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Abstract. Satellite microwave remote sensing techniques
can be used to monitor vegetation optical depth (VOD), a
metric which is directly linked to vegetation biomass and
water content. However, these large-scale measurements are
still difficult to reference against either rare or not directly
comparable field observations. So far, in situ estimates of
canopy biomass or water status often rely on infrequent and
time-consuming destructive samples, which are not neces-
sarily representative of the canopy scale. Here, we present a
simple technique based on Global Navigation Satellite Sys-
tems (GNSS) with the potential to bridge this persisting scale
gap. Because GNSS microwave signals are attenuated and
scattered by vegetation and liquid water, placing a GNSS
sensor under a vegetated canopy and measuring changes in
signal strength over time can provide continuous informa-
tion about VOD and thus on vegetation biomass and water
content. We test this technique at a forested site in southern
California for a period of 8 months. We show that variations
in GNSS signal-to-noise ratios reflect the overall distribution
of biomass density in the canopy and can be monitored con-
tinuously. For the first time, we show that this technique can
resolve diurnal variations in VOD and canopy water content
at hourly to sub-hourly time steps. Using a model of canopy
transmissivity to assess these diurnal signals, we find that
temperature effects on the vegetation dielectric constant, and
thus on VOD, may be non-negligible at the diurnal scale or
during extreme events like heat waves. Sensitivity to rainfall
and dew deposition events also suggests that canopy water
interception can be monitored with this approach. The tech-
nique presented here has the potential to resolve two impor-
tant knowledge gaps, namely the lack of ground truth obser-

vations for satellite-based VOD and the need for a reliable
proxy to extrapolate isolated and labor-intensive in situ mea-
surements of biomass, canopy water content, or leaf water
potential. We provide recommendations for deploying such
off-the-shelf and easy-to-use systems at existing ecohydro-
logical monitoring networks such as FluxNet or SapfluxNet.

1 Introduction

Complementary to observations in the visible and near-
infrared spectrum, microwave-based remote sensing of the
vegetation can be used to obtain information about above-
ground biomass and vegetation water content (Konings et al.,
2019; Frappart et al., 2020). Such information is essential to
improve our understanding of how ecosystems respond and
adapt to both natural and anthropogenic changes, including
droughts, deforestation, or global warming. However, while
satellite products can provide a global picture, their algo-
rithms also need to be calibrated and evaluated against other
reference measurements, thus raising the need for ground
truth observations. In the case of vegetation optical depth
(VOD), which is one of the main microwave observables for
vegetation, a network of continuously gathered ground truth
data does not exist yet (Li et al., 2021). Here, we provide a
quick introduction to microwave observations, highlight the
current applications of VOD, and review recent attempts to
compare satellite VOD against other data. We then present a
ground-based technique relying on Global Navigation Satel-
lite Systems (GNSS) with the objective of addressing the lack
of ground-based VOD observations.
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Microwave remote sensing methods are broadly catego-
rized as either passive or active. Passive instruments (like
radiometers) measure the amount of microwave radiation
that is naturally emitted by the Earth, whereas active instru-
ments (like radars) transmit a specific radio signal and mea-
sure the properties of the backscattered (reflected) signal. In
both cases, the measured signals (brightness temperature or
backscatter) depend on various factors, particularly the emis-
sivity and reflectivity of the surface and the transmissivity
(γ ) of the vegetation, the latter of which acts as a layer of
temporally changing opacity between the ground and the at-
mosphere. The transmissivity of vegetation is typically con-
trolled by factors influencing both its dielectric constant (e.g.,
vegetation water content and temperature) and its structure
(density, shape, size, and distribution of the vegetation ele-
ments in the canopy). The vegetation optical depth (VOD) is
a single parameter condensing all of these different contri-
butions and is used in combination with the incidence angle
(θ) to express the canopy transmissivity as a function of the
incidence angle:

γ = e
−VOD
cosθ . (1)

This formulation of the transmissivity is the expression of a
Beer–Lambert’s law, where VOD represents an attenuation
coefficient (specific to the observation wavelength and po-
larization) and the term 1/cosθ accounts for the path length
through the canopy, such that VOD (as defined here) only re-
lates to the vertical path. Higher VOD values indicate that the
canopy is less transparent to electromagnetic waves.

It is worth noting that this definition of VOD is mainly
inherited from the perspective of microwave remote sens-
ing algorithms, where VOD has to be estimated in order
to obtain other variables of interest such as soil moisture
(Jackson et al., 1982; Jackson and Schmugge, 1991; Owe
et al., 2008). Because both field campaigns and theoretical
considerations showed that in situ estimates of VOD can
be related to vegetation water content and biomass (Ulaby
and Jedlicka, 1984; Schmugge and Jackson, 1992; Paloscia
and Pampaloni, 1992), this sparked interest in the develop-
ment of more robust and long-term estimates of satellite-
based VOD. Global maps of VOD have since become avail-
able from numerous satellite microwave sensors (Moesinger
et al., 2020; Chaubell et al., 2020) but can hardly be vali-
dated, as systematic ground-based VOD observations do not
exist at the moment. Only a few studies have managed to
compare satellite-based VOD against in situ observations.
Most notably, Tian et al. (2016) found a good agreement
between satellite-based VOD and in situ measurements of
green biomass in the African Sahel. Instead, the majority of
studies assessing or using satellite-based VOD have relied
on comparisons with other remotely sensed variables (e.g.,
Grant et al., 2016) or model–data fusion products. For in-
stance, Rodríguez-Fernández et al. (2018) have compared
VOD from the SMOS satellite against optical vegetation in-

dices, lidar tree height, and different aboveground biomass
benchmark maps. Consistent with other studies, their re-
sults show that VOD is often a better proxy for tree height
and biomass compared to optical greenness indices (such as
the Normalized Difference Vegetation Index, NDVI, or En-
hanced Vegetation Index, EVI). Thus, VOD has been increas-
ingly used to monitor changes in aboveground biomass and
terrestrial carbon sequestration at inter-annual and seasonal
timescales (Brandt et al., 2018; Wigneron et al., 2020; Fan et
al., 2019).

In addition to providing information about long-term
biomass changes, VOD has also been shown to exhibit sig-
nificant short-term variability, which is thought to be related
to changes in relative vegetation water content (Feldman et
al., 2021). Using observations from the AMSR-E satellite,
Konings and Gentine (2016) found significant variations be-
tween midnight and midday VOD that may put an invaluable
constraint on plant response to water stress at the ecosystem
scale (Lee et al., 2013; Konings et al., 2021). Further stud-
ies also highlighted intercepted water (due to either rainfall
or dew) as a potential factor explaining diurnal variations in
VOD (Xu et al., 2021). Using a ground-based radiometer,
Holtzman et al. (2021) showed that VOD variations over the
course of a day could be linearly related to in situ measure-
ments of leaf water potential. This is consistent with a pre-
vious study by Momen et al. (2017) that found good agree-
ment between satellite-based VOD and leaf water potential
measurements across three different US sites. Measurements
with active microwave sensors have also shown that radar
backscatter exhibits diurnal variations that can be related to
both dew and relative water content (Vermunt et al., 2021;
Konings et al., 2017b).

Considering some advantages of microwave-range obser-
vations compared to visible-range observations1, such stud-
ies have demonstrated the value of VOD for monitoring veg-
etation dynamics from space (Konings et al., 2021). How-
ever, they have also revealed our limited ability to (i) vali-
date spaceborne VOD observations and (ii) disentangle the
multitude of factors that may affect them across a wide
range of ecosystems and climatic conditions. Established
eco-hydrological measurement networks (e.g., FluxNet or
SapFluxNet) can provide most of the necessary colocated
observations in terms of meteorological parameters, water
fluxes, canopy structure, and biomass (e.g., Momen et al.,
2017), but only a few of these sites have ever been equipped

1Microwave remote sensing has two key interesting properties.
First, it is relatively independent of cloud cover and solar illumina-
tion conditions, and second it is not only sensitive to the surface of
the observed material but also to its content (up to a certain penetra-
tion depth). Drawbacks include its lower energy and longer wave-
length, which usually translate into coarser spatial and/or radiomet-
ric resolutions and some difficulty in disentangling the many dif-
ferent factors contributing to the measured signal (i.e., the ground
versus the vegetation contributions, the surface roughness, the ma-
terial’s temperature, and its moisture content).
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with microwave radiometers or active radars, and where this
is the case it was usually for limited periods of time. Yet,
continuous in situ VOD observations at these sites could also
serve as a particularly useful indirect proxy to interpolate
and gap-fill the sparse and labor-intensive measurements of
biomass and leaf water status. There is thus a need for a cheap
and robust method to obtain ground-based VOD measure-
ments over a wide variety of already monitored sites.

Here, we propose using microwave signals from the ex-
isting Global Navigation Satellite Systems (GNSS) to moni-
tor the transmissivity and VOD of a vegetation canopy. The
experimental setup consists in a pair of GNSS receivers,
one placed on a tripod below a forest canopy and one lo-
cated above the canopy with an unobstructed view of the sky
(Fig. 1). Here, canopy is understood as the portion of vegeta-
tion lying above the sensor (in our case, this excludes the for-
est floor and ground vegetation). The main idea is that the dif-
ference in measured signal strength between the two instru-
ments will yield information about the opacity of the canopy.
Fortunately, many survey-grade GNSS receivers available on
the market can be configured to log signal strengths, mak-
ing it relatively easy to implement such a system. The GNSS
microwave signals fall in the L band (1–2 GHz), similar to
frequencies used by the SMOS and SMAP satellites for cal-
culating VOD. Nowadays, four major GNSS constellations
(GPS, GLONASS, Galileo, and BeiDou) represent about a
hundred orbiting satellites, such that about 20 to 40 satel-
lites may be visible and individually tracked from the ground
at any given time and from any location in the world. Se-
tups similar to the one shown in Fig. 1 have been tested be-
fore, for instance Rodriguez-Alvarez et al. (2012) used it to
estimate the canopy water content of a walnut tree stand,
whereas Camps et al. (2020) used it to estimate VOD in a
beech forest and make comparisons with optical indices. Ku-
rum and Farhad (2021) also tested it with mobile GNSS an-
tennas, and Zribi et al. (2017) used it to monitor sunflower
canopies. Over the last few decades, GNSS-based monitor-
ing of the Earth’s surface has been demonstrated in a wide
variety of domains ranging from oceanography to hydrology.
While we rely here on the attenuation of the direct GNSS sig-
nal through the canopy, it is worth noting that other GNSS-
based techniques, such as GNSS reflectometry, have been
used to monitor soil moisture, snow height, vegetation wa-
ter content, and biomass (Larson et al., 2009; Small et al.,
2010; Chew et al., 2014; Egido et al., 2014; Larson, 2016;
Chew and Small, 2018; Ruf et al., 2018; Santi et al., 2019;
Carreno-Luengo et al., 2020; Guerriero et al., 2020; Pan et
al., 2020; Munoz-Martin et al., 2022). GNSS reflectometry
relies on GNSS signals that are reflected from the Earth’s
surface and are weaker than the open-sky GNSS signals used
as reference here.

The goal of this study is to demonstrate the potential
of ground-based GNSS receivers for monitoring VOD, dry
aboveground biomass, and water content continuously. In
Sect. 2, we describe the measurements conducted at the study

Figure 1. Instrument setup for measuring GNSS-based VOD. Each
instrument consists of an antenna and a GNSS receiver.

site and outline a simple canopy transmissivity model that
is later used to estimate canopy density and water content
from VOD measurements. Section 3 presents the raw GNSS
measurements and the processing approach used to transform
these into a canopy-averaged VOD time series. Section 4
compares the obtained seasonal and diurnal VOD time series
against other in situ and satellite measurements. Section 5
provides an example of retrieval algorithm for aboveground
biomass and canopy water content. Finally, Sect. 6 summa-
rizes the main conclusions and provides some recommenda-
tions with respect to future deployments at existing ecohy-
drological sites.

2 Data and methods

2.1 Site setup

The experiment consists of a reference site that has an un-
obstructed view of the sky and a forested site that is lo-
cated under a semi-closed forest canopy (Fig. 1). The open-
sky reference site is located on the roof of a building of
the California Institute of Technology in Pasadena, Califor-
nia (34.13624◦ N, 118.12693◦W), and the forested site is
located in the Huntington Library Botanical Garden, some
1.7 km away (34.12404◦ , 118.11582◦W). The forested site
is non-irrigated, with trees of about 5 to 15 m height. Tree
species surrounding the antenna are mainly coast live oaks
(Quercus agrifolia Née), and the understory is herbaceous.
The overall climate is Mediterranean with weather condi-
tions that are usually clear, daily maximum temperatures
between 25 and 35 ◦C, and low relative humidity. At each
site a Septentrio PolaRx5e GNSS receiver, connected to a
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PolaNt-x MF right-hand circular polarized (RHCP) GNSS
antenna, measured multi-constellation (GPS, GLONASS,
Galileo, BeiDou) GNSS signals over the period of 13 May to
10 December 2020, with a logging rate of 15 s. Power loss at
the site from 15 June to 1 July caused a data gap of 17 d. The
raw GNSS data were quality-checked using the “teqc” pre-
processing software, publicly available at the UNAVCO web-
site (http://www.unavco.org/software, last access: 20 April
2023). The satellites’ azimuth and elevation angles are also
computed with teqc. Weather data are measured at the refer-
ence site by a station of the Total Carbon Column Observing
Network (http://tccon-weather.caltech.edu/, last access: 20
April 2023). Weather data acquisition was interrupted from
15 to 26 July. Rainfall was measured with a tipping bucket
at the Department of Public Works (DPW) HQ station (5 km
from the forested site) by the Department of Public Works
of the City of Los Angeles (https://dpw.lacounty.gov/wrd/
rainfall/, last access: 20 April 2023).

2.2 Leaf water content

A total of 48 leaf samples were collected from two live oaks
closest to the GNSS antenna on 18 October 2020, at 07:00,
12:00, and 17:00 LT (local time) using a 2 m long pruner. For
each tree we equally sampled the same three different parts
of the crown. Unless otherwise stated below, we followed the
protocol advised in Mullan and Pietragalla (2012). Leaves
were weighed on-site immediately after being sampled (fresh
weight, FW) and stored individually in cooled glass vials.
They were then transported to the lab where about 1 cm of
water was added to each vial to cover the leaves’ petioles.
Turgid weight (TW) was measured after 12 h in a refrigerator
(and in darkness). Then, the leaves were dried at 80 ◦C for a
period of 24 h, after which dry weight (DW) was measured.
Relative leaf water content (RLWC, in percent) is calculated
as follows:

RLWC=
FW−DW
TW−DW

× 100. (2)

We also calculate the gravimetric moisture content of the leaf
(mg, in g g−1), a variable that is later used to model the leaf
dielectric constant.

mg =
FW−DW

FW
(3)

2.3 Canopy transmissivity model

We use a dielectric mixing model of the canopy transmis-
sivity to investigate the potential roles of canopy volumetric
density, water content, and temperature on the GNSS-based
VOD measurements. We use a relatively simple formulation
that only considers the attenuating effect of the canopy on
the direct signal power and represents the canopy as a homo-
geneous layer, assumed to consist of randomly distributed

elements (Ulaby and Jedlicka, 1984; Ulaby and Long, 2014;
Guglielmetti et al., 2007). The transmissivity of the canopy
is expressed as a function of a bulk canopy extinction coeffi-
cient (κe), canopy height (h, in meters), and incidence angle.

γ = e
−2κeh
cosθ (4)

We define a fixed average canopy height of 7 m based on field
observations. Neglecting scattering, the extinction coefficient
is related to the complex index of refraction of the canopy
layer (nc

′′) (Ulaby and Long, 2014):

κe =
2π
λ0
nc
′′, (5)

where λ0 is the free-space wavelength (in meters). Note that
this formulation and the overall concept of bulk coefficients
is applicable only when the inclusions in the canopy (i.e., the
pockets of water within the vegetation tissues) are smaller
in size compared to the observation wavelength (here λ0 ≈

19 cm for the GPS L1 frequency), meaning that scattering ef-
fects are small enough to be neglected (also see Jackson and
Schmugge, 1991; Ulaby and Long, 2014). While this may be
true for leaves, this assumption may not hold for larger ele-
ments such as branches and trunks. However, using a more
complex theoretical scattering model, Guerriero et al. (2020)
showed (for the case of a poplar forest) that the RHCP GNSS
signals measured below a forest canopy are dominated by
coherent attenuation, whereas only the left-hand circular po-
larized (LHCP) signals (which most geodetic ground-based
GNSS antennas are designed to reject) are dominated by vol-
ume scattering. The complex index of refraction is calculated
from the dielectric constant of the canopy layer (εc) (Ulaby
and Long, 2014).

nc
′′
=−Im

{√
εc
}
, (6)

where Im indicates the imaginary part of a complex num-
ber. The canopy consists of two main phases: the surround-
ing air, which makes up most of the canopy volume, and the
vegetation material. The dielectric of the canopy εc is calcu-
lated using a two-phase refractive mixing approach (Ulaby
and Long, 2014, their Eq. 4.45):
√
εc = vveg

√
εveg+

(
1− vveg

)√
εair, (7)

where υveg represents the vegetation volumetric density, a
parameter that may vary as a function of the growth cycle
and is defined as the volume fraction of the vegetation mate-
rial within the canopy (on the order of 0.0001–0.01 m3 m−3).
This parameter is not to be confused with other measures of
vegetation density like crown volume (i.e., including empty
space) per meter squared. The term

(
1− vveg

)√
εair is prac-

tically equal to 1 with no imaginary part, such that Eq. (7)
can be rewritten as follows (Ulaby and Long, 2014, their
Eq. 11.89):

nc
′′
≈−Im

{√
εveg

}
vveg. (8)
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Figure 2. Modeled VOD at the GPS L1 frequency (1.575 GHz). (a–b) Modeled responses of canopy VOD and the vegetation material’s
dielectric properties to changes in gravimetric moisture content and temperature. The bold lines in (a) are obtained assuming a temperature
of 10 ◦C, with thin lines indicating 10 ◦C increments. The bold lines in (b) are obtained assuming a gravimetric moisture content of 0.4 g g−1,
with thin lines indicating 0.1 g g−1 increments. (c) Modeled response of canopy VOD to vegetation volumetric density. Canopy height is
fixed at 7 m, and salinity is fixed at 8 ‰.

The dielectric of the vegetation (εveg) incorporates a real and
an imaginary part, namely the dielectric permittivity and the
dielectric loss (εveg = εveg

′
− iεveg

′′). Both depend on vari-
ous factors, but the most important ones are the considered
wavelength, the vegetation water content, and the plant wa-
ter’s temperature and ionic conductivity. Here we model εveg
using the semi-empirical model for vegetation introduced by
Ulaby and El-rayes (1987) and valid over the range 0.2–
20 GHz. This model is derived from an observational dataset
of corn leaves and has been successfully used for a wide
range of species, including trees (e.g., Chuah et al., 1995).
The model expresses the dielectric of the vegetation εveg as
a function of its gravimetric moisture (mg), its temperature,
and its salinity. The numerous equations are not reported here
but can be found for instance in Ulaby and El-rayes (1987)
and Ulaby and Long (2014).

The purpose of the transmissivity and dielectric models
described above is to provide a simple estimate of the po-
tential effects of canopy density, temperature and water con-
tent changes on canopy transmissivity. It is important to note
that this simple formulation neglects several aspects, includ-
ing volume scattering, which may be important in config-
urations with denser biomass (and also when interpreting
LHCP backscatter or LHCP signals). In Fig. 2, we illus-
trate the modeled VOD response (at the GPS L1 1.575 GHz
frequency) to potential changes in vegetation water content,
temperature, and vegetation volumetric density. As expected,
an increase in vegetation moisture content (Fig. 2a) leads to a
substantial increase in the vegetation’s dielectric permittivity
and dielectric loss, which results in a lower canopy trans-
missivity. Temperature influences the vegetation’s dielectric
properties as well, albeit less markedly (Fig. 2b). The ionic
conductivity of the plant water is the main factor explain-
ing the slight dependency of the loss factor (and of VOD)

on the temperature. Finally, vegetation volumetric density
within the canopy is also a parameter that strongly controls
the transmissivity (Fig. 2c). Note that the shape of these re-
sponse curves (the response to temperature in particular) may
change depending on the considered frequency.

2.4 GNSS data processing

2.4.1 Raw SNR observations

Most survey-grade GNSS receivers commonly register
signal-to-noise ratios (SNR, in dB), which express the mag-
nitude of the received signal power from each satellite com-
pared to the background noise (Bilich et al., 2007). The quan-
tity logged by the Septentrio receiver is the carrier-to-noise
density ratio (C /N0), which we report as SNR for simplicity,
assuming a 1 Hz bandwidth (Larson and Nievinski, 2012).
The hemispherical plot in Fig. 3a illustrates the SNR val-
ues measured over the course of a single day at the reference
(open-sky) station for just one satellite of the GPS constel-
lation (PRN2). GNSS satellites are commonly identified by
their pseudorandom code (PRN), which allows the receiver
to determine which satellite is being tracked, such that its
azimuth and elevation can be calculated. Individual satellite
tracks repeat after a period that depends on the GNSS con-
stellation (e.g., twice per sidereal day (23 h and 56 min) for
GPS and every 10 sidereal days for Galileo). As is very com-
monly observed, the SNR increases as the satellite rises up
above the horizon (12:00 LT), reaches its peak value at max-
imum elevation (14:00 LT), where the antenna gain is the
strongest, and decreases again until the satellite disappears
from view (17:00 LT). As can be seen from Fig. 3b, the same
satellite track observed from the forested site shows numer-
ous drops in SNR. Assuming a comparable level of back-
ground noise at the two sites, the SNR difference between the

https://doi.org/10.5194/bg-20-1789-2023 Biogeosciences, 20, 1789–1811, 2023
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Figure 3. Sky plots illustrating the SNR observations on 21 May
2020 for one specific GPS satellite (PRN2) at the open-sky site
(a) and the forested site (b). (c) Difference in SNR between the
two sites. (d) The same as (a–c) but showing the temporal evolution
of the SNR. The center of the polar plots corresponds to the local
zenith.

two sites (1SNR, Eq. 9) reflects, for the most part, the trans-
missivity of the canopy, expressed in decibels. As expected,
it is mostly negative (Fig. 3c–d), indicating attenuation by the
forest canopy.

1SNR= SNRForested−SNROpenSky (9)

Combining all available data (May to December 2021) from
102 individual GNSS satellites, we produce a hemispheri-
cal map of the average 1SNR (Fig. 4a), which matches the
overall distribution of canopy density as seen from the an-
tenna location (Fig. 4b). Note that absolute SNR values vary
from spacecraft to spacecraft, as those have different (and oc-
casionally time-varying) transmit powers. It is thus very im-
portant to first pair the individual SNR measurements taken
by the two receivers and only then average any 1SNR val-
ues.

It should be noted that while the SNR measurement is
dominated by the contribution of the direct (line-of-sight)
signal, it also includes a comparatively weaker contribution
from volume scattering and indirect ground multipath reflec-
tions (Bilich et al., 2007; Smyrnaios et al., 2013), the latter of
which may contain information about, for instance, soil wa-

Figure 4. (a) Sky plot illustrating the mean SNR difference be-
tween the open sky and the forested site for L1 and L1C signals
(n= 2.17× 107 observations, taken over an 8-month period). The
mean value within each 2◦ equal-area sky sector is shown. Some
sky sectors in (a) are obstructed by buildings at the reference site
and are thus excluded from the analysis (towards the northwest and
northeast). (b) Hemispheric photograph taken from the perspective
of the forested site antenna.

ter status (Larson, 2016). Ground multipath often manifests
itself as a periodic oscillation of the SNR, which is caused
by the successively constructive and destructive interference
from ground reflections, as a function of the satellite’s ele-
vation angle. Such periodic oscillations of a few decibels are
barely visible for instance in Fig. 3d at the beginning and the
end of the SNROpenSky time series (blue curve), where the
roof’s floor acts as the reflector. However, while present in
our data, ground multipath represents a signal that is about an
order of magnitude smaller than the attenuations caused by
the presence of trees in the line of sight. It is only in some fa-
vorable situations (e.g., flat grasslands, areas of open water),
where large flat surfaces surrounding the antenna produce
a coherent structure in ground reflections, that multipath is
strong enough to be reliably detected in SNR, even though
our GNSS systems are explicitly designed to reject such
signals. Indeed, most geodetic-grade antennas have metal
ground planes and are much less sensitive to the predom-
inantly left-hand circular polarized (LHCP) ground reflec-
tions of the transmitted right-hand circular polarized (RHCP)
signal (note that, in contrast, spaceborne GNSS reflectome-
try also relies on the LHCP signal). Thus, in our case, the
difference in SNR between the two sites is predominantly
due to the attenuation of the direct RHCP signal by the forest
canopy, and it is reasonable to assume that ground multipath
effects are of the second order. This is also confirmed by a
1SNR close to zero in the sky sectors where the canopy is
either absent or very sparse (Fig. 4). It is only when the in-
cidence angle is larger than 80◦ that the majority of the re-
flected GNSS signal is co-polarized (RHCP) (Smyrnaios et
al., 2013). As a precaution, we discard all observations with
an incidence angle higher than 80◦ for the remainder of the
analysis.
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2.5 Transmissivity and vegetation optical depth

After conversion from decibels to a linear scale (Eq. 10), the
1SNR measurements are used as the transmissivity estimate,
and VOD is calculated from Eq. (11). Note that in our case
this represents L-band VOD at RHCP polarization.

γ = 10
1SNR

10 (10)
VOD=− ln(γ )cosθ (11)

The resulting hemispherical distribution of long-term mean
transmissivity and VOD is reported in Fig. 5a–b. In some
cases, the instantaneous transmissivity values computed from
the raw GNSS measurements were higher than 1, leading to a
VOD lower than zero (about 8 % of all measurements). This
occurs because individual SNR measurements unavoidably
include some random noise and non-random multipath in-
terferences that can cause the measured signal power at the
reference site to be transiently lower than at the forested site.
This especially occurs where there are gaps in the canopy and
both antennas have a clear line of sight to the satellite. To pre-
serve the error structure of the measurements, we propose to
still use these values when computing temporal (i.e., daily or
hourly) averages later in the paper so that positive and neg-
ative errors can cancel out, avoiding a potential bias in our
estimate of the average VOD (Fig. 5b). While transmissivity
has an obvious dependence on the incidence angle (Fig. 5c),
this is not the case for VOD (Fig. 5d), as would be expected
from Eq. (1). The strong anisotropy of the long-term VOD
pattern (Fig. 5b) reflects the heterogeneous structure of the
canopy (Fig. 4b), with local mean VOD values ranging from
0.16 to 2.46 (1st and 99th percentiles) depending on the az-
imuth and incidence angle. The whole canopy average VOD
is 0.79, which is similar to what is reported for evergreen
broadleaf forests at L band (Konings et al., 2017a).

2.6 Computation of VOD time series

Because changes in VOD over time may provide valuable
information about the vegetation’s growth cycle and water
content, it is of great interest to investigate its temporal evo-
lution. However, this is complicated by the patterns of GNSS
orbits, which change continuously. In Fig. 6a, we provide an
overview of the most frequent orbit patterns over our site
and their mean revisit time, showing which sky sectors are
most often observed. While it takes about a day on average to
cover most of the observable sky sectors (Fig. 6b, red curve),
monitoring one specific section of the canopy every 1 or 2 h
would only be possible over a narrow band where many satel-
lite tracks coincide (Fig. 6a). Note that the location of the
highly sampled band (and the blind spot above it) depends on
the site’s latitude (it is closer to zenith at higher latitudes) and
would be located on the opposite side in the Southern Hemi-
sphere. In practice, this means that a continuous (gap-free)
and robust VOD time series can only be obtained by aggre-

Figure 5. Sky plot illustrating the mean canopy transmissivity
(a) and mean VOD (b). The mean value within each 2◦ equal-area
sky sector is shown. (c–d) The box plots show the distribution (min-
imum, 25th, 50th, 75th percentiles, and maximum) of all individual
transmissivity and VOD measurements (n= 2.17× 107) as a func-
tion of the incidence angle (relative to zenith).

gating data collected at different azimuth and elevation an-
gles (i.e., trading angular resolution for temporal coverage).
However, as different cross-sections within Fig. 5b are ob-
served each day, the changing and irregular sampling of the
canopy introduces spurious variability in daily site-averaged
VOD. When calculating sub-daily (e.g., hourly) time series,
this problem is even more important and will obfuscate most
of the potential real variability. For example, binning the raw
GNSS-based VOD observations into hourly averages pro-
duces a rather noisy time series with just seasonal trends vis-
ible (Fig. 7a–b, “VOD raw”). This is because a lot of the
variability in VOD raw is caused by the fact that different ar-
eas of a heterogenous canopy are observed every hour. This
issue can also be diagnosed quantitatively. For instance, com-
puting the serial autocorrelation2 of the raw VOD time series
(Fig. 7c) reveals periodicities likely not related to ecohydro-
logical processes but instead caused by the combined repeat
times of the different GNSS constellations.

2The serial autocorrelation is calculated using the time series
shown in Fig. 7a–b and is defined here as the Pearson correlation
coefficient between the time series at time t and t− l, where l is the
lag.
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Figure 6. (a) Sky plot illustrating the mean revisit time (average number of hours until the next overpass within a given sky sector). This
includes the GPS, GLONASS, Galileo, and BeiDou constellations. (b) Average sampling statistics as a function of data integration time.
For instance, 84 % of all observable sky sectors are observed at least once after 24 h of continuous measurements (red curve). After 30 d of
continuous measurement, 62 % of all observable sky sectors and hours of the day have been observed at least once (yellow curve).

Here, we propose addressing this sampling problem by
subtracting the long-term average (similar to what is shown
in Fig. 5b) taken at the same azimuth and incidence angle
from each individual VOD observation. The goal is to sub-
tract the angular heterogeneity in VOD, representing the un-
even canopy distribution, and only retain residuals from the
locally averaged attenuation (Eq. 12). The long-term aver-
age at a given incidence angle and azimuth (Eq. 13) is cal-
culated inside a neighborhood Ni that includes all measure-
ments within some chosen angular distance δ from that point
of interest (Eq. 14).

VODresidual
ϕi ,θi ,ti

= VODϕi ,θi ,ti −VODmean
ϕi ,θi

(12)

VODmean
ϕi ,θi
=

1
n

n∑
j=1

(
VODϕj∈Ni ,θj∈Ni

)
(13)

Ni : hav
(
λi − λj

)
+ cos(λi)cos

(
λj
)

hav
(
ϕi −ϕj

)
< hav(δ) (14)

Here the terms ϕi , λi , and ti represent the azimuth, elevation,
and time step of the point of interest (for angles expressed in
degrees, λ= 90− θ). Equation (14) is the condition that de-
termines if measurements belong to the neighborhood around
the point of interest “i”. The left term in Eq. (14) is the for-
mula for the haversine of the angle between any two points
on a sphere. The right term is the haversine of a chosen angle
δ, which defines the extent of the neighborhood.

An adequate value for δ may be selected based on the au-
tocorrelation of the VOD observations with respect to the an-
gular distance (Fig. S1 in the Supplement). The results sug-
gest that there is a high consistency of the VOD estimates
up to an angular distance of about 0.5 to 1◦. Figure S1 also
provides some indication of the repeatability of the measure-
ments when taken at an interval of several days. As can be

expected, observations separated by a longer temporal inter-
val are in lower agreement. The selection of δ is ultimately a
compromise between obtaining an accurate long-term VOD
average while still retaining enough observations within the
neighborhood. In our case, we found that δ = 0.5◦ seems to
be an adequate value. To avoid excessive computations, we
calculate VODmean

ϕi ,θi
at each node of a fine hemispherical grid

with a spacing of 0.1◦. The VODmean
ϕi ,θi

value closest to each
individual VODϕi ,θi ,ti is then used in Eq. (12). Binning the
calculated VOD residuals into hourly averages, we produce
a processed time series of the average VOD (Fig. 7, “VOD
processed”). To preserve the original absolute level of VOD,
the average VODmean

ϕi ,θi
(across all ϕ and θ) is added back to the

residual time series (otherwise the “VOD processed” time se-
ries would be centered around zero). The serial autocorrela-
tion of that processed time series (Fig. 7d) is now dominated
by a more credible 24 h cycle.

3 GNSS-based vegetation optical depth

3.1 Seasonal changes

In Fig. 8, we compare processed daily VOD averages against
other observations. Using quality-checked 30 m satellite im-
ages from Sentinel-2 (Claverie et al., 2018), we calculate
the EVI (Liu and Huete, 1995) at our site (Fig. 8a). EVI
is a commonly used vegetation index and an overall proxy
for vegetation greenness, health, and photosynthetic activity.
Generally, we find that the temporal evolution of VOD ap-
pears to lag behind that of EVI by about 2 months. This is
consistent with previous findings over drylands by Tian et
al. (2016), who found a temporal shift (increasing as a func-
tion of forest density) between satellite-based VOD and veg-
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Figure 7. (a) Hourly time series of VOD before and after reducing the impact of irregular sampling caused by the GNSS orbit patterns.
(b) Zoom on August showing sub-daily variability in VOD. (c–d) Serial autocorrelation of the raw and processed VOD time series.

etation greenness. They suggest that this may be explained
by the longer growing season and later peak time of woody
plants compared to the herbaceous understory. Similar lags
between peak NDVI and peak VOD have been observed in
other regions of the world from satellite data (Wang et al.,
2020; Tian et al., 2018). The peak EVI in June coincides with
the maximum in available solar energy (Fig. 8b), and with an
increase in VOD, which could suggest a buildup of biomass
in the canopy. This is followed by a slow decline in EVI that
does not occur in VOD until the end of August. The gradual
decline in vegetation activity and health over the summer is
typical of the region and is mainly a response to the over-
all increase in water stress resulting from warmer temper-
atures, drier atmosphere, and low soil moisture after months
with no rainfall. The 2020 summer culminated with a record-
breaking heat wave on 6 September (Fig. 8c), followed by a
steady decline in VOD during the fall season where some
minor shedding of leaves could be observed at the site.

3.2 Diurnal cycle

Even though processed hourly VOD time series contain a cer-
tain amount of noise (e.g., Fig. 7b), they also show a rel-
atively strong 24 h cycle (Fig. 7d). One way of obtaining

a more robust and precise estimate of that diurnal cycle is
to calculate the average diurnal cycle from data aggregated
over a long period of time, e.g., several days or even a whole
month. This is what is done in Fig. 9a. The average diur-
nal cycle of VOD is consistent with what would be expected
from the perspective of plant physiology and its response to
water stress over the course of a typical day. VOD culmi-
nates in the early hours of the morning (at around 05:00 to
06:00 LT), indicating a relatively “water-rich” canopy, be-
cause leaves and stems have been replenished with water
overnight and likely also due to the occasional presence of
dew in the canopy. This peak is followed by a gradual drop
after sunrise (at about 06:00 LT), concurrent with the onset
of photosynthesis and transpiration, as well as an increase in
vapor pressure deficit (i.e., an increase in atmospheric water
demand). As a result, dew quickly evaporates and the veg-
etation starts losing more water through transpiration, thus
depleting canopy water content. Around noon, some equilib-
rium is reached between plant water losses and plant water
supply so that VOD becomes relatively stable. In the evening,
plant rehydration causes VOD to rise back.

A minor peak in VOD is observed at around 15:00 LT but
remains difficult to explain without further evidence. That
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Figure 8. Daily time series of GNSS-based VOD compared against (a) Enhanced Vegetation Index calculated from harmonized Sentinel-2
images (HLS v1.4, 30 m resolution, https://hls.gsfc.nasa.gov/, last access: 20 April 2023), (b) solar and potential solar radiation observed at
the reference site, (c) air temperature observed at the reference site, and (d) precipitation totals measured at the closest rain gauge station.

peak might indicate a brief period of canopy rehydration,
documented for instance in Douglas firs (Cermak et al., 2007,
their Fig. 6), resulting from midday stomatal closure (Xiao
et al., 2021). The associated “midday depression” of tran-
spiration and photosynthetic rates has been widely docu-
mented (e.g., Faria et al., 1996; Kamakura et al., 2011). How-
ever, theory (Fig. 2b) also predicts that VOD could slightly
increase in response to higher canopy temperature, which
would peak at about that time of the day. In Sect. 4.2, we
present an attempt to disentangle these two possible contri-
butions.

Overall, our results agree with previous observations of
a diurnal cycle in VOD and backscatter (e.g., Konings et
al., 2017b; Holtzman et al., 2021; Vermunt et al., 2021; Pri-
gent et al., 2022). Such diurnal VOD changes are consistent
with our knowledge of canopy water storage dynamics, as
derived from either continuous direct measurements (Zhou
et al., 2018) or from the imbalance between plant water
losses (i.e., transpiration) and plant water supply (i.e., mea-
sured with sap flow sensors) (Kocher et al., 2013; Cermak
et al., 2007). The leaf samples collected on the site in Oc-
tober also confirm that some intraday variability exists in
relative leaf water content (Fig. 9b). Monitoring the diurnal
cycle of plant water status is interesting because it can pro-
vide key information about plant hydraulic traits (Konings
and Gentine, 2016) and enables disentangling the effects of

limitations in root water uptake, plant transpiration, and wa-
ter redistribution within the plant (Konings et al., 2021). In
Fig. 9c, we investigate whether our method would be able to
monitor such physiologically relevant changes, specifically
seasonal changes in pre-dawn versus midday water status.
We find midday VOD to be almost always lower than pre-
dawn VOD, a behavior that is entirely consistent with field
observations of pre-dawn and midday leaf water potentials
(Martínez-Vilalta et al., 2014). Seasonally, both pre-dawn
and midday VOD start to decrease in September with the
start of a very dry period during which the vapor pressure
deficit (VPD) remains high even during the night. Pre-dawn
and midday VOD are significantly correlated with each other
(r = 0.79), as is frequently observed with leaf water poten-
tial; however, we note that this might also occur (at least
partly) because VOD is sensitive not only to relative changes
in water content but also to potential seasonal changes in the
absolute amount of biomass present in the canopy (Momen
et al., 2017). These mixed contributions from both absolute
biomass and its relative water content are even better illus-
trated in Fig. 9d, where we find that the amplitude of the
diurnal cycle in VOD becomes larger as denser sections of
the canopy are considered.
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Figure 9. (a) Average diurnal cycle for the month of August. Average VOD (black) is shown at a 15 min sampling rate with shaded areas de-
lineating the 25th and 75th percentiles. VPD and surface wetness data from the TCCON weather station have hourly resolution. (b) Average
diurnal cycle for the month of October compared with in situ measurements of relative leaf water content. (c) Daily pre-dawn and mid-
day VOD, calculated using all observations within the windows 04:00–06:00 and 12:00–14:00 LT, respectively. (d) Diurnal VOD anomaly
(centered around zero) measured for progressively denser classes of canopy (based on the long-term VOD average; see Fig. 5b).

4 Retrieval of canopy density and water content

4.1 Approach and algorithm

In the following, we demonstrate an approach to retrieve
changes in canopy density and water content at hourly resolu-
tion based on the transmissivity model presented in Sect. 2.3.
Combining Eqs. (1), (4), (5), and (8) we obtain the following
expression for modeled VOD′:

VOD′t = 2keh= 2
2π
λ0

[
−Im

{√
εvegt

}]
vvegth. (15)

Canopy height h is 7 m, and λ0 is the free-space wavelength.
This leaves the following items as free parameters: vvegt , the
time-dependent vegetation volumetric density (in m3 m−3),
and εvegt , the time-dependent bulk dielectric constant of
the vegetation, which is itself a function of the (measured)
temperature, (unknown) water content (mg), and (unknown)
salinity of the plant water (Ulaby and El-rayes, 1987). A

similar expression may be found, for instance, in Kerr and
Wigneron (1995) or Guglielmetti et al. (2007).

Here, we use the canopy-averaged processed VOD time
series (i.e., Fig. 7b) as the observed VOD. This means that
canopy density and water content are assumed to evolve ho-
mogeneously over the whole canopy. If the forest canopy is
very heterogeneous, this might not be a suitable approxima-
tion. For instance, some groups of trees may evolve at dif-
ferent speeds, or individual trees may exhibit different re-
sponses to water stress. If this is suspected, a retrieval may
be performed for each individual tree, potentially at the cost
of retrieval accuracy since fewer observations will be avail-
able. In practice, this would mean separating the field of view
of the antenna into subsectors (e.g., based on data similar to
Fig. 4) and computing a processed VOD time series for each
subsector. However, for the sake of simplicity this is not done
here, and we perform only one retrieval for the whole canopy.

Disentangling the effects of changes in overall biomass
density (vveg) versus variations in water content (mg) is one
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of the main challenges when trying to interpret and better
understand VOD (Momen et al., 2017; Konings et al., 2019).
Because changes in biomass tend to unfold at a much slower
pace than changes in relative water content, a common strat-
egy has been to assume that long-term changes in VOD are
mostly related to biomass, while short-term changes (and es-
pecially a diurnal signal) are most likely due to variations
in water content (e.g., Konings et al., 2016). In the retrieval
detailed below, we will make use of this assumption and al-
low vveg to contain only low-frequency (long-term) changes.
We also assume that the temperature of the canopy can be
approximated by the air temperature. While leaf and air tem-
peratures are not necessarily equal, as documented by many
field studies, an error of a few degrees is negligible for the
purpose of calculating εveg (Fig. 2b), and our main purpose
is only to gain a reasonable representation of the seasonal
and diurnal effects of temperature on the dielectric constant.
We also note that these temperature impacts on the dielectric
are often neglected in other studies.

Finally, the plant water salinity is also unknown in our
case, but it is most likely within a range of about 1 to 11 psu
according to previous experience (Ulaby and Long, 2014).
In the absence of any other data, we assume that salinity is
constant over the whole time period. In our retrieval algo-
rithm, a range of a priori values for vegetation water salinity
is tested, and the value yielding the best overall (season) fit
to the observed VOD data is selected as the most plausible.
We note that salinity, in the context of the dielectric model of
Ulaby and El-rayes (1987), is meant to account for the ionic
conductivity of the plant water (due to both sugars and salts).
Thus, the salinity yielding the best fit might not necessarily
reflect the actual (NaCl) salinity of the plant water.

Below, we summarize the retrieval algorithm step by step.
The root-mean-squared error between modeled and observed
VOD is always used as the cost function, and optimization at
steps 2 and 4 is carried out with a simplex search method. We
define the search space formg, the gravimetric moisture con-
tent as [0.3, 0.7]. This is guided by the average values mea-
sured at the site (mg = 0.45± 0.02 g g−1), and also by data
from Scoffoni et al. (2014) for Quercus agrifolia in the Los
Angeles area (mg = 0.48 g g−1). The search space for vveg
(volume of vegetation material per cubic meter) is loosely
defined as [0.0001, 0.01 m3 m−3] based on the indications of
Ulaby and Long (2014).

Algorithm

1. Select an a priori value for salinity.

2. For each 24 h period, optimize vveg (one value for the
entire 24 h period) together with mg (24 individual
hourly values). The result is a time series of daily vveg
and hourly mg covering the whole season (Fig. 10a).

3. Filter the time series of vveg with a low-pass filter. Here
we use a local regression filter (LOESS) with ±30 d
width (Fig. 10a).

4. Optimize mg using the new vveg values obtained at step
3 (Fig. 10b).

5. Filter the time series ofmg to reduce the high-frequency
noise. Here we use a LOESS filter with ±2 h width
(Fig. 10b).

6. Evaluate the agreement between the modeled and ob-
served canopy-averaged VOD time series (with vveg and
mg from steps 3 and 5) and determine an optimal salin-
ity (Fig. 10c).

Because vveg is kept constant only for the duration of a day,
there is some high-frequency variability in the vveg time se-
ries that is obtained after step 2 (Fig. 10a). These sudden
and unrealistic jumps in vveg also contaminate the estimates
of mg (not shown). These problems are alleviated in step 3,
where daily estimates of vveg are low-pass filtered, consis-
tent with the assumption that changes in biomass usually oc-
cur at a relatively slow pace. Note that although calibrating
vveg over a time period longer than a day would also smooth
the estimate, we found that optimizing vveg at a daily time
step and then applying a low-pass filter was much more ef-
fective in mitigating the influence of outliers. A new hourly
time series of mg is then obtained based on the filtered vveg
time series in step 4 (Fig. 10b). Because the mg time series
is contaminated by some noise inherited from the VOD ob-
servations, some mild smoothing is applied to mg in step 5
(Fig. 10b). Steps 2 to 5 are repeated for different values of
salinity, and we retain the optimum of the cost function as the
most likely value (Fig. 10c). Here we find an optimum with
a salinity of 8.9 psu, which is a physically plausible value.

Before we interpret these results, some limitations to the
presented approach need to be emphasized. First, the dielec-
tric model of Ulaby and El-rayes (1987) was originally devel-
oped for leaves; however, it is clear that branches and stems
also contribute to canopy extinction. To our advantage, how-
ever, Kurum et al. (2009a) have determined with numerical
simulations (at L band) that leaves do have a significant im-
pact on extinction, while branches have a dominant contri-
bution only in terms of backscatter, and trunks have a neg-
ligible impact on extinction. Steele-Dunne et al. (2012) ar-
rived at similar conclusions and concluded that leaf mois-
ture is by far the dominant control on vegetation transmis-
sivity at L band for both polarizations (but see Ferrazzoli
and Guerriero, 1996, for a different perspective). Observa-
tions by Mätzler (1994) in a deciduous forest also showed a
clear dependence of the transmissivity on the presence or ab-
sence of leaves in the canopy. It is assumed that the dielectric
model of leaves and its sensitivity to moisture, temperature,
and salinity provides a sufficient approximation for the be-
havior of the whole crown (branches and stems included).
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Figure 10. (a) Time series of vveg after steps 2 and 3. (b) Time series of mg after steps 4 and 5 with a zoom on a short period for better
visibility. (c) Root-mean-squared error obtained for various salinity values. (d) Scatter plot of the modeled versus observed VOD. The data
shown in (a), (b), and (d) are based on a salinity of 8.9 psu.

However, the impact of intercepted water (due to dew depo-
sition or rainfall) is not explicitly represented and will thus be
compensated for by an overestimation of the retrieved gravi-
metric moisture content. There is unfortunately not enough
empirical data in our case to also retrieve intercepted water
independently.

4.2 Results and interpretation

In Fig. 11a, the retrieval of gravimetric moisture content (mg)

is compared against observations of leaves taken at the site
on 18 October. There is a bias of 0.04 g g−1 between the re-
trieval and the observations, a surprisingly good performance
given the assumptions made during the retrieval of mg and
the fact that a few leaf samples are not necessarily represen-
tative of the entire canopy. The relative difference between
dawn and daytime values (about 0.03 g g−1) is consistent be-
tween the retrieval and the observations. We also find that the
relationship between retrieved hourly mg and VPD becomes
narrower (Fig. 11b) compared to the relationship between
hourly VOD and VPD (Fig. 11c). Even though this does not
provide any formal validation of themg retrieval, it does sug-
gest that the retrieval is somewhat successful in concentrating
inmg a response to atmospheric water demand that is consis-
tent with observed plant stomatal behavior (e.g., Grossiord et
al., 2020).

Dry aboveground biomass (AGB, kg m−2) can be calcu-
lated by multiplying the retrieved volume of the vegetation
material (vveg×h, m3 m−2) by the average density of the dry
leaf material (ρdry). Here we use leaf density to remain con-
sistent with the model’s assumptions, but it is unknown if the
density of leaves, branches, wood, or some weighted average
of all three would be more relevant at this stage. We use a
value of ρdry = 630 kg m−3 reported by Scoffoni et al. (2014)
for Quercus agrifolia.

AGB= vveghρdry (16)

Canopy water content (CWC) is then calculated as follows:

mg =
water weight
fresh weight

=
CWC

CWC+AGB
, (17)

CWC=
AGBmg

(1−mg)
. (18)

The resulting time series are shown in Fig. 12a. For AGB, we
obtain a mean value of 10.9 kg m−2 with very little seasonal
variation, as may be expected for an evergreen forest. Note
that this estimate should be interpreted with the awareness
that VOD-based estimates of AGB likely do not weigh all
canopy constituents evenly. While L-band VOD is sensitive
to leaves, the sensitivity to branches and trunks increases at
lower leaf moisture content (Steele-Dunne et al., 2012) or if
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Figure 11. Retrieved and measured values of gravimetric moisture content (mg) on 18 October (a). Scatter plots of the hourly values of
mg (b) and VOD (c) against vapor pressure deficit (VPD) for the month of October (both correlations are significant at p < 0.01).

leaves are entirely absent. Because in situ estimates of AGB
are not available at our experimental site, we can only put
this value into the context of the literature. Several studies
have empirically linked VOD observations to global AGB
datasets that are based on satellite data and forest inventories
(Avitabile et al., 2016). For instance, using the exponential
relationship calibrated at L band by Vittucci et al. (2019), we
obtain (for an average VOD value of 0.79 at our site) an AGB
of 13.8 kg m−2, which is not so far from our estimate. Other
results from Brandt et al. (2018) suggest a linear relationship
between AGB and L-band VOD, with a sensitivity of about
133 Mg ha−1 per unit of VOD, which would yield an AGB
of 10.5 kg m−2 at our site. Thus, existing empirical relation-
ships between VOD and AGB would suggest that the results
obtained with the retrieval algorithm and its simple model are
reasonable.

In terms of canopy water content (CWC), which is a func-
tion of both mg and AGB, we find a long-term mean of
12.1 kg m−2 at our site. As for AGB, it is important to keep
in mind that the CWC estimate does not weigh all canopy
constituents evenly. In addition, our retrieval assumes that
the attenuation is dominated by small canopy elements, even
though the contribution of large elements (like large branches
or trunks) to CWC is likely not negligible. Comparisons with
other studies are quite difficult here because the relationship
between VOD and vegetation water content is poorly known
for forests. Many studies over grasslands and croplands have
demonstrated an empirical linear relationship of the form
VOD= b× CWC. However, b is also known to be vegeta-
tion and time dependent (Jackson and Schmugge, 1991; Van
de Griend and Wigneron, 2004), and it has been argued that
such a linear relationship is not necessarily appropriate for
forests (Kurum et al., 2012; Le Vine and Karam, 1996). A
mean CWC of 12.0 kg m−2 is in broad agreement with the
few studies that measured forest CWC. Recently, Kurum et
al. (2021) reported 7.3–25.6 kg m−2 across various plots of
a deciduous broadleaf forest in Manitoba (Canada) with a
mean height of 10.9 m. Yilmaz et al. (2008) estimated CWC
values ranging from about 2 to 10 kg m−2 for a deciduous

forest in Iowa (USA). In the SMAP soil moisture retrieval al-
gorithm, vegetation water content values are estimated from
NDVI (Chan et al., 2013). Their resulting (non-validated)
global map suggests a range of 6 to 18 kg m−2 for various
types of forest biomes.

In Fig. 12b–c, we investigate the temporal consistency
(over the whole season) between the retrieved CWC values
at our site and satellite observations of the Normalized Dif-
ference Water Index (NDWI) from Sentinel-2 (Gao, 1996;
Claverie et al., 2018). NDWI is a good proxy for vegeta-
tion water content and is based on optical and near-infrared
measurements, thus providing fully independent observa-
tions with respect to our retrieval. There are 24 d when NDWI
observations are available, not flagged for cloud cover, and
concurrent with a CWC estimate (Fig. 12b). We find a
relatively good agreement between CWC and NDWI (r =
0.70), higher than the agreement between observed VOD and
NDWI (r = 0.63). Interestingly, this agreement is quite de-
pendent on the timing of the in situ CWC (or VOD) mea-
surement (Fig. 12c). For instance, comparing the 10:30 LT
NDWI with the 12:30 LT CWC (or VOD) would yield a sub-
stantially lower (and statistically non-significant) correlation
of r = 0.30 (0.32 for VOD). This time dependence of the
agreement is a good indication that the diurnal cycle of CWC
is well captured and that VOD alone does not fully represent
its dynamics.

The diurnal dynamics of CWC are particularly strong,
with a diurnal amplitude of 3.8 kg m−2 on average, meaning
that 28 % of the pre-dawn CWC is depleted over the course
of the day (Fig. 12d). Such diurnal variations may seem im-
portant for a forested ecosystem but are not entirely inconsis-
tent with other studies. Over a corn field in the Netherlands,
Vermunt et al. (2022) observed that midday vegetation water
content was decreased by 10%–20% on average compared to
pre-dawn levels and even by 35.4 % on a particularly warm
day. The results of Mirfenderesgi et al. (2016), who investi-
gated the transpiration and sap flow dynamics of oaks in New
Jersey with a hydrodynamic model, suggest a diurnal ampli-
tude of about 15 % for just stem water storage. Matheny et
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Figure 12. (a) Retrieval of canopy water content (CWC) and dry aboveground biomass (AGB). (b) Comparison between NDWI estimated
from Sentinel-2 (HLS v1.4, 30 m resolution, https://hls.gsfc.nasa.gov/, last access: 20 April 2023) and our retrieval of CWC at the same hour
as the Sentinel-2 overpass. (c) Correlation between Sentinel-2 NDWI and CWC or observed VOD at different hours of the day. (d) Long-term
average diurnal cycle of CWC and modeled VOD (as predicted in Eq. 15). Panel (e) is the same as (d) but for the month of August only.

al. (2017) also reconstructed a diurnal amplitude of 14.6 %
to 22.3 % of the stem water storage from in situ sap flow
measurements of red maple in Michigan. Since our estimate
of CWC also likely incorporates an additional contribution
from dew (discussed in the next section), an average CWC
amplitude of 28 % would not be unexpected.

We find that our retrieval of CWC is slightly lagged com-
pared to the diurnal average VOD cycle (Fig. 12d). This lag
is due to the diurnal cycle of temperature and its effect on
the dielectric loss (and thus on VOD), as represented in the
dielectric model (Fig. 2b). The effect can also be seen in
Fig. 12e, which focuses on the month of August. Here a mi-
nor peak in VOD can be observed at about 15:00 LT, in the
center of the midday depression (also see Fig. 9a). Our re-
trieval suggests that at least some of this peak is in fact not
related to rehydration but to a peak in diurnal temperature.
In Fig. 13, we use the transmissivity model (Eq. 15) to ex-

plore the influence of moisture and temperature on modeled
VOD (by enforcing a seasonally constant value for temper-
ature and gravimetric moisture, respectively). As tempera-
ture increases during the day, it increases the dielectric loss
and leads to a higher modeled VOD (Fig. 13a), thus coun-
teracting the effect of moisture content changes to some ex-
tent. This effect was particularly pronounced during the heat
wave that struck the area from 5 to 6 September (Fig. 13b).
Here it can be seen that there is relatively little response in
terms of VOD during the heat wave, with only a minor in-
crease on 5 September. Because it is taking the response of
the dielectric loss to temperature into account, the retrieval
algorithm compensates for the effect of temperature with a
marked CWC drop over that period (e.g., Fig. 12a), which
makes sense from a physiological standpoint. Indeed, the
record-breaking heat wave was accompanied by VPD val-
ues of up to 8 kPa on both days (compared to an average of
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1 kPa the week before), and it would be very unlikely to see
no response in CWC (and VOD) to such a level of stress.

This modeled response of VOD to high temperatures
emerges directly from the dielectric model of Ulaby and El-
rayes (1987). It is also predicted by another semi-empirical
dielectric model of leaves proposed by Mätzler (1994), who
confirmed such a temperature dependency with seasonal ob-
servations made in a beech forest (although they did not con-
trol for potential moisture changes as a covariate). It is very
important to note that the magnitude and direction of the di-
electric loss’s dependence on temperature at L band are both
dependent on the temperature itself (Fig. 2b). For instance, at
temperatures between 0 and 20◦ C the sensitivity of L-band
VOD to temperature is negative (e.g., Schwank et al., 2021).
We note that this temperature dependency can be quite cru-
cial when interpreting water stress from VOD measurements.
As water stress conditions often correlate with warm temper-
atures, one must be careful in interpreting VOD time series
over a large dynamic range of canopy temperatures as using
VOD alone might lead to unphysical interpretations, which
in our case means an increase in canopy water in the middle
of a heat wave.

4.3 Rainfall interception and dew

The only significant rainfall event during the measurement
period occurred on 18 May (Fig. 14a). A cumulated precip-
itation amount of 10.2 mm was measured on that day and
coincided with an increase in VOD of about 20 % compared
to the usual diurnal cycle. Within a few hours following rain-
fall, this excess VOD quickly subsided but did not fully dis-
appear until the day after. We could also establish that sig-
nal strength was likely not affected by the presence of inter-
cepted water on the antenna itself (Fig. S2). These results in-
dicate that L-band VOD is quite sensitive to intercepted rain-
fall, as has been shown with X-band VOD observations from
the AMSR-E satellite (Xu et al., 2021) and from an in situ
radiometer (Schneebeli et al., 2011). The VOD anomaly also
lasted longer compared to the surface wetness measurements
taken at the reference station (Fig. 14a). This is likely be-
cause the surface wetness instrument is exposed to sunlight
and an open atmosphere, such that its surface water evap-
orates much faster compared to what happens in a forest
canopy. If future research at eddy-covariance tower sites can
demonstrate that such VOD measurements are a good proxy
for intercepted water, this may provide a useful constraint
to the partitioning of evapotranspiration fluxes into different
sources (i.e., evaporation versus transpiration).

For completeness, we also investigate the effect of dew on
our measurements in Fig. 14b–c. Unlike rainfall events, dew
events have smaller impacts on VOD and are more difficult
to isolate from other sources of variability. Thus, we focus
on the retrieved CWC time series, as it is less influenced by
day-to-day variability in temperature compared to the VOD
measurements (as discussed in the previous section). To di-

agnose some possible effects of dew on CWC, we separate a
2-month observational subset into two samples based on the
daily maximum relative humidity (RHmax). We use a thresh-
old of 70 % relative humidity to distinguish nights with and
without a potential for dew formation (Ritter et al., 2019). We
then calculate the average diurnal CWC cycles for each of
these two subsets (Fig. 14b) and compare their relative differ-
ence against the surface wetness measurements taken at the
reference site (Fig. 14c). Because the surface wetness sensor
tends to saturate relatively quickly, we exclude nights where
the wetness sensor is stuck at its maximum value. While this
does remove some nights where a lot of dew deposition is
occurring, it has the advantage of preserving the proportion-
ality between CWC and the wetness sensor measurements.
We find a relatively good agreement between CWC and the
wetness sensor data (Fig. 14c), suggesting that dew depo-
sition is reflected in our CWC retrieval. This finding is of
importance since dew deposition, even in southern Califor-
nia, would then influence and potentially bias calculated dif-
ferences between midnight and midday satellite-based VOD,
which have been used to interpret plant hydraulic behavior
(Konings and Gentine, 2016). The two-peaked structure in
Fig. 14c seems to be arising from the combination of indi-
vidual dew accumulation events occurring either after sun-
set or before sunrise. It is important to note that because the
transmissivity model does not represent surface water in a
dedicated way (Schneebeli et al., 2011), the data in Fig. 14c
should not be used to derive actual dew amounts. Here we
can only conclude that L-band VOD is likely influenced by
dew deposition, which is unlike Holtzman et al. (2021), who
found no evidence for the impact of dew on VOD measure-
ments in an oak forest, but in agreement with conclusions
from several other studies (Xu et al., 2021;Schneebeli et al.,
2011; Khabbazan et al., 2022).

5 Conclusions

In this paper we have demonstrated that a pair of GNSS re-
ceivers can be used to continuously measure L-band VOD
in a forest stand. Thanks to the diversity of GNSS satellite
orbits, a hemispheric scan of the canopy can be obtained, of-
fering the opportunity to individually monitor specific trees,
groups of trees, or classes of canopy density. While contin-
uous changes in GNSS orbit patterns and constellation con-
figurations complicate the analysis of raw observations, here
we provide a relatively straightforward solution to alleviate
this problem and produce credible VOD time series. Pool-
ing observations from the four largest GNSS constellations
(GPS, GLONASS, BeiDou, and Galileo), we show that VOD
anomalies can be resolved at hourly resolution. In particular,
our approach is able to identify a diurnal cycle in VOD that
appears consistent with what has been reported in previous
recent studies (Holtzman et al., 2021; Vermunt et al., 2021;
Konings et al., 2017b). Here, obtaining such high-frequency
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Figure 13. Counteracting effects of leaf gravimetric moisture and temperature on diurnal VOD changes, as predicted by the vegetation
dielectric model of Ulaby and El-rayes (1987). (a) Modeled diurnal VOD response to leaf moisture and temperature averaged over the month
of August. The VOD response to gravimetric moisture is estimated by setting temperature to its mean value in the model (and inversely for
the response to temperature) (b) Modeled hourly VOD response to moisture and temperature in the context of the record-breaking heat wave
of 5 to 6 September.

Figure 14. Surface canopy water effects. (a) VOD response to a rainfall event. The 5 min time series are smoothed with a LOESS filter
(±1.5 h width). (b) Average diurnal CWC for nights with and without conditions favorable to dew deposition (solid versus dashed line).
(c) Difference in CWC based on (b) compared against wetness sensor measurements (taken at the reference site).
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(e.g., hourly) VOD time series comes at the cost of angular
resolution, since measurements taken at all azimuths and el-
evation angles are aggregated into hourly averages. Because
of the configuration of the GNSS orbits, users face a trade-off
between obtaining VOD estimates at high angular resolution
(e.g., Fig. 5b) versus obtaining VOD time series at high tem-
poral resolution (e.g., Fig. 7b).

In a further step, we use existing simple models of canopy
microwave transmissivity and vegetation dielectric parame-
ters (Ulaby and Long, 2014) to demonstrate the feasibility
of using such GNSS-based VOD observations to derive in-
formation about canopy water content and aboveground dry
biomass (future work could certainly explore more complex
formulations). Owing to the limited number of ancillary in
situ measurements, this retrieval algorithm was not evaluated
against long-term ground truth observations and should be
seen as a proof of concept. Still, the resulting dry above-
ground biomass and CWC estimates agree with what has
been reported in similar studies. In addition, we show that the
CWC estimates are in good agreement with satellite observa-
tions of the research site (NDWI from Sentinel-2), but this is
only true if the hourly CWC estimates are taken precisely
at the time of the Sentinel-2 overpass. This dependency of
the agreement on the observation timing provides convinc-
ing and independent evidence that the CWC time series de-
rived from GNSS-based VOD contains valuable information.
We also investigate the potential effects of diurnal changes in
temperature on the dielectric constant of the vegetation and
its impact on L-band VOD and the retrieved CWC. We show
that temperature effects on the vegetation dielectric at L band
are predicted to play a minor but non-negligible role and can
modulate VOD variability, especially for diurnal variability
and during extreme events such as heat waves. Our results
suggest that diurnal variability in VOD due to water con-
tent could be dampened and in some cases even reverted
by the variability in temperature. This is because tempera-
tures> 20 ◦C cause an increase in the dielectric loss in saline
water, causing VOD to increase over the day, in a direction
opposite to the expected effect of diurnal canopy dehydra-
tion. The magnitude of this temperature effect is dependent
on the microwave frequency and the ionic conductivity of
the plant water according to the empirical model of Ulaby
and El-rayes (1987). Finally, we provide some evidence that
GNSS-based VOD is sensitive to surface canopy water, for
the cases of both rainfall interception and dew deposition.

Future work may focus on various aspects. Future deploy-
ments of GNSS-based measuring systems like the one pro-
posed here will be made at heavily monitored ecohydrologi-
cal research sites in order to facilitate cross-comparisons with
other in situ data. At the time of writing, we have recently
equipped three forested FluxNet eddy-covariance sites with
pairs of GNSS sensors, one in the US (US-MOz) and two in
Switzerland (CH-Lae and CH-Dav). Based on these new de-
ployments, we provide below a few recommendations. The
total cost to equip an existing research site was of about

USD 2000, with two-thirds of that amount dedicated to ac-
quiring the scientific instruments. The reference instrument
may be placed at the top of a flux tower or at some other
close location (i.e., < 5 km away) with the clearest possible
view of the sky. Positioning the subcanopy antenna is not
subject to strong restrictions. It can even be placed on the
ground (without a tripod) as long as it is level and free from
obstructions. We suggest placing the antenna in direct view
of frequently monitored trees and not too close to strong re-
flectors (large tree trunks, buildings). The sampling charac-
teristics discussed in Sect. 2.6 and reported in Fig. 6a may
be helpful in guiding new installations. Over flat terrain, the
maximum extent of the observation footprint is dependent
on the height of the vegetation (minus the subcanopy an-
tenna height). Assuming that measurements with an eleva-
tion angle lower than 10◦ are discarded, the footprint may be
roughly estimated as a circle with a radius of r = h/tan(10◦),
i.e., r ≈ 57 m for h= 10 m. We provide further recommenda-
tions in Table S1 in the Supplement. Other future objectives
should include an evaluation of GNSS-based VOD estimates
against other VOD measurements made by a tower-mounted
radar or radiometer. In particular, the degree to which GNSS-
VOD at RHCP-polarization agrees with other VOD estimates
at horizontal (H) or vertical (V) polarization is unknown.
For instance, previous studies over forests have shown that
H-polarized VOD can differ from V-polarized VOD, even
though temporal dynamics are similar (Schwank et al., 2021;
Guglielmetti et al., 2008; Kurum et al., 2009b). Even though
our observations do not suggest it, we cannot yet exclude
the possibility that GNSS-based VOD has some type of bias
compared to these other types of measurements (which do
not constitute a reference per se). The question of how to
best process the GNSS data in order to obtain VOD time se-
ries also remains to be explored. The initial solution provided
in Sect. 2.6 may likely be refined to further reduce some of
the noise still present in sub-hourly GNSS-based VOD time
series. Some additional information may also be gained by
using GNSS signals at multiple frequencies (here we used the
most common signal, which is emitted at around 1.57 GHz,
but individual constellations also broadcast signals at lower
frequencies up to 1.17 GHz).

The results presented here suggest that GNSS-VOD may
have the potential to fill a key research gap in terms of linking
satellite-based L-band VOD observations to ground observa-
tions. This contribution could take place in several ways. For
example, arrays of GNSS receivers deployed within the spa-
tial footprint of a satellite VOD grid cell (i.e., about 30 km)
may serve to estimate a regional average VOD that would
be suitable as ground truth for the satellite products. In ad-
dition, long-term in situ VOD observations performed at ex-
isting ecohydrological research sites may serve to develop
and evaluate retrieval algorithms that aim to transform VOD
into other relevant quantities of interest like aboveground
biomass, canopy water content, or leaf water potential. To
the benefit of these research sites, GNSS-VOD provides a
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useful proxy to upscale and gap-fill time series of the time-
consuming and labor-intensive measurements of leaf water
status and biomass. The ability to detect rainfall interception
and dew deposition at the scale of a whole canopy may also
provide some key information to improve our understand-
ing of water, energy, and carbon fluxes at these sites. While
GNSS-based monitoring of the Earth system remains a rel-
atively diverse and emerging research field, remote sensing
of GNSS-VOD appears to be a particularly promising appli-
cation because of its ability to address a series of research
objectives at a modest cost.

Code and data availability. Raw and processed
GNSS data files are publicly available at
https://doi.org/10.6084/m9.figshare.22140575 (Humphrey and
Frankenberg, 2023). Weather data are publicly available at
http://tccon-weather.caltech.edu/ (last access: 20 April 2023) and
https://dpw.lacounty.gov/wrd/rainfall/ (last access: 20 April 2023,
Los Angeles Department of Public Works, 2022). Harmonized
Sentinel-2 data are publicly available at https://hls.gsfc.nasa.gov/
(last access: 20 April 2023). The teqc software is publicly available
at https://www.unavco.org/software/data-processing/teqc/teqc.html
(last access: 20 April 2023, Estey, 2019).
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