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Abstract. Quantifying the role of soils in nature-based so-
lutions requires accurate estimates of soil greenhouse gas
(GHG) fluxes. Technological advances allow us to measure
multiple GHGs simultaneously, and now it is possible to pro-
vide complete GHG budgets from soils (i.e., CO2, CH4, and
N2O fluxes). We propose that there is a conflict between the
convenience of simultaneously measuring multiple soil GHG
fluxes at fixed time intervals (e.g., once or twice per month)
and the intrinsic temporal variability in and patterns of dif-
ferent GHG fluxes. Information derived from fixed time in-
tervals – commonly done during manual field campaigns –
had limitations to reproducing statistical properties, tempo-
ral dependence, annual budgets, and associated uncertainty
when compared with information derived from continuous
measurements (i.e., automated hourly measurements) for all
soil GHG fluxes. We present a novel approach (i.e., tempo-
ral univariate Latin hypercube sampling) that can be applied
to provide insights and optimize monitoring efforts of GHG
fluxes across time. We suggest that multiple GHG fluxes
should not be simultaneously measured at a few fixed time
intervals (mainly when measurements are limited to once per
month), but an optimized sampling approach can be used to
reduce bias and uncertainty. These results have implications
for assessing GHG fluxes from soils and consequently reduce
uncertainty in the role of soils in nature-based solutions.

1 Introduction

Soils are essential for nature-based solutions for their role
in climate mitigation potential through implementing differ-
ent natural pathways (Griscom et al., 2017; Bossio et al.,
2020). The climate mitigation potential of soils is dependent

on multiple factors such as weather variability (Kim et al.,
2012), ecosystem type (Oertel et al., 2016), soil structure
(Ball, 2013), management practices (Shakoor et al., 2021), or
disturbances (Vargas, 2012), where soils can ultimately act as
net sources or sinks of greenhouse gases (GHGs). Therefore,
accurate quantification of the magnitudes and patterns of soil
GHG fluxes is needed to understand the potential of soils to
mitigate or contribute to global warming across ecosystems
and different scenarios.

Most of our understanding of soil GHGs has come from
manual measurements performed throughout labor-intensive
field campaigns and experiments (Oertel et al., 2016).
While most studies around the world have focused on soil
CO2 fluxes (Jian et al., 2020), early examples have reported
coupled measurements of soil CO2, CH4, and N2O fluxes
across tropical forests (Keller et al., 1986) and savannas (Hao
et al., 1988), temperate forests (Bowden et al., 1993), and
peatlands (Freeman et al., 1993). These pioneer studies not
only provided an early view of the importance of integrated
measurements of multiple soil GHG fluxes to understand the
net global warming potential of soils but also demonstrated
the technical limitations and challenges associated with these
efforts. For example, it is known that manual measurements
have the strength of providing good spatial coverage during
field surveys but provide limited information about the tem-
poral variability (Yao et al., 2009; Barba et al., 2021).

Technological advances have opened the opportunity to si-
multaneously measure multiple soil GHG fluxes (i.e., CO2,
CH4, and N2O) at unprecedented temporal resolution (e.g.,
hourly). These efforts have demonstrated differences in diel
patterns and pulse events (e.g., rewetting) due to wetting and
drying cycles across tropical (Butterbach-Bahl et al., 2004;
Werner et al., 2007), subtropical (Rowlings et al., 2012), and
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temperate (Savage et al., 2014; Petrakis et al., 2017) ecosys-
tems. These approaches provide more accurate information
to calculate net GHG budgets and the global warming poten-
tial of soils (Capooci et al., 2019). That said, performing au-
tomated measurements of multiple GHGs is expensive, and
this approach usually has a lower representation of the spa-
tial heterogeneity within ecosystems (Yao et al., 2009; Barba
et al., 2021).

Ideally, we would like to measure everything, everywhere,
and all the time, but this is impossible due to logistical, tech-
nological, physical, and economic constraints. Lightweight
and low-powered laser-based spectrometers have reduced
technical barriers to simultaneously measuring multiple
GHG fluxes from soils. It is now easier and faster to perform
discrete manual surveys across time. This opportunity cre-
ates a paradox concerning when to measure different GHG
fluxes from soils when performing manual measurements.
Researchers generally tend to perform simultaneous mea-
surements of multiple GHGs during manual surveys, but this
convenience could result in biased information. We propose
that there is a conflict between the convenience of measuring
multiple GHGs at a few fixed time intervals and the intrinsic
temporal variability in magnitudes and patterns of different
GHG fluxes.

Here, we present a proof of concept and test how a sub-
set of measurements derived from a fixed temporal strati-
fication (FTS) for simultaneous measurements (i.e., strati-
fied sampling schedule) or using an optimized sampling (i.e.,
temporal univariate Latin hypercube sampling, tuLHs) com-
pared with automated measurements of soil CO2 (FACO2),
CH4 (FACH4), and N2O (FAN2O) fluxes from a temper-
ate forest (Petrakis et al., 2018; Barba et al., 2021, 2019).
The underlying assumption supporting any FTS approach is
that a few measurements in time can reproduce the statisti-
cal properties and temporal dependencies of soil CO2, CH4,
and N2O fluxes because these GHGs respond similarly to bi-
ological and physical drivers. The tuLHs is a new statisti-
cal method for generating subsamples of parameter values
(i.e., soil GHG gas fluxes in this case study) to reproduce the
probability distribution and the temporal dependence of each
original time series of GHG fluxes. We reveal that reporting
GHG fluxes using an FTS for simultaneous measurements
may result in biased information on temporal patterns and
magnitudes. This study shows how a biased sampling sched-
ule could influence our understanding of GHG fluxes and,
ultimately, the climate mitigation potential of soils.

2 Materials and methods

2.1 Study site

The experiment was performed in a temperate forest located
at the St Jones Reserve (a component of the Delaware Na-
tional Estuarine Research Reserve (DNERR) in Delaware,

USA). The site has a mean annual temperature of 13.3 ◦C and
mean annual precipitation of 1119 mm. Soils are classified as
Othello silt loam with a texture of 40 % sand, 48 % silt, and
12 % clay within the first 10 cm (Petrakis et al., 2018). The
dominant plant species are bitternut hickory (Carya cordi-
formis), eastern red cedar (Juniperus virginiana L.), Amer-
ican holly (Ilex opaca), sweetgum (Liquidambar styraci-
flua L.), and black gum (Nyssa sylvatica (Marshall)). The site
has a mean tree density of 678 stemsha−1 and a diameter at
breast height (DBH) of 25.7± 13.9 cm (mean±SD) (Barba
et al., 2021).

2.2 Automated measurements of soil GHG fluxes

We analyzed data from automated measurements (1 h time
intervals) of soil emissions of three GHGs (i.e., CO2, CH4,
and N2O) between January and December 2015. This was a
typical year with a mean annual temperature of 13.4 ◦C and
annual precipitation of 1232 mm. Continuous measurements
of soil GHGs were taken by coupling a closed-path infrared
gas analyzer (LI-COR LI-8100A, Lincoln, Nebraska) and
nine dynamic soil chambers (LI-COR 8100-104) controlled
by a multiplexer (LI-COR 8150) with a cavity ring-down
spectrometer (Picarro G2508, Santa Clara, California). A de-
tailed description of the experimental design and measure-
ment protocol has been described in previous studies (Pe-
trakis et al., 2018; Barba et al., 2021, 2019). Briefly, for each
flux observation, we measured CO2, CH4, and N2O concen-
trations every second with the Picarro G2508 for 300 s and
calculated fluxes (at 1 h time intervals) from the mole dry
fraction of each gas (i.e., corrected for water vapor dilution)
using the SoilFluxPro software (v4.0; LI-COR, Lincoln, Ne-
braska, USA). Fluxes were estimated using linear and expo-
nential fits, and we kept the flux calculation with the high-
est R2. We applied quality assurance and quality control pro-
tocols using information from all three GHGs as established
in previous studies (Petrakis et al., 2018, 2017; Barba et al.,
2021, 2019; Capooci et al., 2019). Using these time series,
we extracted values to represent discrete temporal measure-
ments based on FTS and used the optimization approach de-
scribed below.

2.3 Temporal subsampling of time series

Subsampling of time series was performed using FTS and
a temporal optimization following a univariate Latin hyper-
cube (tuLHs) approach. The difference between FTS and
temporal optimization is that the first approach is focused
on a fixed schedule (e.g., sampling once per month) and the
second is focused on reproducing the statistical properties
and temporal dependence relationship of the original GHG
time series with a subset of measurements. This means op-
timized subsamples may not be spaced systematically (e.g.,
every 15 d), and selected dates may vary for each GHG flux
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due to their specific statistical properties and temporal de-
pendence.

FTS represents a traditional schedule for performing man-
ual measurements of GHG fluxes from soils. The FTS is
usually performed with manual measurements because they
require extensive logistical coordination due to travel time
and costs, availability of instrumentation (e.g., gas analyz-
ers), personnel to perform the measurements, and weather
conditions. During these scheduled visits, researchers usu-
ally collect fluxes from all three GHGs and analyze them
systematically to calculate magnitudes and patterns through-
out the experiment. Usually, researchers perform manual
samples during the early hours of the day (between 09:00
and 12:00 LT) to avoid confounding effects due to large
changes in temperature and moisture, as demonstrated by in-
formation summarized by the soil respiration global database
(Cueva et al., 2017; Jian et al., 2020). Consequently, we se-
lected subsamples from each original GHG time series (de-
rived from automated measurements) using flux measure-
ments from 10:00 LT at fixed intervals of once per month
(n= 12), twice per month (n= 24), or four times per month
(n= 48) starting from the first week of available data from
automated measurements.

We applied tuLHs as an alternative subsampling approach
to obtain an optimized subsample with the same univariate
statistical properties and temporal dependence relationship
as the original GHG time series. Optimization was performed
to select subsamples for each GHG flux using the same num-
ber of samples as for FTS: 12 (k= 12), 24 (k= 24), or 48
(k= 48) measurements throughout the year of available data
from automated measurements.

2.4 Temporal univariate Latin hypercube sampling
(tuLHs)

Let S = {(x1,y1,z1), (x2,y2,z2), . . ., (xn,yn,zn)} be obser-
vations of the variablesX, Y , andZ in a time series, whereX,
Y , and Z are soil GHGs (i.e., CO2, CH4, and N2O). Each
measured variable is characterized by the univariate prob-
ability distribution function and the temporal dependency
function. Once these two functions are known, then the be-
haviors of the variable can be reproduced (Le et al., 2020;
Chilès and Delfiner, 2009; Trangmar et al., 1986; Pyrcz and
Deutsch, 2014). The tuLHs consists of three steps: (1) mod-
eling the univariate behavior of the variable using the empir-
ical cumulative univariate probability distribution function;
(2) modeling the temporal dependence using the empirical
variogram function; and (3) optimizing a subsample apply-
ing a global optimization method, differential evolution, us-
ing the previously obtained variogram function as an objec-
tive function.

First, to model the univariate behavior of the variables
from the observations of S, the empirical univariate cumu-
lative distribution function F ∗n (x) of X is estimated by

F ∗n (x)=
1
n

n∑
i=1

Ixi ≤ x8, (1)

where I represents an indicator function equal to 1 when its
argument is true and is 0 otherwise. Similarly, the empirical
univariate distribution function of the variables Y and Z can
be derived.

Second, to model the temporal dependence of the variables
from the observations of S, the empirical temporal correla-
tion function (i.e., temporal variogram function) γ ∗(t) of X
is estimated by

γ ∗(t)=
1

2N(t)

N(t)∑
i=1
[X(ti + t)−X(ti)]

2, (2)

where N(t) is the number of pairs and X(ti + t) and X(ti)
are separated by a time t . The variogram functions of the
variables Y and Z are analogous. Third, to optimize the sub-
sample, it is required to choose the “optimal” data points
with the selected sample size (i.e., k= 12, 24, or 48, where
k� n) that will have the same behavior as the original ob-
servations of S (i.e., GHG fluxes derived from automated
measurements). To achieve this objective, we use differen-
tial evolution, a global optimization method (Storn and Price,
1997), using the variogram function as an objective function.
The procedure consists of dividing the univariate empirical
probability distribution in Eq. (1) into k equiprobable strata,
which is equivalent to k-ordered data subsets. From each sub-
set, only one value must be chosen to satisfy the condition
of a univariate Latin hypercube. The differential evolution
method is applied to find the optimal points that minimize
the difference between the subsample variogram γ (t) and the
data variogram γ ∗(t) in Eq. (3).

OF1 =

N(t)∑
i=1
[γ (t)− γ ∗(t)]2, (3)

where OF is the objective function and the variograms γ (t)
and γ ∗(t) are calculated using Eq. (2).

2.5 Statistical analyses

The t test was used to compare the means, and the
Kolmogorov–Smirnov test was used to compare the proba-
bility distribution of measurements derived from each sam-
pling protocol. All tests were performed with a 95 % con-
fidence level. In addition, their statistical properties, such
as the mean, median, standard deviation, and first and third
quartiles, were compared. The differences in the experimen-
tal semivariograms were calculated as a comparison measure
for the temporal dependence of the samples and the origi-
nal time series of GHG fluxes. For cumulative sums of GHG
flux, their mean is calculated as the most likely value, and
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their quantile difference between 97.5 % and 2.5 % is used
to quantify the range of uncertainty. All analyzes were per-
formed using the R program (R Code Team, 2013).

3 Results

3.1 Relationships among GHG fluxes from soils

Justification in support of FTS for simultaneous measure-
ments of GHG fluxes would require evidence of strong linear
correlations between magnitudes and temporal dependence
among soil GHG fluxes. First, we did not find strong lin-
ear relationships between any combination of GHG fluxes
from soils derived from automated measurements (Fig. S1 in
the Supplement). Therefore, our data did not support the as-
sumption that the magnitude of one GHG flux was associated
with a linear increase or decrease in another GHG flux. Sec-
ond, semivariogram models demonstrated differences in the
temporal dependence for each GHG flux. Automated mea-
surements of soil CO2 fluxes (FACO2) showed a tempo-
ral dependence following a Gaussian variogram model, with
a nugget of 4, a sill plus nugget of 28, and a correlation
range of 80 d (Fig. S2a). Automated measurements of soil
CH4 fluxes (FACH4) also showed a temporal dependence
but followed a spherical variogram model, with a nugget of
7× 10−8, a sill plus nugget of 1.5× 10−7, and a correlation
range of 110 d (Fig. S2b). In contrast, automated measure-
ments of soil N2O fluxes (FAN2O) did not show a temporal
dependence, where a pure nugget effect was present and with
a correlation range of 0 d (Fig. S2c). Consequently, these
GHG fluxes’ magnitudes and temporal patterns were differ-
ent and did not support FTS for simultaneous measurements
of GHG from soils.

3.2 Optimization of GHG sampling protocols

We applied a tuLHs approach to identify subsamples with
the same statistical properties and temporal dependence for
each of the original GHG time series from automated mea-
surements. Subsamples were identified for 12 (k= 12), 24
(k= 24), or 48 (k= 48) measurements throughout the year
for each GHG time series. Our results show that the opti-
mized measurement dates were different for each GHG flux
(Fig. 1), and we provide explicit examples for k= 24 (Fig. 1)
and k= 12 and 48 (Figs. S3 and S4).

The optimized CO2 subsamples were well distributed
throughout the year for all sampling scenarios (i.e., k from 12
to 48) because FACO2 had a strong temporal dependence
and a small nugget effect with respect to the sill (Fig. S2a).
The optimized CH4 subsamples were also relatively well
distributed throughout the year, especially for scenarios of
k= 24 and k= 48, as FACH4 also had a temporal depen-
dence but with a higher nugget effect with respect to the
sill (Fig. S2b). Finally, the optimized N2O subsamples were
more challenging to define, especially with a small sample

Figure 1. Temporal distribution of fixed temporal stratification (i.e.,
stratified manual sampling approach) and optimized sampling us-
ing a temporal univariate Latin hypercube (tuLHs) approach for
k= 12 (a), k= 24 (b), and k= 48 (c). Fixed temporal stratification
is in black, soil CO2 fluxes in red, soil CH4 fluxes in blue, and soil
N2O fluxes in green. Time (x axis) represents days from 1 January
to 31 December 2015.

size (i.e., k= 12; Fig. S3c) because FAN2O did not have a
temporal dependence (Fig. S2c).

3.3 Differences in statistical properties and temporal
dependency of subsamples

Overall, there were no statistically significant differences be-
tween the mean values derived from automated measure-
ments and those from FTS or the tuLHs approach (Fig. 2
for k= 24; Fig. S5 for k= 12; Fig. S6 for k= 48; Tables S1
and S2 in the Supplement). Although this appears promis-
ing, more than a simple comparison of the means is needed
to evaluate the information derived from different sampling
approaches. In other words, it is possible to have a similar
mean value without reproducing the probability distribution
or the temporal dependence of the original time series (i.e.,
correct answer but for the wrong reasons). Here, we present
results based on comparing the means, standard deviation,
probability distributions, and semivariograms derived from
automated measurements and the different sampling scenar-
ios for all GHG fluxes.

The mean of FACO2 was 5.9 µmolCO2 m−2 s−1, while
the mean for FTS was 5.5 and 5.9 µmolCO2 m−2 s−1 for
the tuLHs approach with k= 24 (Fig. 3a–c). These results
were comparable with the means derived from FTS (5.4
and 5.4 µmolCO2 m−2 s−1) and the tuLHs approach (6.2
and 5.9 µmolCO2 m−2 s−1) using k= 12 and k= 48, respec-
tively (Figs. S5 and S6; Table S1). The standard deviation
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Figure 2. Time series of automated measurements (FA) of soil
greenhouse gas fluxes (black circles) and optimized samples
(k= 24) using a temporal univariate Latin hypercube sampling
(tuLHs) approach for soil CO2 (a), soil CH4 (b), and soil N2O (c)
fluxes. The horizontal red line represents the mean, and the horizon-
tal blue line is the median of each greenhouse gas flux derived from
automated measurements. The selection of data points for k= 12
and 48 is presented for each soil greenhouse gas time series in
Figs. S3 and S4, respectively. Time (x axis) represents days from
1 January to 31 December 2015.

of FACO2 was 3.9 and 3.2 µmolCO2 m−2 s−1 for FTS and
3.9 µmolCO2 m−2 s−1 for the tuLHs approach with k= 24
(Fig. 3a–c). These results were comparable with the standard
deviations derived from FTS (3.1 and 3.3 µmolCO2 m−2 s−1)
and the tuLHs approach (4.1 and 3.9 µmolCO2 m−2 s−1) us-
ing k= 12 and k= 48, respectively (Figs. S5 and S6; Ta-
ble S1). Our results show that the semivariograms of op-
timized samples using the tuLHs approach closely approx-
imate the semivariograms of automated measurements for
k= 24 (Fig. 4a) and k= 12 and 48 (Figs. S7a and S8a). These
results are consistent with the sums of absolute differences
between the semivariograms of the samples and the semivar-
iogram of FACO2 with differences of 69.31, 54.39, and 49.42
for FTS and of 5.69, 1.99, and 1.39 for the tuLHs approach
for k= 12, 24, and 48, respectively (Table S2).

The mean of FACH4 was −0.93 nmolCH4 m−2 s−1,
while it was −0.86 nmolCH4 m−2 s−1 for FTS and
−0.94 nmolCH4 m−2 s−1 for the tuLHs approach with
k= 24 (Fig. 3d–f). These results were also compara-
ble with the means derived from FTS (−0.83 and
−0.88 nmolCH4 m−2 s−1) and the tuLHs approach (−0.87
and −0.92 nmolCH4 m−2 s−1) using k= 12 and 48, respec-
tively (Figs. S5 and S6; Table S1). The standard deviation

of FACH4 was 0.36 and 0.26 nmolCH4 m−2 s−1 for FTS and
0.34 nmolCH4 m−2 s−1 for the tuLHs approach with k= 24.
These results were comparable with the standard deviations
derived from FTS (0.27 and 0.29 nmolCH4 m−2 s−1) and
the tuLHs approach (0.33 and 0.35 nmolCH4 m−2 s−1) us-
ing k= 12 and k= 48, respectively (Figs. S5 and S6; Ta-
ble S1). The semivariograms of optimized samples using the
tuLHs approach closely approximate the semivariogram of
automated measurements for k= 24 (Fig. 4b) and k= 12 and
48 (Figs. S7b and S8b). Consequently, the sums of absolute
differences between the semivariograms of the samples and
the semivariogram of FACH4 were 0.63, 0.48, and 0.49 for
FTS and 0.06, 0.04, and 0.02 for the tuLHs approach with
k= 12, 24, and 48, respectively (Table S2).

Finally, the mean of FAN2O was 0.45 and
0.61 nmolN2Om−2 s−1 for FTS and 0.51 nmolN2Om−2 s−1

for the tuLHs approach with k= 24 (Fig. 3g–i). These results
were also comparable with the means derived from FTS
(0.59 and 0.25 nmolN2Om−2 s−1) and the tuLHs approach
(0.58 and 0.49 nmolN2Om−2 s−1) using k= 12 and 48,
respectively (Figs. S5 and S6; Table S1). The standard
deviation of FAN2O was 1.62 and 1.97 nmolN2Om−2 s−1

for FTS and 1.54 nmolN2Om−2 s−1 for the tuLHs ap-
proach with k= 24. These results were comparable with
the standard deviations derived from FTS (1.38 and
0.91 nmolN2Om−2 s−1) and the tuLHs approach (1.58 and
1.54 nmolN2Om−2 s−1) using k= 12 and k= 48, respec-
tively (Figs. S5 and S6; Table S1). Our results show no
temporal dependence for N2O fluxes, but the semivariograms
of optimized samples using the tuLHs approach closely
approximate the semivariogram of automated measurements
for k= 24 (Fig. 4c) and k= 12 and 48 (Figs. S7c and S8c).
Consistently, the sum of absolute differences between the
semivariograms of the samples and the semivariogram of
FAN2O was 10.01, 12.25, and 16.75 for FTS and 0.82, 1.13,
and 3.57 for the tuLHs approach with k= 12, 24, and 48,
respectively (Table S2).

These results show that the tuLHs approach reproduced
the probability distribution and the temporal dependence of
the time series derived from automated measurements with
more precision than FTS for all GHGs. In the next section,
we explore the implications of these differences for calculat-
ing cumulative GHG fluxes.

3.4 Calculation of cumulative GHG fluxes

We calculated the cumulative flux for all GHGs using avail-
able information from automated measurements (Fig. 2;
Table S3). The cumulative sum for available measure-
ments for FACO2 was 5758.5 gCO2 m−2 ([893.9, 13860.8],
95 % CI), for FACH4 was −0.47 gCH4 m−2 ([−0.81,
−0.19], 95 % CI), and for FAN2O was 0.63 gN2Om−2

([−0.75, 5.19], 95 % CI).
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Figure 3. Histograms for automated measurements of soil CO2 (FA CO2; a), soil CH4 (FA CH4; d), and soil N2O (FA N2O; g). Histograms
for optimized samples (k= 24) using a temporal univariate Latin hypercube sampling (tuLHs) approach for soil CO2 (b), soil CH4 (e), and
soil N2O (h) fluxes. Histograms for fixed temporal stratification (i.e., stratified manual sampling schedule) (k= 24) for soil CO2 (c), soil
CH4 (f), and soil N2O (i) fluxes. The Supplement includes results for measurements with k= 12 (Fig. S5) and k= 48 (Fig. S6).

We used the mean for each GHG flux derived from the
tuLHs approach or the FTS to calculate the cumulative sum
(Table S3). We found that the FTS underestimated the cu-
mulative flux (−8.4 %, −6.2 %, −7.1 %) and the uncertainty
(−32.6 %, −21.6 %, −19.3 %) of FACO2 for k= 12, 24,
and 48, respectively (Fig. 5a). In contrast, the tuLHs ap-
proach slightly overestimated the cumulative flux (6.5 %,
1.1 %, 0.1 %) and slightly underestimated the uncertainty
(−9.1 %, −4.4 %, −3.7 %) for k= 12, 24, and 48, respec-
tively (Fig. 5a).

The FTS underestimated the cumulative flux (−9.1 %,
−6.1 %, −3.1 %) and the uncertainty (−31.8 %, −27.3 %,
−15.9 %) of FACH4 for k= 12, 24, and 48, respectively
(Fig. 5b). In contrast, the tuLHs approach underestimated
the cumulative flux (−6.1 %) only for k= 12 but slightly un-
derestimated the uncertainty (−15.9 %, −6.8 %, −4.5 %) for
k= 12, 24, and 48, respectively (Fig. 5b).

The FTS substantially underestimated the cumulative flux
(−168 %, −170 %, −173 %) of FAN2O for k= 12, 24, and
48, respectively. Uncertainty was overestimated for k= 12
and 24 (3.6 % and 26 %) and underestimated for k= 48

(−31 %; Fig. 5c). In contrast, the tuLHs approach overesti-
mated the cumulative flux less (29.5 %, 13.4 %, 9.1 %) for
k= 12, 24, and 48, respectively (Fig. 5c). This approach
underestimated the uncertainty for k= 12 (−11.2 %) and
k= 24 (−13.8 %) but overestimated the uncertainty by 2.9 %
for k= 48 (Fig. 5c). These results show that the tuLHs ap-
proach consistently provided closer estimates for cumulative
sums and uncertainty ranges than an FTS for all GHG fluxes.

4 Discussion

Applied challenges, such as quantifying the role of soils in
nature-based solutions, require accurate estimates of GHG
fluxes. To do this, two fundamental problems exist for
designing environmental monitoring protocols: where and
when to measure. Ultimately a monitoring protocol aims to
quantify the attributes of an ecosystem so that it can be com-
pared in time within that ecosystem or with other ecosystems.
Because we cannot measure everything, everywhere, and all
the time, we can argue that any monitoring protocol has as-
sumptions based on physical, economic, social, and practical
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Figure 4. Comparison of semivariograms between automated mea-
surements (FA) of soil greenhouse gas fluxes (solid black line) and
for optimized samples using a temporal univariate Latin hypercube
sampling (tuLHs) approach (red circles) or fixed temporal stratifi-
cation (green circles) with k= 24. Semivariograms are presented
for soil CO2 (a), CH4 (b), and N2O (c) fluxes. Semivariograms
for measurements with k= 12 and k= 48 are shown in Figs. S7
and S8, respectively. Semivariogram fits were Gaussian (gau) or
spherical (sph).

reasons to address a specific scientific question. These as-
sumptions for designing monitoring protocols could result in
misleading, biased, or wrong conclusions, and therefore it is
critical to assess the consequences of different monitoring
efforts. As Hutchinson (1953) described in “The Concept of
Pattern in Ecology”, we do not always know if a given pattern
is extraordinary or a simple expression of something which
we may learn to expect all the time.

Automated measurements have revolutionized our under-
standing of the temporal patterns and magnitudes of soil
GHG fluxes (Savage et al., 2014; Bond-Lamberty et al.,
2020; Tang et al., 2006; Capooci and Vargas, 2022b). These
measurements have limitations in representing spatial vari-
ability and have higher equipment costs that limit their broad
applicability across study sites (Vargas et al., 2011). Con-
sequently, discrete manual measurements are a common ap-
proach to simultaneously measure multiple GHG fluxes and

Figure 5. Comparison of percent differences from cumulative
sums and associated uncertainty (95 % CI) between greenhouse gas
fluxes derived from automated measurements (FA) and using an
optimized sampling approach (tuLHs) or a fixed temporal stratifica-
tion. Differences are represented for soil CO2 (a), soil CH4 (b), and
soil N2O (c) fluxes. The black circle in the center (0, 0) of a plot
represents the values derived from automated measurements (FA).
Blue circles represent estimates from fixed temporal stratification,
and red circles represent estimates from an optimized sampling ap-
proach (tuLHs). Estimates were calculated based on the 258 avail-
able automated measurements (Fig. 2), and numeric estimates are
in Table S3. Note the difference in the scale of the x axis among
panels.

report patterns, budgets, and information to parameterize em-
pirical and process-based models (Phillips et al., 2017; Wang
and Chen, 2012). In this study, we argue that the convenience
of simultaneously measuring multiple GHGs using FTS may
result in biased estimates. Therefore, optimization of sam-
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pling protocols is needed to provide insights to improve mea-
surement protocols when there is a limited number of mea-
surements in time (i.e., k= 12, 24, 48).

We show that the magnitude of one GHG flux is not as-
sociated with a linear increase or decrease in another GHG
flux, and the temporal dependencies of each GHG flux are
different (Fig. S1). Therefore, it is not possible to infer the
dynamics of one GHG flux based solely on information from
another under the assumption that they share similar (or au-
tocorrelated) biophysical drivers. These results imply that the
magnitudes and temporal patterns of GHGs are different and
therefore do not support an FTS approach for simultaneous
measurements of GHG fluxes from soils.

Multiple studies have shown that the relevance of differ-
ent biophysical drivers (e.g., temperature, moisture, light)
is different for soil CO2, CH4, or N2O fluxes (Luo et al.,
2013; Tang et al., 2006; Ojanen et al., 2010). Our results
show that soil CO2 fluxes have a strong temporal depen-
dence (Fig. S2a), likely due to the strong relationship be-
tween these fluxes and soil temperature in this and other tem-
perate mesic ecosystems (Hill et al., 2021; Bahn et al., 2010;
Barba et al., 2019). The temporal dependence decreased for
soil CH4 fluxes (Fig. S2b), where there is less evidence for
such a strong correlation with soil temperature in this and
other temperate mesic ecosystems (Bowden et al., 1998; Cas-
tro et al., 1995; Warner et al., 2019; Barba et al., 2019). It
has been reported that multiple variables and complex rela-
tionships are usually needed to explain the variability in soil
CH4 fluxes in forest soils, as there is a delicate balance be-
tween methanogenesis and methanotrophy (Luo et al., 2013;
Castro et al., 1994; Murguia-Flores et al., 2018). In con-
trast, soil N2O fluxes had no temporal dependence (Fig. S2c),
showing decoupling from the observed patterns of soil CO2
and CH4 fluxes (Wu et al., 2010), likely as a result of inde-
pendent biophysical drivers regulating soil N2O fluxes (Luo
et al., 2013; Bowden et al., 1993; Ullah and Moore, 2011).

To address the limitations of an FTS protocol, we propose
a novel optimization approach (i.e., tuLHs) to reproduce the
probability distribution and the temporal dependence of each
original time series of GHG fluxes. Traditional methods usu-
ally optimize subsamples by either individually focusing on
reproducing the probability distribution of the original infor-
mation (Huntington and Lyrintzis, 1998) or reproducing the
temporal dependence of the original information (Gunawar-
dana et al., 2011). The tuLHs is a simple approach that uses
the univariate probability distribution function and the tem-
poral correlation function (i.e., variogram) as objective func-
tions for each GHG flux. Our results show that optimized
subsamples do not coincide in time for the three GHGs, sug-
gesting that information should be collected based on each
GHG flux’s specific statistical and temporal characteristics
(Fig. 1). This study provides a proof of concept for the appli-
cation of the tuLHs. It demonstrates how an optimization ap-
proach provides insights to design monitoring protocols and
improve soil GHG flux estimates.

The more temporal data we can collect, the better, but in
many cases, measurement protocols are limited to a few mea-
surements per year (i.e., k= 12 to 48). Our results demon-
strate that for a small sample size (i.e., k= 12), the opti-
mized measurements for soil CO2 fluxes are consistently
spread across the year, and for soil CH4 fluxes are centered
within the growing season because of their strong tempo-
ral dependence. For the case of soil N2O fluxes, the vari-
ogram shows a constant temporal variability, meaning there
is no temporal dependence. Therefore, the optimized mea-
surements are concentrated within the fall season due to their
distribution probability (Fig. 1a). Our optimization approach
shows how measurements can be distributed across time as
more samples are available (i.e., k= 24 to 48; Fig. 1b and c)
and demonstrates that optimization is critical when a limited
number of measurements are available. In other words, a few
measurements properly distributed across time provide bet-
ter agreement with information derived from automated mea-
surements. A similar conclusion was proposed for the spatial
distribution of environmental observatory networks, where
a network of a few sites properly distributed (e.g., across
a country) improves our understanding of the target vari-
able more than a spatially biased network (Villarreal et al.,
2019). Thus, a representativeness assessment of information
collected across time and space is needed to evaluate en-
vironmental measurements and quantify nature-based solu-
tions accurately.

We highlight that this optimization approach should be im-
plemented across different ecosystems as it will result in site-
specific recommendations. The tuLHs can be applied to any
time series length and with any time step (e.g., hours, days),
but specific results will be representative of the probabil-
ity distribution and the temporal dependence of the selected
time series. What is essential is to question if a few measure-
ments from an experiment represent the reality of the phys-
ical world because if limited information is available, then
the actual probability distribution and temporal dependence
of the phenomena could be an unknown unknown. In other
words, with few measurements, we may not be aware of and
we will not be able to know which is the actual probability
distribution and temporal dependence of the studied phenom-
ena. To address this challenge, we tested the tuLHs approach
with high-temporal-frequency information representing the
probability distribution of multiple soil GHG fluxes at the
daily time step across a calendar year.

In this case study, the year chosen had typical climatologi-
cal conditions, and we demonstrated that the statistical prop-
erties of the different GHG fluxes differ. Consequently, this
study questions the application of the FTS approach to mea-
suring multiple GHGs simultaneously with a limited number
of sampling dates (mainly once a month). We recognize that
longer time series (e.g., multi-year) could provide more ro-
bust optimizations that can be applied to monitoring efforts.
We recommend co-locating automated measurements with
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manual survey efforts to adequately capture the temporal and
spatial variability in soil GHG fluxes at study sites.

There are several implications of biased monitoring pro-
tocols for understanding soil GHG fluxes and nature-based
solutions. First, temporal patterns and temporal dependency
may need to be revisited for studies using an FTS approach.
Soil GHG fluxes have complex temporal dynamics that vary
from diurnal to seasonal and annual scales (Vargas et al.,
2010) that a few measurements following an FTS approach
cannot reproduce (Barba et al., 2019; Bréchet et al., 2021).
Second, soil GHG fluxes could present hot moments, which
are transient events with disproportionately high values that
are often missed with an FTS approach (Vargas et al., 2018;
Butterbach-Bahl et al., 2004). Third, cumulative sums and
uncertainty ranges are biased or misleading when derived us-
ing an FTS approach (Tallec et al., 2019; Lucas-Moffat et al.,
2018; Capooci and Vargas, 2022b). Our study demonstrates
that an optimized approach consistently provided closer es-
timates for cumulative sums and uncertainty ranges when
compared with automated measurements (Fig. 5). We pos-
tulate that representing the variability in soil N2O fluxes is
more sensitive to the FTS approach (> 170 % and > 30 % for
cumulative sums and uncertainty ranges, respectively) than
for soil CH4 and CO2 fluxes. Fourth, it is possible that if the
information derived from an FTS approach is biased, then
functional relationships could also be different from those
derived from automated measurements (Capooci and Var-
gas, 2022a). It has been argued that hypothesis testing and
our capability of forecasting responses of soil GHG fluxes
to changing climate conditions is also biased with informa-
tion from the FTS approach (Vicca et al., 2014). Finally,
because soils have a central role in nature-based solutions
within countries and across the world (Griscom et al., 2017;
Bossio et al., 2020), accurate measurements are required to
assess management practices, environmental variability, and
the contribution of GHGs from soils.

5 Conclusion

We highlight that we only sometimes know if a given pattern
is extraordinary or a simple expression of something which
we may learn to expect all the time. Arguably, there is bias in
our understanding of the probability distribution and tempo-
ral dependency of soil GHG fluxes across the world because
most results are based on a few manual measurements (e.g.,
once a month) following an FTS approach. Currently, it is
unknown how large such bias could be across studies and
ecosystems, but because most studies lack high-temporal-
frequency information, the real probability distribution and
temporal dependency of soil GHG fluxes may remain un-
known in most study sites. What is essential is to question
if the observed patterns, derived from an FTS approach, are
enough for improving our understanding of soil processes or
are results that we have learned to expect.

We postulate that with emergent technologies, there is con-
venience in measuring multiple GHGs from soils; however,
few measurements collected at fixed time intervals result in
biased estimates. We recognize that potential measurement
bias depends on each GHG flux’s magnitudes and tempo-
ral patterns and could be site-specific. Nevertheless, evalu-
ations are needed to quantify potential bias in estimates of
GHG budgets and information used for model parameteri-
zation and environmental assessments. Furthermore, the un-
derlying assumption that each GHG flux responds similarly
to biophysical drivers may need to be tested across multiple
ecosystems to quantify how few measurements influence our
understanding of magnitudes and temporal patterns of soil
GHG fluxes.

In this study, we present a proof of concept and propose
a novel approach (i.e., temporal univariate Latin hypercube
sampling) that can be applied with site-specific information
on different ecosystems to improve monitoring efforts and
reduce the bias in GHG flux measurements across time. We
highlight that constant biased environmental monitoring may
provide confirmatory information, which we have learned to
expect, but modifications of monitoring protocols could shed
light on new or unexpected patterns. These new patterns are
the ones that will test paradigms and push science frontiers.
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