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Abstract. The interannual variability of snow cover in
alpine areas is increasing, which may affect the tightly cou-
pled cycles of carbon and water through snow–vegetation–
atmosphere interactions across a range of spatio-temporal
scales. To explore the role of snow cover for the land–
atmosphere exchange of CO2 and water vapor in alpine tun-
dra ecosystems, we combined 3 years (2019–2021) of contin-
uous eddy covariance flux measurements of the net ecosys-
tem exchange of CO2 (NEE) and evapotranspiration (ET)
from the Finse site in alpine Norway (1210 m a.s.l.) with a
ground-based ecosystem-type classification and satellite im-
agery from Sentinel-2, Landsat 8, and MODIS. While the
snow conditions in 2019 and 2021 can be described as site
typical, 2020 features an extreme snow accumulation asso-
ciated with a strong negative phase of the Scandinavian pat-
tern of the synoptic atmospheric circulation during spring.
This extreme snow accumulation caused a 1-month delay in
melt-out date, which falls in the 92nd percentile in the dis-
tribution of yearly melt-out dates in the period 2001–2021.
The melt-out dates follow a consistent fine-scale spatial re-
lationship with ecosystem types across years. Mountain and
lichen heathlands melt out more heterogeneously than fens
and flood plains, while late snowbeds melt out up to 1 month
later than the other ecosystem types. While the summertime
average normalized difference vegetation index (NDVI) was
reduced considerably during the extreme-snow year 2020, it
reached the same maximum as in the other years for all but
one of the ecosystem types (late snowbeds), indicating that
the delayed onset of vegetation growth is compensated to
the same maximum productivity. Eddy covariance estimates
of NEE and ET are gap-filled separately for two wind sec-

tors using a random forest regression model to account for
complex and nonlinear ecohydrological interactions. While
the two wind sectors differ markedly in vegetation compo-
sition and flux magnitudes, their flux response is controlled
by the same drivers as estimated by the predictor importance
of the random forest model, as well as by the high correla-
tion of flux magnitudes (correlation coefficient r = 0.92 for
NEE and r = 0.89 for ET) between both areas. The 1-month
delay of the start of the snow-free season in 2020 reduced
the total annual ET by 50 % compared to 2019 and 2021
and reduced the growing-season carbon assimilation to turn
the ecosystem from a moderate annual carbon sink (−31 to
−6 gC m−2 yr−1) to a source (34 to 20 gC m−2 yr−1). These
results underpin the strong dependence of ecosystem struc-
ture and functioning on snow dynamics, whose anomalies
can result in important ecological extreme events for alpine
ecosystems.

1 Introduction

At northern latitudes, the alpine tundra shares many similar-
ities with the arctic tundra regarding its appearance, dynam-
ics, and role in the Earth system. These ecosystems typically
feature low vegetation, a shallow root zone with acidic soils,
and a complex pattern of inter-dependent plant, fungal, and
microbial communities that emerge across a large range of
spatial scales (Walker et al., 2001). The vegetation is primar-
ily limited by the supply of energy and nutrients, which is
to a large degree governed by the spatio-temporal variability
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of the snow cover. In alpine tundra, the surface energy bal-
ance, soil temperatures, and nutrient availability are all di-
rectly affected by the presence of snow (Rixen et al., 2022).
The snowpack moreover offers plants protection against frost
damage, dehydration, and mechanical damage from wind-
blown snow particles in wintertime (Mott et al., 2018). This
protection comes at the price of longer-lasting snow cover
limiting the growing-season length for plants (Vestergren,
1902), which is especially pronounced in topographic de-
pressions where wind-blown snow accumulates. The vegeta-
tion structure in these characteristic snowbed–ridge ecosys-
tems will in turn influence the wind-blown snow transport
and thus modify the spatial variability of the snow distribu-
tion. These complex and consistent snow–vegetation inter-
actions give rise to repeating patterns in snow distributions
(Sturm and Wagner, 2010) and are thus a key structuring pro-
cess for alpine tundra environments and an important con-
trol on land–atmosphere interactions (Odland and Munke-
jord, 2008).

Community ecologists have long recognized that plant
associations form and thrive in specific ranges of environ-
mental conditions (Gleason, 1926; Whittaker, 1956). How-
ever, snow–vegetation interactions and the related responses
to snow cover changes in high-latitude and high-altitude
ecosystems can be highly context dependent (Niittynen et al.,
2018, 2020). Wipf et al. (2009) and Frei and Henry (2022)
analyzed plant phenology, growth, and reproduction in alpine
and arctic shrubs, respectively, and found that reductions in
snow cover duration are beneficial for some but not all tun-
dra species. Niittynen et al. (2018), on the other hand, found
a tipping point at a 20 %–30 % decrease in snow cover du-
ration, at which accelerated species loss reduces the biodi-
versity in arctic–alpine areas. Scharnagl et al. (2019) docu-
mented the expansion of shrubs in alpine ecosystems over a
40-year period but argue that plant community composition
remained mostly intact, demonstrating a surprising resilience
of alpine tundra plant communities to ongoing global climate
change. Similarly, Roos et al. (2022) show that experimen-
tal warming with International Tundra Experiment (ITEX)
chambers over a 30-year period in alpine Norway only had a
modest effect on the community composition, while nutrient
additions caused strong responses in vegetation dynamics.

There are a number of indicators for an ecosystem’s inter-
action with the atmosphere that – while related – highlight
different aspects of this coupling. The normalized difference
vegetation index (NDVI), for example, has been used to doc-
ument widespread greening of mountain slopes (Jia et al.,
2003). Such changes can, in turn, have profound impacts
on the ecosystem’s carbon and water balances through in-
creased land–atmosphere exchange of CO2 and water vapor,
i.e., the net ecosystem exchange of CO2 (NEE) and evapo-
transpiration (ET). The link between the carbon and water
cycles in terrestrial ecosystems can be assessed through the
ratio of NEE and ET, known as the ecosystem water-use effi-
ciency (as opposed to leaf-level water-use efficiency derived

from photosynthesis and transpiration), which provides an-
other key indicator for ecosystem functioning under chang-
ing environmental conditions (Niu et al., 2011; Schlesinger,
2020). If an ecosystem has been subject to biochemical or
biophysical shifts due to extreme conditions, one may expect
to see this reflected in the ecosystem’s water-use efficiency.
In arctic tundra, NEE estimates show that longer growing
seasons due to earlier snow melt-out may not necessarily lead
to stronger carbon assimilation because tundra ecosystems
may not be able to continue to take up CO2 late in the grow-
ing seasons (Groendahl et al., 2007; Zona et al., 2022). Evap-
otranspiration in high-latitude ecosystems is normally lim-
ited by net surface radiation and is thus typically small com-
pared to total annual precipitation (Liljedahl et al., 2011),
while lower-latitude alpine grasslands can feature ET losses
of more than 50 % of the total annual precipitation (Carrillo-
Rojas et al., 2019). Evapotranspiration has been found to de-
crease and feature higher interannual variability at higher el-
evations with sparser vegetation cover across a forest–shrub
vegetation gradient in alpine Canada (Nicholls and Carey,
2021). While ET is currently a relatively small component
in the water balance in arctic–alpine areas (Lackner et al.,
2022), it is expected to increase considerably under climate
change scenarios (Helbig et al., 2020), which makes it imper-
ative to further constrain ET for ecological and hydrological
models (Erlandsen et al., 2021).

Snow cover duration in the Northern Hemisphere is de-
creasing at an accelerating rate, even exceeding CMIP5 sim-
ulations (Derksen and Brown, 2012; Mudryk et al., 2020),
with many arctic–alpine systems undergoing a transition
from snow- to rain-dominated regimes (Bintanja and Andry,
2017; Arias et al., 2021). In Norway, increasing tempera-
ture and precipitation are associated with remarkably large
reductions in snow cover duration in both historic estimates
(Rizzi et al., 2018) and future projections (Hanssen-Bauer
et al., 2017), with the exception of alpine areas, which can
even feature an increasing snow cover duration. In addition
to these mean climatic trends, there is accumulating evidence
for increasing interannual variability of weather patterns and
in the frequency and severity of extreme events (Easterling
et al., 2000; Myers-Smith et al., 2020). While an increased
frequency of extreme weather events can be expected to
impact the land–atmosphere carbon exchange of otherwise
undisturbed tundra ecosystems (Christensen et al., 2021), it
has also been recognized that extreme weather events act
as filters for leading-edge species (Hampe and Petit, 2005)
with, e.g., higher temperature demands. Thereby, extreme
events can provide a stabilizing mechanism in the mortality–
recruitment balance of the ecosystem to prevent long-term
vegetation shifts (Lloret et al., 2012; Beigaitė et al., 2022).

The joint response of NEE and ET to anomalies in snow
cover duration in alpine environments, where snow-related
extreme conditions may be expected to play the dominating
role, is to our knowledge still understudied. The present study
aims to explore the role of snow cover duration for ecosys-
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tem functioning in alpine tundra. Specifically, our four main
objectives are to

– document the link between the presence of ecosystem
types and snow cover duration for an alpine tundra site
in Norway

– quantify and determine the importance of snow cover as
a driver of NEE and ET flux dynamics at the ecosystem
scale

– combine high-resolution remote sensing with in situ
measurements through machine learning for flux gap-
filling to quantify the annual NEE and ET balances dur-
ing normal and extreme-snow years

– contextualize the snow cover in the 2020 extreme-
snow year in terms of climatology using reanalysis and
moderate-resolution remote sensing data.

If snow–vegetation–atmosphere interactions are indeed a
structuring mechanism for the ecosystem at Finse, we would
expect to find responses on different temporal scales, such
as (i) a large importance of snow cover variables for instan-
taneous flux predictions, (ii) a distinct reduction of annual
NEE and ET budgets in extreme-snow years, and (iii) a link
between melt-out dates and the presence of ecosystem types
as a reflection of the decadal average conditions. We use the
eddy covariance (EC) technique (Baldocchi, 2020) for near-
continuous measurements of NEE and ET, allowing us to
identify the key drivers of land–atmosphere interactions in
the harsh meteorological conditions of alpine Norway. Com-
plementary to direct EC flux measurements, we use high-
resolution satellite remote sensing, in situ ecosystem-type
mapping of vegetation distributions, and long-term statistics
of atmospheric circulation patterns to contextualize our find-
ings. Finally, we argue that anomalies in snow cover dura-
tion constitute important ecological extreme conditions for
the structure and functioning of alpine tundra ecosystem.

2 Materials and methods

2.1 Site description

The Finse site (Fig. 1) is situated in an alpine valley
(60.11◦ N, 7.53◦ E) at an elevation of 1210 m a.s.l. near the
Finse Alpine Research Center in southern central Norway.
The valley extends approximately along an east–west axis
along which surface winds tend to be led by forced channel-
ing (Whiteman and Doran, 1993). A large glacier, Hardan-
gerjøkulen, is located approximately 6 km southwest, and the
largest lake in the valley, Finsevatnet, lies 1 km west of the
site. During summer, there is a confluence of cool glacial
meltwater and warmer non-glacial streams from the lake into
the river Ustekveikja, which runs along the study site. During
winter, the discharge reduces to base flow from groundwater

inputs because the headwater rivers freeze over. The climate
is arctic and features maritime influences. Winters are rela-
tively mild, with a December–January–February mean 2 m
air temperature of −7.4 ◦C, measured between 2019–2021.
Summers are relatively cool, with a June–July–August mean
2 m air temperature of 8.2 ◦C, measured between 2019–2021.
The annual mean (1991–2020) air temperature is −1.1 ◦C,
with an average annual total precipitation of 967 mm. The
site is likely to be largely permafrost-free, but more exposed
areas with low snow depths in winter can feature isolated per-
mafrost (Gisnås et al., 2014). The site features a low-alpine
tundra ecosystem, dominated by lichen heathlands on wind-
exposed ridges, as well as dwarf shrubs and mountain heath-
lands on the lee-sides. Willows dominated by Salix species
form narrow floodplains along river margins. Snowbeds are
common in wind-sheltered areas. In flat areas, water accu-
mulates to form small wetlands and ponds.

2.2 Flux measurements

Eddy covariance flux measurements of CO2 and water vapor
were established at the Finse site (registered as NO-Fns in
FLUXNET, Baldocchi et al., 2001) in 2016. Frequent techni-
cal problems with sensors and data loggers disrupted the first
2 years of operation, so the present study focuses on the pe-
riod 2019–2021 with near-continuous flux data. The EC sys-
tem consists of a CSAT3 three-dimensional sonic anemome-
ter (Campbell Scientific, USA) and a Li-7200 closed-path in-
frared gas analyzer for CO2 and H2O mixing ratios (Li-Cor,
USA). Both instruments are installed on the northern end of
a horizontal boom at 4.4 m a.g.l. (Fig. 1c) and sampled at a
frequency of 20 Hz. The Li-7200 gas analyzer uses a 71 cm
long heated intake tube (6 W) with a flow rate of 15 L min−1.

We processed the EC raw data to 30 min flux estimates fol-
lowing the conventional EC methodology (Gu et al., 2012)
using EddyPro version 6.2.0 (Li-Cor). We extract turbulent
fluctuations from block averages, use an anemometer tilt cor-
rection by double rotation, a constant time lag compensation,
and a high- and low-pass filter correction following Mon-
crieff et al. (2005) and Moncrieff et al. (1997), respectively.
For quality control, we use statistical tests on the raw data
proposed by Vickers and Mahrt (1997) and the flagging sys-
tem proposed by Foken and Wichura (1996) to filter out flux
estimates that are affected by instrument errors (e.g., rain or
frost on the anemometer) or unfavorable micrometeorologi-
cal conditions (e.g., lack of stationarity or turbulent mixing
at low wind speeds). Following Vickers and Mahrt (1997),
we estimate the number of spikes and drop-outs and also
the absolute limits, amplitude resolution, skewness and kur-
tosis, and discontinuities for the pairs of raw data time series
involved in the respective covariance-based flux estimates,
and we discard data exceeding the thresholds proposed in
the original paper. We also discard data with mean horizon-
tal wind speeds below 1.5 m s−1, all fluxes with quality flag
2 in the scheme by Foken and Wichura (1996), and fluxes
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Figure 1. Location and environmental setting of the Finse flux tower. (a) Location of Finse in southern Norway (background data contributed
by Norge i Bilder and © Open Street Map). (b) Satellite image taken by Sentinel-2A on 31 August 2020 draped over an elevation model
(DTM10 by Kartverket). (c) Image of the flux tower taken on 15 July 2020.

with quality flag 1 if they have relatively large magnitudes,
i.e., above 1.0 µmol m−2 s−1 for NEE and 0.9 mmol m−2 s−1

for ET (corresponding approximately to the 40th percentile
for both fluxes after filtering). After filtering the flux time
series for unfavorable measurement conditions, we are left
with 24076 NEE and 22708 ET valid half-hourly flux mea-
surements, corresponding to 46 % and 43 % coverage of the
entire period from 2019–2021, respectively.

2.3 Ancillary in situ measurements

There are a multitude of ancillary sensors on the Finse flux
tower to quantify soil, surface, and atmospheric conditions
during our flux measurements. Near-surface air tempera-
ture (Tair) is measured by a resistance temperature detector
(PT-100) mounted in a radiation shield at 2 m a.g.l. Grow-
ing degree days (GDDs) are calculated from Tair according
to its standard definition using a base temperature of 0 ◦C.
The vapor pressure deficit (VPD) is derived from measure-
ments of Tair and relative humidity (HMP155, Vaisala, Fin-
land) mounted at 2 m a.g.l. Soil temperature (Tsoil) and soil
volumetric water content (VWC) are measured at a depth
of 8 cm (CS650, Campbell, USA). For incoming shortwave
and longwave radiation (SWin and LWin, respectively) we
use a ventilated and heated radiometer (CNR4, Kipp&Zonen,
Netherlands) mounted on a south-pointing boom at 4 m a.g.l.
The same sensor is used to measure surface broadband
albedo. Snow depth (SD) is measured by a laser distance
sensor (SHM30, Jenoptik, Germany) at a location about
4 m northeast of the tower. Skin surface temperature (Tsurf)
is measured with an infrared radiometer (SI-411, Apogee,
USA) at approximately the same location as the snow depth
measurement. All these ancillary sensors are sampled every
10 s, filtered for corrupted measurements, and aggregated to
30 min average values. Due to data logger problems, approx-
imately 2 % of the 30 min intervals lack valid local measure-

ments in the period from 2019 to 2021. For atmospheric and
surface variables, these short gaps are filled with estimates
derived from a simple linear regression of the respective vari-
able against its corresponding estimate from ERA5 atmo-
spheric reanalysis data (Hersbach et al., 2020). Soil variables,
which vary on longer timescales, are filled with a linear in-
terpolation of neighboring measurements. The resulting time
series are shown in Fig. S1 in the Supplement.

2.4 Satellite remote sensing

High-resolution satellite-based daily fractional snow-
covered area (FSCA) and normalized difference vegetation
index (NDVI) estimates are employed both as predictors
in the flux gap-filling (Sect. 2.5) and to analyze the spatio-
temporal links between snow melt-out and the presence
of ecosystem types based on in situ vegetation mapping
(Sect. 2.6). These estimates were obtained by merging
and temporally gap-filling retrievals from multi-sensor
multispectral satellite imagery covering the 3× 3 km2 area
around the Finse flux tower at a ground sampling distance
of 10 m. For this purpose, we combine surface reflectance
imagery (i.e., level-2 products) from both the twin Sentinel-2
satellites and the Landsat 8 satellite in the following six
wavelength bands: blue (' 0.49µm), green (' 0.55µm), red
(' 0.65µm), near-infrared (' 0.85µm), shortwave infrared
1 (' 1.6µm), and shortwave infrared 2 (' 2.1µm). The
data were obtained from Google Earth Engine (Gorelick
et al., 2017), which is a cloud-based platform that harvests
these open datasets from the original data sources, namely
Copernicus (Sentinel-2) and USGS (Landsat 8). The FSCA
is retrieved using the spectral-unmixing approach described
in Aalstad et al. (2020). The NDVI, which is commonly used
as a proxy for surface greenness, leaf area, and vegetation
development, is calculated according to its standard defini-
tion (Jia et al., 2003). To avoid artifacts in the satellite-based
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surface reflectance data that can occur due to clouds, we
manually selected cloud-free scenes. This selection provided
a total of 93 Sentinel-2 scenes and 20 Landsat 8 scenes for
the entire study period, resulting in an average of around 4
cloud-free scenes per month. Note that Landsat 8 imagery,
which has a slightly coarser (30 m) native resolution, was
only used for days where no 10 m Sentinel-2 imagery was
available. The combined stacks of cloud-free retrievals
of FSCA and NDVI were independently interpolated in
time for each pixel using Gaussian process regression
(Rasmussen and Williams, 2005) with an exponential kernel
and automatic relevance detection. The snow melt-out date
was determined for each pixel as the first day with FSCA
below 0.25.

Moderate-resolution satellite imagery with a longer tem-
poral extent is used to build a multi-decadal climatology
of the melt-out date of the seasonal snow cover around
Finse that can help contextualize the melt-out dates dur-
ing the study period (2019–2021). For this purpose, we use
daily normalized difference snow index estimates from the
MODerate resolution Imaging Spectroradiometer (MODIS)
at 500 m spatial resolution to retrieve the FSCA based on
a linear relationship (Salomonson and Appel, 2006) for all
water years (September–August) from 2001–2021. MODIS
is an optical satellite-based sensor currently on board two
polar-orbiting satellites, namely Terra and Aqua. These mea-
surements from the MODIS sensors include gaps that are
mainly due to cloud cover. By merging two MODIS-based
snow products from Terra (MOD10A1; Hall et al., 2015a)
and Aqua (MYD10A1; Hall et al., 2015b), we are reducing
these gaps for a given day. Subsequently, a temporal cloud
gap-filling algorithm following Hall et al. (2019) is applied
to this merged product to obtain gap-free daily FSCA esti-
mates. For each pixel, snow melt-out dates are determined as
the last day in a water year with FSCA greater than 0.25 dur-
ing a period with at least 5 consecutive snow cover days. We
averaged these estimates from the four closest MODIS pixels
to the Finse tower to determine the snow melt-out dates at our
site. To estimate the exceedance probability of the late snow
melt-out in 2020 and to identify whether or not this year was
an extreme year, we fit a beta distribution – a commonly used
distribution with two shape parameters (α and β) for double-
bounded random variables – to the melt-out dates from the
MODIS dataset with the maximum likelihood method. Us-
ing gamma, logit-normal, and generalized extreme value dis-
tributions for the fit to the melt-out dates only has minimal
influence on the resulting exceedance probability.

The FSCA dynamics estimated from the MODIS data
agree qualitatively with a visual inspection of daily web-
cam imagery available at the Finse research station (https:
//www.finse.uio.no/news/webcam/, last access: 5 June 2023).
We also evaluated the snow cover duration from the MODIS
using the higher-resolution (Sentinel-2 and Landsat 8) re-
trievals as a reference during an overlap period (from 2017–
2021) and found a close agreement with a root-mean-square

error of 6 d and a correlation coefficient r of 0.98 for the
9 km2 study area.

2.5 Flux gap-filling

As gaps in the EC flux time series can occur systematically
depending on environmental conditions, we use gap-filling to
avoid biases in our annual flux budgets. To allow for a com-
plex range of biogeochemical interactions, we developed a
random forest regression model (Breiman, 2001; Kim et al.,
2020) of the fluxes with 12 predictors quantifying the en-
vironmental conditions (Fig. S1 in the Supplement). Ten of
these predictors are measured directly at the flux tower, as
described in Sect. 2.3, while two additional ones – the frac-
tional snow-covered area (FSCA) and normalized difference
vegetation index (NDVI) – are derived from remote sensing
(Sect. 2.4). These 12 predictors are chosen to provide a ro-
bust and detailed characterization of each 30 min flux period,
including soil, surface, and atmospheric conditions. Some of
the predictors are correlated, at least in some parts of the
predictor space, which must be considered when interpreting
the predictor importance obtained from the random forest re-
gression model (Gregorutti et al., 2017). Since even highly
correlated predictor pairs may capture nuances of potentially
important flux dynamics, we chose to use their information
in our gap-filling routine despite the partial redundancy (see
discussion in Sect. 4.2). Note that the resulting flux estimates
from the random forest regression model are only used to
fill gaps in the flux time series, i.e., not to replace valid flux
measurements.

The setting of the landscape at the Finse flux tower favors
a bi-modal distribution of wind directions along an east–west
axis. To account for the potentially different surface cover of
the easterly and westerly footprint, we split the dataset into
the two main wind directions (wind directions above and be-
low 180◦) and gap-filled these subsets separately. Such splits
are common to prevent annual flux budgets from depend-
ing on the distribution of the wind directions (Griebel et al.,
2016).

We use the random forest regression implementation pro-
vided by the scikit-learn Python module (Pedregosa et al.,
2011), with 2000 trees per forest and otherwise default pa-
rameters. The random forest regression model is trained on
valid EC flux measurements that have passed quality control-
ling. To assess potential overfitting that would limit the gen-
eralization of the model to unobserved data, we also trained
separate models using only 80 % of our valid dataset, keep-
ing 20 % for testing through independent evaluation (valida-
tion). The coefficients of determination of these random for-
est models ranged between 0.85≤ R2

≤ 0.95 across the two
flux types (NEE and ET) and wind sectors (Table S2 in the
Supplement). We also tested the reduction of model com-
plexity by limiting the number of predictors that each tree
is randomly assigned or by reducing the maximally allowed
depth of each tree. However, the resulting evaluation statis-
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tics indicated that overfitting is not a problem for our case,
with more than 1000 times more data points than predictors.

2.6 Footprint characterization by ecosystem types

The footprint function of each valid 30 min flux is estimated
based on friction velocity (u∗), wind direction, Obukhov
length (L), and cross-wind variance (vvar) (all from EC mea-
surements), as well as boundary layer height (linearly inter-
polated estimates from single-level ERA5 hourly data) and
a tundra-typical roughness length of 1 cm following the flux
footprint model by Kljun et al. (2015). The resulting 1×1 m2

resolution flux weight maps are clustered by ecosystem type
using a map of the area created in situ by Bryn and Hor-
vath (2020) at a mapping scale of 1 : 5000 to assess the flux
contributions of different surfaces. The implemented Nature
in Norway (NIN) hierarchical mapping system (Halvorsen
et al., 2020) consists of a total of 741 minor and 92 major
ecosystem types. Of these, 43 minor and 13 major types are
found in the study area at Finse. For the purpose of this study,
the ecosystem types are further reclassified into seven main
type categories (Table S1 in the Supplement). Fens comprise
all open mires with peat-dominated ground layers that, in ad-
dition to rainwater, are also fed by groundwater that has been
in contact with the mineral soil. Flood plains include open
alluvial sediments regulated by balancing sedimentation and
erosion. Mountain heathlands are characterized as naturally
open ecosystems above the climatic forest limit, dominated
by dwarf shrubs (Empetrum nigrum, Salix spp., and erica-
ceous species), herbs, graminoids, and bryophytes. Exposed
ridges (and lichen heathlands) are confined to convex ter-
rain and areas that lack permanent snow cover in winter dur-
ing periods with extremely low temperatures, freeze-drying
conditions, and physical wind abrasion, dominated by spe-
cialized stress-tolerant lichens, mosses, and vascular plants.
Moss-dominated snowbeds are characterized by a combina-
tion of shortened growing seasons due to prolonged snow
cover and shelter of the vegetation against low temperatures
and wind abrasion during winter. Moderate snowbeds oc-
cupy the lower lee-sides of the topographical ridge–snowbed
gradient in alpine and arctic areas, while late and extreme
snowbeds can be found at the lowest part of the topographi-
cal depressions, where snow does not completely melt each
year. This ecosystem-type map allows for a detailed analysis
of the high-resolution snow cover maps derived from satellite
remote sensing (Sect. 2.4) to explore dependencies between
snow melt-out date and the presence of ecosystem types.

2.7 Synoptic patterns

To characterize the atmospheric circulation pattern during
the heavy snowfall in 2020 compared to other years, we an-
alyze the correlation between wintertime precipitation and
the Scandinavian Pattern Index (SCA, referred to as Eurasia-
1 pattern by Barnston and Livezey, 1987) estimated from

monthly ERA5 data using the KNMI Climate Explorer
(Trouet and Van Oldenborgh, 2013). Similarly to the North
Atlantic Oscillation Index, which has already been linked
to variability in snow water equivalent in Norway (Skaugen
et al., 2012), the Scandinavian Pattern Index is based on the
surface air pressure difference between the subtropical and
subpolar regions. We exemplify the resulting patterns using
February as a month in the middle of the snow season that
typically features large snowfall events.

3 Results

3.1 Snow–vegetation interactions at Finse

Figure 2a shows the results of the spatial clustering of re-
motely sensed melt-out dates from the combined Sentinel-
2 and Landsat 8 retrievals to the ecosystem-type map. Dif-
ferent ecosystem types are associated with markedly differ-
ent snow melt-out characteristics. While fens and floodplains
melt out relatively simultaneously (i.e., with small within-
ecosystem-type variance), mountain and lichen heathlands
melt out slightly more variably. Moderate and late snowbeds
melt out most variably and, on average, 1 to 2 months af-
ter the other ecosystem types. Figure 2a–d show that all 3
years exhibit similar relative melt-out patterns, but 2020 had
considerably later overall melt-out dates. This difference can
largely be attributed to differences in snow accumulation in
winter and spring, exemplified by a maximum snow depth
of 205 cm in 2020 compared to 52 cm in 2019 and 70 cm in
2021, as measured at the flux tower (Fig. S1 in the Supple-
ment).

The relative response of the vegetation development to
the snow cover is assessed by our NDVI estimates. Fig-
ure 2e and i show that fens and mountain heathlands have
the highest and similar mean and maximum NDVI, followed
by flood plains, lichen heathlands and moderate snow beds
(with similar NDVI statistics), and finally late snow beds.
Averaged across the 3 summer months, NDVI was lower in
2020 compared to 2019 and 2021 (Fig. 2e–h), which can
be explained by the longer snow duration because snow-
covered areas typically have low negative NDVI values close
to zero. The maximum NDVI of each ecosystem type, how-
ever, was very similar in all years (Fig. 2h and i). This ro-
bustness of annual-maximum NDVI indicates that, while the
summertime-average leaf area and greenness was reduced
in the snow-rich year of 2020, the peak NDVI still reached
the same level as in the other years. The only exception are
late snowbeds (and to a smaller degree moderate snowbeds),
where the extreme snow accumulation of 2020 noticeably in-
hibited vegetation growth. The effect of snow melt-out date
on annual-maximum NDVI can also be seen from the spa-
tial anti-correlation of these variables in the 9 km2 satellite
area, which was r =−0.43 on average and was especially
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Figure 2. Remotely sensed melt-out dates and NDVI statistics from the combined Sentinel-2 and Landsat 8 retrievals for 2019, 2020, and
2021. Left: clustered into different ecosystem types. Dots represent mean values, and error bars represent the inter-quartile ranges of the
distributions within each ecosystem type. Middle and right: maps for the 9 km2 area around the flux station. The white rectangle represents
the area around the flux tower where ecosystem-type mapping and clustering was performed (same as in Fig. 4a).

strong in 2020 (r =−0.36 in 2019, r =−0.52 in 2020, and
r =−0.40 in 2021).

Most of the snowpack at Finse built up in only a few major
precipitation events, and almost half of the maximum snow
depth accumulated during two snowfall events in the winter
months (Fig. S1 in the Supplement). The intensity of win-
tertime precipitation in southern Norway can, in part, be ex-
plained by the synoptic atmospheric circulation pattern, as
exemplified by the large anti-correlation between the Scan-
dinavian Pattern Index and February precipitation (Fig. 3a).
In winter 2020, the Scandinavian Pattern Index for February
exhibited its lowest value in the ERA5 record (1950–2021),
while 2019 and 2021 were close to the mean value (Fig. 3b).
The associated large snowfall events in the winter of 2020
contributed to the extremely late snow melt-out (Fig. 3c). The
beta distribution fitted to the melt-out dates shows that 2020
falls in the 92nd percentile of the distribution, rendering 2020
an extremely snow-rich year. The snow melt-out date in 2020
ranked second in this time series of 21 years (only exceeded
in 2015).

3.2 Flux dynamics in the two footprints

Figure 4 provides a characterization of the footprint of the EC
flux measurements during the period 2019–2021 in terms of
the weighted contribution of each ecosystem type. The foot-

print of each flux-averaging period (30 min), as well as the
average footprint of the entire flux time series, receives con-
tributions from a broad mixture of ecosystem types. Over-
all, snowbed surfaces have a footprint-weighted contribution
of 30 % to the total footprint area, followed by heathlands
(29 %), water surfaces (25 %), fens and flood plains (14 %
together) (Table S1 of the Supplement). The bi-modal dis-
tribution of wind directions seen in Fig. 4b aligns along the
east–west direction of the valley, facilitating the binary sep-
aration between the easterly and the westerly footprint in
the flux analysis. The easterly footprint is characterized by
a larger fraction of water surfaces and late snowbeds, while
the westerly footprint has a larger fraction of fens and mod-
erate snowbeds, with a denser vegetation cover. These two
footprints are therefore treated separately to reduce the con-
founding effects of the spatial and temporal variability of the
measured fluxes.

The net ecosystem exchange of the westerly footprint
(Fig. 5a) shows both diurnal and annual cycles, as may be ex-
pected for a summer active, high-latitude tundra ecosystem.
The winter and spring seasons are characterized by small but
steady CO2 releases of about 0.1 µmol m−2 s−1. The start of
the growing season with daily average CO2 uptake fluxes oc-
curs 2 weeks after the estimated day of snowmelt. Summer
nights show the largest CO2 releases, but daytime CO2 up-
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Figure 3. Synoptic atmospheric circulation patterns and snow cover statistics. (a) Correlation map between Scandinavian Pattern Index (SCA)
and precipitation in February indicating a strong association in northern Europe. (b) Histogram of all February values of the Scandinavian
Pattern Index in the ERA5 period (1950–2021) along with the fitted normal distribution. (c) Histogram of the snow melt-out day at Finse
derived from MODIS data (2001–2021) along with the fitted maximum likelihood beta distribution (shape parameters α = 3.42 and β =
18.98).

take during summer exceeds these nighttime releases in mag-
nitude by a factor of about 5. These flux dynamics are simi-
lar across the years, with the important difference of a much
shorter growing season in 2020. The net ecosystem exchange
of the easterly footprint (not shown) exhibits the same dy-
namics as the westerly footprint, with a correlation coeffi-
cient of r = 0.92 between the two, albeit with a smaller flux
magnitude (slope of linear regression of 0.61). The predictor
importance of the random forest analysis (Fig. 5b) indicates
that shortwave incoming radiation, surface temperature, and
NDVI are the main controls on NEE in both footprints.

Evapotranspiration shown for the westerly footprint in
Fig. 5c also highlights different dynamics during the growing
season compared to the rest of the year. During winter and
spring, as well as during summer nights, small evaporation,
sublimation, and condensation fluxes occur interchangeably,
depending on the physical state of the ground and the sur-
face layer air. Spring 2020 had a period where condensation
dominated daytime fluxes, but compared to summertime ET,
these fluxes were relatively small. For daytime periods dur-
ing the growing season, fluxes can be 1 order of magnitude
larger and hence dominate the annual ET budget. As seen for
NEE, ET dynamics are similar across the years but with re-
duced fluxes in the growing season of 2020. In the easterly
footprint, ET largely follows the same dynamics as in the
westerly footprint (with a correlation coefficient of r = 0.89)
but with a smaller flux magnitude (slope of linear regression
of 0.58). The predictor importance for ET (Fig. 5d) indicated
that vapor pressure deficit, surface temperature, and incom-
ing shortwave radiation act as the most important drivers for
both footprints.

3.3 NEE and ET budgets

Figure 6 shows the cumulative NEE and ET of both foot-
prints for each year. For NEE, more than 9 months of the
year typically feature small emissions of CO2. In 2019 and
2021, these emissions were exceeded by an intense CO2 up-
take during the growing season, rendering the site a moder-
ate annual carbon sink of between −6 and −31 gC m−2 yr−1

in both footprints (see Table S3 in the Supplement for de-
tailed growing-season statistics). In the extreme-snow year
2020, however, the growing-season CO2 assimilation was
too small to offset wintertime emissions, causing the annual
carbon balance to become positive (carbon source) in both
footprints (between 20 and 34 gC m−2 yr−1). For the west-
erly footprint, the effect of a shortened growing season even
made the ecosystem a stronger annual carbon source than
it was a sink in the other 2 years. The large snow volumes
in 2020 not only delayed the start of the growing season
but also markedly prevented ground freezing in wintertime
(Fig. S1 in the Supplement). The resulting higher soil tem-
peratures allow for increased microbial activity in the soil,
which can explain the slightly larger wintertime CO2 emis-
sions observed in 2020. Summer 2021 is characterized by
larger CO2 uptake fluxes compared to 2019, which may be
caused by slightly higher GDDs, resulting in slightly higher
NDVI values in 2021 (Fig. S1 in the Supplement). The end
of the growing season, when the ecosystem returns to being a
net daily CO2 source, occurred between 5 and 26 September
and is associated with a fall in NDVI.

The ET loss is largely dominated by growing-season
fluxes. The annual ET loss is larger in the more densely veg-
etated westerly footprint but is still less than 10 % of total
annual precipitation in both footprints. The ET contribution
to the water balance is particularly low in 2020, when the
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Figure 4. Flux footprint characterization. (a) Example of a footprint estimate for one flux-averaging period during daytime summer con-
ditions with unstable stratification. The background map shows the seven main ecosystem-type categories, while the black lines show the
contours of the 50 %, 80 %, 90 %, and 95 % cumulative footprints (from inside to outside), respectively. (b) Integrated footprint function
averaged over all valid NEE measurements during 2019–2021 and plotted by the corresponding wind sectors. Colors indicate the footprint-
weighted contribution of each ecosystem type. The weights sum up to about 0.91, corresponding to the fraction of the EC footprint that is
classified by the ecosystem-type map.

Figure 5. Flux dynamics and drivers. (a, c) Gap-filled NEE and ET as fingerprint plots for the westerly footprint. (b, d) Predictor importance
of the random forest regression models of both the easterly and westerly footprints plotted on a logarithmic scale. Black error bars indicate
the standard deviation across the 2000 trees in the respective random forests.
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short growing season resulted in a decrease in annual ET of
almost 50 %. Collectively, these observations are consistent
with the notion that a large portion of ET stems from tran-
spiration through stomatal fluxes as opposed to non-stomatal
evaporation from bare ground or interception storage.

The carbon uptake and ET loss integrated over the grow-
ing season can be used to estimate the integrated water-use
efficiency (WUE) of the ecosystem, also termed WUE of
productivity. This comparison shows that, while both foot-
print areas are characterized by similar WUE in 2019 and
the extreme-snow year 2020 (ranging between 1.20 and
1.37 µmol-CO2 mmol-H2O−1), the following year of 2021
showed a marked increase in WUE to values between 1.77
and 1.96 µmol-CO2 mmol-H2O−1 (Table S3 in the Supple-
ment). On average, these differences correspond to an in-
crease in ecosystem water-use efficiency of about 47 %.

4 Discussion

4.1 Snow cover anomalies as extreme events in alpine
ecosystems

The ecology of alpine tundra along the Scandinavian moun-
tain chain is strongly regulated by the spatial distribution
and longevity of the snow cover (Dahl, 1956; Odland and
Munkejord, 2008; Niittynen and Luoto, 2018), as corrobo-
rated by the persistent linkage between snow melt-out date
and ecosystem type in the present study (Fig. 2a). Compared
to the boreal region, the alpine tundra in Norway is less af-
fected by disturbances from wildfires (Jolly et al., 2015), heat
waves (Ciais et al., 2005), or insect outbreaks (Heliasz et al.,
2011). Although there is a history of free-ranging domestic
animals (Ross et al., 2016) and reindeer (Kolari et al., 2019),
as well as cycles of rodent population outbreaks (Kausrud
et al., 2008), snow cover anomalies are likely to be driv-
ing the most consequential structural shifts of this ecosys-
tem’s functioning. The identified link between snowfall in-
tensity and the Scandinavian Pattern Index of the synoptic
atmospheric circulation provides a new perspective for our
understanding of snow cover anomalies at Finse. The asso-
ciated hydrological and biochemical consequences in areas
with delayed snow melt-out can include enhanced ground-
water recharge and subsequent discharge (Jasechko et al.,
2014), wetter soils, higher pH, and more nutrients in the
soils (Moriana-Armendariz et al., 2022). Our flux measure-
ments clearly indicate the direct reduction of NEE and ET
in extreme-snow years. Perhaps somewhat surprisingly, our
NDVI analysis reveals that the tundra vegetation still devel-
oped the same leaf area and greenness in the extreme-snow
year of 2020 compared to the other 2 years. In areas with
short growing seasons, such as at Finse, a quick develop-
ment of new leaves on deciduous shrubs is needed to re-
duce the risk of missing the opportunity to grow. This quick
leaf development is accomplished through the mobilization

of below-ground stored assimilates from the previous year
(Karlsson, 1985; Körner and Renhardt, 1987; Tonjer et al.,
2021). Although beyond the scope of this study, such below-
ground responses could be explored using factorial experi-
ments with minirhizotron tubes in climate chambers (Blume-
Werry et al., 2019). Further, in order to maximize leaf area,
leaves that are pre-planned in buds must not be injured by
low winter temperatures or frost spells after bud break (Wipf
et al., 2009). In our study, the late melt-out in 2020 came
after a relatively successful growing season in 2019, proba-
bly securing assimilate storage and well-developed buds. The
shoots of 2020 came out late, thus probably avoiding frost
spells. Accordingly, NDVI reached a high maximum level,
although the remainder of the growing season was too short
to secure a negative NEE that year. So if extreme snow accu-
mulations become more frequent, the observed reduction of
growing-season carbon assimilation could provide a mech-
anism for a trajectory for expanding snowbeds and reduced
vascular plant cover in some ecosystem types in alpine re-
gions, which would slow down the widely observed advances
of birch trees to alpine regions and the shrubification of tun-
dra areas.

In the growing season of 2021, our flux measurements
show a marked increase in the WUE of the ecosystems in
both footprint areas. Compared to 2019, NDVI, GDDs, and
NEE were higher in 2021, whereas ET stayed approximately
the same (see Fig. S1 and Table S3 in the Supplement). Since
our measurements do not suggest a clear mechanism for this
increase in WUE, it remains an open question whether it is
due to a carry-over effect of the previous snow-rich year or
is the direct response to a slightly higher air temperature (as
suggested by Wang et al., 2020) or lower volumetric water
content in the soil due to less frequent precipitation (Fig. S1
in the Supplement).

The Finse area typically features a several-months-long
ablation season with patchy snow cover (Aas et al., 2017).
The main drivers of melt-out variability are likely differ-
ences in wind exposition and surface orientation with re-
spect to prevailing wind directions and insolation. Likewise,
wind-driven snowmelt by heterogeneous sensible heat fluxes
can play a decisive role for snowmelt dynamics (van der
Valk et al., 2022). While our partitioning of snow patch-
iness into within- and between-ecosystem-type variability
(Fig. 2a) comes with some sensitivity to our choice of merg-
ing the minor ecosystem types, it may offer new insights into
the drivers of snowmelt and discharge generation on the land-
scape scale. In this context, it would also be interesting to
investigate the thermal impact of (relatively warm) ground-
water upwelling (e.g., in streams or in the fens) on snowmelt
and associated changes such as soil moisture and NEE. A
companion paper to the present work assesses how changing
snow patterns affect the hydrology and aquatic biogeochemi-
cal cycling, including greenhouse gas dynamics, in the Finse
area.
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Figure 6. Cumulative sums of NEE (a, b) and ET (c, d) for different footprint areas (columns) and years (lines). Stipulated lines indicate the
snow melt-out date estimated from MODIS (which was equal in 2019 and 2021).

4.2 Eddy covariance measurements in mountainous
environments

Mountainous topography can create characteristic boundary
layer flow features due to, e.g., orographic gravity waves
and cross-valley circulation cells that add effective trans-
port mechanisms to the otherwise-isotropic turbulent mixing
(Lehner and Rotach, 2018; Adler et al., 2021). At Finse, the
nearby Hardangerjøkulen Glacier is likely to induce a sec-
ondary circulation pattern due to strong surface temperature
gradients, especially during summertime. Such mesoscale
disturbances can add noise and even systematic biases to EC
flux estimates, since they are not accounted for in the funda-
mental equation of EC (Gu et al., 2012). One manifestation
of such problems can be seen in the non-closure of the sur-
face energy budget that is typically of the order of 20 % (Wil-
son et al., 2002) and that increases with landscape hetero-
geneity (Stoy et al., 2013). Ramtvedt and Pirk (2022) showed
that net radiation varies significantly over different surfaces
around the Finse flux tower. However, even after correcting
for these differences, the energy imbalance at Finse was still
about 50 % – similar to values found at other alpine sites
(Rotach et al., 2004). Vertical temperature gradient measure-
ments at our tower (Fig. S2 in the Supplement) indicate stable
stratification for about 83 % of the period 2019–2021, with
temperature gradients between the 2 and 10 m levels as high
as 6 ◦C during low-wind conditions. The resulting surface-

based temperature inversions and stable boundary layer flows
are known to feature flux divergences that can, in part, ex-
plain the observed energy imbalances (Mahrt et al., 2018). It
is, however, still unclear to what extent this problem affects
other flux estimates such as NEE. Adapted data-processing
techniques (Sievers et al., 2015) or alternative measurements
using fiber optics (Fritz et al., 2021) or drones (Pirk et al.,
2022) could be employed to further investigate the surface
energy imbalance at Finse, ideally in combination with other
mountainous sites.

4.3 Statistical flux gap-filling

The random forest regression model for flux gap-filling per-
formed well for our dataset, yielding generally low root-
mean-square errors and high values of the coefficient of
determination (0.85≤ R2

≤ 0.95 in test datasets; see Ta-
ble S2 in the Supplement). Unlike other commonly used gap-
filling algorithms like marginal distribution sampling (Re-
ichstein et al., 2005), where gaps are filled with average
fluxes measured during similar conditions within a moving
time window, the random forest model implicitly models
the nonlinear biogeo-chemical and biogeo-physical interac-
tions that give rise to fluxes. The disadvantage is that ran-
dom forest models cannot extrapolate to regions of the input–
output space that are outside the observed range. For near-
continuous datasets, such as our NEE and ET fluxes, this is
not a critical limitation, but datasets with larger gaps during
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extreme environmental conditions would be more challeng-
ing to gap-fill with random forest models. While the predic-
tor importance hints towards the underlying processes and
can help develop new hypotheses about biogeo-chemical and
biogeo-physical interactions, their interpretation is compli-
cated by correlations among the predictors, as is common for
statistical and machine learning models with multiple predic-
tors (Gregorutti et al., 2017). The predictor importance in our
flux model is in good agreement with our prior expectations
about the flux drivers. At the same time, our analysis em-
phasizes the need for high-quality ancillary measurements
nearby flux towers. In accordance with the no-free-lunch
theorems of optimization (Wolpert and Macready, 1997), a
range of different statistical and machine learning models
would likely fit the data equally well. Bayesian additive re-
gression tree models (Chipman et al., 2010), for example,
appear to be a promising technique that would also directly
estimate the statistical uncertainty of gap-filled fluxes. For
our estimation of annual budgets, however, the uncertainty
of statistical gap-filling is typically small compared to the
systematic uncertainty of the EC flux estimates (Pirk et al.,
2017).

5 Conclusions

We investigated snow–vegetation–atmosphere interactions at
the Finse site in alpine Norway by analyzing CO2 and wa-
ter vapor eddy covariance flux measurements in combina-
tion with ground-based ecosystem-type mapping and satel-
lite remote sensing. Our analysis shows the consistencies
and dependencies between these fluxes, ecosystem types, and
the snow cover duration in 3 consecutive years. The spa-
tial variability in the melt-out dates of different ecosystem
types (Fig. 2a) and the temporal response of the ecosystem-
scale NEE and ET to extreme-snow years (Fig. 6) repre-
sent a complementary manifestation of snow–vegetation–
atmosphere interactions at different scales that determine
ecosystem functioning at the Finse site. The year 2020 is
identified as an extremely snow-rich year associated with a
record-low SCA index for February, which reduced the total
annual evapotranspiration to 50 % and reduced the growing-
season carbon assimilation to turn the ecosystem from a
moderate annual carbon sink (−31 to−6 gC m−2 yr−1) to an
even stronger source (34 to 20 gC m−2 yr−1). The ecosystem
water-use efficiency increased by about 47 % in the year after
the extreme-snow year, but longer flux monitoring is needed
to assess if this response constitutes a persistent structural
shift to the extremely short growing season. As the alpine
tundra in Norway is less affected by disturbances such as
wildfires, insect outbreaks, or heat waves, our analysis sug-
gests that snow cover anomalies drive the most consequential
short-term responses in this ecosystem’s functioning.

Code and data availability. The ecosystem-type map is avail-
able on GitHub (https://github.com/geco-nhm/NiN_Finse, Horvath,
2023). Gap-filled flux data and remote sensing results for FSCA
and NDVI are available at https://doi.org/10.5281/zenodo.7566641
(Pirk et al., 2023).
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