

Supplement of

Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model

Sinan Xu et al.

Correspondence to: Zijun Wu (wuzj@tongji.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 **1. Details of investigated sites.**

2 Table S1. Supplementary sources of data for Fig. 3 in the main text.

longitude latitude		Sea area Water depth		ω	G _{max}	Ref.	
(°)	(°)	(Ocean)	<i>(m)</i>	(<i>cm/a</i>)	(wt%)		
72°45′ W	42°15′ N	Long Island Sound	10	0.2	1.7	(1)	
131°75′ E	43°11′ N	Amur Bay	1	0.3	2.9	(29)	
130°72′ E	42°61′ N	Ekspeditsii Bight	1.5	0.4	2.1	(29)	
131°83′ E	42°96′ N	Voevoda bight	2.1	0.3	6.2	(29)	
09°08′ E	56°53.10′ N	Livø Strait	7	0.1	6.2	(27)	
04°18′ E	51°77′ N	Haringvliet Lake	7.5	1.01	4.73	(26)	
123°29′ W	48°36′ N	NorthCarolina,USA	8	0.15	4.5	(9)	
09°09′ E	56°50.32′ N	Bjørnsholm Bay	10	0.1	12	(27)	
70°63′ W	41°73.8′ N	Buzzards Bay	15	0.2	1.9	(14)	
70°62′ W	41°74.4′ N	Buzzards Bay	16	0.2	2.1	(14)	
71°41′ W	41°43.9′ N	Rhode Island	17	0.2	16	(14)	
89°44′ W	29°07′ N	Mississippi River	20	0.8	0.9	(22)	
89°35′ W	29°06′ N	Mississippi River	20	0.8	0.52	(22)	
73°42′ W	43°81′ S	Southern Chilean	20	0.29	1.4	(23)	
73°51′ W	43°47′ S	Southern Chilean	20	0.29	3.2	(23)	
73°63′ W	44°62′ S	Southern Chilean	20	0.29	3.1	(23)	
73°18′ W	45°31′ S	Southern Chilean	20	0.29	1.6	(23)	
74°46′ W	44°51′ S	Southern Chilean	20	0.29	2.4	(23)	
74°53′ W	45°68′ S	Southern Chilean	20	0.29	1.5	(23)	
13°86′ E	54°74′ N	Arkona Bassin	35	0.048	3.8	(21)	
13°79′ E	54°80′ N	Arkona Bassin	44	0.074	4.1	(21)	
13°66′ E	54°94′ N	Arkona Bassin	44	0.19	5.2	(21)	
13°61′ E	54°91′ N	Arkona Bassin	44	0.215	4.9	(21)	
136°78′ W	34°29′ N	Ago Bay	50	0.2	2.5	(18)	
136°72′ W	34°30′ N	Ago Bay	50	0.2	2.4	(18)	
136°70′ W	34°25′ N	Ago Bay	50	0.2	2.48	(18)	
14°18′ E	23°46.52′ S	Namibian shelf	110	0.34	12	(16)	
86°13′ W	09°37′ N	Costa Rica	160	0.01	2.4	(20)	
86°11′ W	09°39′ N	Costa Rica	160	0.01	1.75	(20)	
86°15′ W	09°42′ N	Costa Rica	160	0.01	1.6	(20)	
123°25′ W	48°32′ N	Saanich Inlet	170	0.69	4.8	(7)	
05°12′ W	78°93′ N	East Greenland shelf	189	0.37	0.72	(24)	
12°77′ W	74°99′ N	East Greenland shelf	320	0.46	0.48	(24)	
04°59′ W	75°06′ N	Central Greenland	272	0.09	0.62	(24)	
123°30′ W	48°37′ N	Saanich Inlet	210	1.04	3.8	(11)	
77°39′ W	12°0.5′ S	Peru continental	186	0.23	14	(2)	
77°40′ W	12°0.5′ S	Peru continental	255	0.23	7.9	(2)	
76°50′ W	13°37.3′ S	Peru continental	370	0.14	20	(5)	
76°51′ W	13°37.3′ S	Peru continental	370	0.04	20	(5)	
77°57′ W	11°15.1′ S	Peru continental	186	0.15	14	(5)	

78°07′ W	11°20.6′ S	°20.6' S Peru continental		0.15	20	(4)
77°24′ W	12°23′ S	Peruvian margin	297	0.06	17.2	(33)
77°10′ W	12°13′ S	Peruvian margin	306	0.3	3.1	(33)
77°15′ W	12°17′ S	Peruvian margin	409	0.5	14.8	(33)
24°59' W	71°21′ N	Weddell Sea	422	0.58	0.28	(25)
120°14′ W	34°19.3' N	Santa Barbara Basin	430	0.2	2.8	(13)
120°01' W	34°14.3′ N	Santa Barbara Basin	578	0.2	3.2	(13)
120°02′ W	34°16.0′ N	Santa Barbara Basin	585	0.2	2.6	(13)
12°85′ E	38°13′ N	Castellammare	550	0.2	1.1	(28)
12°91′ E	38°14′ N	Castellammare	550	0.2	0.85	(28)
146°00' E	49°44.88′ N	Sea of Okhotsk	613	0.093	2.1	(30)
144°04' E	54°26.52′ N	Sea of Okhotsk	685	0.022	1.7	(30)
144°42′ E	52°43.88′ N	Sea of Okhotsk	713	0.115	1.8	(30)
144°14' E	53°50.00′ N	Sea of Okhotsk	771	0.092	1.7	(30)
146°02′ E	48°22.73′ N	Sea of Okhotsk	1256	0.013	1.6	(30)
146°08' E	48°11.83′ N	Sea of Okhotsk	1602	0.01	0.83	(30)
77°11′ W	12°14′ S	Peruvian margin	695	0.3	6.1	(33)
77°35′ W	12°31′ S	Peruvian margin	756	0.08	2.9	(33)
77°40′ W	12°35′ S	Peruvian margin	770	0.052	4.6	(33)
02°45' W	62°79′ N	Shetland Faeroe	777	0.68	1.2	(24)
119°42′ E	22°29′ N	South China Sea	1004	0.08	0.78	(32)
38°51' W	77°39′ N	Weddell Sea	1097	0.21	0.42	(25)
31°24' W	74°24′ N	Weddell Sea	1178	0.14	0.36	(25)
09°67′ W	68°71′ N	Weddell Sea	1185	0.08	0.32	(25)
27°64' W	73°17′ N	Weddell Sea	1566	0.24	0.35	(25)
22°36' W	73°36′ N	Weddell Sea	1598	0.24	0.25	(25)
27°16′ W	73°48′ N	Weddell Sea	444	0.74	0.21	(25)
118°83′ W	32°85′ N	Southern California	1500	0.06	6.5	(23)
65°35′ E	20°00' N	Arabian Sea	3000	0.0024	0.56	(31)
68°33′ E	15°36′ N	Arabian Sea	3500	0.0025	0.95	(31)
64°33′ E	14°24′ N	Arabian Sea	3500	0.0024	0.63	(31)
65°02′ E	10°03′ N	Arabian Sea	3500	0.0012	0.53	(31)
60°31′ E	16°10′ N	Arabian Sea	4000	0.0034	3.8	(31)
71°24' W	36°10′ N	NW Atlantic	4215	0.01	1.2	(8)
70°50′ W	32°59.3′ N	NW Atlantic	4595	0.003	0.28	(8)
60°50′ W	35°19.8′ N	NW Atlantic	5341	0.01	0.34	(8)
136°03′ E	28°59.00' N	Philippine Sea	2972	0.00006	0.34	(6)
135°93' E	29°08.00' N	Shikoku Basin	2972	0.00006	0.5	(6)
135°99′ E	29°10.00' N	Shikoku Basin	2972	0.00006	0.42	(6)
134°93' E	28°59.00' N	Shikoku Basin	2972	0.00002	0.27	(6)
151°39′ W	13°41.7′ N	the North Pacific	5686	0.00015	0.4	(10)
148°57′ W	6°13.2′ N	the North Pacific	5718	0.00019	0.23	(10)
146°09′ W	9°30.5′ N	the North Pacific	5004	0.00023	0.36	(10)
146°01′ W	9°19.3′ N	the North Pacific	5205	0.00032	0.45	(10)

145°59′ W	W 9°31.5' N the North Pacific		5164	0.00036	0.26	(10)
144°49' W	3°59.5′ N	the North Pacific	5214	0.00036	0.22	(10)
145°01' W	3°50.2′ N the North Pacific		4599	0.00041	0.23	(10)
148°44′ W	9°15.0′ N	the North Pacific	4619	0.00043	0.35	(10)
148°46′ W	9°06.5′ N	the North Pacific	5144	0.00058	0.32	(10)
151°39′ W	14°41.7′ N	the North Pacific	5686	0.0002	0.2	(10)
148°47′ W	9°06.5′ N	the North Pacific	5189	0.0012	0.25	(10)
168°46′ W	65°01.7′ S	South flank Pacific	2930	0.00258	0.5	(12)
174°14′ W	66°49.7′ S	South flank Pacific	3260	0.0018	0.32	(12)
174°44′ W	62°54.2′ S	North flank Pacific	4139	0.00588	0.6	(12)
63°27′ W	22°54.9′ N	Nares Abyssal Plain	5868	0.0005	0.3	(15)
63°26′ W	22°54.9′ N	Nares Abyssal Plain	5868	0.0005	0.14	(15)
63°00′ W	23°22.3′ N	Nares Abyssal Plain	5878	0.0005	0.12	(15)
63°01′ W	23°22.3′ N	Nares Abyssal Plain	5878	0.0005	0.008	(15)
169°04' E	08°13′ N	Equatorial Pacific	4239	< 0.002	0.25	(17)
177°58' E	07°27′ N	Equatorial Pacific	5269	< 0.002	0.42	(17)
175°52′ W	05°03′ N	Equatorial Pacific	5867	< 0.002	0.6	(17)
174°54′ W	174°54' W 03°04' N Equatorial Pacific		3572	< 0.002	0.54	(17)
171°04' W	04' W 00°02' S Equatorial Pacific		5352	< 0.002	0.7	(17)
168°04' W	°04' W 02°26' S Equatorial Pacific		5361	< 0.002	0.52	(17)
166°37′ W	W 03°39' S Equatorial Pacific		5469	< 0.002	0.53	(17)
166°32′ W	09°10′ S Equatorial Pacific		5283	< 0.002	0.15	(17)
85°22′ W	85°22' W 05°30' S Peru Basin		4082	0.002	1.7	(19)
85°11′ W	1' W 06°34' S Peru Basin		4165	0.0006	0.72	(19)
88°27′ W	88°27' W 07°40' S Peru Basin		4127	0.0004	0.8	(19)
3.07 W	51.5 N	Severn estuary	8	0.43	2.9	(34)
4.85 E	43.31 N	Rhone zone	19	0.1	1.9	(35)
4.77 E	43.27 N	Rhone shelf	74	0.5	1.5	(36)
10.34 E	56.11 N	Aarhus Bay	15	0.32	3.8	(37)
13.78 E	54.8 N	Arkona Basin	43	0.0074	3.9	(38)
7.97 E	54.08 N	Helgoland Mud	29	1.3	1.1	(39)
9.75 E	57.92 N	Skagerrak S10	86	0.5	1.4	(40)
9.7 E	57.95 N	Skagerrak S11	150	0.5	0.7	(41)
9.6 E	58.05 N	Skagerrak S13	386	0.5	2.1	(42)
63.02 E	24.88 N	Arabian Sea	645	0.05	1.1	(43)
62.99 E	24.81 N	Arabian Sea	957	0.05	0.95	(44)
62.99 E	24.71 N	Arabian Sea	1586	0.05	0.92	(45)
168.8 W	54.57 N	Bering Sea	1476	0.0016	1.6	(46)
53.59 W	39.31 S	Argentine Basin	3687	0.008	1.2	(47)

3

4 Reference for supplementary Table 4

5 [1] Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens, C. S., & Berner, R. A.

6 (1977). Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments; report of the

7 FOAM Group. American Journal of Science, 277(3), 193-237.

- 8 [2] Froelich, P. N., Arthur, M. A., Burnett, W. C., Deakin, M., Hensley, V., Jahnke, R., ... &
- 9 Vathakanon, C. (1988). Early diagenesis of organic matter in Peru continental margin sediments:
 10 phosphorite precipitation. Marine Geology, 80(3-4), 309-343.
- 11 [3] Müller, P. J., & Mangini, A. (1980). Organic carbon decomposition rates in sediments of the
- 12 Pacific manganese nodule belt dated by 230Th and 231Pa. Earth and planetary science letters, 51(1),
- 13 94-114.
- 14 [4] Reimers, C. E. (1982). Organic matter in anoxic sediments off central Peru: relations of porosity,
- microbial decomposition and deformation properties. Marine Geology, 46(3-4), 175-197.
- 16 [5] Reimers, C. E., & Suess, E. (1983). The partitioning of organic carbon fluxes and sedimentary
- 17 organic matter decomposition rates in the ocean. Marine Chemistry, 13(2), 141-168.
- 18 [6] Waples, D. W., & Sloan, J. R. (1980). Carbon and nitrogen diagenesis in deep sea sediments.
- 19 Geochimica et Cosmochimica Acta, 44(10), 1463-1470.
- 20 [7] Hamilton, S. E., & Hedges, J. I. (1988). The comparative geochemistries of lignins and
- 21 carbohydrates in an anoxic fjord. Geochimica et Cosmochimica Acta, 52(1), 129-142.
- 22 [8] Heggie, D., Maris, C., Hudson, A., Dymond, J., Beach, R., & Cullen, J. (1987). Organic carbon
- oxidation and preservation in NW Atlantic continental margin sediments. Geological Society,
 London, Special Publications, 31(1), 215-236.
- 25 [9] Martens, C. S., & Klump, J. V. (1984). Biogeochemical cycling in an organic-rich coastal marine
- 26 basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis.
- 27 Geochimica et Cosmochimica Acta, 48(10), 1987-2004.
- 28 [10] Müller, P. J., & Mangini, A. (1980). Organic carbon decomposition rates in sediments of the
- 29 Pacific manganese nodule belt dated by 230Th and 231Pa. Earth and planetary science letters, 51(1),
- 30 94-114.
- [11] Murray, J. W., Grundmanis, V., & Smethie Jr, W. M. (1978). Interstitial water chemistry in the
 sediments of Saanich Inlet. Geochimica et Cosmochimica Acta, 42(7), 1011-1026.
- S2 sediments of Saamen met. Geochinnea et Cosmoenninea Acta, 42(7), 1011-1020.
- [12] Reimers, C. E., & Suess, E. (1983). The partitioning of organic carbon fluxes and sedimentary
 organic matter decomposition rates in the ocean. Marine Chemistry, 13(2), 141-168.
- 35 [13] Sholkovitz, E. (1973). Interstitial water chemistry of the Santa Barbara Basin sediments.
- 36 Geochimica et Cosmochimica Acta, 37(9), 2043-2073.
- 37 [14] Henrichs, S. M., & Farrington, J. W. (1987). Early diagenesis of amino acids and organic matter
- 38 in two coastal marine sediments. Geochimica et Cosmochimica Acta, 51(1), 1-15.
- 39 [15] Thomson, J., Higgs, N. C., & Colley, S. (1989). A geochemical investigation of reduction haloes
- 40 developed under turbidites in brown clay. Marine geology, 89(3-4), 315-330.
- 41 [16] Dale, A. W., Brüchert, V., Alperin, M., & Regnier, P. (2009). An integrated sulfur isotope model
- 42 for Namibian shelf sediments. Geochimica et Cosmochimica Acta, 73(7), 1924-1944.
- 43 [17] Grundmanis, V., & Murray, J. W. (1982). Aerobic respiration in pelagic marine sediments.
- 44 Geochimica et Cosmochimica Acta, 46(6), 1101-1120.
- 45 [18] Kasih, G. A., Chiba, S., Yamagata, Y., Shimizu, Y., & Haraguchi, K. (2008). Modeling early
- 46 diagenesis of sediment in Ago Bay, Japan: A comparison of steady state and dynamic calculations.
- 47 Ecological modelling, 215(1-3), 40-54.
- 48 [19] Haeckel, M., König, I., Riech, V., Weber, M. E., & Suess, E. (2001). Pore water profiles and
- 49 numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep Sea
- 50 Research Part II: Topical Studies in Oceanography, 48(17-18), 3713-3736.
- 51 [20] Hensen, C., & Wallmann, K. (2005). Methane formation at Costa Rica continental margin-

- constraints for gas hydrate inventories and cross-décollement fluid flow. Earth and Planetary
 Science Letters, 236(1-2), 41-60.
- 54 [21] Mogollón, J. M., Dale, A. W., Fossing, H., & Regnier, P. (2012). Timescales for the
- 55 development of methanogenesis and free gas layers in recently-deposited sediments of Arkona
- 56 Basin (Baltic Sea). Biogeosciences (BG), 9, 1915-1933.
- 57 [22] Morse, J. W., & Eldridge, P. M. (2007). A non-steady state diagenetic model for changes in
- 58 sediment biogeochemistry in response to seasonally hypoxic/anoxic conditions in the "dead zone"
- 59 of the Louisiana shelf. Marine Chemistry, 106(1-2), 239-255.
- 60 [23] Rojas, N., & Silva, N. (2005). Early diagenesis and vertical distribution of organic carbon and
- total nitrogen in recent sediments from southern Chilean fjords (Boca del Guafo to Pulluche
 Channel). Investigaciones marinas, 33(2), 183-194.
- 63 [24] Sauter, E. J., Schlüter, M., & Suess, E. (2001). Organic carbon flux and remineralization in
- 64 surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles.
- 65 Deep Sea Research Part I: Oceanographic Research Papers, 48(2), 529-553.
- 66 [25] Schlüter, M. (1991). Organic carbon flux and oxygen penetration into sediments of the Weddell
- 67 Sea: indicators for regional differences in export production. Marine chemistry, 35(1-4), 569-579.
- 68 [26] Canavan, R. W., Slomp, C. P., Jourabchi, P., Van Cappellen, P., Laverman, A. M., & Van den
- 69 Berg, G. A. (2006). Organic matter mineralization in sediment of a coastal freshwater lake and
- response to salinization. Geochimica et Cosmochimica Acta, 70(11), 2836-2855.
- 71 [27] Jørgensen, B. B., JØrgensen, B. B., & Parkes, R. J. (2010). Role of sulfate reduction and
- methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden,
 Denmark). Limnology and Oceanography, 55(3), 1338-1352.
- [28] Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., & Iacono, C. L. (2019).
- 75 Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf
- 76 of Castellammare, southwestern Mediterranean).
- 77 [29] Tishchenko, P. Y., Medvedev, E. V., Barabanshchikov, Y. A., Pavlova, G. Y., Sagalaev, S. G.,
- 78 Tishchenko, P. P., ... & Orekhova, N. A. (2020). Organic Carbon and Carbonate System in the
- Bottom Sediments of Shallow Bights of the Peter the Great Bay (Sea of Japan). GeochemistryInternational, 58(6), 704-718.
- 81 [30] Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G., & Tishchenko, P. (2006).
- 82 Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in
- anoxic marine sediments. Geochimica et Cosmochimica Acta, 70(15), 3905-3927.
- 84 [31] Luff, R., Wallmann, K., Grandel, S., & Schlüter, M. (2000). Numerical modeling of benthic
- processes in the deep Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography,
 47(14), 3039-3072.
- 87 [32] Chuang, P. C., Yang, T. F., Wallmann, K., Matsumoto, R., Hu, C. Y., Chen, H. W., ... & Dale,
- 88 A. W. (2019). Carbon isotope exchange during anaerobic oxidation of methane (AOM) in sediments
- 89 of the northeastern South China Sea. Geochimica et Cosmochimica Acta, 246, 138-155.
- 90 [33] Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., ... & Bryant, L. D.
- 91 (2015). Organic carbon production, mineralization and preservation on the Peruvian margin.
- 92 Biogeosciences (BG), 12, 1537-1559.
- 93 [34] Langston, W. J., Pope, N. D., Jonas, P. J. C., Nikitic, C., Field, M. D. R., Dowell, B., ... &
- 94 Brown, A. R. (2010). Contaminants in fine sediments and their consequences for biota of the Severn
- 95 Estuary. Marine Pollution Bulletin, 61(1-3), 68-82.

- 96 [35] Pastor, L., Deflandre, B., Viollier, E., Cathalot, C., Metzger, E., Rabouille, C., ... & Grémare,
- 97 A. (2011). Influence of the organic matter composition on benthic oxygen demand in the Rhône
- 98 River prodelta (NW Mediterranean Sea). Continental Shelf Research, 31(9), 1008-1019.
- 99 [36] Aquilina, A., Knab, N. J., Knittel, K., Kaur, G., Geissler, A., Kelly, S. P., ... & Pancost, R. D.
- 100 (2010). Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with
- 101 diffusive methane fluxes. Organic Geochemistry, 41(4), 414-426.
- 102 [37] Thingstad, T. F., Riemann, B. O., Havskum, H., & Garde, K. (1996). Incorporation rates and
- 103 biomass content of C and P in phytoplankton and bacteria in the Bay of Aarhus (Denmark) June
- 104 1992. Journal of plankton research, 18(1), 97-121.
- [38] Fleming, V., & Kaitala, S. (2006). Phytoplankton spring bloom intensity index for the Baltic
 Sea estimated for the years 1992 to 2004. Hydrobiologia, 554(1), 57-65.
- [39] Hebbeln, D., Scheurle, C., & Lamy, F. (2003). Depositional history of the Helgoland mud area,
 German Bight, North Sea. Geo-Marine Letters, 23(2), 81-90.
- 109 [40] Dahl, E., & Johannessen, T. (1998). Temporal and spatial variability of phytoplankton and
- 110 chlorophyll a: lessons from the south coast of Norway and the Skagerrak. ICES Journal of Marine
- 111 Science, 55(4), 680-687.
- 112 [41] Richardson, K., Rasmussen, B., Bunk, T., & Mouritsen, L. T. (2003). Multiple subsurface
- phytoplankton blooms occurring simultaneously in the Skagerrak. Journal of plankton research,25(7), 799-813.
- [42] Trimmer, M., Engström, P., & Thamdrup, B. (2013). Stark contrast in denitrification and
 anammox across the deep Norwegian trench in the Skagerrak. Applied and environmental
 microbiology, 79(23), 7381-7389.
- 118 [43] Bard, E., Ménot, G., Rostek, F., Licari, L., Böning, P., Edwards, R. L., ... & Heaton, T. J. (2013).
- Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and
 Iberian margins. Radiocarbon, 55(4), 1999-2019.
- [44] Barlow, R. G., Mantoura, R. F. C., & Cummings, D. G. (1999). Monsoonal influence on the
 distribution of phytoplankton pigments in the Arabian Sea. Deep Sea Research Part II: Topical
 Studies in Oceanography, 46(3-4), 677-699.
- 124 [45] Koho, K. A., Nierop, K. G. J., Moodley, L., Middelburg, J. J., Pozzato, L., Soetaert, K., ... &
- Reichart, G. J. (2013). Microbial bioavailability regulates organic matter preservation in marine sediments. Biogeosciences, 10, 1131-1141.
- 127 [46] Coyle, K. O., Pinchuk, A. I., Eisner, L. B., & Napp, J. M. (2008). Zooplankton species 128 composition, abundance and biomass on the eastern Bering Sea shelf during summer: the potential
- role of water-column stability and nutrients in structuring the zooplankton community. Deep Sea
- 130 Research Part II: Topical Studies in Oceanography, 55(16-17), 1775-1791.
- 131 [47] Benthien, A., & Müller, P. J. (2000). Anomalously low alkenone temperatures caused by lateral
- 132 particle and sediment transport in the Malvinas Current region, western Argentine Basin. Deep Sea
- 133 Research Part I: Oceanographic Research Papers, 47(12), 2369-2393.
- 134

135 **2. Parameter sensitivity analysis for the** *l***-RCM and the** *γ***-RCM**

We did parameter sensitivity analysis for γ -RCM and *l*-RCM, respectively. The results shown that when *v* is fixed value, the parameter *a* can vary over a wide range (from 10000 to 20000) while maintaining a relatively good fit ($R^2>0.9$). However, when *a* is a fixed value, the variation of parameter *v* can cause a large fitting error. The results were shown in the Table S2 and Fig. S1.

- 140 Besides, we found when both a and v had a huge change, γ -RCM can also obtain a good fit result,
- 141 as shown in the Fig. S3.

Sensitivity analysis of y-RCM								
BX-6	v=0.278	a=12.5	$R^2 = 0.82$	DSDP 58	<i>v</i> =1.08	<i>a</i> =10224	$R^2 = 0.91$	
		a=22.5	$R^2 = 0.93$			<i>a</i> =12224	$R^2 = 0.92$	
		<i>a</i> =32.5	$R^2 = 0.86$			a=14224	$R^2 = 0.93$	
		<i>a</i> =42.5	$R^2 = 0.74$			<i>a</i> =16224	$R^2 = 0.92$	
		<i>a</i> =52.5	$R^2 = 0.61$			<i>a</i> =18224	$R^2 = 0.92$	
						a=20224	$R^2 = 0.92$	
	<i>a</i> =22.5	v=0.178	$R^2 = 0.56$		<i>a</i> =20224	v=0.68	$R^2 = 0.63$	
		v=0.278	$R^2 = 0.93$			v=0.88	$R^2 = 0.84$	
		v=0.378	$R^2 = 0.76$			v=1.08	$R^2 = 0.92$	
						v=1.28	$R^2 = 0.93$	
						v=1.48	$R^2 = 0.91$	

142 Table S2. Fitting results of parametric sensitivity analysis of γ-RCM

144

Fig. S1. Parameter sensitivity analysis of *γ*-RCM.

145 The *l*-RCM best-fit parameters are well fixed. According to the parametric sensitivity analysis, we

146 found that very small changes in parameters μ and σ can cause large errors in the fitting results. The 147 results were shown in the Table S3 and Fig. S2.

148	Table S3. Fitting results of	parametric sensitivity	analysis of <i>l</i> -RCM.
-----	------------------------------	------------------------	----------------------------

Sensitivity analysis of <i>l</i> -RCM								
BX-6	µ=2.24	<i>σ</i> =1.031	$R^2=0.71$	DSDP	µ=6.11	σ=0.663	$R^2 = 0.87$	
	×10 ⁻³	<i>σ</i> =2.031	$R^2 = 0.93$	58	×10 ⁻⁵	<i>σ</i> =1.663	$R^2 = 0.92$	
		<i>σ</i> =3.031	$R^2 = 0.88$			<i>σ</i> =2.663	$R^2 = 0.88$	
_		<i>σ</i> =4.031	$R^2 = 0.83$			<i>σ</i> =3.663	$R^2 = 0.81$	
	<i>σ</i> =2.031	$\mu = 1.24 \times 10^{-3}$	$R^2 = 0.62$		<i>σ</i> =1.663	μ =3.11×10 ⁻⁵	$R^2 = 0.86$	
		μ =2.24×10 ⁻³	$R^2 = 0.93$			μ =6.11×10 ⁻⁵	$R^2 = 0.92$	
		μ =3.24×10 ⁻³	$R^2 = 0.89$			$\mu = 9.11 \times 10^{-5}$	$R^2 = 0.87$	
		μ =4.24×10 ⁻³	$R^2 = 0.82$			$\mu = 12.11 \times 10^{-5}$	$R^2 = 0.82$	

149

153

154 Fig. S3. A: pink circles are measured OM date. The red solid (μ =2.23×10⁻³, σ =2.03, R^2 =0.93)

and dotted lines (μ =2.23×10⁻³, σ =1.03, R^2 =0.82) are the results of *l*-RCM, the blue solid

156 (v=0.278, a=22.5, $R^2=0.93$) and dotted lines (v=0.5, a=53, $R^2=0.91$) are the results of γ -RCM.

157 B: pink circles are measured OM date. The red solid (μ =6.11×10⁻⁵, σ =1.66, R^2 =0.92) and

dotted lines (μ =8.8×10⁻⁵, σ =1.36, R^2 =0.78) are the results of *l*-RCM, the blue solid (ν =1.08,

159 *a*=20225, *R*²=0.92) and dotted lines (*v*=0.5, *a*=4024, *R*²=0.89) are the results of *y*-RCM.