of this study be-
cause instead of analysing coherent pixel time series, this ap-
proach uses each time step of each pixel as an individual data
point. The ESA CCI AGB map represents the year 2017, but
we assume that the biomass does not dramatically change
over 2 years. Therefore, the AGB values are kept constant
for the whole time series. The PFT fractions are taken from
the annual land cover maps for the respective years in 2015
to 2017 without any interpolation. During the analyses, mod-
els were trained and tested for 8-daily and monthly tempo-
ral resolutions of the LAI and LFMC time series. For the
8-daily resolution, only the VOD values matching the same
timestamp of the MODIS LAI and LFMC products are used.
For the monthly resolution, the mean VOD, LAI, or LFMC
within the regarding month were calculated.

As a final step, pixels were excluded when the fractional
coverage of bare ground or water exceeds 5 % to avoid the
interpretation of marginal effects of bare soils or water on
VOD. Models were specifically trained for single land cover
classes. A threshold of 55 % was used to discern when a land
cover class was dominant compared to the other classes.
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Table 1. Overview of the used datasets and their original technical attributes. AVHRR: Advanced Very High Resolution Radiome-
ter. PALSAR-2: Phased Array type L-band Synthetic Aperture Radar 2. PROBA-V: Project for On-Board Autonomy – Vegetation.
MERIS: Medium Resolution Imaging Spectrometer. MIRAS: Microwave Imaging Radiometer using Aperture Synthesis. SPOT-VGT: Satel-
lite Pour l’Observation de la Terre – Végétation.

Dataset Variable and unit Sensors Temporal cover-
age/
resolution

Spatial coverage/
resolution

Reference

VODCA v01.0 Ku-VOD (–) AMSR2, SSM/I,
TMI, and WindSat
scaled to AMSR-E

1987–2017/daily Global/0.25◦ Moesinger et
al. (2019)

X-VOD (–)a 1997–2018/daily

C-VOD (–)b 2002–2018/daily

SMAP L-VOD L-VOD (–) SMAP radiometer 2015–2019/daily van der Schalie
et al. (2016)

SMOS L-VOD L-VOD (–) MIRAS 2010–2020/daily

ESA CCI AGB
v1.0

AGB (Mg ha−1) PALSAR-2, Sentinel-
1 (1A and 1B), Land-
sat

2017/representative
of 1 year

Global/100× 100 m Santoro and
Cartus (2019)

MOD15A2H
v006

LAI (–) MODIS sensors 2000–2020/
8-daily

Global/500× 500 m Myneni et al.
(2015)

MODIS LFMC LFMC (%) MODIS sensors 2000–2019/
4-daily

Regional/500× 500 m
Western USA, South
Africa, Australia

Yebra et al.
(2018)

8-daily Europe

ESA CCI Land
Cover v2.0.7

Plant functional types
(PFTs) derived from
land cover classes

AVHRR,
PROBA-V,
Envisat MERIS,
SPOT-VGT

1992–2018/
yearly

Global/300× 300 m ESA (2017)

a Does not contain SSM/I. b Does not contain SSM/I and TMI.

2.2 Regression methods

To assess the influence of the vegetation variables on
VOD, we applied two methods: generalized additive models
(GAMs) and a random forest regressor (RF).

The RF algorithm incorporates multiple independent
decision trees, where the final prediction is the average
prediction of the individual trees (Breiman, 2001; Hutengs
and Vohland, 2016; Liang et al., 2018). Using the scikit-
learn package version 24.1 (Pedregosa et al., 2011) multiple
hyper-parameters can be tuned, which will define the RF
model structure. The optimization of the hyper-parameter
combination is crucial to achieve a well-performing model.
The scikit-learn package provides the grid-search function
“RandomizedSearchCV” which enables an automatized
search for an optimized parameter set by splitting the multi-
variate space of the hyper-parameters into a grid of parameter
combinations which are then used to train an RF. During this
grid search for an exemplary dataset (predicting monthly
inter-continental Ku-VOD with LAI, LFMC, AGB, and land
cover), the minimum number of samples within a leaf (1
and 4), number of estimators (100 and 200–2000 with 200

steps), maximum features (functions: “auto”, “sqrt”, “log2”),
maximal depth (10–110 with 20 steps and “None”), and
minimum samples split (2 and 10) were tested. For a detailed
description of the available hyper-parameters and their effect
on the result, please refer to the documentation of the scikit-
learn module sklearn.ensemble.RandomForestRegressor
(https://scikit-learn.org/0.24/modules/generated/sklearn.
ensemble.RandomForestRegressor.html, last access: 20 Oc-
tober 2022). The best combinations were again tested with
monthly inter-continental predictions of X-, C-, SMOS
L-VOD and SMAP L-VOD. Some combinations led to
partly improved results compared to the scikit-learn default
hyper-parameters but also partly degraded results. We finally
selected the following hyper-parameters: minimum samples
within a leaf= 1, number of estimators= 100, maximum
features= “auto”, maximal depth=None, minimum sam-
ples split= 2, and criterion=mean squared error. This setup
provided the best results across all tested models. The chosen
maximum features parameter leads to the consideration of all
features for all splits, thereby omitting one of the strengths
of RF. This parameter may have been selected due to the low
number of our chosen vegetation variables. However, RF is
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still able to capture complex relationships, which is our main
focus.

GAMs are a progression of standard linear regression
models and generalized linear models (GLMs) (Hastie and
Tibshirani, 1987). In comparison to standard linear regres-
sion models, GLMs use a link function to connect the mean
response of the target variable with the predictors, which
can also represent other distributions of the target variable
besides the Gaussian distribution, like binomial, gamma, or
Poisson distributions (Nelder and Wedderburn, 1972). In ad-
dition, GAMs incorporate smoothing functions for each pre-
dictor variable (Yee and Mitchell, 1991). This allows for
modelling non-linear and non-parametric relationships be-
tween the target and predictor variables. A general GAM
equation can be written as

g(µ)= b+

n∑
i=1

fj (xi) , (4)

with g() as the link function, µ as the mean response of tar-
get variable, b as the intercept term, f () as smoothing func-
tions, and x as predictor variables. Thereby, g(µ) represents
the target variable, i.e. predicted VOD data, and f (xi) repre-
sents the predictors, i.e. the vegetation variables LAI, AGB,
LFMC, and land cover expressed as PFT datasets. Here the
GAM is developed for a Gaussian distribution with an “iden-
tity” link function and spline terms as smoothing functions
using the Python package pyGAM version 0.8.0 (Servén et
al., 2018).

Both methods are compared to evaluate if the relationship
between the features and the target variable is additive (ade-
quately captured by GAM) or more complex (requiring RF).
GAM can represent non-linear and non-monotonic relations
with single predictors whereby all predictors have a joint ad-
ditive effect. RF can represent more complex relations and
interactions between the single predictors but is not well
suited for capturing additive structures in the data (Hastie et
al., 2009). Another reason to use GAM simultaneously with
RF is that models that are designed for short vegetation use
just two predictors (LAI and LFMC). The AGB dataset is
only representative of woody biomass of trees and can there-
fore not be included for short vegetation. While GAM can
utilize a small number of predictors, the application of RF
with only two predictors will likely result in overfitting as
the random choice of a predictor variable during the devel-
opment of decision trees is very limited. Both methods allow
for the qualitative and quantitative assessment of the sensitiv-
ities of VOD to the predictors via accumulated local effects
(ALEs; see Sect. 2.5).

2.3 Model experiments

The parameter b (Eq. 2) and therefore the relationship be-
tween vegetation water content and VOD depends on the
vegetation and plant type (Jackson and Schmugge, 1991).

Therefore, we account for plant types by using two main
classes of regression models to predict VOD. The first class
is global models that use the PFTs from the land cover map in
addition to the vegetation predictors LAI, LFMC, and AGB.
This means that the individual maps of treeBE (broadleaf
evergreen), treeBD (broadleaf deciduous), treeNE (needle-
leaf evergreen), treeND (needleleaf deciduous), shrub, crop,
and herb are used as additional predictors. The second model
class is comprised of land-cover-specific models using LAI,
LFMC, and AGB as inputs. These models are only applied to
the spatial extent of one dominant land cover class. In models
for short-vegetation classes, AGB is not used as a predictor
because this map is only representative of forest biomass. All
model setups were trained both for GAM and RF and using
monthly as well as 8-daily values for each VOD dataset. Ta-
ble 2 gives an overview of the models and the input data.
We hypothesize a better performance of global models com-
pared to land-cover-specific models indicating that including
information of the vegetation type (i.e. as a proxy for vege-
tation structure) in the model will improve the understanding
of VOD, especially for pixels with heterogeneous land cover.

2.4 Model evaluation

For the evaluation of the models, 5-fold cross-validation is
used. The same randomly computed folds are used for RF
and GAM. The results are averages across all folds. The per-
formance of the models is evaluated using the Nash–Sutcliffe
model efficiency coefficient (NSE):

NSE= 1−

n∑
i=1
(ai − bi)

2

n∑
i=1
(ai − a)

2
, (5)

with a as the true value, b as the predicted value, and a as the
mean of observed values as well as the root mean squared er-
ror (RMSE) between the satellite-derived and the modelled
VOD. NSE commonly ranges between 1 (perfect agreement)
and 0, where the latter is the score for a model which solely
predicts the mean of the reference data. Models that perform
worse than this can also yield negative NSE values. In ad-
dition to the overall evaluation of the models, we evaluate
the spatial distribution of NSE, i.e. NSE of the satellite and
modelled VOD time series.

2.5 Partial relationships: accumulated local effects
(ALEs)

The relationships of VOD to the predictors are examined
via accumulated local effect (ALE) plots (Apley and Zhu,
2020). Like the commonly used partial dependence plots
(PDPs; Friedman, 2001), they show the marginal effect of
a single predictor on the model predictions. This marginal
effect is reflected in the local gradient of the ALE plot; for
example, a positive gradient indicates that an increase in
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Table 2. List of tested models. N: needleleaf, B: broadleaf, E: evergreen, D: deciduous, All: not differentiated, CCI PFT: ESA Climate
Change Initiative plant functional type. Each model is run with GAM and RF as well as with datasets with an 8-daily and monthly temporal
resolution for each VOD dataset. The land-cover-specific models are only trained and tested within a cross-validation for pixels which are
dominated by certain land cover (threshold PFT fraction> 0.55).

Land cover class/ Spatial domain (defined by dominant Predictors
model name land cover)

Land-cover-specific models

treeAll CCI PFT treeAll > 55 % AGB+LFMC+LAI
treeNE CCI PFT treeNE> 55 % AGB+LFMC+LAI
treeBE CCI PFT treeBE > 55 % AGB+LFMC+LAI
treeB CCI PFT (treeBE+ treeBD) > 55 % AGB+LFMC+LAI
treeN CCI PFT (treeNE+ treeND) > 55 % AGB+LFMC+LAI
treeD CCI PFT (treeBD+ treeND) > 55 % AGB+LFMC+LAI
treeE CCI PFT (treeBE+ treeNE) > 55 % AGB+LFMC+LAI
shrub CCI PFT shrub > 55 % LFMC+LAI
crop CCI PFT crop > 55 % LFMC+LAI
herb CCI PFT herb > 55 % LFMC+LAI
short vegetation CCI PFT (shrub+ crop+ herb) > 55 % LFMC+LAI

Global model (including distinct CCI PFT data as additional predictors)

global inter-continental (all grid cells in South Africa, AGB+LFMC+LAI+PFT treeNE+PFT treeND+PFT treeBE
the western USA, Australia, and Europe) +PFT treeBD+PFT shrub+PFT crop+PFT herb

the investigated predictor should lead to an increase in the
predicted model outcome, all other predictors being equal.
While both techniques take into account all other predictors
to approximate the underlying relationship with the single
investigated predictor, ALE does not combine each plotted
predictor value with all possible combinations of the other
predictors. Especially for correlated predictors, ALE plots
are therefore more robust than PDPs (Kuhn-Régnier et al.,
2021), as unlikely and unrealistic feature combinations are
prevented. This is achieved by defining evenly spaced quan-
tiles across the range of the examined predictor. Each quan-
tile is then used with only the closest existing combina-
tions of the other predictors to calculate the marginal ef-
fects. The ALE plots were generated from the final models,
where all available data were used for training. Thereby, re-
lationships outside of the 5th and 95th percentile have to be
interpreted with caution due to the smaller sample size sup-
porting these results.

To quantify the influence of the predictors on the tar-
get variable (sensitivities), we calculated the amplitude of
the ALE curve (1A) as the difference between the maxi-
mum and minimum of the curve. A restriction of the ALE
plots by the 5th and 95th percentile leads to slightly smaller
ALE amplitudes but to the same conclusions as based on the
maximum–minimum amplitude which offers the opportunity
to exploit the results based on the whole data sample size.

3 Results

3.1 Performance of the models

The different regression models showed large dif-
ferences in model performance in predicting VOD
(−0.04≤NSE≤ 0.97; 0.004≤RMSE≤ 0.15) (Figs. 2
and S1 in Supplement). In summary, these differences were
dominated by

1. the type of regression model (RF or GAM, Fig. 2 left
subplots vs. right subplots, Sect. 3.1.1),

2. the use of 8-daily or monthly VOD data (symbols in
Fig. 2, Sect. 3.1.2),

3. the inclusion of land cover information as a predictor
(Sect. 3.1.3),

4. the wavelength of the predicted VOD (i.e. from the Ku
to the L band, Sect. 3.1.4), and

5. the vegetation type to which the model is applied
(Sect. 3.1.5).

3.1.1 Effect of the type of regression model used for
calibrating the models (RF vs. GAM)

In general, RF performed better than GAM in predict-
ing VOD, except for land-cover-specific models for short-
vegetation classes where GAM reached a slightly higher
NSE (Fig. 2a vs. b) and a similar RMSE compared to
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Figure 2. Nash–Sutcliffe model efficiency coefficient (NSE; a, b) and RMSE (c, d) of random forest models (RF; a, c) and generalized
additive models (GAM; b, d) using monthly (circle) or 8-daily (crosses) data. The global model uses PFTs as predictors, contrary to the land
cover models, which were calibrated and applied only to the spatial extent of a certain dominant land cover class. Global model for short
vegetation and tree cover show results of the global model but filtered by dominant land cover class.

RF (Fig. 2c vs. d). Another exception occurs for SMOS
L-VOD where GAM performed better regarding the land-
cover-specific models for cropland and shrubland based on
8-daily data (see Fig. S1 for all models). While all models
tended to underestimate high VOD values, RF approximated
them better than GAM. Based on these findings, in the fol-
lowing sections, we only refer to the results of RF models. If
not stated otherwise, similar results were found for GAM.

3.1.2 Effect of the temporal aggregation of the
predictor variables (8-daily vs. monthly data)

Regression models based on monthly data usually exhibited
a higher NSE and a lower RMSE than models based on 8-
daily data (comparison of circle and crosses in Figs. 2 and
S1). The superior performance of monthly over 8-daily mod-
els increased with increasing wavelength. For example, the
difference was especially large for the prediction of SMOS
L-VOD for which NSE doubled from 8-daily to monthly data
(Fig. 2a). The performance in predicting Ku-, X-, or C-VOD
was similar or monthly data presented slightly higher perfor-
mance than 8-daily data. Given the higher performance of
models based on monthly data, the following description of

results is based on models with monthly data, unless men-
tioned otherwise. Section 3.2 examines the differences in
VOD sensitivities to the predictors based on the considered
timescale.

3.1.3 Effect of including land cover information as a
predictor (global vs. land-cover-specific models)

Considering RF models based on monthly data, the global
models (defined as models including fractional cover of PFTs
as predictors; see Table 2) showed better model performance
than the land-cover-specific models that were trained and
applied only to one specific land cover. The global models
performed with an NSE of 0.85 to 0.95 and an RMSE of
0.01 to 0.03 depending on VOD wavelength (Fig. 2a and
c). We also compared the model performance of a specific
land cover type within the global model with the related land-
cover-specific model. The land-cover-specific RF models had
a lower NSE (−0.09 to−0.59) and a higher RMSE (+0.006–
0.03) than the global model within the same land cover. Con-
sidering GAM, land-cover-specific models performed better
within a certain land cover type than the global model for
the same land cover type. This applies especially for land
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cover types with simpler vegetation structure, e.g. shrubland,
herbaceous vegetation, or broadleaf evergreen trees, and less
for more complex land cover types like the tree cover and
short-vegetation classes. These results indicate that the re-
lationship between vegetation properties and VOD can be
modelled with simpler relationships as represented by GAM
only within a land cover type but that global relationships
require more complex relationships as represented by RF.

3.1.4 Effect of wavelength

In general, the NSE of predicting short-wave VOD was
higher than for predicting L-VOD and RMSE decreased from
long to short wavelengths (Fig. 2). All SMOS L-VOD mod-
els performed with a lower NSE and a higher RMSE than the
other VOD models including SMAP L-VOD. For RF models
based on 8-daily data, NSE was highest for Ku-VOD, fol-
lowed by X-VOD and C-VOD. For monthly data and GAM,
the order in performance was slightly different between Ku-,
X-, and C-VOD for NSE and RMSE.

In the global model, the land-cover-specific model per-
formance depended on the different VOD wavelengths.
The prediction of monthly Ku-, X-, and C-VOD using RF
reached the highest performance for broadleaf evergreen
trees (0.95≤NSE≤ 0.97, 0.009≤RMSE≤ 0.013) and the
lowest performance for croplands (0.82≤NSE≤ 0.85,
0.015≤RMSE≤ 0.023). Predicting monthly SMAP L-VOD
using RF had the highest performance in herbaceous veg-
etation (NSE= 0.93, RMSE= 0.016) and the lowest per-
formance in deciduous trees (NSE= 0.74, RMSE= 0.031).
RF prediction of monthly SMOS L-VOD attained the
highest performance in herbaceous vegetation (NSE= 0.84,
RMSE= 0.023) and the lowest performance in needle-
leaf and deciduous trees and croplands (NSE∼ 0.6,
0.032≤RMSE≤ 0.059).

3.1.5 Spatial variability in model performance

The performance in predicting VOD shows large spatial dif-
ferences (Fig. 3). Across all VOD datasets, the prediction of
VOD was best in Australia, followed by South Africa, Eu-
rope, and the western USA (Fig. S2). As for the global model
results (Sect. 3.1.4), the best performance was achieved in
predicting Ku-, X-, and C-VOD, and the lowest performance
was for SMOS L-VOD. This is indicated by the dominant
colour distribution in Fig. 3 and by the corresponding his-
tograms (Fig. S2), whereby the more right-skewed and nar-
rower the distribution, the better the prediction of all pixel
time series (e.g. Ku-VOD for Australia).

Several geographical patterns of high or low model perfor-
mance appear for all VOD datasets. High model performance
occurs mainly in regions with croplands (e.g. south-western
and south-eastern Australia), large shrublands (e.g. northern
Australia and central South Africa), and grasslands (north-
western and south-eastern South Africa and western Aus-

Figure 3. Nash–Sutcliffe model efficiency coefficient (NSE) per
pixel for the global random forest model (PFTs included as pre-
dictor) based on monthly values. Rows indicating results for the
different VOD datasets and columns indicating the different regions
as dictated by the availability of the LFMC dataset. The shape of
the western USA region is determined by the used h08v04, h08v05,
and h09v04 MODIS tiles which form the basis for the retrieval of
the LFMC data.

tralia) (high NSE, blue areas in Fig. 3). Regions in the south-
western USA show a poor performance (low NSE, red areas
in Fig. 3).

Higher model performance occurs also more in regions
with larger seasonality in LAI and LFMC (e.g. eastern Eu-
rope and the northern part of the western USA) (Fig. 4c) and
in pixels with homogenous land cover than in pixels with a
more heterogeneous land cover distribution (Fig. 4a and b).
With increasing wavelength, the VOD of areas with less pro-
nounced seasonality was getting more difficult to predict.

Additionally, regions with mean VOD values less than 0.1
and marginal changes over time tend to have low or even neg-
ative NSE. This is noticeable in central Australia and central
South Africa. Investigating the differences in the overall NSE
based on all values (Sect. 3.1) with the grid-cell-based NSE
in Figs. 3 and S3 allows for insight if the RF models are
able to represent not only spatial patterns but also time se-
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Figure 4. Spatial Nash–Sutcliffe model efficiency coefficient (NSE) based on the global random forest model computed with monthly data
stratified by the land cover homogeneity of a pixel exemplary shown (a) for the tree cover class plant functional type deciduous broadleaf
trees (PFT treeBD) and (b) for herbaceous vegetation (PFT herb). Note that no data with 80 %–100 % of these specific land cover classes are
available. Panel (c) shows NSE stratified by the seasonality of LAI expressed as the intra-annual standard deviation of LAI. Please note that
sparse data samples or even missing data result in missing boxes or whiskers.

ries. The comparison of the high overall NSE (> 1000 data
samples) with the NSE shown here (monthly time series Jan-
uary 2015–July 2017 resulting in a maximum time series of
31 months, i.e. < 32 data samples) indicates that NSE seems
to be sensitive to the data size, leading to a low NSE when
few data points are available. The reference and modelled
mean VOD and the variance of VOD are highly correlated
in space (Spearman correlation coefficient > 0.75), which
shows that the models capture the variability and spatial pat-
terns of VOD. With a higher mean VOD the NSE increases,
e.g. such as for the tree-covered areas dominated by decid-
uous broadleaf trees. Whereby this finding is based on the
VOD range constrained by the proceeded data preparation,
it might be not valid for very high VOD values, e.g. in rain-
forests, which are not considered here.

3.2 Relationships between VOD and vegetation
properties

3.2.1 Global (inter-continental) relationships

The effects of vegetation properties on VOD for all wave-
lengths on a monthly or an 8-daily data basis are shown in
the ALE plots in Fig. 5 (Figs. S3 and S4 for all global predic-
tors and GAM). The amplitude1A values of the ALE curves
can be used as a measure of the importance of a predictor of
the estimation of VOD. The amplitude 1A values are usu-
ally higher for monthly data than for 8-daily data (Fig. 6a),
except for the relationship between AGB and SMOS L-VOD
(Fig. 6c). This result indicates that the used predictors are
of higher importance for monthly data than for 8-daily data.
However, the high 1A values in the global RF model based
on 8-daily data for SMOS L-VOD and the relative low per-
formance of this model (NSE= 0.41) indicate that the influ-
ence of the used predictors might be overestimated. A pre-
dictor that could reproduce the main temporal dynamics in
the 8-daily SMOS L-VOD signal is indeed missing in the
analysis.

Figure 5. ALE plots of predicted normalized VOD with respect to
ecosystem properties based on the global monthly or 8-daily RF
model with the plant functional type (PFT) shrubland vegetation
(shrub) as an example of the influence of land cover fractions on
VOD. Vertical lines indicate the quantiles of the data sample sizes
for 0.05, 0.25, 0.5, 0.75, and 0.95, respectively.

The order of 1A of the predictors within a certain model
are generally similar for 8-daily and monthly models. The
coverages of trees are for all models one of the main con-
tributors to the VOD predictions (Figs. 7c, S3, and S4). LAI
is the second-most important predictor of Ku-VOD and the
most important for X- and C-VOD. For the L-VODs the
importance of LAI is lower than for the short-wave VODs
(Figs. 5 and 7c). The importance of AGB increases from low
to middle importance for the short-wave VODs to the high-
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Figure 6. Regression plots of individual ALE amplitude 1A values on a monthly data basis vs. on an 8-daily data basis. Panel (a) shows
the 1A of ALE curves from GAM and RF, whereby panels (b) to (i) show only 1A of RF models but which are colourized by different
factors: “global” indicates the global models which use also PFT fractions as predictors and “LC-specific” identifies the land-cover-specific
models which only use LAI, LFMC, and AGB (for tree cover) as predictors and used data filtered for the specific land cover type. Note that
panels (c), (f), and (i) are zoomed in compared to the other subplots. Points located in the upper-left corner indicate a higher influence of a
specific predictor on the VOD prediction on an 8-daily timescale compared to the monthly timescale for a certain model. Points located on
the 1 : 1 line indicate a constant influence on VOD regardless of the considered timescale. Points located in the lower-right corner indicate a
higher influence of a predictor on a monthly timescale.

est importance for the L-VODs (Fig. 7c). The coverages of
short-vegetation classes have a middle to low influence on the
VOD, decreasing with increasing wavelength, but as an ex-
ception the coverages of shrubs is the second- and third-most
important predictor of monthly and 8-daily SMAP L-VOD,
respectively (Figs. 7c, S3 and S4). The 1A values of LFMC
increase with wavelength, with low influence on Ku- and X-
VOD and higher influence on L-VOD. An exception here is
the 8-daily SMOS L-VOD model, where LFMC also has a
low impact on the predictions, but given the low performance
of this model, the estimated importance of LFMC on SMOS

L-VOD might be unreliable (Fig. S3). Interestingly, the am-
plitude of the ALE plots varies between wavelengths, within
monthly and 8-daily models, although these results are based
on normalized data (Fig. 6c). For LAI and land cover a clear
decrease in the ALE amplitude with increasing wavelength is
visible, which corresponds to the fact that the magnitude of
the VOD value range decreases with increasing wavelength
(Figs. 5a and d and 7c). For AGB and LFMC, the ALE am-
plitude increases with increasing wavelength (Figs. 5b and c
and 7c).
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Figure 7. Amplitude (1A) of RF ALEs for monthly models. The order of the x axis is solely sorted by the importance of the features
while trying to ensure comparability of land-cover-specific models (a, b) and global models (c), using PFT fractions as additional predictors.
Similar results are achieved for other land-cover-specific models, e.g. treeB, treeN, herb, or crop models, as well as for 8-daily based models
but with a slightly smaller 1A.

Given the similar shape of ALEs based on 8-daily and
monthly data but with smaller amplitudes, we will focus
on the examination of the monthly ALE curves. All VOD
datasets show a positive relationship with LAI, but all curves
saturate around an LAI value of 2.3, which corresponds ap-
proximately to the 95th percentile of LAI in our dataset
(Fig. 5a). LAI has a much stronger effect on Ku-, X-, and C-
VOD than on L-VOD. Interestingly, the relationship between
LAI and SMAP L-VOD is more similar to the relationship of
LAI and short-wave VODs (e.g. X-VOD) than the relation-
ship with SMOS L-VOD (especially shown between the 75th
and 95th percentile in Fig. 5a).

The relationship with LFMC is more complex for all VOD
datasets (Fig. 5b). From 0 % to 50 % LFMC, the relation-
ships are negative with a negative spike at 50 % LFMC. We
hypothesize that this spike is a species-specific behaviour or
a poorly captured relation for herbaceous-vegetation pixels
in South Africa and Australia; however, further investiga-
tion is required to investigate if this is a real response of
the vegetation. Afterwards, VOD increases with increasing
LFMC, which is most pronounced for SMOS L-VOD. How-
ever, SMAP L-VOD shows a strong negative relationship
with LFMC after around 140 % LFMC. Despite all relations
within the 5th and 95th percentile needing to be interpreted
with caution, this is especially the case for the 95th percentile
of the LFMC ALE due to the uncertainties of the original
dataset where higher LFMC values also have a higher un-
certainty (Yebra et al., 2018). In addition, the validation of

the LFMC dataset is impeded by uncertainties due to diffi-
culties of comparison between measurements on the ground
and what is detected by the satellite. Uncertainties in the used
LFMC dataset arise from the temporal matching procedure of
in situ samples and MODIS data and from the canopy closure
of the forest cover and the contribution of the understorey to
the measured surface reflectance. However, these factors are
difficult to quantify and can only be discussed in a qualitative
manner, but they still might influence the results presented
here.

All VOD datasets show a similar increase with AGB until
120 Mg ha−1 (corresponding to the 95th percentile), but the
relationships differ at higher AGB values (Fig. 5c). Ku-, X-
, and C-VOD show a decrease with increasing AGB above
120 Mg ha−1, but SMOS and SMAP L-VOD continue to in-
crease.

The relationships with land cover fractions are positive
for most VOD datasets. As an example, we show here the
relationship with the fraction of shrubland cover (Fig. 5d).
SMAP L-VOD shows a nearly monotonic increase with in-
creasing shrubland cover. The short-wave VODs and SMOS
L-VOD show no relation with shrubland cover below 10 %
coverage but show a positive relationship at higher coverage.
SMOS L-VOD shows a non-monotonic relationship with
shrubland cover.

Taken together, we find the following effects of vegeta-
tion properties on the different VOD datasets: SMOS L-VOD
is most strongly affected by AGB (positive relationship),
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followed by tree cover and LFMC (positive relationship at
LFMC > 50 %), short-vegetation cover, and LAI (positive
relationship for LAI< 1.5). SMAP L-VOD is most strongly
affected by AGB (positive relationship), followed by LFMC
(negative relationship) and shrubland cover and LAI (posi-
tive relationship for LAI< 2.5). Ku-, X-, and C-VOD show
very similar relationships and are most strongly affected by
LAI (positive relationship) and tree cover, followed by AGB
(positive relationship up to 120 Mg ha−1), short-vegetation
cover, and LFMC.

3.2.2 Relationships within land cover types

In this section, we summarize the results of the RF mod-
els for relationships within a certain land cover type (see
Figs. S5 to S8 for land-cover-specific ALE plots based on
RF and GAM). The individual predictors in the land-cover-
specific models have a higher influence on the VOD predic-
tion than in the global model because the land-cover-related
predictors are not used within the land-cover-specific mod-
els (Fig. 6d). ALE amplitude1A values for monthly data are
mostly larger than for 8-daily data with some exceptions for
SMOS L-VOD (Fig. 6b). The order of 1A for the different
VODs is in the land-cover-specific models like in the global
model with the highest values for SMOS L-VOD, followed
by Ku- and SMAP L-VOD and X- and C-VOD.

In models for specific tree cover types, AGB has the largest
1A, followed by LFMC and LAI (Fig. 7a). The model for
deciduous trees for 8-daily SMOS L-VOD data is an excep-
tion, in which LAI has the largest importance, followed by
LFMC and AGB (Fig. S5). Due to the poor performance of
this model, this result might be questionable.

Models for short-vegetation types usually have LAI as the
most important predictor, followed by LFMC (Fig. 7b). Ex-
ceptions are the models for the herbaceous vegetation with
8-daily SMAP L-VOD and 8-daily and monthly SMOS L-
VOD, where LFMC has the highest importance. In general,
for the tree cover models AGB and for short-vegetation cover
LAI have a higher influence on the predictions than LFMC.
Nevertheless, the 1A–LFMC regression line in Fig. 6h indi-
cates that LFMC has a similar effect on both timescales. This
is contrary to AGB and LAI, where the effect is higher for
monthly than for 8-daily data. For short vegetation, the ALE
plot between VOD and LFMC shows a similar form as in
the global model with a drop around 50 % LFMC (Fig. S6),
which indicates that the global VOD–LFMC relationship is
dominated by dynamics in short-vegetation areas. Particu-
larly, the drop is based on the herbaceous land cover type,
which is also visible in the 8-daily based models and in the
GAM (Figs. S6 and S8). The importance of LAI in predicting
VOD decreases for herbaceous and shrubland cover models
with increasing wavelength. A similar dependence occurs for
LFMC for shrublands and monthly data above 140 % LFMC.
Globally, the positive relationship between VOD and LFMC
in the range of 50 % to 140 % LFMC and the negative rela-

tionship at higher LFMC (Figs. 5b and S6) originates from
croplands because this decrease is only visible in the LFMC
ALE from the cropland model.

In tree-covered areas (treeAll model), the ALE shows that
VOD marginally increases with LAI up to LAI= 2 and is
then stable or slightly decreases (Fig. S5). The relation of
VOD with LFMC is positive for Ku-, X-, and C-VOD but
non-monotonic for both L-VODs. AGB is the dominant pre-
dictor of all tree-covered models, but the relationship with
VOD is highly non-linear and non-monotonic, especially in
comparison to the relationships with LAI and LFMC.

Comparing the ALEs of the treeAll model with the mod-
els for individual forest types (i.e. treeB, treeN, treeD, treeE,
Fig. S5) shows that the influence of a specific forest type
is partially recognizable within the treeAll ALEs. For ex-
ample, the relationship between LFMC and VOD in the
treeAll model is highly influenced by the relationship for
needleleaf and evergreen trees. The decline in SMOS L-VOD
with LFMC is also pronounced within most tree types but
not within deciduous trees. The relationships with AGB for
needleleaf trees is more linear in comparison to the other
tree cover models. Deciduous and broadleaf trees exhibit a
more complex relationship with AGB than evergreen and
needleleaf trees for all VODs. The amplitudes of ALE curves
with AGB are highest for X-VOD for deciduous trees (treeD
1A = 0.175) and for SMOS L-VOD for broadleaf trees
(treeB 1A = 0.313). These results demonstrate that biomass
is also an important predictor of short-wave VODs but that
this importance varies with wavelength and forest type.

Contrary to the global model, the land-cover-specific mod-
els do not exhibit a clear dependency of the ALE amplitude
on the wavelengths.

4 Discussion and conclusions

4.1 Predictors and predictability of VOD

The results demonstrate that for the global prediction of
VOD, i.e. over different biomes, a flexible modelling ap-
proach such as RF is better suited than an additive approach
like GAM. The lower global performance of GAM suggests
that local factors, e.g. intercepted or standing water or hetero-
geneous soil properties, and interactions between factors play
a role in the dynamics of VOD. In contrast, RF is partly able
to account for this due to its ability to flexibly model, which
results in higher model performance. The simpler structure of
GAM compared to RF is, in most cases, insufficient to pre-
dict VOD, but within single land cover types a simpler addi-
tive approach like GAM is sufficient. This indicates that the
relationship between VOD and LAI, LFMC, and AGB can-
not be easily captured with global linear, monotonic, and bi-
variate regressions but requires accounting for the non-linear
interactions between various ecosystem properties. The re-
sults imply that the set of predictors allows for the estimation
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of the dynamics of short-wave VODs at a high temporal res-
olution (8-daily and monthly) with very good performance,
but the set of used predictors is insufficient to explain the dy-
namics in L-VOD due to ignoring local effects or possibly
disregarded predictors.

This conclusion is supported by the performance differ-
ence between the four studied regions. For example, Eu-
rope has a more fragmented landscape than most areas in
Australia, causing mixed effects on VOD within the coarse
0.25◦ grid cells, leading to a lower predictability in Europe
than Australia. Even if PFT fractions are used as predic-
tors, the mismatch between the coarse resolution and land
cover complexity cannot be resolved. This is especially pro-
nounced in the long-wave VOD, for which the footprint is
often significantly larger than 0.25◦ (> 40 km). Local com-
plex effects on VOD are likely related to land cover changes,
intercepted or standing water, or soil properties. For exam-
ple, Saleh et al. (2006) showed for a grassland site that in-
tercepted water could double L-VOD after a rainfall event.
Comparable to this finding, Wigneron et al. (1996) also re-
ports a possible doubling in C-VOD due to interception at
a wheat field. Although interception has reduced influence
on the coarse-resolution data (Baur et al., 2019; Wigneron
et al., 2021) or might not impede temporal VOD analyses
(Feldman et al., 2020), temporary flooding leads to an evi-
dent change in VOD. For example, a decreased L-VOD sig-
nal at flooding was recognized for short-vegetation areas us-
ing Ku-VOD derived from the microwave radiometer of the
Chinese satellite FY-3B (Fengyun) (Liu et al., 2019) as well
as for forests using AMSR-E Ku-VOD (Jones et al., 2011) or
using SMOS-IC L-VOD (Bousquet et al., 2021). The effect
of such local events on VOD implies that large-scale spa-
tial relations between VOD and e.g. AGB (Liu et al., 2015;
Rodríguez-Fernández et al., 2018; Mialon et al., 2020) will
likely wrongly associate changes in VOD with changes in
AGB, which might result in unrealistic estimates of local
AGB dynamics. This conclusion is supported by the findings
of Konings et al. (2021), who show that regional temporal
anomalies of X- and L-VOD are mostly uncorrelated with
temporal anomalies of AGB but show a higher correlation
with root-zone soil moisture, an indicator of water stress and
availability.

The comparison of the global and the land-cover-specific
models highlights the complexity of the relation between
VOD and vegetation properties. An interesting result is that
the ALE amplitudes (i.e. sensitivity) increase with increas-
ing wavelength in the global model but not in the land-cover-
specific model. The land-cover-specific models only include
pixels with a coverage of > 55 % of the specific land cover
type but do not use PFT fractions as predictors. This in-
dicates that PFT fractions serve as a descriptor of vegeta-
tion structure and hence as a descriptor of land cover het-
erogeneity in the global model. This results in a VOD–LAI
relationship that varies by microwave wavelength. But this
wavelength dependency cannot be resolved within the land-

cover-specific models because those models cannot account
for the impact of sub-pixel land cover heterogeneity. Further-
more, the differences in the VOD–AGB relationship between
the global and the land-cover-specific models also highlights
that a monotonic VOD–AGB relationship is only valid over a
large spatial scale but does not hold within a vegetation type
or at smaller scales. The high model performance in regions
with high biomass areas were enabled using PFT maps as
predictors, which compensate for the saturating effect at high
AGB. Similar to the VOD–LAI relationship, the relative sen-
sitivity of the LFMC ALE increases with increasing wave-
length for the global models, and it also shows that LFMC
has relatively more influence on an 8-daily timescale com-
pared to the monthly timescale for the global as well as the
land-cover-specific models.

Both LFMC and LAI are strongly correlated. The tempo-
ral and spatial variation in our global models are dominated
by LAI, leading to a lower influence of LFMC on short-wave
VOD than of LAI. Although LFMC appears as the less im-
portant predictor of VOD than LAI in our models, the strong
correlation of LAI and LFMC is nevertheless the reason why
in situ measured LFMC show medium to strong correlations
with VOD and can be used to estimate LFMC from short-
wave VOD (Fan et al., 2018; Forkel et al., 2023).

Globally, the L-band VOD is highly influenced by AGB,
which is in agreement with the ability of long-wave VOD
to better penetrate dense vegetation and its higher sensitiv-
ity to the woody plant parts (Liu et al., 2011). However, the
much lower predictability of L-VOD compared to Ku-, X-,
and C-VOD indicates that L-VOD cannot be sufficiently ex-
plained by the combination of AGB, LAI, LFMC, and land
cover. The performance in predicting L-VOD is much lower
at the pixel level (Fig. 3) than computed across the full spa-
tial and temporal extent of the data. Hence, the low perfor-
mance in predicting L-VOD is mostly related to the temporal
dynamics at the pixel level because our model correctly ex-
plains the spatial patterns. The low performance in predict-
ing SMOS L-VOD might be caused by a noisy signal of the
SMOS sensor (van der Schalie et al., 2017). Especially the
daily raw L-VOD data, as used for the 8-daily analyses, can
be very noisy (Wigneron et al., 2021). Vittucci et al. (2016)
found moderate seasonal differences (but within the standard
variation) of the SMOS L-VOD signal over forests located
at latitudes higher than +20◦, which are partly explainable
due to the deciduous character of the forest but moreover be-
cause of random effects. The L-band signal, as well as the
C-band signal, is strongly disturbed by radio-frequency in-
terference (RFI; Liu et al., 2019). The spatial and temporal
inconsistency of RFI complicates the RFI correction of the
L band (Wigneron et al., 2021). This indicates a noisy, or
until now not fully understood, variation in the SMOS L-
VOD, especially within the lower value range. Due to the
uncertain proportion of noise and short-term changes in wa-
ter content, Ebrahimi et al. (2018) averaged SMOS L-VOD
over 15 d and Rodríguez-Fernández et al. (2018) did so even
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over 2 years to reduce related uncertainties in the VOD sig-
nal. Vaglio Laurin et al. (2020) found a time lag of up to
6 months between SMOS L-VOD and ecosystem functional
properties in tree-covered areas in South America and Africa;
Tian et al. (2018) found it between SMOS L-VOD and LAI
in tropical woodlands. This time lag shows that the relation-
ships between SMOS L-VOD and vegetation properties need
further investigation in densely vegetated regions.

In addition to the possible noisy signal of SMOS L-VOD,
which might hamper the interpretation, errors within the L-
VOD values can also be introduced by the retrieval algorithm
itself. With the use of a tau-omega model, soil moisture and
VOD are often retrieved simultaneously, which can introduce
errors in the VOD retrievals. Zwieback et al. (2019) found
spurious correlations of soil moisture and VOD especially for
sub-monthly timescales over forests. Besides that, the cor-
rectness of the retrieval product focuses on soil moisture at
the cost of the VOD retrieval. The resulting error shifts from
soil moisture to VOD are more prone to short-term changes
and to higher VOD values (Feldman et al., 2021), which
might contribute to the underestimation of high VOD values
of our models and the reduced performance of the 8-daily
models compared to the monthly models. A more robust L-
VOD product might be achieved by analysing and adjusting
the necessary degree of regularization for a VOD retrieval
depending on the timescale and land cover (Zwieback et al.,
2019; Feldman et al., 2021).

An interesting finding is the higher sensitivity of L-VOD
to LFMC than to LAI. This indicates that the L band indeed
penetrates deeper into the canopy (low sensitivity to LAI)
but is sensitive to the plant water status (i.e. LFMC). How-
ever, AGB and LFMC are insufficient predictors for reaching
high predictability of L-VOD. This might be caused by the
fact that the AGB dataset used in this study does not con-
tain any temporal information, and hence changes in AGB
are not considered in our model. Using an alternative dataset
(e.g. Xu et al., 2021), which provides a global time series of
AGB, could be a benefit for improving the understanding of
temporal VOD variations. Especially seasonal dynamics of
AGB could contribute to a better prediction of L-band VOD.
However, as we included annual land cover maps as predic-
tors, our models do indeed account for land cover change
such as deforestation, which is strongly related to a change
in AGB (Andela et al., 2013). The use of LFMC and LAI as
predictors might be insufficient for L-VOD. The used LFMC
and LAI data were both derived from optical observation by
MODIS, which is only sensitive to the top of the canopy in
closed forest canopies. Root-zone soil moisture was used as
a proxy for water availability in other studies (e.g. Konings
et al., 2021); however, it is not an ideal predictor of vegeta-
tion water content, as some plants can regulate their water
potential or moisture content independent of soil moisture
(Konings and Gentine, 2017; Hochberg et al., 2018). There-
fore, it is necessary to further investigate the daily to seasonal
temporal dynamics of L-VOD with respect to e.g. local and

regional observations of water availability and plant water
status.

4.2 Towards developing advanced approaches to link
VOD with vegetation properties

The long time series, global coverage, and multiple frequen-
cies of VOD retrievals provide valuable information that can
be used to derive vegetation properties at large scales or to
evaluate and parametrize land surface models in data assimi-
lation studies. Yet, those applications of VOD require a solid
understanding of the biophysical controls on VOD. The rel-
atively high effect of LAI on the short-wave VODs indicates
that data assimilation approaches that only use LAI for esti-
mating the temporal dynamic of VOD (as they were used by
Scholze et al., 2019, and Kumar et al., 2020) are valid ap-
proximations. However, other studies also found a relation-
ship between short-wave VOD and plant water status (Kon-
ings et al., 2021) and negative correlation between VOD and
LAI (Tian et al., 2018). This indicates that even models with-
out an explicit representation of plant water status are suit-
able for VOD assimilation, but this might not hold for all
vegetation types and needs further investigation.

LFMC or similar measures for plant water status have only
recently been introduced into land surface models commonly
used for global-scale simulations (e.g. Kennedy et al., 2019;
Niu et al., 2020; Eller et al., 2020; L. Li et al., 2021). LFMC
has therefore not been used in assimilation studies so far.
The long time series of especially Ku-VOD could help to
constrain model simulations of LFMC or support studies of
plant water status but requires a good representation of LAI
dynamics.

For observation operators for L-VOD, AGB should be the
main predictor of spatial patterns. Scholze et al. (2019) used
the empirical function between VOD and AGB evaluated by
Rodríguez-Fernández et al. (2018) to simulate L-VOD from
AGB. Thereby, AGB was replaced with a function of net pri-
mary production and effective turnover time. However, tem-
poral changes in L-VOD that are caused by changes in plant
water status might result in an overestimation in dynamics
of biomass production, turnover, or biomass loss (Konings et
al., 2021). Scholze et al. (2019) tried to avoid incorporating
short-term changes in VWC and therefore averaged the VOD
simulations to yearly means. The temporal dynamics should
include the effect of plant water status, but further investiga-
tions on the drivers of the temporal dynamics of L-VOD are
necessary to make full use of the data.

Including a proxy for VWC and exploring the influence
of short-term changes in vegetation properties on VOD, we
assessed the temporal dynamics not only for L-VOD but also
for Ku-, X-, and C-VOD, which will help to make explicit use
of VOD temporal changes within modelling and assimilation
studies.
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