

Supplement of

The paradox of assessing greenhouse gases from soils for nature-based solutions

Rodrigo Vargas and Van Huong Le

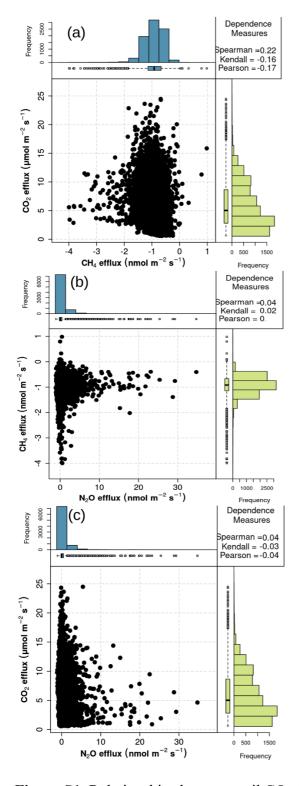
Correspondence to: Rodrigo Vargas (rvargas@udel.edu)

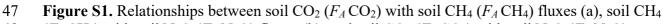
The copyright of individual parts of the supplement might differ from the article licence.

17 Supplementary Tables and Figures

- 19 **Table S1.** Statistical properties for automated measurements of soil CO_2 ($F_A CO_2$), soil CH_4
- 20 (F_A CH₄), and soil N₂O (F_A N₂O) fluxes, optimized samples (k=12, 28, 48) using a temporal
- 21 univariate Latin Hypercube sampling (*tuLHs*), and fixed temporal stratification (*k*=12, 28,
- 22 48). Units for soil CO₂ fluxes are in μ mol m⁻² s⁻¹, and for soil CH₄ and N₂O fluxes in nmol m⁻
- 23 ² s⁻¹.
- 24

	Number of measurements (k)	1st. Quartile	Median	Mean	3rd. Quartile	Standard Deviation
F _A CO ₂	8259	2.81	5.03	5.87	8.65	3.85
<i>tuLHs</i> approach (CO ₂)	12	3.19	5.30	6.25	8.88	4.06
	24	3.00	5.13	5.93	8.44	3.90
	48	2.84	4.97	5.88	8.54	3.87
Eived terms and	12	2.68	5.82	5.37	7.10	3.15
Fixed temporal stratification (CO ₂)	24	2.69	5.66	5.50	7.07	3.24
	48	2.69	5.53	5.45	8.05	3.29
F _A CH ₄	8259	-1.14	-0.92	-0.93	-0.67	0.36
	12	-1.11	-0.89	-0.87	-0.66	0.33
<i>tuLHs</i> approach (CH4)	24	-1.14	-0.92	-0.94	-0.66	0.34
	48	-1.13	-0.91	-0.92	-0.66	0.35
Fixed temporal stratification (CH4)	12	-1.01	-0.83	-0.83	-0.67	0.27
	24	-1.01	-0.89	-0.86	-0.68	0.26
	48	-1.10	-0.86	-0.88	-0.66	0.29
$F_A N_2 O$	8259	-0.18	0.01	0.45	0.49	1.62
	12	-0.18	-0.01	0.58	0.50	1.58
<i>tuLHs</i> approach (N2O)	24	-0.18	0.03	0.51	0.45	1.54
. ,	48	-0.17	0.02	0.49	0.45	1.54
	12	-0.35	0.51	0.59	0.83	1.38
Fixed temporal stratification	24	-0.21	-0.08	0.61	0.36	1.97
(N2O)	48	-0.31	0.00	0.25	0.53	0.91

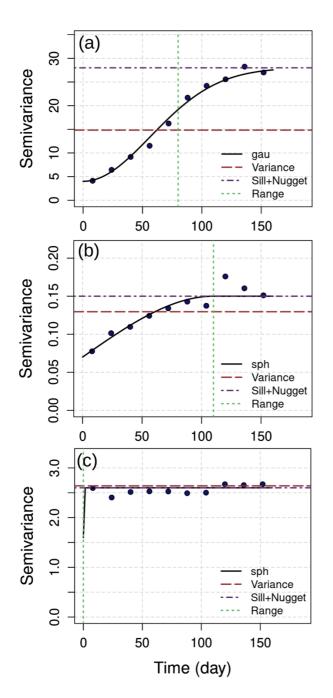

- **Table S2.** Comparison of errors between experimental variogram for automated measurements of soil greenhouse gases (F_A ; k=8259) and experimental variograms for data using temporal univariate Latin Hypercube sampling (*tuLHs*) and fixed temporal 28 29 30
- stratification.

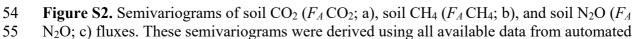

	Approach	Number of measurements (k)	Error (Sum of absolute differences)
		12	69.31
		24	54.39
Soil CO ₂	Fixed	48	49.42
fluxes		12	5.69
		24	1.99
	tuLHs	48	1.39
		12	0.63
		24	0.68
Soil CH4	Fixed	48	0.49
fluxes		12	0.06
		24	0.04
	tuLHs	48	0.02
		12	10.01
		24	12.25
Soil N2O	Fixed	48	16.75
fluxes		12	0.82
		24	1.13
	tuLHs	48	3.57

- **Table S3.** Cumulative sum and associated uncertainty of greenhouse gas (GHG) fluxes
 35
- 36 derived from automated measurements (F_A) and using an optimized sampling approach
- (*tuLHs*) or a fixed temporal stratification. The cumulative sum represents the total flux from 37
- 38 available measurements derived from automated measurements for all GHG fluxes.
- 39 40

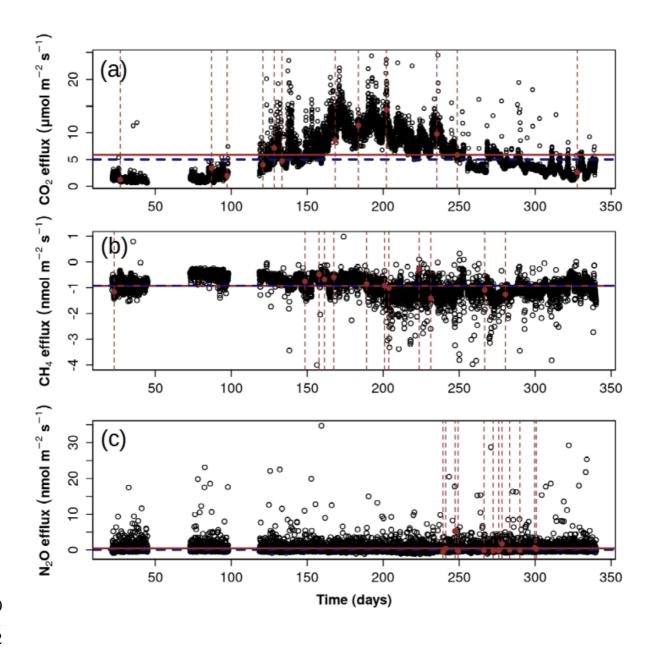
	Number of measurements (k)	Cumulative Sum		rtainty 6 CI	Uncertainty Range
$F_A CO_2$ (g CO ₂ m ²)	8259	5758	893	13860	12966
<i>tuLHs</i> approach (g CO ₂ m ²)	12	6130	1423	13218	11794
	24	5818	1046	13438	12391
	48	5766	946	13429	12482
Fixed	12	5273	1376	10117	8740
temporal stratification	24	5402	1196	11356	10160
$(g CO_2 m^2)$	48	48 5351 1162 11621	11621	10458	
$F_{A}CH_{4}$ (g CH ₄ m ²)	8259	-0.33	-0.58	-0.14	0.44
<i>tuLHs</i> approach (g CH ₄ m ²)	12	-0.31	-0.49	-0.12	0.37
	24	-0.33	-0.57	-0.16	0.41
(8)	48	-0.33	-0.56	-0.14	0.42
Fixed	12	-0.3	-0.45	-0.15	0.3
temporal stratification	24	-0.31	-0.46	-0.14	0.32
(g CH ₄ m ²)	48	-0.32	-0.51	-0.14	0.37
$F_A N_2 O$ (g N ₂ O m ²)	8259	0.44	-0.53	3.67	4.2
	12	0.57	-0.48	4.19	4.67
<i>tuLHs</i> approach (g N ₂ O m ²)	24	0.5	-0.43	4.35	4.78
(8.20 m)	48	0.48	-0.5	3.58	4.08
	12	-0.3	-0.83	3.52	4.35
	24	-0.31	-0.43	4.86	5.29

Fixed temporal stratification (g N ₂ O m ²) -0.32	-0.7	2.21	2.91
---	------	------	------



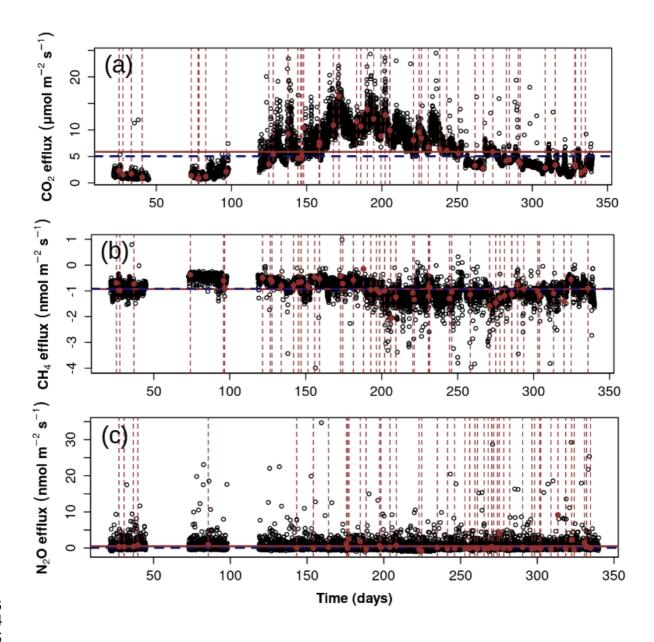
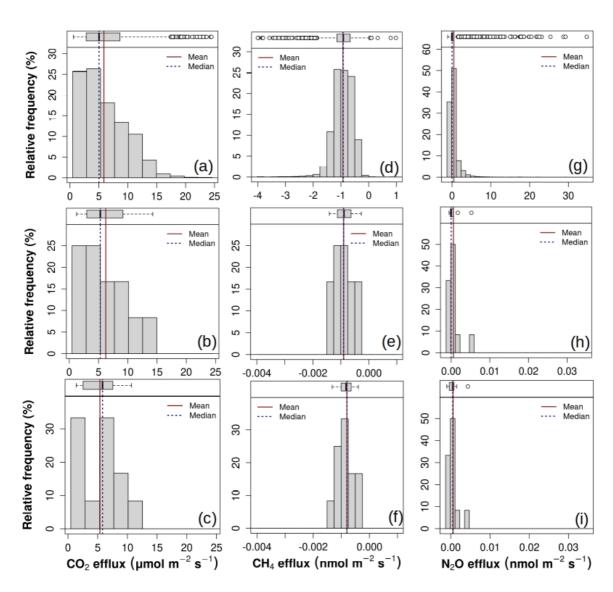

 $(F_A \operatorname{CH}_4)$ with soil N₂O $(F_A \operatorname{N}_2O)$ fluxes (b), and soil CO₂ $(F_A \operatorname{CO}_2)$ with soil N₂O $(F_A \operatorname{N}_2O)$

⁴⁹ fluxes. None of these relationships were significant at α =0.05. These relationships were derived


⁵⁰ using all available data from automated measurements (F_A) of soil greenhouse gas fluxes.

56 measurements (F_A) of soil greenhouse gas fluxes. Semivariogram fits were gaussian (Gau) or 57 spherical (sph).

Figure S3. Time series of automated measurements (FA) of soil greenhouse gas fluxes (black 64 circles) and optimized samples (k=12) using a temporal univariate Latin Hypercube sampling 65 (*tuLHs*) approach for soil CO₂ (a), soil CH₄ (b) and soil N₂O (c) fluxes. The horizontal red line 66 represents the mean, and the horizontal blue line is the median of each greenhouse gas flux 67 derived from automated measurements. Time (x-axis) represents days from January 1 to 68 December 31 of 2015.

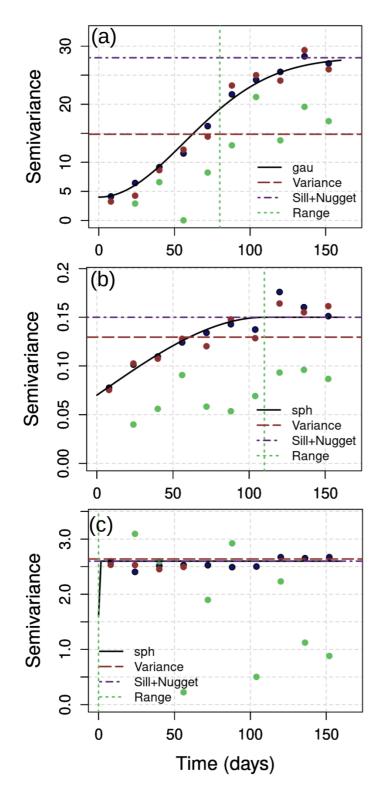

Figure S4. Time series of automated measurements (FA) of soil greenhouse gas fluxes (black circles) and optimized samples (k=48) using a temporal univariate Latin Hypercube sampling (tuLHs) approach for soil CO₂ (a), soil CH₄ (b) and soil N₂O (c) fluxes. The horizontal red line represents the mean, and the horizontal blue line is the median of each greenhouse gas flux derived from automated measurements. Time (x-axis) represents days from January 1 to December 31 of 2015.

Figure S5. Histograms for automated measurements of soil CO₂ (F_A CO₂; a), soil CH₄ (F_A CH₄; d), and soil N₂O (F_A N₂O; g) fluxes. Histograms for optimized samples (k=12) using a temporal univariate Latin Hypercube sampling (*tuLHs*) approach for soil CO₂ (b), soil CH₄ (e), and soil N₂O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified manual sampling schedule; k=12) for soil CO₂ (c), soil CH₄ (f), and soil N₂O (i) fluxes.

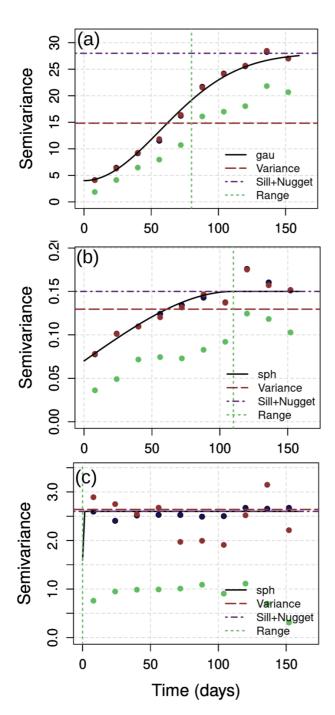


Figure S6. Histograms for automated measurements of soil CO₂ (F_A CO₂; a), soil CH₄ (F_A CH₄; 106 d), and soil N₂O (F_A N₂O; g) fluxes. Histograms for optimized samples (k=48) using a temporal 107 univariate Latin Hypercube sampling (tuLHs) approach for soil CO₂ (b), soil CH₄ (e), and soil 108 N₂O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified manual sampling 109 schedule; k=48) for soil CO₂ (c), soil CH₄ (f), and soil N₂O (i) fluxes.

113Figure S7. Comparison of semivariograms between automated measurements (F_A) of soil114greenhouse gas fluxes (solid black line) and for optimized (red circles) or fixed temporal115stratification (green circles) with k=12. Semivarograms are presented for soil CO₂ (a), CH₄ (d),116and N₂O (c) fluxes. Semivariogram fits were gaussian (Gau) or spherical (sph).12

- 118 119
- 120

Figure S8. Comparison of semivariograms between automated measurements (F_A) of soil greenhouse gas fluxes (solid black line) and for optimized (red circles) or fixed temporal stratification (green circles) with k=48. Semivarograms are presented for soil CO₂ (a), CH₄ (d), and N₂O (c) fluxes. Semivariogram fits were gaussian (Gau) or spherical (sph).