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Abstract. Quantification of uncertainty in fluxes of energy,
water, and CO2 simulated by land surface models (LSMs)
remains a challenge. LSMs are typically driven with, and
tuned for, a specified meteorological forcing data set and
a specified set of geophysical fields. Here, using two data
sets each for meteorological forcing and land cover repre-
sentation (in which the increase in crop area over the his-
torical period is implemented in the same way), as well as
two model structures (with and without coupling of carbon
and nitrogen cycles), the uncertainty in simulated results over
the historical period is quantified for the Canadian Land Sur-
face Scheme Including Biogeochemical Cycles (CLASSIC)
model. The resulting eight (2× 2× 2) model simulations are
evaluated using an in-house model evaluation framework that
uses multiple observation-based data sets for a range of quan-
tities. The simulated area burned, fire CO2 emissions, soil
carbon mass, vegetation carbon mass, runoff, heterotrophic
respiration, gross primary productivity, and sensible heat flux
show the largest spread across the eight simulations rela-
tive to their global ensemble mean values. Simulated net
atmosphere–land CO2 flux, a critical determinant of the per-
formance of LSMs, is found to be largely independent of the
simulated pre-industrial vegetation and soil carbon mass, al-
though our framework represents the historical increase in
crop area in the same way in both land cover representa-
tions. This indicates that models can provide reliable esti-
mates of the strength of the land carbon sink despite some
biases in carbon stocks. Results show that evaluating an en-
semble of model results against multiple observations disen-

tangles model deficiencies from uncertainties in model in-
puts, observation-based data, and model configuration.

1 Introduction

The current-generation land surface models (LSMs) explic-
itly simulate the fluxes of energy, water, momentum, and
trace gases (including CO2, CH4, and N2O) between the at-
mosphere and the land surface. These models have become
an essential tool in understanding what role the land surface
plays in the global climate system under current and pro-
jected future changes in environmental conditions, including
atmospheric CO2 concentration (Bonan and Doney, 2018).
LSMs are also an essential component of climate and Earth
system models (ESMs), together with their ocean and atmo-
sphere components. Within the framework of ESMs, LSMs
are coupled interactively to their atmospheric components
through the fluxes of energy, momentum, and matter.

The complexity of LSMs has increased over time, as
more physical and biogeochemical processes have been in-
cluded in their framework (Fisher and Koven, 2020; Kyker-
Snowman et al., 2022). This increased complexity combined
with the uncertainty in our understanding of physical and
biogeochemical processes implies that different models re-
spond differently even when driven with the same exter-
nal forcings. One estimate of the uncertainty in our under-
standing of land surface physical and biogeochemical pro-
cesses is obtained by evaluating the inter-model spread in a
given quantity when models are forced in the same manner.
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Other than the uncertainty among models due to differences
in their model structures and parameterizations of various
processes, uncertainty also exists due to at least three other
reasons. These include uncertainty (1) in parameter values1

of represented processes, (2) in driving meteorological data,
and (3) in the specification of the geophysical fields. LSMs
are typically driven with meteorological data consisting of
seven primary variables (incoming longwave and shortwave
radiation, temperature, precipitation, specific humidity, wind
speed, and pressure). In addition, the geophysical fields of
land cover, soil texture, and soil permeable depth are also re-
quired. Driving data for LSMs also consist of atmospheric
CO2 concentration and other model-specific external forc-
ings such as nitrogen deposition and fertilizer application
rates for models that include a representation of the terres-
trial nitrogen cycle and also lightning, population density,
and gross domestic product (GDP) for models that simulate
wildfires.

Every year, more than 15 land surface modelling groups
participate in the TRENDY (trends in net land–atmosphere
carbon exchanges) project where they perform a set of sim-
ulations that are driven with specified external forcings. The
simulations are performed from the year 1700 to the present
day. These simulations contribute to the annual Global Car-
bon Project’s (GCP) analysis of the land carbon sink together
with its analysis of anthropogenic CO2 emissions and the
ocean carbon sink (Friedlingstein et al., 2019). The external
forcings used to drive LSMs in the TRENDY intercompar-
ison include (1) 6-hourly meteorological data from 1901 to
the present day (the most recent 2020 TRENDY intercompar-
ison used the CRU-JRA forcing obtained by blending the Cli-
matic Research Unit’s (CRU) monthly data and the Japanese
Reanalysis (JRA)), (2) atmospheric CO2 concentration, and
(3) information about changes in crop area and other land
use change (LUC) from the land use harmonization (LUH)
product (Hurtt et al., 2020). The information about changes
in crop area and other LUC is used by land surface mod-
elling groups to reconstruct historical land cover from the
year 1700 to the present day consistently with the number of
the plant functional types (PFTs) a given model represents.
The protocol also provides nitrogen deposition and fertiliza-
tion application rates for models including nitrogen cycling.

Models participating in the TRENDY simulations are thus
driven with common meteorological and LUC forcings as
part of their protocol. The resulting spread across models
participating in the TRENDY project thus provides a mea-
sure of inter-model uncertainty, as mentioned earlier. Tra-
ditionally, the uncertainty associated with model structure
has gained the most attention, and the scientific community

1Changes in parameter values do not constitute different param-
eterizations. For example, two models may use the same parame-
terization, say y =mx+ b, but different values of its parameters m
and b. However, y =mx+b and y =mx2 are considered to be two
different parameterizations.

has responded to this by performing model intercomparison
projects (MIPs) where models are driven according to a com-
mon protocol. The Coupled Model Intercomparison Project
(CMIP) in the climate community, together with its various
sub-projects (Eyring et al., 2016), is another prominent ex-
ample. MIPs now routinely form the basis of evaluating mod-
els against observations and multi-model means of various
quantities. Multi-model means are also considered to be the
best estimate for a given quantity (Tebaldi and Knutti, 2007).

The modelling community has been long aware of the
uncertainty associated with parameter values, since a large
fraction of physical and biogeochemical model processes are
parameterized, and such uncertainty analysis dates back to
the early hydrological models (e.g. Hornberger and Spear,
1981; Beven and Binley, 1992). More recent examples of pa-
rameter value uncertainty in the context of a given LSM in-
clude Poulter et al. (2010), Booth et al. (2012), and J. Li et
al. (2018). The land surface modelling community, however,
has only recently begun to address and quantify uncertainty
related with driving meteorological data. Wu et al. (2017), for
example, illustrate the uncertainty in gross primary produc-
tivity (GPP) simulated by the Lund–Potsdam–Jena General
Ecosystem Simulator (LPJ-GUESS) model when driven by
six different meteorological data sets. Bonan et al. (2019) an-
alyze the uncertainty in simulated carbon-cycle-related vari-
ables using three versions of the Community Land Model
(CLM) when driven with two meteorological data sets over
the historical period. Slevin et al. (2017) assess the uncer-
tainty in simulated GPP by the JULES land model when
driven by three different meteorological data sets. Studies
that evaluate the effect of different land cover representations
on model performance are even fewer. Tian et al. (2004) and
Lawrence and Chase (2007) study the effect of new land sur-
face boundary conditions, including leaf area index and frac-
tional vegetation cover, based on the MODIS satellite data
as implemented in CLM2 in the Community Atmosphere
Model (CAM2) and CLM3 in the Community Climate Sys-
tem Model (CCSM 3.0), respectively.

Here, we drive the Canadian Land Surface Scheme Includ-
ing Biogeochemical Cycles (CLASSIC) with two sets of his-
torical meteorological forcings and also two land cover rep-
resentations to quantify the uncertainty associated with both
these forcings. Other than these, we also use two versions of
the CLASSIC model: one that represents the interactions be-
tween the carbon (C) and nitrogen (N) cycles and another in
which these interactions are turned off. CLASSIC has con-
tributed to the simulations for the TRENDY intercompari-
son, and the GCP, since 2016 (formerly under the CLASS-
CTEM name). Seiler et al. (2021) have evaluated how well
the CLASSIC model performs when forced with three differ-
ent meteorological data sets using the model version with-
out the N cycle. Using the two meteorological forcing data
sets, two representations of land cover, and two versions of
the model, we perform eight simulations over the historical
period since 1700. All of these simulations may be consid-
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ered equally likely representations of the modelled state of
the land surface over the historical period. Yet, they all have
their own distinct biases, since simulated land surface states
and fluxes are different. We use these simulations to illus-
trate the uncertainty associated with meteorological forcing
and the two different representations of land cover that are
used to drive the model. We also use an in-house open-source
benchmarking system (see code and data availability section)
to evaluate these different simulations against observation-
based data sets: AMBER (Automated Benchmarking R pack-
age; Seiler et al., 2021) uses gridded and in situ observation-
based estimates of 19 energy-, water-, and C-cycle-related
variables to evaluate LSMs.

Section 2 of this paper describes the framework of the
CLASSIC land model and the forcing data that are required
to drive the model. Section 3 describes the two meteorolog-
ical data sets, the two representations of land cover that are
used to drive the model, and the simulations performed for
this study. Section 4 analyzes the results from the simulations
to illustrate their different states and reports results from the
AMBER benchmarking exercise. Finally, the discussion and
conclusions are presented in Sect. 5. The use of more than
one meteorological forcing data set and land cover represen-
tation yields a conundrum, since tuning model parameters
for a given forcing data set is not a useful exercise anymore.
We also report a new finding that, despite different land C
states (characterized in terms of vegetation and soil C mass)
in the eight simulations considered here, the net atmosphere–
land CO2 flux over the historical period in these simulations
is consistent with estimates from the GCP. This and the dis-
cussion about the broader question of model tuning are also
presented in Sect. 5.

2 The CLASSIC land modelling framework

2.1 The physical and carbon biogeochemical processes

The CLASSIC land model is the successor to and is based
on the coupled Canadian Land Surface Scheme (CLASS;
Verseghy, 1991; Verseghy et al., 1993) and the Canadian Ter-
restrial Ecosystem Model (CTEM; Arora and Boer, 2005;
Melton and Arora, 2016). CLASSIC also serves as the land
component in the family of Canadian Earth system mod-
els (Arora et al., 2009, 2011; Swart et al., 2019). Melton et
al. (2020) provide an overview of the CLASSIC land model
and launched it as a community model. The basis of the mod-
elling of physical and biogeochemical processes in CLAS-
SIC comes from CLASS and CTEM, respectively, both of
which have a long history of development. CLASSIC simu-
lates land–atmosphere fluxes of water, energy, and momen-
tum based on its physics and fluxes of CO2, CH4, N2O, NOx,
and NH3 based on its biogeochemical process. The represen-
tation of the terrestrial N cycle is a new addition to CLASSIC
(Asaadi and Arora, 2021; Kou-Giesbrecht and Arora, 2022)

and allows for the simulation of the interactions between the
C and N cycles explicitly.

The CLASSIC model simulations can be performed over a
spatial domain, which may be global or regional, using grid-
ded data or at a point scale, e.g. using meteorological and
geophysical data from a FLUXNET site. The primary phys-
ical and biogeochemical processes of CLASSIC are briefly
summarized in the next two sections.

2.1.1 Physical processes

The calculations for physical processes in CLASSIC are per-
formed over vegetated, snow, and bare fractions at a time
step of 30 min. In the version used here, the fractional cov-
erage of the four plant functional types (PFTs; needleleaf
trees, broadleaf trees, crops, and grasses) characterizes veg-
etation for each grid cell. The fractional coverage of these
four PFTs is specified over the historical period in this study.
The structure of vegetation is characterized by leaf area index
(LAI), vegetation height, canopy mass, and rooting distribu-
tion through the soil layers, all of which are dynamically sim-
ulated by the biogeochemical module of CLASSIC. Twenty
ground layers represent the soil profile, starting with 10 lay-
ers of 0.1 m thickness. The thickness of layers gradually in-
creases to 30 m for a total ground depth of over 61 m. The
depth of permeable-soil layers and thus the depth to bedrock
varies geographically and is specified based on the Soil-
Grids250m data set (Hengl et al., 2017). Liquid and frozen
soil moisture contents and soil temperature are determined
prognostically for permeable soil layers. The temperature,
albedo, mass, and density of a single-layer snow pack (when
the climate permits snow to exist) are also prognostically
modelled. The result of physics calculations yields fluxes of
energy (primarily net radiation, ground heat flux, and latent
and sensible heat fluxes) and water (primarily evapotranspi-
ration and runoff) at the land–atmosphere boundary.

2.1.2 Biogeochemical processes

The biogeochemical processes in CLASSIC, based on
CTEM, are described in detail in the Appendix of Melton
and Arora (2016). The biogeochemical processes simulate
the land–atmosphere exchange of CO2 and as a result sim-
ulate vegetation as a dynamic component depending on the
environmental conditions.

The biogeochemical module of CLASSIC prognostically
calculates the amount of C in the model’s three live (leaves,
stem, and root) and two dead (litter and soil) C pools for
each PFT. The live-vegetation pools are separated into their
structural and non-structural components. The C amount in
these pools is represented per unit of land area (kg C m−2).
The amount of C in the live and dead C pools and all terres-
trial ecosystem processes in the biogeochemical module in
this study are modelled for nine PFTs that map directly onto
the four base PFTs used in the physics module of CLAS-
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SIC. Needleleaf trees are divided into their deciduous and
evergreen phenotypes; broadleaf trees are divided into cold-
deciduous, drought-deciduous, and evergreen phenotypes;
and crops and grasses are divided based on their photosyn-
thetic pathways into C3 and C4 versions. The physical pro-
cesses in CLASSIC are less sensitive to this sub-division of
PFTs which is essential for modelling biogeochemical pro-
cesses. For instance, simulating the onset and offset of leaves
is different between evergreen and deciduous phenotypes of
needleleaf and broadleaf trees, and this is simulated in the
biogeochemical module of the model. However, once the leaf
area index (LAI) is known, the physical processes in CLAS-
SIC do not need information about the underlying deciduous
or evergreen nature of leaf phenology. For example, the inter-
ception of rain and snow by canopy leaves (that is typically
modelled as a function of LAI and is a PFT-dependent pa-
rameter that accounts for leaf orientation and shape) does
not depend on the underlying evergreen or deciduous na-
ture of the leaf phenology. In general, biogeochemical pro-
cesses benefit more in terms of realism than physical pro-
cesses do when the number of PFTs is increased. For exam-
ple, in offline CLASSIC simulations, large changes in leaf
area index (LAI) do not change total latent heat flux con-
siderably, since the partitioning of evapotranspiration into its
sub-components (transpiration, soil evaporation, and evapo-
ration and/or sublimation of intercepted rain and/or snow)
adjusts. A decrease in transpiration and evaporation of inter-
cepted precipitation due to a decrease in LAI is compensated
for by an increase in soil evaporation. This is expected, since
water and energy fluxes are determined largely by available
energy and precipitation.

The litter and soil C pools are tracked for each soil layer,
but the movement of C between the soil layers is not yet mod-
elled. Other than photosynthesis and leaf respiration, which
are modelled at a time step of 30 min, all other biogeochem-
ical processes are modelled at a daily time step. These in-
clude the following: (1) allocation of C from leaves to stem
and roots, (2) autotrophic respiration from the live C pools
and heterotrophic respirations from the dead C pools, (3) leaf
phenology, (4) turnover of live-vegetation components that
generates litter, (5) mortality, (6) LUCs, and (7) fire (Arora
and Melton, 2018). Competition between PFTs for space is
not modelled in this study, and fractional coverage of the
nine PFTs is specified based on the representation of the land
cover as explained in the next section.

When the N cycle is turned on, land–atmosphere fluxes of
N2O, NOx, and NH3 and N leaching are also modelled in
response to biological N fixation, N fertilizer inputs, and N
deposition from the atmosphere. In particular, when the N cy-
cle interacts with the C cycle, the maximum photosynthetic
capacities of model PFTs (Vc,max) are determined prognosti-
cally as a function of their leaf N content (Asaadi and Arora,
2021; Kou-Giesbrecht and Arora, 2022). When the N cycle
is turned off, prescribed PFT-specific Vc,max rates are used
(Melton and Arora, 2016), and an empirical downregulation

parameterization is used to emulate the effect of nutrient con-
straints as atmospheric CO2 increases (Arora et al., 2009). N
in all model components (leaves, stem, roots, litter, and soil
organic matter) is prognostically tracked, and therefore the
C : N ratio of all components is prognostically modelled ex-
cept for that of soil organic matter, for which a C : N ratio
of 13 is specified. In addition, N in the soil mineral pools of
nitrate (NO−3 ) and ammonium (NH+4 ) is also prognostically
modelled.

3 Driving data for CLASSIC and model simulations

3.1 Land cover

Land cover is one of the most important geophysical fields
that is required by LSMs and that, at its most basic level, pro-
vides information about fractional vegetation cover in each
grid cell for a given regional or global domain. Vegetation in
LSMs is typically represented in terms of PFTs. Models may
choose to represent a basic set of a few PFTs (trees, grasses,
shrubs, and crops) or a more elaborate set that distinguishes
PFTs based on their stature (trees, grasses, or shrubs), leaf
form (needleleaf or broadleaf), leaf phenology (evergreen
or deciduous), photosynthetic pathway (C3 or C4), and ge-
ographical location (tropical, temperate, or boreal). The ver-
sion of CLASSIC in this study uses a somewhat smaller set
of nine PFTs for biogeochemical processes, as described in
the previous section. The fractional coverage of PFTs in a
model may be dynamically simulated based on competition
between PFTs or prescribed based on observation-based land
cover information. While CLASSIC does have a parameter-
ization of competition between its PFTs (Arora and Boer,
2006; Melton and Arora, 2016), for the historical simulations
considered here and for the simulations that contribute to the
TRENDY ensemble, prescribed fractional coverage of PFTs
is used.

For the process of generating a historical reconstruction
of land cover consisting of time-varying fractional cover-
age of a model’s PFTs two types of observation-based data
sets are used. The first is a remotely sensed land cover
product that represents the geographical distribution of land
cover for the present day for a short period. Examples of
this include the GLC 2000 land cover product which rep-
resents the November 1999 to December 2000 period (https:
//forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php. last
access: July 2022) and the more recent European Space
Agency (ESA) Climate Change Initiative (CCI) land cover
product for the period 1992–2018 (ESA, 2017). The second
type of data set required to reconstruct historical land cover
is that of a spatially and temporally varying cropland (and
pasture) area for a much longer period, which in this case is
based on the data set provided by the land use harmonization
(LUH) product as part of the TRENDY protocol for the pe-
riod 850–2018. The LUH product is comprehensive (Hurtt et
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al., 2020). For example, not all models use the pasture area
and other information provided in the LUH product.

The process of generating land cover for a given model’s
PFTs is a three-step process. First, the fractional coverage
of model PFTs is obtained from a remotely sensed land
cover product that represents the snapshot of land cover for
the present day. This requires typically mapping 20–40 land
cover classes that exist in a remotely sensed land cover prod-
uct to a given model’s PFTs. This step introduces the largest
uncertainty in the entire process. The original land cover in
the CLASSIC model is based on the GLC 2000 land cover
product. Table 2 of Wang et al. (2006) summarizes the map-
ping and reclassification of the 22 GLC 2000 land cover
categories to the nine PFTs used in CLASSIC. Each land
cover class was split into one or more of the nine CLAS-
SIC PFTs based on the class description and knowledge of
global biomes. For example, the discrete “broadleaf decidu-
ous open tree cover” category of the GLC 2000 product is
assumed to consist of 60 % broadleaf deciduous trees, 20 %
grasses, and 20 % bare ground. This first step yields a snap-
shot of land cover expressed in terms of the fractional cov-
erage of CLASSIC’s nine PFTs corresponding to the time
associated with the land cover product (e.g. for year 2000 for
the GLC 2000 land cover product). The second step of gen-
erating fractional coverage of PFTs for a given snapshot in
time requires replacing the fractional area of crop categories
with values from the LUH data set for the same year. For
example, when using the GLC 2000 land cover product, the
area of C3 and C4 crops from the LUH data set for the year
2000 are used, and the fractional coverage of the other seven
non-crop CLASSIC PFTs is adjusted such that the total veg-
etation fraction in each grid cell stays the same. Finally, in
the last step, the temporally varying crop area from the LUH
product is used to go backward in time to 1700 from the year
2000 with typically decreasing crop area, while the area of
other non-crop PFTs is adjusted in proportion to their exist-
ing fractional coverage such that the total vegetation fraction
in each grid cell stays the same. Similarly, the area of C3 and
C4 crops from the LUH product is used from the year 2000
onwards to the present day with changing crop area, and the
area of non-crop PFTs is adjusted such that the total vegeta-
tion fraction in each grid cell stays the same. All these steps
yield a reconstruction of historical land cover, expressed in
terms of fractional coverage of CLASSIC’s nine PFTs (as in-
terpreted from the GLC 2000 land cover product) from 1700
to 2018, in which crop area changes spatially and temporally
according to the LUH product.

GLC 2000 is an older land cover product, and more recent
land cover products are now available. Here, in addition to
the GLC-2000-based land cover, we also use the European
Space Agency (ESA) Climate Change Initiative’s (CCI) land
cover product. The ESA CCI land cover product is available
at 300 m spatial resolution for the period 1992–2018 and con-
tains 37 land cover categories (ESA, 2017). We use the land
cover from the year 1992 to create a snapshot of CLASSIC

PFTs for the present day. Although there is some interannual
variability overall, the total vegetated area does not change
substantially from 1992–2018 in the ESA-CCI land cover.
A default mapping and reclassification table for converting
the ESA CCI classes into PFTs is provided in its user guide
(ESA, 2017). However, it overestimates tree cover along the
taiga–tundra transition zone and underestimates it elsewhere
in Canada (Wang et al., 2018, 2019). Wang et al. (2022) have
developed a new reclassification table for converting the 37
ESA CCI land cover categories to CLASSIC’s nine PFTs
which are used in this study. A high-resolution land cover
map over Canada and tree cover fraction data at 30 m resolu-
tion are used to compute the sub-pixel fractional composition
of each class in the ESA CCI data set, which is then used to
inform the cross-walking reclassification procedure (Wang et
al., 2022).

The above process yields two representations of land cover
in which the geographical distribution of CLASSIC PFTs is
based on GLC 2000 and ESA CCI land cover products. Both
these representations include the same reconstruction of crop
area over the historical period. Figure 1 illustrates the un-
certainty in land cover by comparing zonally summed areas
of total vegetation, tree, and grass cover in CLASSIC, av-
eraged over the period 1992–2018, when model land cover
is based on the GLC 2000 (blue line) and ESA CCI (dark
red line) land cover products. These two estimates are also
compared to selected other models that participated in the
2020 TRENDY intercomparison (grey lines), also for the
period 1992–2018, for which land cover information was
available and also to W. Li et al. (2018) (dotted black line),
who analyzed the ESA CCI data based on the default re-
classification table from the ESA CCI user guide. Figure 1
shows that, while there is relatively good agreement across
TRENDY models in terms of total vegetation cover, there’s
a much larger uncertainty in its split between tree and grass
PFTs. There are two reasons for the spread in total vegetated,
treed, and grassed areas across TRENDY models. First, mod-
elling groups use different remotely sensed land cover prod-
ucts for obtaining fractional cover of their model PFTs. Sec-
ond, the current process of mapping and reclassifying 20–
40 land cover classes of a land cover product to a model’s
PFTs is mainly based on the class description and expert
judgement, which introduces subjectiveness into the process.
Compared to the GLC-2000-based land cover in the CLAS-
SIC model, the newer ESA-CCI-based land cover yields a
somewhat higher total vegetation cover, a higher grass cover,
and a somewhat lower tree cover area. Unlike the older GLC-
2000-based land cover used in CLASSIC, the newer ESA-
CCI-based grass and tree cover areas are within the range of
the TRENDY models reported here. Finally, Fig. 1 also al-
lows us to compare the results from the analysis of W. Li et
al. (2018) for the ESA CCI land cover (dotted black line) to
the ESA CCI reclassification for CLASSIC (dark red line)
by Wang et al. (2022). W. Li et al. (2018) used the default
mapping and reclassification table for converting the ESA
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Figure 1. Comparison of zonally summed areas of total vegetation (a), grass (b), and tree (c) cover used in the CLASSIC model based on
GLC 2000 (blue line) and ESA CCI (dark red line) land cover products to each other; to selected other models that participated in the 2020
TRENDY intercomparison (grey lines) for which land cover information was available; and to W. Li et al. (2018; dotted black line), who
analyzed the ESA CCI data. All data correspond to the 1992–2018 period. CLASSIC does not yet explicitly represents shrub PFTs. Tall
shrubs are merged into tree PFTs in CLASSIC. For the W. Li et al. (2018) data plotted here, the shrub PFTs are combined with the tree PFTs
for a consistent comparison to CLASSIC.

CCI classes into PFTs. This comparison illustrates that the
remapping of the ESA CCI land cover classes to CLASSIC’s
PFTs yields total vegetation, tree, and grass coverage that is
broadly comparable to that of W. Li et al. (2018), although
some differences remain for the grasses.

Our framework accounts for the uncertainty in land cover
representation. However, since both land cover representa-
tions in our study account for the increase in crop area over
the historical period in the same way by adjusting the area of
non-crop PFTs in proportion to their existing coverage using
the LUH product, our framework is unable to account for the
uncertainty associated with the implementation of LUCs. Di
Vittorio et al. (2018) quantify this uncertainty by implement-
ing several approaches to account for the increase in crop
area over the historical period in the framework of an inte-
grated assessment model: preferentially converting grasses
and shrubs, preferentially converting forests, and proportion-
ally adjusting areas of non-crop PFTs in a way that is similar
to ours. LUC emissions are higher if the increase in crop area
is preferentially obtained by converting forests. A similar un-
certainty analysis for LUC emissions is performed by Peng
et al. (2017) who, using the ORCHIDEE land model, analyze
the effect of using different rules to incorporate the changes
in crop and pasture area over the historical period. The un-
certainty related to incorporating LUC information to mod-
ify a model’s land cover is further illustrated in Di Vittorio et
al. (2014) and Meiyappan and Jain (2012).

3.2 Meteorological data

As a land surface component of an ESM, CLASSIC re-
quires meteorological forcing at a sub-daily temporal reso-
lution. In the offline simulations reported here, the model
is run with half-hourly values of meteorological data (in-
coming longwave and shortwave radiation, temperature, pre-
cipitation, specific humidity, wind speed, and pressure). The
first meteorological data set used to drive CLASSIC is from
the TRENDY protocol for the year 2020, CRU-JRA v2.1.5,
which provides 6-hourly values of the seven variables from
the Japanese Reanalysis (JRA) with monthly values adjusted
to the Climatic Research Unit’s data (CRU; https://crudata.
uea.ac.uk/cru/data/hrg/. last access: July 2022). This yields a
blended product from January 1901 to December 2018 with
the 6-hourly temporal resolution of a reanalysis but with-
out the biases that may be present in reanalysis data (Har-
ris, 2020). The second meteorological data set used here to
drive CLASSIC is from the Global Soil Wetness Project 3
(GSWP3). The GSWP3 forcing data are based on a dynam-
ical downscaling of the 20th-century reanalysis (Compo et
al., 2011) using a global spectral model (GSM) run at about
50 km resolution. The GSM is nudged towards the vertical
structures of 20th-century (20CR) zonal and meridional air
temperature and winds so that the synoptic features are re-
tained at their higher spatial resolution. Additional bias cor-
rections are also performed as explained in van den Hurk et
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al. (2016). The GSWP3 forcing is available for the 1901–
2016 period. The 6-hourly values from both the CRU-JRA
and GSWP3 forcings are further disaggregated to half-hourly
values for use by CLASSIC.

Figure A1 in the Appendix compares the two mete-
orological forcing data sets over the 1997–2016 period
to illustrate that although these two data sets are very
similar, there are differences between the two. Mean an-
nual global precipitation over land (excluding Greenland
and Antarctica) in the GSWP3 data set (71.4 mm month−1,
857 mm yr−1) is somewhat higher than in the CRU-JRA
data set (68.3 mm month−1, 820 mm yr−1). The global near-
surface air temperature over land (excluding Greenland and
Antarctica) is also slightly higher in the GSWP3 data set
(14.22 ◦C) compared to in the CRU-JRA data set (14.08 ◦C).
The largest temperature difference occurs between the two
data sets over the northern tropics (panel h) where the
GSWP3 data set is about 0.93 ◦C warmer than the CRU-
JRA data set. The geographical distribution of mean annual
temperature is very similar between the two data sets, but
there are some differences in the geographical distribution
of precipitation (not shown). Despite very similar total pre-
cipitation amounts and their seasonality over large global re-
gions in the two data sets, differences exist in the frequency
distribution of precipitation. Figure A2 illustrates this over
three broad regions, the Amazon, the Sahel, and the Midwest
United States, showing the frequency distribution of daily
precipitation amounts (mm d−1) over the 1997–2016 period
from the two data sets. Figure A2 shows that the frequency
of precipitation events greater than about 5–10 mm d−1 is
higher in the GSWP3 data set compared to in the CRU-
JRA data set for the Amazonian, the Sahel, and the Midwest
United States regions.

3.3 Other forcings

Other than the land cover and meteorological forcings,
CLASSIC requires globally averaged atmospheric CO2 con-
centration; geographically varying, time-invariant soil tex-
ture and soil permeable depth; population density; monthly
climatological lightning; and geographically and time-
varying N fertilizer application rates and atmospheric N de-
position rates. The atmospheric CO2 concentration values are
provided by the TRENDY protocol. The soil texture informa-
tion consists of the percentage of sand, clay, and organic mat-
ter and is derived from Shangguan et al. (2014). N fertilizer
is specified according to the TRENDY protocol and is based
on Lu and Tian (2017). N deposition is also specified accord-
ing to the TRENDY protocol and is based on model forcings
provided for the sixth phase of CMIP (CMIP6) through in-
put4MIPs (Hegglin et al., 2016). N deposition for the his-
torical (1850–2014) period is used as is provided, while that
for the period 2015–2018 is specified based on N deposition
from the SSP5-85 scenario. For the period 1700–1849, N de-
position values from the year 1850 are used.

3.4 Model simulations

Using the two representations of the historical land cover
(based on the GLC 2000 and ESA CCI land cover prod-
ucts), the two sets of meteorological data (CRU-JRA and
GSWP3), and the two versions of the CLASSIC model (with
and without interactions between the C and N cycles), we
perform eight sets of pre-industrial and historical simula-
tions, as summarized in Table 1. Pre-industrial simulations
that correspond to the year 1700 are required before doing the
historical simulations (from which we analyze the model re-
sults) so that model pools can be spun up to near equilibrium
for each combination of land cover, meteorological forc-
ing, and model version. The pre-industrial simulations use
1901–1925 meteorological data repeatedly, since this period
shows few trends in meteorological variables. Global thresh-
olds of net atmosphere–land C flux of 0.05 Pg yr−1 and net
atmosphere–land N flux of 0.5 Tg N yr−1 in simulations with
the N cycle turned on are used to ensure that the model pools
have reached equilibrium. Each historical simulation is then
initialized from its corresponding pre-industrial simulation
after it has reached equilibrium. Simulations driven with the
CRU-JRA meteorological data are performed for the period
1701–2018, and simulations driven with the GSWP3 mete-
orological data are performed for the period 1701–2016, al-
though results are reported for the period 1997–2016, which
is common to both simulations. Similar to the pre-industrial
simulations, meteorological data from 1901–1925 are used
repeatedly for the period 1701–1900. The global model sim-
ulations are performed at a spatial resolution of about 2.81◦

(about 312 km at the Equator), and the size of the spatial
longitude–latitude grid is 128×64 grid cells. All model forc-
ings are regridded to this common spatial resolution. The
model is run over about 1900 land grid cells at this resolu-
tion, excluding glacial cells in Greenland and Antarctica.

3.5 Automated benchmarking

The results from the eight CLASSIC simulations reported
here are evaluated using an in-house model benchmarking
system called the Automated Model Benchmarking R pack-
age (AMBER; Seiler et al., 2021). AMBER is based on a skill
score system originally developed by Collier et al. (2018);
this system is used to quantify model performance and is ex-
plained in detail in the Appendix. Five scores are used to as-
sess a model’s bias (Sbias), root-mean-square error (SRMSE),
seasonality (Sphase), interannual variability (Siav), and spatial
distribution (Sdist) against globally gridded and in situ data
set(s) of observation-based estimates for a given quantity. A
score is computed by first calculating a dimensionless sta-
tistical metric, which is then scaled onto a unit interval, and
finally calculating its spatial mean. Scores range from 0 to
1 and are dimensionless. Higher values indicate better per-
formance. Finally, an overall score Soverall is calculated as
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Table 1. Summary of simulations performed with two representations of the historical land cover, two sets of meteorological data, and two
versions of the CLASSIC land model.

Simulation Land cover reconstruction Meteorological forcing N cycle interactions
with the C cycle

1 Based on GLC 2000 CRU-JRA v2.1.5 On
2 Based on GLC 2000 GSWP3 On
3 Based on GLC 2000 CRU-JRA v2.1.5 Off
4 Based on GLC 2000 GSWP3 Off
5 Based on ESA CCI CRU-JRA v2.1.5 On
6 Based on ESA CCI GSWP3 On
7 Based on ESA CCI CRU-JRA v2.1.5 Off
8 Based on ESA CCI GSWP3 Off

follows, giving twice as much weight to SRMSE:

Soverall =
Sbias+ 2SRMSE+ Sphase+ Siav+ Sdist

1+ 2+ 1+ 1+ 1
.. (1)

The decision to give extra weight to SRMSE is entirely sub-
jective but follows Collier et al. (2018).

The scores are calculated by comparing gridded and in
situ observation-based estimates, referred to as reference
data sets in Seiler et al. (2021), for 19 energy- (surface
albedo, net shortwave and longwave radiation, total net ra-
diation, latent heat flux, sensible heat flux, and ground
heat flux), water- (soil moisture, snow, and runoff), and C-
cycle-related(GPP, ecosystem respiration, net ecosystem ex-
change, net biome productivity, aboveground biomass, soil
C, LAI, area burnt, and fire CO2 emissions) variables to
model simulated quantities. Table 2 summarizes the source
of these observation-based data sets. The resulting model
scores express to what extent simulated and observation-
based data agree. A low score does not necessarily indicate
poor model performance. Uncertainties in the meteorological
forcing data and geophysical fields used to drive the model
and/or in the observation-based data itself are possible rea-
sons for the lack of agreement. One way to assess uncer-
tainties in observation-based data sets is to quantify the skill
score by comparing two independently derived observation-
based data sets (Seiler et al., 2022). The resulting scores
are referred to as benchmark scores and quantify the level
of agreement among the observation-based data sets them-
selves, provided, of course, that there are at least two sets of
observation-based data for a given quantity. The comparison
of model scores against benchmark scores then shows how
well a model-simulated quantity compares to the reference
data sets relative to the agreement between the observation-
based data sets themselves.

4 Results

Figures 2 through 9 show the time series and/or zonally av-
eraged values of annual values of a variable of interest when
averaged across four ensemble members each according to
whether the N cycle is turned on or not, whether the GLC-
2000- or ESA-CCI-based land cover is used, and whether
model simulations are driven by the CRU-JRA or GSWP3
meteorological data. Figures A3, A4, A6, A7, A9, and A11
in the Appendix, which are complementary to the above-
mentioned figures, show the physical and biogeochemical
states of the land surface and primary physical fluxes of water
and energy, and primary biogeochemical fluxes of CO2 sim-
ulated by CLASSIC at the land–atmosphere boundary for all
eight simulations considered here. While the figures in the
Appendix illustrate the range in simulated physical and bio-
geochemical states and fluxes across the eight simulations,
Figures 2 through 9 evaluate the effect of model structure,
meteorological forcing, and land cover on a given quantity.
We also quantify the spread across the eight simulations in
Table 3 using the coefficient of variation (cv= standard devi-
ation/mean) calculated using annual global values for a given
quantity averaged over the 1997–2016 20-year period of each
simulation. This time period is also used for other reported
results.

4.1 Physical land surface state and fluxes

Figure A3a and b shows the globally averaged simulated soil
moisture and temperature in the top 1 m soil layer. While
simulated soil temperature in the top 1 m is fairly similar
across the eight simulations, the simulated soil moisture is
distinctly separated into two groups. The separation into
these two groups is caused by the driving meteorological data
as shown in Fig. 2. The coefficient of variation for soil mois-
ture and temperature values averaged over the 1997–2016
period of each simulation are 0.02 and 0.004, respectively,
indicating that overall the variation in these quantities is rela-
tively small compared to their means. The use of the GSWP3
meteorological data set yields slightly higher (∼ 4 %) glob-
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Table 2. Observation-based data sets used for model evaluation in AMBER.

Source Approach used Reference
Globally gridded variable(s)

Leaf area index AVHRR Artificial neural network Claverie et al. (2016)

Net biome productivity CAMS Atmospheric inversion Agustí-Panareda et al. (2019)

Net biome productivity Carboscope Atmospheric inversion Rödenbeck et al. (2018)

Surface albedo, net shortwave and long-
wave radiation, net radiation

CERES Radiative transfer model Kato et al. (2013)

Net radiation, latent and sensible heat
flux, ground heat flux, runoff

CLASSr Blended product Hobeichi et al. (2019)

Leaf area index Copernicus Artificial neural network Verger et al. (2014)

Net biome productivity CT2019 Atmospheric inversion Jacobson et al. (2020)

Fire CO2 emissions CT2019 Atmospheric inversion Jacobson et al. (2020)

Snow amount ECCC Blended product Mudryk (2020)

Liquid soil moisture ESA Land surface model Liu et al. (2011)

Area burnt ESA CCI Burned-area mapping Chuvieco et al. (2018)

Latent and sensible heat flux, gross
primary productivity

FLUXCOM Machine learning Jung et al. (2019, 2020)

Aboveground biomass GEOCARBON Machine learning Avitabile et al. (2016);
Santoro et al. (2015)

Surface albedo, net shortwave and long-
wave radiation, net radiation

GEWEXSRB Radiative transfer model Stackhouse et al. (2011)

Area burnt GFED 4s Burned-area mapping Giglio et al. (2010)

Gross primary productivity GOSIF Statistical model Li and Xiao (2019)

Soil carbon HWSD Soil inventory Wieder (2014);
Todd-Brown et al. (2013)

Surface albedo MODIS Bidirectional reflectance
distribution function

Strahler et al. (1999)

Gross primary productivity MODIS Light-use efficiency model Zhang et al. (2017)

Leaf area index MODIS Radiative transfer model Myneni et al. (2002)

Soil carbon SGS250m Machine learning Hengl et al. (2017)

Aboveground biomass Zhang Data fusion Zhang and Liang (2020)

In situ variable(s)

Leaf area index CEOS Transfer function (141) Garrigues et al. (2008)

Latent, sensible, and ground heat flux;
gross primary productivity; ecosystem
respiration; net ecosystem exchange

FLUXNET 2015 Eddy covariance (204) Pastorello et al. (2020)

Aboveground biomass FOS Allometry (274) Schepaschenko et al. (2019)

Runoff GRDC Gauge records (50) Dai and Trenberth (2002)

Snow amount Mortimer Gravimetry (3271) Mortimer et al. (2020)

Aboveground biomass Xue Allometry (1974) Xue et al. (2017)
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Figure 2. Time series of annual globally averaged soil moisture in the top 1 m averaged over the four ensemble members that are driven
with and without an interactive N cycle (a), that are driven with the GLC-2000- and ESA-CCI-based land cover representations (b), and that
are driven with the GSWP3 and CRU-JRA meteorological data (c). The thin lines show the individual years, and the thick lines show their
11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and their
difference, for each ensemble averaged over its set of four simulations are also shown.

ally averaged soil moisture compared to the CRU-JRA mete-
orological data set (236.5 mm vs. 227.1 mm; Fig. 2c) for the
1997–2016 period.

Figure A3c and d shows the simulated fluxes of global
evapotranspiration and runoff across the eight simulations.
Similarly to soil moisture, evapotranspiration and runoff also
fall broadly into two groups, and the reason for this is again
the driving meteorological data. Figure 3 shows that, while
the biggest factor that affects evapotranspiration and runoff is
the difference in driving meteorological data, the interactive
N cycle also affects these water fluxes. Neither evapotran-
spiration nor runoff is significantly affected by the choice of
land cover. The reason an interactive N cycle affects evapo-
transpiration is that the N cycle in CLASSIC affects the rate
of photosynthesis through the prognostic determination of
leaf N content. Photosynthesis in turn affects canopy conduc-
tance, which affects transpiration through the canopy leaves.
Average evapotranspiration over the 1997–2016 period of the
simulations driven with GSWP3 meteorological data is about
9 % lower than in simulations driven with CRU-JRA mete-
orological data (65.8 vs. 72.1× 1000 km3 yr1; Fig. 3e). An

interactive N cycle reduces evapotranspiration by about 2 %
due to lower photosynthesis rates, as shown later (Fig. 3a).
Average runoff is about 27 % higher in simulations driven
with GSWP3 compared to simulations driven with CRU-JRA
meteorological data (52.6 vs 41.3× 1000 km yr1; Fig. 3f).
This is due to slightly high precipitation in the GSWP3 me-
teorological data set (Fig. A1) but is more so due to the sim-
ulated lower evapotranspiration when using the GSWP3 data
(Fig. 3e). The coefficient of variation for evapotranspiration
and runoff values averaged over the last 20 years of each sim-
ulation are 0.05 and 0.13, respectively.

Figure A4 shows the primary energy fluxes from the eight
simulations. These include net downward shortwave and
longwave radiation and latent and sensible heat fluxes. In-
coming shortwave and longwave radiation are part of the
driving meteorological data. Similarly to water fluxes, the
differences in energy fluxes in CLASSIC are also primarily
driven by differences in meteorological data (Figs. A4, A5,
and 4). Net shortwave radiation (Fig. A4a) is equal to incom-
ing shortwave radiation minus the fraction that is reflected
back. Net longwave radiation (Fig. A4b) is equal to incom-
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Figure 3. Time series of annual global evapotranspiration and runoff (over all land area excluding Greenland and Antarctica) averaged over
the four ensemble members that are driven with and without an interactive N cycle (a, b), that are driven with the GLC-2000- and ESA-CCI-
based land cover (c, d), and that are driven with the GSWP3 and CRU-JRA meteorological data (e, f). The thin lines show the individual
years, and the thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day
(1997–2016) time periods, and their difference, for each ensemble averaged over its set of four simulations are also shown.

ing longwave radiation minus the longwave radiation emitted
by the land based on its surface temperature following the
Stefan–Boltzmann law. The difference in net shortwave ra-
diation is also affected by simulated vegetation biomass and
leaf area index. The latter affects surface albedo, which de-
termines what fraction of incoming shortwave radiation is
reflected. This is the reason why an interactive N cycle af-

fects net shortwave radiation, since the N cycle affects pho-
tosynthesis and, in turn, simulated vegetation biomass and
leaf area index (Fig. A5b). Latent heat flux is affected pri-
marily by meteorological data (Fig. 4) but also by whether
the N cycle is interactive or not, since it is essentially evapo-
transpiration but in energy units. Finally, differences in sensi-
ble heat fluxes are strongly affected by differences in driving
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Figure 4. Time series of annual global latent and sensible heat fluxes (over all land area excluding Greenland and Antarctica) averaged over
the four ensemble members that are driven with and without an interactive N cycle (a, b), that are driven with the GLC-2000- and ESA-
CCI-based land cover (c, d), and that are driven with GSWP3 and CRU-JRA meteorological data (e, f). The thin lines show the individual
years, and the thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day
(1997–2016) time periods, and their difference, for each ensemble averaged over its set of four simulations are also shown.

meteorological data (Fig. 4). Globally averaged sensible heat
flux in the simulations driven with GSWP3 data is ∼ 14 %
higher compared to CRU-JRA-driven simulations (40.2 vs.
35.0 W m−2). The coefficients of variation for latent and sen-
sible heat flux values averaged over the last 20 years of each
simulation are 0.05 and 0.07, respectively. Net shortwave

(cv= 0.006) and longwave (cv= 0.03) radiative fluxes vary
little across the eight simulations.
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Figure 5. Time series of annual global vegetation C mass (over all land area excluding Greenland and Antarctica) (a, c, e) and zonally
averaged values of vegetation C mass over land (b, d, f) averaged, for the period 1997–2016, over the four ensemble members that are driven
with and without an interactive N cycle (a, b), that are driven with the GLC-2000- and ESA-CCI-based land cover (c, d), and that are driven
with GSWP3 and CRU-JRA meteorological data (e, f). The thin lines for the time series show the individual years, and the thick lines show
their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and
their difference, are also shown in (a, c) and (e).

4.2 Biogeochemical land surface state and fluxes

4.2.1 Primary CO2 fluxes and C pools

Figure A6 shows the simulated C state of the land surface ex-
pressed in terms of vegetation and soil C pools. Panels a and
b show the annual time series of global vegetation and soil

C mass from the eight simulations, and panels c and d show
their zonally averaged distributions averaged over the last 20
years of each simulation. The biggest difference in the time
series of global vegetation (cv= 0.16) and soil (cv= 0.21) C
mass compared to soil moisture and temperature, which char-
acterized the physical land surface state, is the large spread
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across the eight simulations, as indicated by their high cv
values. The zonally averaged values further provide insight
into the reasons for this spread and show that the largest dif-
ferences between simulated vegetation and soil C occur at
northern high latitudes (north of about 40◦ N). Figure A6c, d
also show observation-based zonally averaged values of veg-
etation and soil C mass based on Reusch and Gibbs (2008)
and the Harmonized World Soil Database (v1.2; Fischer et
al., 2008), respectively, to provide a reference. A more thor-
ough comparison with observations is provided in Sect. 4.3.

Differences in vegetation C mass are dependent primar-
ily on whether the N cycle is interactive or not. (Fig. 5).
Both land cover and the driving meteorological data play a
smaller role in the simulated spread of vegetation C mass
(Fig. 5). The ESA-CCI-based land cover has a larger vege-
tated area, but most of this increase comes from an increase
in the area of grasses that do not store a lot of C in their
vegetation C mass. The spread in simulated soil C is due to
the N cycle but also the choice of land cover (Fig. 6). Since
CLASSIC assumes that litter from grasses is more recalci-
trant than that from trees, the choice of ESA-CCI-based land
cover leads to a higher soil C mass because it has a higher
grass area than the GLC-2000-based land cover (Fig. 6c, d).
The choice of meteorological data does not affect the mag-
nitude of simulated globally summed soil C mass signifi-
cantly but does affect its change over the historical period.
In Fig. 6c, the decrease in soil C mass from the 1851–1860
period to the 1997–2016 period is higher when using the
GSWP3 (29.9 Pg C) compared to when using the CRU-JRA
(14.8 Pg C) meteorological data.

The reason why an interactive N cycle in CLASSIC affects
vegetation C and soil C mass, and why the ESA-CCI-based
land cover yields high soil C, is seen in Figs. A7 and 7. Fig-
ure A7 in the Appendix shows the spread of primary C fluxes,
including gross primary productivity (GPP; cv= 0.07) and
autotrophic (cv= 0.04) and heterotrophic (cv= 0.10) res-
piratory fluxes, across the eight simulations. Since GPP is
lower in the runs with the N cycle, both vegetation (Fig-
ure 5a) and soil C mass (Fig. 6a) are also lower. The lower
GPP in the runs with the N cycle is due primarily to lower
GPP at high latitudes (Fig. 7b), which yields low vegetation
C mass at high latitudes (Fig. 5b). Low GPP at high lati-
tudes translates to even larger relative differences in soil C
given the longer turnover timescales of soil C at high lati-
tudes (Fig. 6b). The use of the ESA-CCI-based land cover,
which has a higher grass area than the GLC-2000-based land
cover, leads to higher GPP (Fig. 7d) and therefore higher soil
C at all latitudes (Fig. 6d). In Fig. A8 in the Appendix, global
heterotrophic and autotrophic respiratory fluxes are most af-
fected by land cover and the inclusion or absence of an inter-
active N cycle but not as much by the driving meteorological
data.

The transient behaviour of heterotrophic respiration over
the historical period is not affected by meteorological data,
although the effect of meteorological data on autotrophic res-
piration varies over time.

4.2.2 Area burned and fire CO2 emissions

Figure A9 shows the time series of global area burned and
global fire CO2 emissions and their zonally averaged values.
We chose the area burned (cv= 0.24) and fire CO2 emis-
sions (cv= 0.21) in addition to the primary biogeochemi-
cal fluxes because fire shows large variability both in space
and in time and because both these variables yield the largest
spread across the eight simulations among all the fluxes and
simulated quantities considered here. Figure A9 (panels c
and d) in the Appendix also shows observation-based es-
timates for area burned and fire CO2 emissions based on
GFED 4s (Giglio et al., 2013) to provide an observation-
based context. Figures 8 and A10 help us understand which
factors contribute to this large variability. The variability in
the area burned is caused primarily by the choice of land
cover and meteorological data, and the variability is higher
in the Southern Hemisphere (Fig. 8d, f). An interactive N
cycle does not affect the zonal distribution of area burned
and fire CO2 emissions (Figs. 8 and A10) as much. The rea-
son both area burned and fire CO2 emissions are affected by
the choice of land cover is because the ESA CCI land cover
has higher grass area, and as a result, it yields higher area
burned and fire CO2 emissions, since a larger area is burned
for grasses than for trees in the model. The choice of driv-
ing meteorological data is a factor in the area burned, and
our simulations show that the use of GSWP3 meteorological
forcing yields a higher area burned than the CRU-JRA data.
In particular, wind speed, which determines the rate of spread
of fire in CLASSIC, is much higher in the GWSP3 than in the
CRU-JRA meteorological data. Globally averaged land wind
speed (excluding Greenland and Antarctica) in GSWP3 data
is 6.1 m s−1 compared to 3.4 m s−1 in the CRU-JRA data for
the period 2000–2016.

4.2.3 Coefficient of variation summary

Table 3 shows the energy, water, and C-related quantities
considered so far, as well as leaf area index and albedo, and
lists them from the most variable at the top to the least vari-
able at the bottom according to their coefficient of variation.
The area burned is found to be the most variable quantity, and
soil temperature is the least variable quantity. Table 3 also
shows the most dominant source of variability for each sim-
ulated quantity: land cover, meteorological forcing, or the in-
clusion or absence of an interactive N cycle. Net atmosphere–
land CO2 flux (or net biome productivity), net ecosystem ex-
change, and ground heat flux are not included in Table 3 be-
cause these fluxes are calculated as the difference of larger
fluxes, and as a result, their values are closer to zero, which

Biogeosciences, 20, 1313–1355, 2023 https://doi.org/10.5194/bg-20-1313-2023



V. K. Arora et al.: Towards an ensemble-based evaluation 1327

Figure 6. Time series of annual global soil carbon mass (over all land area excluding Greenland and Antarctica) (a, c, e) and zonally averaged
values of soil carbon mass over land (b, d, f) averaged, for the period 1997–2016, over the four ensemble members that are driven with and
without an interactive N cycle (a, b), that are driven with the GLC-2000- and ESA-CCI-based land cover representations (c, d), and that are
driven with GSWP3 and CRU-JRA meteorological data (e, f). The thin lines for the time series show the individual years, and the thick lines
show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods,
and their difference, are also shown in (a, c, e).

yields a large value of the coefficient of variation. Net surface
radiation is the sum of net shortwave and longwave radia-
tion, and both of them exhibit a low coefficient of variability
across the eight simulations (Table 3).

4.2.4 Model tuning

Overall, the results presented so far illustrate that different
model-simulated quantities are sensitive to different forcings
and model versions. The use of more than one meteorolog-
ical forcing data set and land cover representation and the
use of two model versions (with and without N cycle) yields
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Figure 7. Time series of annual global gross primary productivity (over all land area excluding Greenland and Antarctica) (a, c, e) and zonally
averaged values of gross primary productivity over land (b, d, f) averaged, for the period 1997–2016, over the four ensemble members that are
driven with and without an interactive N cycle (a, b), that are driven with the GLC 2000 and ESA CCI based land cover representations (c, d),
and that are driven with GSWP3 and CRU-JRA meteorological data (e, f). The thin lines for the time series show the individual years, and
the thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016)
time periods, and their difference, are also shown in a, c, e.

a dilemma, since it is no longer possible to tune model pa-
rameters without choosing a preferred meteorological data
set, land cover representation, and model version. As such,
it seems logical that, rather than tuning the model for a pre-
ferred forcing or model version, model results from an en-
semble of simulations should be compared against an en-

semble of observations in so far as it is possible. This is the
approach taken in Sect. 4.3 with automated benchmarking.
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Figure 8. Time series of annual area burned (over all land area excluding Greenland and Antarctica) (a, c, e) and zonally averaged values
of area burned (d, e, f) averaged, for the period 1997–2016, over the four ensemble members that are driven with and without an interactive
N cycle (a, b), that are driven with the GLC 2000 and ESA CCI based land cover representations (c, d), and that are driven with GSWP3
and CRU-JRA meteorological data (e, f). The thin lines for the time series show the individual years, and the thick lines show their 11-year
moving average in (a, c, e). Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and their
difference, are also shown for (a), (c), and (e).

4.2.5 Net biome productivity

Figure A11 shows the spread in the time series of annual
global net atmosphere–land CO2 flux and their zonally av-
eraged values across the eight simulations averaged over
the 1997–2016 period from each simulation. The global net
atmosphere–land CO2 flux or net biome productivity (NBP)

is considered to be a critical determinant of the performance
of LSMs and is treated as such by TRENDY because this
flux ultimately affects the changes in the atmospheric CO2
burden. TRENDY requires that LSMs simulate a terrestrial
C sink for the decades of the 1990s to the present to be con-
sidered for inclusion in the TRENDY ensemble.
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Table 3. Simulated energy, water, and carbon cycle quantities considered in this study sorted according to their coefficient of variation. The
quantities are listed from the most variable at the top to the least variable at the bottom. The coefficient of variation is based on annual
values averaged over the 1997–2016 period across the eight simulations. The last column shows the dominant source of variability for each
model-simulated quantity.

Energy, water, or carbon cycle quantities Coefficient of Dominant source of variability
variation

Area burned (million km2) 0.24 Land cover
Fire CO2 emissions (Pg C yr−1) 0.21 Land cover
Soil carbon mass (Pg C) 0.21 The inclusion or the absence of the N cycle
Vegetation carbon mass (Pg C) 0.16 The inclusion or the absence of the N cycle
Runoff (1000 km3 yr−1) 0.13 Meteorological forcing
Leaf area index (m2 m−2) 0.11 The inclusion or the absence of the N cycle
Heterotrophic respiration (Pg C yr−1) 0.10 Land cover
Gross primary productivity (Pg C yr−1) 0.07 Land cover
Sensible heat flux (W m−2) 0.07 Meteorological forcing
Autotrophic respiration (Pg C yr−1) 0.04 Land cover
Latent heat flux (W m−2) or evapotranspiration (1000 km3 yr−1) 0.05 Meteorological forcing
Net longwave radiation (W m−2) 0.03 Meteorological forcing
Soil moisture in the top 1 m soil layer (mm) 0.02 Meteorological forcing
Albedo for shortwave radiation (fraction) 0.008 The inclusion or the absence of the N cycle
Net shortwave radiation (W m−2) 0.006 Meteorological forcing
Soil temperature in the top 1 m soil layer (◦C) 0.004 Meteorological forcing

Figure A11 in the Appendix also shows the estimates of
global net atmosphere–land CO2 flux from the participat-
ing TRENDY models in grey boxes, with mean and shaded
ranges for the decades from the 1960s to 2010s from the
Global Carbon Project (Friedlingstein et al., 2022). Positive
values in Fig. A11 indicate a C sink over land, and negative
values indicate a C source to the atmosphere. In Fig. A11a,
all eight simulations reported here would qualify for inclu-
sion in the TRENDY ensemble, since they all simulate a
terrestrial C sink from the 1990s to the present day. Before
1960, since the atmospheric CO2 concentration is not high
enough, the model yields both a land C sink and source in
response to interannual variability in meteorological data. In
addition, the time series of global NBP from all eight simu-
lations lie within the uncertainty range of reported estimates
from the Global Carbon Project. Figure A11a suggests that,
based on global NBP, at least, it is not possible to exclude any
of the eight simulations. In Fig. A11b, zonally averaged NBP
averaged over the 1997–2016 period from each of the eight
simulations mostly lie within the range of NBP simulated
by models that participated in TRENDY 2020. CLASSIC
simulates a C sink at northern high latitudes consistent with
TRENDY models, but it simulates a C sink on the stronger
side of TRENDY models in the southern tropics (0–20◦ S).
This is likely because CLASSIC is known to simulate low C
emissions associated with LUCs, most of which are gener-
ated in tropical regions (Asaadi and Arora, 2021).

Figure 9 provides additional insights into the effect of dif-
ferent forcings on the simulated NBP. In Figure 9, averaged
over the 1997–2016 period, an interactive N cycle leads to a

somewhat weaker C sink (panel a: 0.98 vs. 1.11 Pg C yr−1),
the choice of the ESA-CCI-based land cover leads to a
somewhat stronger C sink (panel c: 1.14 vs 0.94 Pg C yr−1),
and the choice of the GSWP3 meteorological data leads to
a much weaker C sink (panel e: 0.74 vs 1.33 Pg C yr−1)
than the CRU-JRA meteorological data. In Figure 9a, b, the
largest difference between the model versions with and with-
out the N cycle occurs in the tropics (∼ 5◦ N–20◦ S), where
an interactive N cycle leads to a weaker C sink. There are
differences in zonally averaged NBP with and without the
N cycle south of 45◦ S, but the land area below this lati-
tude is small, so the averages are calculated over only a few
grid cells. The choice of the land cover (Fig. 9c, d) does
not substantially change the distribution of the zonally aver-
aged values of NBP, although, as noted above, the choice of
ESA-CCI-based land cover leads to a somewhat stronger C
sink. Finally, the choice of the GSWP3 meteorological forc-
ing leads to a weaker C sink at most latitudes (Fig. 9e, f).

4.3 Automated benchmarking

Figure 10 plots the overall score, Soverall, against benchmark
scores for 16 of the 19 energy-, water-, and C-cycle-related
variables using AMBER-calculated model and benchmark
scores. AMBER does not yet evaluate N-cycle-related vari-
ables, for which observations are more scarce than for C-
cycle-related variables. The range in model scores comes
from the eight simulations, and the range in benchmark
scores comes from the different observation-based data sets.
The whiskers show the range in the overall score both for the
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Figure 9. Time series of global net atmosphere–land CO2 flux (over all land area excluding Greenland and Antarctica) (a, c, e) and its zonally
averaged values (b, d, f) averaged, for the period 1997–2016, over the four ensemble members that are driven with and without an interactive
N cycle (a, b), that are driven with the GLC-2000- and ESA-CCI-based land cover representations (c, d), and that are driven with GSWP3
and CRU-JRA meteorological data (e, f). The thin lines for the time series show the individual years, and the thick lines show their 11-year
moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and their difference,
are also shown for panels (a), (c), and (e).

benchmark and model scores. The vertical whiskers show the
range of eight model scores when a given variable from all
eight model simulations is compared to an observation-based
data set. The horizontal whiskers show the range when three
or more observation-based data sets are compared to each
other. When only two observation-based data sets are com-

pared to each other, there is only one benchmark score, and
therefore there is no range. In Fig. 10, three quantities are
missing: soil moisture, ecosystem respiration, and fire CO2
emissions, since there is only one observation-based refer-
ence data set available for these variables; therefore, a bench-
mark score cannot be calculated. Figure 10 shows that, typ-
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ically, as the benchmark scores increase, so do the overall
model scores for a given quantity. This indicates that uncer-
tainty in observation-based estimates themselves leads to a
poor agreement between observations and model-simulated
quantities.

For energy and water flux scores (panels a and b), the
model overall scores lie around the 1 : 1 line, indicating
that model scores are generally as good as the benchmark
scores, except in the case of surface albedo (ALBS), runoff
(MRRO), ground heat flux (HFG), and comparison against
one observation-based estimate of snow water equivalent, all
of which lie below the 1 : 1 line. For C-cycle-related vari-
ables, most scores lie somewhat below the 1 : 1 line, indi-
cating that simulated quantities do not agree as well with
observations as observations agree among themselves. The
lower benchmark score for soil C (panel c) is because the
SoilGrids250m (SG250m) data and the Harmonized World
Soil Database (HWSD) do not agree well amongst them-
selves because the SG250m soil C data include peatlands and
permafrost C at high latitudes, while the HWSD data do not
(see Fig. 11b). Since the version of CLASSIC used here does
not represent peatlands and permafrost C, it compares better
with the HWSD data than with the SG250m data. In the case
of soil C, the choice of HSWD data for comparison against
model values is obvious. However, for other variables, it may
not always be obvious which observation-based estimate is
more appropriate or better for comparison against model re-
sults. The uncertainty in forcing data sets and in observation-
based estimates, against which model results are evaluated,
implies that even a perfect model cannot be evaluated to its
fullest extent.

Figure 11 shows the zonal distribution of vegetation C
mass, LAI, area burnt, GPP, and fire CO2 emissions (which
constitute standard output from AMBER) and illustrates how
AMBER compares the spread across the simulations, indi-
cated by 50 %, 80 %, and 100 % shading against observation-
based estimates. The black and shades of grey indicate the
model mean and the spread across the eight model simula-
tions, respectively, and the thick lines in other colours show
the mean values of observation-based estimates. The time pe-
riod over which observations and model quantities are av-
eraged is chosen to be the same. In Figure 11a, for above-
ground biomass, the GEOCARBON data set uses one prod-
uct for the extratropics and another for the tropics to create
a global aboveground-biomass product. The Zhang product
(Zhang and Liang, 2020) is based on the fusion of multiple
gridded biomass data sets for generating a global product.
Both products are described in detail in Seiler et al. (2022).
The model results generally compare better with the Zhang
product outside the 10◦ N to 10◦ S region, but they compare
better with the GEOCARBON product within this region.
The values to the south of 40◦ S are generally less reliable
because of the little vegetated land area below this latitude.
In Fig. 11b, the model-simulated values for soil organic C
compare better with the HWSD data set compared to the

SG250m data for reasons mentioned in the previous para-
graph. Simulated leaf area index (Fig. 11c) and gross primary
productivity (Fig. 11e) generally compare well in terms of
their observation-based estimates. The simulated area burned
(Fig. 11d) and fire emissions (Fig. 11f) also compare well
with observation-based estimates except that the model is not
able to capture the small area burned and emissions at north-
ern high latitudes between around 50 to 70◦ N. Figures A12
and A13 in the Appendix compare zonally averaged values of
other simulated quantities with observation-based estimates
used in the AMBER framework. Together, Figs. 11, A12, and
A13 illustrate that the model is overall able to capture the lat-
itudinal distribution of most land surface quantities.

Since overall scores are available for all eight simulations
for model quantities that are compared to observations, it is
possible to evaluate how an interactive N cycle and the choice
of meteorological data and land cover data affect model per-
formance. Figure 12 summarizes the differences in overall
scores for model quantities and combinations for which the
differences are statistically significant at the 5 % level based
on Tukey’s test (Beyer, 1981). The score indicated in paren-
theses for each quantity is the average score across the eight
simulations and provides context. For example, when evalu-
ating the effect of change in land cover for NEE, the use of
the GLC-2000-based land cover, compared to the use of the
ESA-CCI-based land cover, degrades the average score for
net ecosystem exchange by about 0.02 given that the average
score for net ecosystem exchange is 0.53. The error bars on
the value 0.02 denote the 95 % confidence interval and in this
case are calculated by differencing four simulations that use
the GLC-2000-based land cover and four simulations that use
the ESA-CCI-based land cover. The use of the GLC-2000-
based land cover, on the other hand, slightly improves scores
for ecosystem respiration and liquid soil moisture. The use of
GSWP3 data improves model scores for net shortwave, long-
wave, and total radiation and for sensible and ground heat
flux but degrades the overall score for area burned and soil
moisture and more so for snow water equivalent. Finally, an
interactive N cycle slightly improves model performance for
area burned and fire CO2 emissions (due to improved above-
ground biomass in the tropics) but degrades it for ecosystem
respiration, GPP, and net ecosystem exchange. The inclusion
of an interactive N cycle changes Vc,max to a prognostic vari-
able for each PFT as opposed to being specified based on
observations. This is analogous to running an atmospheric
model with a fully dynamic three-dimensional ocean as op-
posed to using specified sea surface temperatures (SSTs) and
sea ice concentrations (SICs). Using a dynamic ocean al-
lows future projections (since future SSTs and SICs are not
known) but invariably degrades a model’s performance for
the present day, since simulated SSTs and SICs will have
their biases. Similarly, using an interactive N cycle allows
future changes in Vc,max (based on changes in N availability)
to be projected but also degrades CLASSIC’s performance
for the present day, since simulated Vc,max has its own bi-
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Figure 10. Comparison of benchmark scores with model overall scores for a range of energy-, water-, and carbon-related quantities. The
whiskers indicate the range for benchmark scores across different observation-based data sets and the range across the eight model simulations
for the overall model scores. The quantities in (a) are ALBS (surface albedo), RSS (net shortwave radiation), RLS (net longwave radiation),
and RNS (net radiation). Quantities in (b) are HFLS (latent heat flux), HFSS (sensible heat flux), HFG (ground heat flux), MRRO (runoff),
and SNW (snow water equivalent). Quantities in (c) are GPP (gross primary productivity), NEE (net ecosystem exchange), NBP (net biome
productivity), AGB (aboveground biomass), CSOIL (soil carbon mass), BURNT (area burned), and LAI (leaf area index).

ases. Overall, the model performance is most affected by the
choice of the driving meteorological data for water and en-
ergy fluxes and by the inclusion or absence of an N cycle
and by the choice of land cover for carbon-cycle-related state
variables and fluxes.

5 Conclusions

The response of the terrestrial biosphere over the historical
period is driven primarily by four global change drivers –
increasing atmospheric CO2, changing climate, LUC, and
N deposition and fertilizer application. Our framework al-
lows us to evaluate how a land surface model responds to
increasing atmospheric CO2, changing climate, and anthro-
pogenic N additions to the coupled soil–vegetation system
and how this response is dependent on two driving meteo-
rological data sets, two land cover representations, and the
two model variations (with and without an interactive N cy-
cle). However, the framework used here does not quantify the
uncertainty associated with LUC over the historical period,

since we use only one reconstruction of increasing crop area
over the historical period. These results help draw three pri-
mary conclusions. First, even if the observations and models
were perfect (including their structure and their parameteri-
zations), the uncertainty associated with driving meteorolog-
ical data and geophysical fields makes it difficult to evaluate
LSMs. The uncertainty in global-scale driving data implies
that a model can never be truly evaluated to its fullest extent.
Model results can only be as good as the data that are used to
force them, and therefore, even a perfect model cannot yield
perfect results.

Second, model tuning when driving the model with a sin-
gle set of forcings and evaluating it against a single set of ob-
servations is likely not a fruitful exercise. Models should not
be tuned to a single set of driving data and observation-based
evaluation data. Rather, their performance must be evaluated
against a range of available observations in light of the un-
certainty associated with driving data and the uncertainty as-
sociated with observations. A model’s ability to reproduce a
given single set of observations when driven with a single
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Figure 11. Zonally averaged values of aboveground biomass (a), soil carbon mass (b), leaf area index (c), fractional area burnt (d), gross
primary productivity (e), and fire CO2 emissions (f) from the eight simulations summarized in Table 1. The model results are shown as their
mean (black) and as the spread across the eight simulations, indicated by 50 %, 80 %, and 100 % ranges in different shades of grey. The
observation-based estimates used in AMBER to calculate scores are shown in coloured lines.

set of driving data is not a true measure of its success. Here
again, a perfect model driven by perfect forcing data can-
not be truly evaluated to its fullest extent, since observations
themselves have uncertainties.

Third, with the caveat that our framework uses only one
reconstruction of increase in crop area over the historical
period, the response of a model expressed in terms of net
atmosphere–land CO2 flux to perturbation in meteorological,
CO2, and LUC forcing over the historical period appears to
be largely independent of its pre-industrial state as simulated
here. The pre-industrial soil and vegetation C masses for the
eight simulations considered here vary between 1035± 195
and 405± 58 Pg C (mean± standard deviation), respectively.
Both pre-industrial and present-day vegetation and soil C
pools explain only about 2 % to 7 % of the variability in
simulated net atmosphere–land CO2 flux (Fig. A11) over the
1997–2016 period of each of the eight simulations. The net

atmosphere–CO2 flux from all eight simulations for the pe-
riod of the 1960s to 2000s is found to lie within the un-
certainty range provided by the GCP (Friedlingstein et al.,
2022). Given the current uncertainty in net atmosphere–land
CO2 flux, it is therefore not possible to exclude any of the
eight simulations, at least not on this basis. The finding that
a transient response of a model is independent of its pre-
industrial state is also consistent with land components of
CMIP6 models. Arora et al. (2020) analyzed results from
CMIP6 simulations in which atmospheric CO2 increases at
a rate of 1 % per year from the year 1850 until CO2 quadru-
ples from ∼ 285 to ∼ 1140 ppm. They found that the C con-
centration and C climate feedback parameters for the land
component of CMIP6 models do not depend on the absolute
values of their vegetation and soil C pools but rather on how
a given model responds to changes in atmospheric CO2 and
the associated change in temperature. This conclusion is per-

Biogeosciences, 20, 1313–1355, 2023 https://doi.org/10.5194/bg-20-1313-2023



V. K. Arora et al.: Towards an ensemble-based evaluation 1335

Figure 12. Summary of differences in overall scores for model-simulated quantities and combinations for which the differences are statis-
tically significant. The scores in parentheses for each quantity are the average scores across the eight simulations and provide context. The
error bars denote the 95 % confidence interval, as explained in the text.

haps somewhat comforting in that while pre-industrial states
of LSMs may be different from their true observed states,
they still have the ability to reproduce net atmosphere–land
CO2 flux over the historical period that is consistent with
current observation-based estimates. Clearly, this reasoning
does not apply if pre-industrial vegetation or soil C mass are
zero. One reason why present-day net atmosphere–land CO2
flux is independent of an LSM’s pre-industrial state is be-
cause the model is first spun up to equilibrium conditions and
then forced with time-variant forcings. However, successful
reproduction of atmosphere–land CO2 fluxes over the histor-
ical period is no guarantee that future projections from LSMs
are reliable.

The ensemble-based approach used here also allows for
the evaluation of the effect of a given meteorological forc-
ing and land cover and the effect of an interactive N cycle on
model-simulated quantities in a robust manner. Ensemble av-
erages of simulations that use the CRU-JRA and GSWP3 me-
teorological forcing show that the use of the GSWP3 meteo-
rological forcing yields lower evapotranspiration (latent heat
flux), higher runoff, higher sensible heat flux, a higher burned
area, and a weaker land C sink for the present day compared
to when the CRU-JRA meteorological forcing is used. Pos-
sible reasons that explain these differences when using the
GSWP3 meteorological data are the higher frequency of high
precipitation events (greater than ∼ 5–10 mm d−1; Fig. A2)
and the 0.93 ◦C higher temperature in the northern tropical
region (Fig. A1h) in the GSWP3 compared to in the CRU-
JRA meteorological data. High precipitation intensity in re-
gions of high annual precipitation (e.g. the tropical regions)
would lead to more surface runoff, since less precipitation
infiltrates the top soil layer, further leading to less soil mois-
ture, less evapotranspiration, higher sensible heat flux, and
more area burned. Higher temperatures in the northern trop-
ical region in the GSWP3 meteorological data certainly con-

tribute to all these differences (except higher runoff). While,
annual globally averaged soil moisture is about 4 % higher in
the simulations driven with the GSWP meteorological data
(Fig. 2c), in several parts of the tropical regions, annual sim-
ulated soil moisture is lower for GSWP3 simulations (not
shown). The use of the ESA CCI land cover leads to higher
soil C, higher GPP, and higher area burned primarily because
of the larger grass area when land cover is based on the ESA
CCI product compared to the GLC 2000 product. The use of
the ESA-CCI-based land cover also leads to a slightly weaker
land C sink for the present day. Finally, the comparison of
simulations with and without the N cycle averaged over all
meteorological data and land cover combinations allows us
to identify the effect of the N cycle. Simulated vegetation
C mass and GPP are lower in the model version with the
interactive N cycle. In particular, we found that the some-
what low productivity at high latitudes, when the N cycle is
turned on, leads to relatively large differences in soil C at
high latitudes regardless of the meteorological data or land
cover being used to drive the model. However, this is not
the reason for differences in net atmosphere–land CO2 flux
between models with and without N cycling: as mentioned
above, present-day net atmosphere–land CO2 flux is inde-
pendent of both the pre-industrial and present-day vegetation
and soil C pools. Given the knowledge about the effect of N
cycling on model behaviour, the reasons can now be inves-
tigated to further improve the N cycle component of CLAS-
SIC.

It is logical to assume that the results presented here are
sensitive to the horizontal resolution of the model. Both forc-
ing data that are used to drive the model and observations
against which model results are compared are regridded to
be consistent with the model’s spatial resolution. For exam-
ple, at the scale of a few metres, meteorological variables
measured at a given site will indeed be less uncertain than
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their spatially averaged values, say for a 2.81◦ grid cell. Sim-
ilarly, observations at a scale of a few metres for soil C and/or
vegetation C mass will also likely be more certain than their
values at large spatial scales. This is one reason why AMBER
uses both gridded and in situ observation-based estimates to
calculate its scores. Fluxes of latent and sensible heat, on the
other hand, may not be any more certain at a given site than
over large spatial scales. This is because of the problems as-
sociated with energy budget closure (Mauder et al., 2020)
which, at the point scale, prevent the sum of annual latent and
sensible heat flux from being equal to net radiation (average
of ground heat fluxes is close to zero at an annual timescale).

LSMs have become increasingly complex over the years
and so have the requirement for forcing data to drive these
models. The evaluation of LSMs has also become complex,
as the models now generate a multitude of variables that must
be evaluated against their observation-based estimates. Esti-
mates of observation-based data to evaluate models and the
availability of forcing data have also increased. Given the
uncertainties associated with model inputs, model structure,
and observation-based data, it is unrealistic to expect LSMs
to perfectly reproduce observations for large-scale global
simulations. It is not known a priori which model structure,
forcing data sets, and observation data sets are better. Driving
data including meteorological data sets and land cover repre-
sentations may be more realistic in some parts of the world
and less realistic in others. Observation-based data sets also
have their limitations and attributes which may make them
better or ill-suited for comparison with a given model. A
more robust model evaluation must therefore take into ac-
count the uncertainties in both the forcing and observation-
based data. A comprehensive and robust model evaluation
can be performed by comparing multiple model realizations
against multiple observation-based data sets.

Appendix A: Automated Model Benchmarking R
package (AMBER)

The Automated Model Benchmarking R package quantifies
model performance using five scores that assess a model’s
bias (Sbias), root-mean-square error (SRMSE), seasonality
(Sphase), interannual variability (Siav), and spatial distribution
(Sdist). All scores are dimensionless and range from 0 to 1,
where increasing values imply better performance. The exact
definition of each skill score is provided below.

A1 Bias score (Sbias)

The bias is defined as the difference between the time mean
values of model and reference data:

bias(λ,φ)= υmod (λ,φ)− υref(λφ), (A1)

where υmod (λ,φ) and υref (λ,φ) are the mean values in time
(t) of a variable v as a function of longitude λ and lat-

itude φ for model and reference data, respectively. Non-
dimensionalization is achieved by dividing the bias by the
standard deviation of the reference data (σref):

εbias (λ,φ)=
|bias(λ,φ)|
σref(λ,φ)

. (A2)

Note that εbias is always positive, as it uses the absolute value
of the bias. For evaluations against stream flow measure-
ments, the bias is divided by the annual mean rather than
by the standard deviation of the reference data. This is be-
cause we assess streamflow on an annual rather than monthly
basis, implying that the corresponding standard deviation is
small. The same approach is applied to soil C and vegeta-
tion C mass, whose reference data provide a static snapshot
in time. For both of these cases, εbias(λ, φ) becomes

εbias (λ,φ)=
|bias(λ,φ)|
υref(λ,φ)

. (A3)

A bias score that ranges from 0 to 1 is calculated next:

sbias (λ,φ)= e
−εbias(λ,φ). (A4)

While small relative errors yield score values close to 1,
large relative errors cause score values to approach 0. Taking
the mean of Sbias across all latitudes and longitudes, denoted
by a double bar over a variable, leads to the scalar score:

Sbias = sbias (λ,φ). (A5)

A2 Root-mean-square-error score (SRMSE)

While the bias assesses the difference between time mean
values, the root-mean-square error (RMSE) is concerned
with the residuals of the modelled and observed time series:

RMSE(λ,φ)=

√√√√√ 1
tf−t0

tf∫
t0

(υmod (t,λ,φ)− υref (t,λ,φ))
2dt,

(A6)

where t0 and tf are the initial and final time steps, respec-
tively. A similar metric is the centralized RMSE (CRMSE),
which is based on the residuals of the anomalies:

CRMSE(λ,φ)=√√√√√ 1
tf−t0

tf∫
t0

[(υmod (t,λ,φ)− υmod (λ,φ))− (υref (t,λ,φ)− υref(λ,φ))]2dt.

(A7)

The CRMSE therefore assesses residuals that have been
bias corrected. Since we already assessed the model’s bias
through Sbias, it is convenient to assess the residuals using
CRMSE rather than RMSE. In a similar fashion to the bias,
we then compute a relative error

εRMSE (λ,φ)=
CRMSE(λ,φ)
σref(λ,φ)

, (A8)
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scale this error onto a unit interval

sRMSE (λ,φ)= e
−εRMSE(λ,φ), (A9)

and compute the spatial mean

SRMSE = sRMSE (λ,φ) . (A10)

A3 Phase score (tSphase)

The skill score Sphase assesses how well the model repro-
duces the seasonality of a variable by computing the time dif-
ference θ (λ,φ) between the modelled and observed month
of maxima of the climatological mean cycle:

θ (λ,φ)=maxima(cmod (t,λ,φ))−maxima(cref (t,λ,φ)), (A11)

where cmod and cref are the climatological mean cycles of the
model and reference data, respectively. The operator maxima
in Eq. (A11) calculates the month in which the maximum of a
given quantity occurs. The time difference θ (λ,φ) in months
is then scaled from 0 to 1 based on the consideration that the
maximum possible time difference is 6 months:

sphase (λ,φ)=
1
2

[
1+ cos

(
2π θ (λ,φ)

12

)]
. (A12)

The spatial mean of Sphase then leads to the scalar score:

Sphase = sphase (λ,φ). (A13)

A4 Interannual variability score (Siav)

The skill score Siav quantifies how well the model reproduces
patterns of interannual variability. This score is based on data
where the seasonal cycle (cmod and cref) has been removed:

iavmod (λ,φ)=√√√√√ 1
tf−t0

tf∫
t0

(vmod (t,λ,φ)− cmod (t,λ,φ))
2dt, (A14)

iavref (λ,φ)=√√√√√ 1
tf−t0

tf∫
t0

(vref (t,λ,φ)− cref (t,λ,φ))
2dt . (A15)

The relative error, non-dimensionalization, and spatial
mean are computed next:

εiav (λ,φ)= |iavmod (λ,φ)− iavref (λ,φ)|/iavref (λ,φ), (A16)
siav (λ,φ)= e

−εiav(λ,φ), (A17)

Siav = siav (λ,φ) . (A18)

A5 Spatial distribution score (Sdist)

The spatial distribution score Sdist assesses how well the
model reproduces the spatial pattern of a variable. The score
considers the correlation coefficient R and the relative stan-
dard deviation σ between υmod (λ,φ) and υref (λ,φ). The
score Sdist increases from 0 to 1; the closer R and σ approach
a value of one. No spatial integration is required, as this cal-
culation yields a single value:

Sdist = 2(1+R)
(
σ +

1
σ

)−2

, (A19)

where σ is the ratio between the standard deviation of the
model and reference data

σ = σvmod/σvref , (A20)

and σvmod and σvref are the standard deviations of the annual
mean values from the model and reference or observation-
based data, respectively, and are therefore scalars.

A6 Overall score (Soverall)

As a final step, scores are averaged to obtain an overall score:

Soverall =
Sbias+ 2SRMSE+ Sphase+ Siav+ Sdist

1+ 2+ 1+ 1+ 1
. (A21)

Note that SRMSE is weighted by a factor of 2, and this is an
entirely subjective decision but follows Collier et al. (2018).
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Figure A1. Comparison of monthly precipitation (upper panel) and temperature (lower panel) for five global regions (global, north of 25◦ N,
northern and southern tropics, and south of 25◦ S) from the CRU-JRA and GSWP3 meteorological forcing data sets that are used to drive
the CLASSIC model. The global and regional averages exclude Greenland and Antarctica. The legend entries show the annual mean values
averaged over the 1997–2016 period. The thin lines show individual years, and the thick line is their average.
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Figure A2. Comparison of the frequency distribution of daily precipitation between the CRU-JRA and GSWP3 meteorological data sets
for three broad regions and the period 1997–2016: (a) the Amazonian region, (b) the Sahel region, and (c) the Midwest United States. The
frequency is represented as a percentage of time; daily precipitation is between x and x+ 1 mm d−1, where x is the value on the x axis;
(d) shows the location of these broad regions. The underlying map in (d) is from Google Maps.
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Figure A3. Time series of simulated globally averaged annual soil moisture (a) and soil temperature (b) in the top 1 m, global annual
evapotranspiration (c), and runoff (d) from the eight simulations summarized in Table 1. The thin lines show the individual years, and the
thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016)
time periods, and their difference, are also shown.
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Figure A4. Time series of simulated globally averaged annual energy fluxes from the eight simulations summarized in Table 1; (a) shows net
downward shortwave radiation, (b) shows net downward longwave radiation, (c) shows latent heat flux, and (d) shows sensible heat flux. The
thin lines show the individual years, and the thick lines show their 11-year moving average. Model values averaged over the pre-industrial
(1851–1860) and present-day (1997–2016) time periods, and their difference, are also shown for individual simulations.
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Figure A5. Time series of globally averaged annual net downward longwave and shortwave radiation (over all land area excluding Greenland
and Antarctica), each averaged over the four ensemble members that are driven with and without N cycle (a, b), that are driven with GLC-
2000- and ESA-CCI-based land cover (c, d), and that are driven with GSWP3 and CRU-JRA meteorological data (e, f). The thin lines show
the individual years, and the thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and
present-day (1997–2016) time periods, and their difference, are also shown.
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Figure A6. Time series of simulated global annual vegetation carbon mass (a) and soil carbon (b) from the eight simulations summarized
in Table 1. The global totals exclude Greenland and Antarctica; (c) and (d) show the zonally averaged values of vegetation carbon mass and
soil carbon mass over land from the eight simulations averaged over the 1997-2016 period. The thin lines show the individual years, and the
thick lines show their 11-year moving average in (a) and (b). Model values averaged over the pre-industrial (1851–1860) and present-day
(1997–2016) time periods, and their difference, are also shown in (a) and (b).
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Figure A7. Time series of simulated global annual gross primary productivity (GPP) (a), autotrophic respiration (b), and heterotrophic
respiration (c) from the eight simulations summarized in Table 1; (d) shows the zonally averaged values of GPP from the eight simulations
averaged over the 1997–2016 period for each simulation. The thin lines show the individual years, and the thick lines show their 11-year
moving average in (a) to (c). Model values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and
their difference, are also shown in (a) to (c).
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Figure A8. Time series of global heterotrophic and autotrophic respiration (over all land area excluding Greenland and Antarctica), each
averaged over the four ensemble members that are driven with and without an interactive N cycle (a, b), that are driven with the GLC-2000-
and ESA-CCI-based land cover (c, d), and that are driven with the GSWP3 and CRU-JRA meteorological data (e, f). The thin lines show
the individual years, and the thick lines show their 11-year moving average. Model values averaged over the pre-industrial (1851–1860) and
present-day (1997–2016) time periods, and their difference, are also shown.
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Figure A9. Time series of simulated global annual area burned (a) and fire CO2 emissions (b) from the eight simulations summarized in
Table 1; (c) and (d) show the zonally averaged area burned and fire CO2 emissions from the eight simulations averaged over the 1997–2016
period. The thin lines for the time series show the individual years, and the thick lines show their 11-year moving average. Model values
averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and their difference, are also shown for (a) and (b).
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Figure A10. Time series of global fire CO2 emissions (over all land area excluding Greenland and Antarctica) (a, c, e) and their zonally
averaged values (b, d, f) averaged over the four ensemble members that are driven with and without an interactive N cycle (a, b), that are
driven with the GLC-2000- and ESA-CCI-based land cover (c, d), and that are driven with GSWP3 and CRU-JRA meteorological data (e, f).
The thin lines for the time series show the individual years, and the thick lines show their 11-year moving average in (a), (c), and (e). Model
values averaged over the pre-industrial (1851–1860) and present-day (1997–2016) time periods, and their difference, are also shown for (a),
(c), and (e).
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Figure A11. Time series of simulated global annual net atmosphere–land CO2 flux (a) and its zonally averaged values from the eight
simulations summarized in Table 1 averaged over the 1997–2016 period. In (a) simulated annual net atmosphere–land CO2 flux values are
compared to the estimates from the Global Carbon Project (Friedlingstein et al., 2022). The thin lines for the time series in (a) show the
individual years, and the thick lines show their 11-year moving average. In (b) the simulated zonally averaged values are compared to the
range from 11 models that contributed to the TRENDY 2020 intercomparison and are averaged over the 1997–2016 period.
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Figure A12. Zonally averaged values of soil moisture (a), runoff (b), latent heat flux (c), and sensible heat flux (d) from the eight simulations
summarized in Table 1. The model results are shown as their mean (black) and the spread across the eight simulations indicated by 50 %,
80 %, and 100 % ranges in different shades of grey. The observation-based estimates used in AMBER to calculate scores are shown in
coloured lines.
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Figure A13. Zonally averaged values of surface albedo (a), snow water equivalent (b), net surface radiation (c), net longwave radiation (d),
and net shortwave radiation (e) from the eight simulations summarized in Table 1. The model results are shown as their mean (black) and the
spread across the eight simulations indicated by 50 %, 80 %, and 100 % ranges in different shades of grey. The observation-based estimates
used in AMBER to calculate scores are shown in coloured lines.
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Code and data availability. More information about the CLASSIC
land surface model and its Fortran code are available at https:
//cccma.gitlab.io/classic_pages/ (Melton, 2022). AMBER source
code, as well as the scripts required for reproducing the computa-
tional environment, including all dependencies on other R packages,
can be found at https://doi.org/10.5281/zenodo.5670387 (Seiler,
2021). The full suite of results from AMBER for the eight sim-
ulations presented in this study can be found at https://cseiler.
shinyapps.io/ShinyCLASSIC/ (Seiler, 2022).
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