

Supplement of

Global analysis of the controls on seawater dimethylsulfide spatial variability

George Manville et al.

Correspondence to: George Manville (gm441@exeter.ac.uk) and Thomas G. Bell (tbe@pml.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1: Summary of previous VLS studies

Study	Interpolation measure	Characteristic lengthscale	DMS variability lengthscale (range)
Hales & Takahashi, 2004	Absolute error	63% of the asymptotically approached maximum (under)sampling error	_
Tortell, 2005	Correlation coefficient	First zero crossing of autocorrelation function	$15 \pm 4 \text{ km}$
Nemcek et al., 2008	Mean absolute error. Relative standard error	63% of the asymptotically approached maximum (under)sampling error. Error magnitude compared to DMS concentration (as a %)	7.4 km
Tortell & Long, 2009	Standard error	Semivariogram analysis. Distance beyond which samples become uncorrelated	250 km
Tortell et al., 2011	Root mean squared error	63% of the asymptotically approached maximum (under)sampling error	14.5 ± 3.4 km
Asher et al., 2011	Mean squared error	Change in slope (heuristic)	7.4 ± 2.2 km
Royer et al., 2015	Mean squared error	Change in slope (by eye) after averaging over increasing bin widths (only binning approach)	(15–50 km)

Table S2: Summary of mean DMS concentration (nM) and VLS (km), and metadata for each sampling campaign used in this study. Data are sourced from the global surface seawater DMS database (GSSDD, see <u>https://saga.pmel.noaa.gov/dms/</u> last access: 15 April 2022), Malaspina Expedition in 2010 – split into three subsets (M10 a, b, c, Royer et al., 2015), the four North Atlantic Aerosol and Marine Ecosystem Study campaigns 2015–2018 (NAAMES, Bell et al., 2021), and the Southern oCean SeAsonaL Experiment in 2019 (SCALE, Manville and Bell, 2023). References are provided for published datasets, and those highlighted in bold are the previous DMS VLS studies from Table S1.

Fig. 1 Colour & No.	Data Source (Contribution)	Contributor	Region	Period	Geometric Mean DMS conc. (nM)	Geometric Mean DMS VLS (km)	Reference(s)
1	GSSDD (164)	Johnson	Gulf of Maine	2004/07/09 - 2004/08/12	2.09	19.99	Unpublished
2	GSSDD (165)	Johnson	Gulf of Mexico	2006/08/23 - 2006/09/11	2.25	16.72	Unpublished
3	GSSDD (166)	Johnson	E Equatorial Pacific	2006/10/14 - 2006/10/26	1.85	24.19	Unpublished
4	GSSDD (173)	Johnson	Atlantic Ocean	2007/10/09 - 2007/10/12	1.19	24.83	Unpublished
5	GSSDD (174)	Johnson	E Tropical Pacific	2007/10/16 - 2007/11/11	2.30	25.21	Unpublished
6	GSSDD (175)	Johnson	N Atlantic	2008/03/21 - 2008/04/24	1.27	22.57	Unpublished
7	GSSDD (196)	Archer	Southern Ocean	2008/03/03 - 2008/04/07	1.44	14.09	Unpublished
8	GSSDD (233)	Saltzman	N Atlantic	2007/07/17 - 2007/07/24	3.80	29.34	Marandino et al., 2008
9	GSSDD (243)	Johnson	E Equatorial Pacific	2008/10/20 - 2008/11/22	2.57	23.38	Unpublished
10	GSSDD (244)	Johnson	California coast	2010/05/14 - 2010/06/07	5.10	29.00	Unpublished
11	GSSDD (246)	Bell	N Atlantic	2011/06/30 - 2011/07/14	2.82	4.11	Bell et al., 2013
12	GSSDD (247)	Bell	Southern Ocean	2012/02/15 - 2012/03/06	5.13	7.47	Bell et al., 2015
13	GSSDD (248)	Herr	NE Pacific	2004/08/12 - 2004/08/19	2.96	18.73	Nemcek et al., 2008
14	GSSDD (249)	Herr	NE Pacific	2007/06/01 - 2007/06/16	2.33	21.94	Asher et al., 2011
15	GSSDD (250)	Herr	NE Pacific	2007/08/16 - 2007/08/30	4.28	19.80	Asher et al., 2011
16	GSSDD (251)	Herr	NE Pacific	2008/06/01 - 2008/06/15	3.64	12.61	Asher et al., 2011
17	GSSDD (252)	Herr	NE Pacific	2008/08/14 - 2008/08/30	5.22	13.58	Asher et al., 2011
18	GSSDD (253)	Herr	NE Pacific	2010/07/22 - 2010/08/15	7.39	19.71	Asher et al., 2017
19	GSSDD (254)	Herr	NE Pacific	2010/06/01 - 2010/06/04	2.51	24.45	Tortell et al., 2012a
20	GSSDD (256)	Herr	NE Pacific	2014/08/29 - 2014/08/31	3.99	13.24	Asher et al., 2015
21	GSSDD (257)	Herr	NE Pacific	2016/07/12 - 2016/07/27	2.50	14.75	Herr et al., 2019
22	GSSDD (258)	Herr	NE Pacific	2017/08/12 - 2017/08/27	2.80	16.26	Herr et al., 2019
23	GSSDD (259)	Jarníková	Southern Ocean	2009/01/07 - 2009/01/19	4.49	9.30	Tortell et al., 2012b

24	GSSDD (260)	Jarníková	Southern Ocean	2005/12/27 - 2006/01/17	5.05	15.76	Tortell et al., 2011; Tortell & Long, 2009
25	GSSDD (261)	Jarníková	Southern Ocean	2006/11/03 - 2006/12/11	4.93	13.22	Tortell et al., 2011; Tortell & Long, 2009
26	GSSDD (262)	Jarníková	Southern Ocean	2010/11/30 - 2010/12/14	1.40	18.87	Jarníková & Tortell, 2016
27	GSSDD (263)	Jarníková	Southern Ocean	2013/11/22 - 2013/12/13	7.18	13.39	Jarníková & Tortell, 2016
28	GSSDD (264)	Jarníková	Labrador Sea	2015/07/13 - 2015/08/18	2.03	13.05	Jarníková et al., 2018
29	GSSDD (265)	Zhang	Southern Ocean, E Indian, W Pacific	2014/02/07 - 2014/04/11	2.17	13.47	Zhang et al., 2017
30	M10 (a)	Royer, Galí, Mahajan, and Simó	S Atlantic	2010/12/17 - 2011/02/18	1.09	5.93	Royer et al., 2015
31	М10 (b)	Royer, Galí, Mahajan, and Simó	S Indian, S Australia coast, Tasman Sea	2011/03/03 - 2011/04/12	1.00	6.67	Royer et al., 2015
32	M10 (c)	Royer, Galí, Mahajan, and Simó	Tropical & sub- tropical Pacific	2011/04/19 - 2011/07/12	0.93	1.86	Royer et al., 2015
33	NAAMES (1)	Bell	N Atlantic	2015/11/11 - 2015/11/29	1.28	11.93	Bell et al., 2021
34	NAAMES (2)	Bell	N Atlantic	2016/05/14 - 2016/06/03	2.02	18.40	Bell et al., 2021
35	NAAMES (3)	Bell	N Atlantic	2017/09/06 - 2017/09/23	2.98	20.89	Bell et al., 2021
36	NAAMES (4)	Bell	N Atlantic	2018/03/21 - 2018/04/12	3.20	21.94	Bell et al., 2021
37	SCALE	Manville	Southern Ocean	2019/10/18 - 2019/11/18	3.28	3.78	Manville & Bell, 2023

Figure S1: (a) Global extent of the 37 high frequency DMS campaigns included in this analysis (coloured and numbered), (b) spatiotemporal distribution of DMS campaigns, highlighting acute seasonal sampling bias, (c) spatiotemporal distribution of 763 transects coloured by VLS_{DMS} (km, log scale) (see Table S2 for metadata relating to each sampling campaign). The colour bar diverges at the global geometric mean VLS_{DMS} (12.57 km).

Figure S2: All panes: Frequency distribution of variability lengthscales (VLS, km) for all DMS transects (grey bars), with the global geometric mean VLS_{DMS} (dark blue line). Panes b–f: Frequency distribution of transect VLS for each variable (light blue bars), normalised to the maximum transect frequency of the VLS_{DMS} and superimposed on the VLS_{DMS} frequency distribution. Vertical coloured lines correspond to global geometric mean from all transects for (a) VLS_{DMS} (dark blue), (b) VLS_{SSHA} (beige), (c) VLS_{Chl} (magenta), (d) VLS_{density} (cyan), (e) VLS_{salinity} (green), (f) VLS_{SST} (orange).

Figure S4: Cruise tracks of the DMS data sampling campaigns included in multiple linear regression (MLR) models (a) Model 7: 12 datasets, (b) Model 8: 15 datasets, (c) Model 11: 20 datasets, (d) Model 10: 25 datasets, (e) Model 9: 26 datasets. See Table S1 for metadata regarding each sampling campaign.

Model no.	Input parameters	R ²	Adj. R ²	р	Relative importance (%)	N (no. of campaigns)	No. transects used to calculate campaign averages (of 760)
Linear Regres	sion						
1	VLS _{Chl}	0.2	—	< 0.01*	100	35	361
2	VLS _{SSHA}	0.31	_	<0.01*	100	34	387
3	VLS _{density}	0.41	_	< 0.01*	100	35	486
4	VLS _{salinity}	0.25	_	<0.01*	100	35	496
5	VLS _{SST}	0.25	_	< 0.01*	100	35	462
6	Latitude (abs.)	0.02	_	0.375	100	35	760
Multiple Line	ar Regression						
	VLS _{Chl}		0.58	<0.01*	21	34	361
7	VLS _{SSHA}	0.61			37		387
	VLS _{density}				42		486
	VLS _{Chl}		0.4	<0.01*	26	34	361
8	VLS _{SSHA}	0.46			54		387
	VLS _{salinity}				20		496
0	VLS _{Chl}	0.5	0.47	<0.01*	29	35	361
9	VLS _{density}	0.5	0.47	<0.01	71	55	486
10	VLS _{salinity}	0.44	0.41	<0.01*	49	35	496
10	VLS _{SST}	0.44			51		462
11	VLS _{Chl}	0.45	0.41	<0.01*	35	34	361
11	VLS _{SSHA}	0.45			65		387
12	VLS _{Chl}	0.2	0.25	< 0.01*	42	35	361
12	VLS _{salinity}	0.5			58		496
12	VLS _{SSHA}	0.27	0.22	<0.01*	65	34	387
13	VLS _{salinity}	0.37	0.33		35		496
14	VLS _{Chl}	0.41	0.28	<0.01*	44	35	361
14	VLS _{SST}	0.41	0.38	<0.01**	56		462
15	VLS _{SSHA}	0.42	0.20	<0.01*	60	34	387
	VLS _{SST}	0.42	0.39	<0.01*	40		462
16	VLS _{SSHA}	0.52	0.5	<0.01*	45	34	387
	VLS _{density}	0.52			55		486
	VLS _{Chl}				27	35	361
17	VLS _{SSHA}	0.56	0.51	<0.01*	44		387
	VLS _{SST}				29		462

Table S3: Regression results for the prediction of campaign average VLS_{DMS}, equivalent to Table 1 in the main text but using the 'relaxed criterion' approach (see main text Section 3.3.2 for details). Models that are significant (p < 0.01) are denoted using *.

Figure S5: The importance of consistent transect lengths for analysing VLS. (a) VLS_{DMS} in this study is not significantly correlated to transect length for the 763 consistent (100-200 km) transects, (b) VLS of all parameters is dependent on transect length from both Nemcek et al. (2008) (~50-150 km, cyan box) and Royer et al. (2015) (~100-1100 km, magenta box).

Table S4 – Regression results for the prediction of campaign average VLS_{DMS}, equivalent to Table 1 in the main text but including regression coefficients. Input variables and coefficients can be applied for the prediction of VLS_{DMS} following Eq. (S1):

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

where β corresponds to the coefficient for each input variable *x*, and β_0 is the constant.

Model no	Input parameters (x_1, x_2, x_3)	\mathbb{R}^2	Adj. R ²	р	Coefficients $(\beta_1, \beta_2, \beta_3)$	Constant (β ₀)
Linear Regressi	on				β_1	
1	VLS _{Chl}	0.47	—	< 0.01*	0.8099	-2.991
2	VLS _{SSHA}	0.46	_	< 0.01*	0.642	2.8003
3	VLS _{density}	0.37		<0.01*	0.6524	1.1319
4	VLS _{salinity}	0.33		<0.01*	0.7393	0.0703
5	VLS _{SST}	0.21	_	0.014	0.6055	1.8129
6	Latitude (abs.)	0.02	_	0.375	-0.0703	19.0409
Multiple Linear	Regression				$\beta_1, \beta_2, \beta_3$	
	VLS _{Chl}				0.3262	-11.0697
7	VLS _{SSHA}	0.83	0.77	<0.01*	0.8791	
	VLS _{density}				0.1725	
	VLS _{Chl}	0.77	0.71		0.6863	-9.5223
8	VLS _{SSHA}			<0.01*	0.5683	
	VLS _{salinity}				0.0153	
	VLS _{Chl}	0.66	0.63	<0.01*	0.6256	-7.178
9	VLS _{density}				0.3953	
10	VLS _{salinity}	0.62	0.59	0.01#	0.9182	-7.1162
10	VLS _{SST}			<0.01*	0.1269	
11	VLS _{Chl}	0.51	0.46	.0.01*	0.2456	-0.5942
11	VLS _{SSHA}	0.51	0.46	<0.01*	0.5247	
10	VLS _{Chl}	0.50	0.45	<0.01*	0.6606	0.5150
12	VLS _{salinity}				0.1557	-3.5472
10	VLS _{SSHA}	0.40	0.44	<0.01*	0.5444	1 200 5
13	VLS _{salinity}	0.49			0.1747	1.3005
1.4	VLS _{Chl}	0.46		0.01*	0.6509	7.6640
14	VLS _{SST}	0.46	0.4	<0.01*	0.3517	-7.6643
	VLS _{SSHA}		0.36	<0.01*	0.5456	
15	VLS _{SST}	0.43			0.3233	-2.5339
16	VLS _{SSHA}			<0.01*	0.5475	
	VLS _{density}	0.41	0.35		0.2495	-0.6278
<u></u>	VLS _{Chl}				1.028	
17	VLS _{SSHA}	0.50	0.29	0.156	-0.7187	7.282
	VLS _{SST}				-0.2228	

References

- Asher, E., Dacey, J. W., Ianson, D., Peña, A., and Tortell, P. D.: Concentrations and cycling of DMS, DMSP, and DMSO in coastal and offshore waters of the Subarctic Pacific during summer, 2010-2011, J Geophys Res Oceans, 122, 3269– 3286, https://doi.org/10.1002/2016JC012465, 2017.
- Asher, E. C., Merzouk, A., and Tortell, P. D.: Fine-scale spatial and temporal variability of surface water dimethylsufide (DMS) concentrations and sea-air fluxes in the NE Subarctic Pacific, Mar Chem, 126, 63–75, https://doi.org/10.1016/j.marchem.2011.03.009, 2011.
- Asher, E. C., Dacey, J. W. H., Jarniková, T., and Tortell, P. D.: Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis, Limnol Oceanogr Methods, 13, 451–462, https://doi.org/10.1002/lom3.10039, 2015.
- Bell, T. G., de Bruyn, W., Miller, S. D., Ward, B., Christensen, K., and Saltzman, E. S.: Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: Evidence for limited interfacial gas exchange at high wind speed, Atmos Chem Phys, 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013.
- Bell, T. G., de Bruyn, W., Marandino, C. A., Miller, S. D., Law, C. S., Smith, M. J., and Saltzman, E. S.: Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean, Atmos Chem Phys, 15, 1783–1794, https://doi.org/10.5194/acp-15-1783-2015, 2015.
- Bell, T. G., Porter, J. G., Wang, W. L., Lawler, M. J., Boss, E., Behrenfeld, M. J., and Saltzman, E. S.: Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES), Front Mar Sci, 7, 1200, https://doi.org/10.3389/FMARS.2020.596763/BIBTEX, 2021.
- Hales, B. and Takahashi, T.: High-resolution biogeochemical investigation of the Ross Sea, Antarctica, during the AESOPS (U. S. JGOFS) Program, Global Biogeochem Cycles, 18, https://doi.org/10.1029/2003GB002165, 2004.
- Herr, A. E., Kiene, R. P., Dacey, J. W. H., and Tortell, P. D.: Patterns and drivers of dimethylsulfide concentration in the northeast subarctic Pacific across multiple spatial and temporal scales, Biogeosciences, 16, 1729–1754, https://doi.org/10.5194/bg-16-1729-2019, 2019.
- Jarníková, T. and Tortell, P. D.: Towards a revised climatology of summertime dimethylsulfide concentrations and sea-air fluxes in the Southern Ocean, Environmental Chemistry, 13, 364, https://doi.org/10.1071/en14272, 2016.
- Jarníková, T., Dacey, J., Lizotte, M., Levasseur, M., and Tortell, P.: The distribution of methylated sulfur compounds, DMS and DMSP, in Canadian subarctic and Arctic marine waters during summer 2015, Biogeosciences, 15, 2449–2465, https://doi.org/10.5194/bg-15-2449-2018, 2018.
- Manville, G. and Bell, T.: Ship-based continuous underway surface seawater dimethylsulfide concentration timeseries collected in the southeast Atlantic sector of the Southern Ocean as part of the spring cruise of the SCALE project, October–November 2019, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/f70248ef-cb60-77d0-e053-6c86abc0c75a, 2023.
- Marandino, C. A., de Bruyn, W. J., Miller, S. D., and Saltzman, E. S.: DMS air/sea flux and gas transfer coefficients from the North Atlantic summertime coccolithophore bloom, Geophys Res Lett, 35, https://doi.org/10.1029/2008GL036370, 2008.
- Nemcek, N., Ianson, D., and Tortell, P. D.: A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters, Global Biogeochem Cycles, 22, https://doi.org/10.1029/2006GB002879, 2008.
- Royer, S. J., Mahajan, A. S., Galí, M., Saltzman, E., and Simõ, R.: Small-scale variability patterns of DMS and phytoplankton in surface waters of the tropical and subtropical Atlantic, Indian, and Pacific Oceans, Geophys Res Lett, 42, 475–483, https://doi.org/10.1002/2014GL062543, 2015.

- Tortell, P. D.: Small-scale heterogeneity of dissolved gas concentrations in marine continental shelf waters, Geochemistry, Geophysics, Geosystems, 6, https://doi.org/10.1029/2005GC000953, 2005.
- Tortell, P. D. and Long, M. C.: Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom, Geophys Res Lett, 36, https://doi.org/10.1029/2008GL035819, 2009.
- Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P., and DiTullio, G. R.: Spatial variability and temporal dynamics of surface water pCO2, δO2/Ar and dimethylsulfide in the Ross Sea, Antarctica, Deep Sea Res 1 Oceanogr Res Pap, 58, 241–259, https://doi.org/10.1016/j.dsr.2010.12.006, 2011.
- Tortell, P. D., Merzouk, A., Ianson, D., Pawlowicz, R., and Yelland, D. R.: Influence of regional climate forcing on surface water pCO 2,ΔO 2/Ar and dimethylsulfide (DMS) along the southern British Columbia coast, Cont Shelf Res, 47, 119– 132, https://doi.org/10.1016/j.csr.2012.07.007, 2012a.
- Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A. C., Dutrieux, P., and Arrigo, K. R.: Spatial distribution of pCO 2, ΔO 2 /Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica, Deep Sea Res 2 Top Stud Oceanogr, 71–76, 77–93, https://doi.org/10.1016/j.dsr2.2012.03.010, 2012b.
- Zhang, M., Marandino, C. A., Chen, L., Sun, H., Gao, Z., Park, K., Kim, I., Yang, B., Zhu, T., Yan, J., and Wang, J.: Characteristics of the surface water DMS and pCO2 distributions and their relationships in the Southern Ocean, southeast Indian Ocean, and northwest Pacific Ocean, Global Biogeochem Cycles, 31, 1318–1331, https://doi.org/10.1002/2017GB005637, 2017.