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Abstract. Plant functional types (PFTs) are used to represent
vegetation distribution in land surface models (LSMs). Pre-
vious studies have shown large differences in the geograph-
ical distribution of PFTs currently used in various LSMs,
which may arise from the differences in the underlying land
cover products but also the methods used to map or reclas-
sify land cover data to the PFTs that a given LSM repre-
sents. There are large uncertainties associated with existing
PFT mapping methods since they are largely based on ex-
pert judgement and therefore are subjective. In this study,
we propose a new approach to inform the mapping or the
cross-walking process using analyses from sub-pixel frac-
tional error matrices, which allows for a quantitative assess-
ment of the fractional composition of the land cover cate-
gories in a dataset. We use the Climate Change Initiative
(CCI) land cover product produced by the European Space
Agency (ESA). Previous work has shown that compared to
fine-resolution maps over Canada, the ESA-CCI product pro-
vides an improved land cover distribution compared to that
from the GLC2000 dataset currently used in the CLASSIC
(Canadian Land Surface Scheme Including Biogeochemi-
cal Cycles) model. A tree cover fraction dataset and a fine-
resolution land cover map over Canada are used to compute
the sub-pixel fractional composition of the land cover classes
in ESA-CCI, which is then used to create a cross-walking ta-
ble for mapping the ESA-CCI land cover categories to nine
PFTs represented in the CLASSIC model. There are large
differences between the new PFT distributions and those
currently used in the model. Offline simulations performed

with the CLASSIC model using the ESA-CCI-based PFTs
show improved winter albedo compared to that based on the
GLC2000 dataset. This emphasizes the importance of accu-
rate representation of vegetation distribution for realistic sim-
ulation of surface albedo in LSMs. Results in this study sug-
gest that the sub-pixel fractional composition analyses are
an effective way to reduce uncertainties in the PFT mapping
process and therefore, to some extent, objectify the otherwise
subjective process.

1 Introduction

Land cover is a critical component of the Earth system that
affects the exchange of energy, water, and carbon between
the land surface and the atmosphere (Pielke et al., 1998;
Sterling et al., 2013). Accurate representation of global land
cover (LC) is important for land surface models (LSMs),
which provide the lower boundary conditions to the atmo-
sphere in numerical weather forecasting, climate, and Earth
system models (ESMs). Plant functional types (PFTs) are
groups of plant species that share similar structural, pheno-
logical, and physiological traits and have been commonly
used in LSMs to represent vegetation distribution. This sim-
plification has allowed the simulation of structural attributes
of vegetation dynamically within ESMs (Arora and Boer,
2010; Bonan et al., 2003; Krinner et al., 2005). In order to
improve the representation of ecosystem ecology and veg-
etation demographic processes within ESMs, both species-
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based and trait-based models have been attempted in LSMs
(Fisher et al., 2018; Zakharova et al., 2019). However, these
individual-based models are computationally too expensive
to model biogeochemical processes, especially photosyn-
thesis and the carbon cycle at the global scale (Bonan et
al., 2002; Smith et al., 1997, 2001). As a compromise,
“cohort-based” models have been developed where individ-
ual plants with similar properties (size, age, functional type)
are grouped together and have been implemented in some
ESMs (Fisher et al., 2018). Though there are limitations in
PFT-based models (Scheiter et al., 2013; Zakharova et al.,
2019), PFTs are commonly used in LSMs that participate
routinely in the Global Carbon Project (Friedlingstein et al.,
2020) and in ESMs that participate in the Coupled Models
Intercomparison Project (CMIP, Wang et al., 2016).

There are three approaches for modelling PFTs: (1) static,
where the fractional coverage of PFTs is prescribed and does
not vary through time; (2) forced, where the fractional cover-
age of PFTs is still prescribed but vary through time based on
scenarios of land-cover/land-use change; and (3) dynamic,
where the fractional coverage of PFTs is simulated dynami-
cally with competition for available space and resources be-
tween PFTs (Fisher et al., 2018; Melton and Arora, 2016).
The number and type of PFTs used in each LSM differ.
Global land cover datasets are typically used to derive the
fractional coverage of PFTs for use in LSMs. However, large
differences exist in both the fractional coverage and the ge-
ographical distribution of PFTs, which are caused by differ-
ences in the LC datasets themselves but also due to the meth-
ods used to map LC datasets to the PFTs represented in var-
ious models (Fritz et al, 2011; Hartley et al., 2017; Ottle et
al., 2013; Wang et al., 2016).

Since different PFTs are characterized by different physi-
cal and biogeochemical processes and parameter values, the
spatial distribution and fractional cover of PFTs constitute
one of the important geophysical fields that are required for
realistic simulation of carbon, water, and energy budgets in
LSMs (Arora and Boer, 2010; Betts, 2001). For example, the
surface roughness for short or tall vegetation is very different,
which affects simulated turbulent exchanges. The surface
albedos for needleleaf evergreen trees, broadleaf deciduous
trees, and grasslands are also very different, especially dur-
ing winter when deciduous trees are leafless and short vege-
tation is largely buried by snow (Bartlett and Verseghy, 2015;
Moody et al., 2007). Wang et al. (2016) found that the bias
in winter albedo in selected boreal forest regions among the
CMIP5 models was largely related to biases in leaf area in-
dex (LAI) and tree cover fraction. Model experiments using
the MPI-ESM by Georgievski and Hagemann (2019) sug-
gested that uncertainties in vegetation distribution may lead
to noticeable variations in near-surface climate variables and
large-scale circulation patterns.

The Canadian Land Surface Scheme Including Biogeo-
chemical Cycles (CLASSIC) is an open-source community
land model that is designed to address research questions that
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explore the role of the land surface in the global climate sys-
tem (Melton et al., 2020). It is the successor to the coupled
modelling framework based on the Canadian Land Surface
Scheme (CLASS; Verseghy, 1991, 1993) and the Canadian
Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005;
Melton and Arora, 2016). The physics and biogeochemistry
modules of CLASSIC are based on CLASS and CTEM mod-
els, respectively. Since the development of CTEM in the
early 2000s, the GLC2000 LC product has been used to
specify the spatial distribution of PFTs for CLASSIC when
employed as the land surface component of the Canadian
Earth system model developed by Environment and Climate
Change Canada (Arora et al., 2009; Wang et al., 2006). The
Climate Change Initiative (CCI) LC product recently pro-
duced by the European Space Agency (ESA) is available at
an annual temporal resolution for the period 1992 to 2018 at
300 m spatial resolution (ESA, 2017). It was produced based
on broad user consultation, specifically to address the needs
of the climate modelling community (Bontemps et al., 2012).
Wang et al. (2019) showed that when compared to the finer-
resolution maps over Canada, the 300 m ESA-CCI product
provides much improved LC distribution over Canada com-
pared to that from the 1 km GLC2000 dataset.

To map LC classes to PFTs, a cross-walking table (CW-
table) is usually created to assign fractions of each LC class
to the different PFTSs, such that the sum of the fractions for
each class is always 1 (including fractions of water and bare
ground). Previous methods for creating such CW-tables are
mainly based on LC class descriptions, expert knowledge,
and the spatial distribution of global biomes (Ottle et al.,
2013; Poulter et al., 2011, 2015; Sun and Liang, 2007; Wang
et al., 2006). Because LC maps only provide the types of
vegetation, and each class can be associated with a broad
range of fractional cover of either one or more vegetation
types, there are large uncertainties associated with any cross-
walking or reclassification process. Wang et al. (2019) reclas-
sified the 10 PFTs in the default CW-table provided in the
ESA-CCI LC product user manual (Table 7-2, ESA, 2017)
into PFTs represented in the CLASSIC model and compared
them with those based on the GLC2000 dataset. The results
suggest that uncertainties in the CW-tables were a major
source of large differences in the PFT distributions. In addi-
tion, the fractional coverage of tree PFTs based on the default
CW-table for the ESA-CCI LC dataset was overestimated
along the taiga—tundra transition zone in western Canada,
which led to underestimation in winter albedo in CLASSIC
offline simulations driven with observation-based reanalysis
data (Wang et al., 2018).

The objective of this study is to develop a new CW-table
for reclassifying the ESA-CCI LC classes into PFTs repre-
sented in the CLASSIC model over the model’s Canadian do-
main and to compare and assess the performance of CLAS-
SIC offline simulations using the new and existing PFT dis-
tributions. Given the close link between the bias in winter
albedo and the vegetation distribution in the models (Wang
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et al., 2016), our assessment of model performance focuses
on the simulated surface albedo during the maximum snow
accumulation period (February—March for the boreal forest).
This simplifies our analyses by excluding the fall-spring
transition periods when biases in snow accumulation and
melt timing can have a large influence on surface albedo sim-
ulated by LSMs (Wang et al., 2014). In addition, we extend
the CW-table for the ESA-CCI LC dataset to the global do-
main. A comprehensive assessment of the impact of the PFT
distribution based on the new CW-table and the ESA-CCI
LC dataset on the performance of the CLASSIC model at the
global scale is presented in Arora et al. (2022).

2 Data and the CLASSIC model
2.1 The hybrid LC map over Canada

The United States Geological Survey archive of Landsat im-
agery has provided open and free access to georeferenced
and spectrally corrected analysis-ready imagery (Wulder et
al., 2012), which makes it possible to generate time series of
LC maps to study LC change. Recently two of these products
based on Landsat imagery were generated over Canada, in-
cluding the North America Land Change Monitoring System
(NALCMS) LC dataset (Latifovic et al., 2017) and the Vir-
tual Land Cover Engine (VLCE) framework-generated LC
dataset (Hermosilla et al., 2018).

Based on the random forest algorithm and local optimiza-
tion method, the Canada Centre for Remote Sensing has gen-
erated the NALCMS LC maps of Canada for the years 2010
and 2015 at 30 m resolution using Landsat imagery (Lati-
fovic et al., 2017). These LC products are the Canadian con-
tribution to the 30 m resolution 2010/2015 LC map of North
America to the joint collaborative effort by the Mexican,
American, and Canadian government institutions under the
NALCMS umbrella. The NALCMS LC map has 19 classes
based on the United Nations Land Cover Classification Sys-
tem (LCCS; Di Gregorio, 2005). Assessment based on refer-
ence samples showed an overall accuracy of 76.6 % for the
year 2010 data (Latifovic et al., 2017), which is used in this
study.

VLCE is an automated framework to enable change-
informed annual LC mapping using time series of Landsat
surface reflectance. Temporally consistent annual LC maps
representative of Canada’s forested ecosystems from 1984 to
2012 were generated using the VLCE framework, character-
izing LC dynamics following wildfire and harvesting events
by Hermosilla et al. (2018). The VLCE maps have 12 LC
classes in a hierarchical classification structure following that
of the National Forest Inventory. Assessment based on refer-
ence samples showed an overall accuracy of 70.3 % for the
map of the year 2005 (the year with the greatest number of
reference samples; Hermosilla et al., 2018). Land cover data
from the year 2010 are used in this study.
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Overall, the 19-class NALCMS product presents a more
detailed LC distribution than the 12-class VLCE map over
Canada. For example, areas classified as “exposed/barren
lands” in the VLCE map correspond to either “sub-polar or
polar grassland-lichen—-moss”, “sub-polar or polar barren—
lichen—moss”, or “barren lands” in the NALCMS map. Areas
of cropland are not separated from grassland in the VLCE
map. A recent study showed that the wetland class in NAL-
CMS suffers from large uncertainty in forest cover mapping
because treed—wetland was not separated from herbaceous
wetland in its legend (Wang et al., 2019). To take advantage
of both datasets, we created a hybrid product by combining
them through the following steps: (1) reproject the VLCE
data from its Lambert conformal conic projection to the same
Lambert azimuthal equal area projection that is used for the
NALCMS data; (2) replace pixels classified as “exposed/bar-
ren lands” and “bryoids” in the VLCE data with the more
specific LC classes from the NALCMS data; (3) replace pix-
els classified as “herbs” in the VLCE data with the “crop-
land” class in the NALCMS data (remains “herbs” if not clas-
sified as “cropland” in NALCMS); (4) and merge the rest of
LC classes from NALCMS to the corresponding classes in
the VLCE data. There are a total of 17 classes in this new
hybrid product, which we will henceforth refer to it as the
hybrid LC dataset and is shown in Fig. 1.

2.2 The global LC products

The GLC2000 dataset was generated from SPOT/VEG data
collected from November 1999 to December 2000 at 1 km
resolution (Bartholomé and Belward, 2005). It was produced
by 21 separate regional expert groups using an unsupervised
image classification method. Based on the LCCS, the re-
gional products were merged into one global product with
a generalized LCCS legend of 22 classes. Assessment based
on a random sampling of reference sites globally estimated
an overall accuracy of 68.6 % for the GLC2000 product
(Mayaux et al., 2006).

The annual ESA-CCI LC data at 300 m resolution are
available for the period 1992-2018, which were generated
from baseline data and annual LC changes (ESA, 2017). The
baseline data were generated using a combination of ma-
chine learning and unsupervised image classification meth-
ods from the entire archive of ENVISAT/Medium Resolution
Imaging Spectrometer for the period of 2003-2012. The an-
nual LC changes were detected at 1 km resolution from the
Advanced Very High Resolution Radiometer time series be-
tween 1992 and 1999, SPOT/VEG time series between 1999
and 2013, and the PROBA-V time series between 2013 and
2018. Based on the LCCS legend, the ESA-CCI LC data
have 22 level-1 classes, and 15 level-2 sub-classes. Assess-
ment based on the GlobCover validation database estimated
an overall accuracy of 71 % for the ESA-CCI LC product
(ESA, 2017).
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Figure 1. The hybrid land cover map of Canada based on VLCE and NALCMS land cover maps for 2010. The red polygons represent 18

ecozones used in this study.

2.3 Other datasets

Airborne lidar has been used to monitor forests since the
1980s and is well suited to estimate vegetation height, vol-
ume, and biomass (Hopkinson et al., 2006; Wulder et al.,
2008). Vegetation cover percentage for canopy height above
2 m from airborne lidar data is used to estimate the fraction of
tall versus low vegetation for LC classes with a mix of woody
and herbaceous vegetation in this study. The lidar data were
collected along 34 survey flights across the boreal forest of
Canada in the summer of 2010 by the Canadian Forest Ser-
vice (Wulder et al., 2012). A 25 by 25 m tessellation was gen-
erated with the approximately 400 m wide lidar swath, with
each cell treated as an individual lidar plot.

A tree cover fraction (TCF) dataset for 2010 is also used
in this study (Hansen et al., 2013; hereafter the Hansen TCF
dataset). It was based on Landsat images at 30 m resolution.
In contrast to the discrete LC classification datasets (provid-
ing a certain number of LC classes) as described above, the
Hansen dataset is a vegetation continuous field product (pro-
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viding tree cover fractions from 0 %—100 %), in which the
satellite spectral information was used to estimate the TCF
in each pixel using a regression tree algorithm (Hansen et
al., 2002, 2010). This may better represent heterogeneous ar-
eas than is possible by discrete LC classification. Tree cover
is defined to exist over pixels where canopy closure is ob-
served for vegetation taller than 5m in height. Forests are
generally defined as woody vegetation taller than 3 m in the
regional and global LC datasets. The different definitions of
tree heights should not result in much difference in areas with
mature forests, such as most boreal forests in Canada.

Simulated surface albedo by the CLASSIC model in of-
fline experiments is evaluated against the Moderate Res-
olution Imaging Spectroradiometer (MODIS) (MCD43C3)
broadband (0.3-5.0 um) white-sky albedo (Schaaf et al.,
2002), with quality flags of 0-2 (75 % or more full inver-
sions and 25 % or fewer fill values) and solar zenith angles
less than 70°. The MODIS albedo product used in this study
is at 0.05° resolution and is regridded to the 0.22° resolution
used for the CLASSIC simulations (see Sect. 2.4.2).
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2.4 The CLASSIC model and simulation setup

2.4.1 The CLASSIC model

CLASSIC is the successor to the coupled modelling frame-
work based on the Canadian Land Surface Scheme (CLASS;
Verseghy, 1991, 1993) and the Canadian Terrestrial Ecosys-
tem Model (CTEM; Arora and Boer, 2005; Melton and
Arora, 2016). The physics and biogeochemistry components
of CLASSIC are based on CLASS and CTEM, respectively.
For the physics component, the default model’s vegetation
is represented in terms of the fractional coverage of the four
PFTs (needleleaf trees, broadleaf trees, crops, and grasses).
The physics component represents a single snow layer with
variable depth and a single vegetation canopy layer. As a
first-order treatment of subgrid-scale heterogeneity, each grid
cell is divided up into four sub-areas, consisting of vegetated
and bare soil areas, each with and without snow cover. The
visible and near-infrared albedos of each PFT/vegetation cat-
egory are specified. These albedos are further modified by
taking into account the fraction of the ground that is seen
from the sky above referred to as the sky view factor (which
is modelled as a function of the leaf area index). The albedo
of the ground that is seen from the sky above depends on
if the ground is snow covered or not but also on the soil
moisture of the top soil layer, since wet soil is darker than
the dry soil. Canopy snow processes such as interception/un-
loading, sublimation, and melt are all simulated. The aggre-
gated visible and near-infrared albedos for the bulk canopy
are incremented using the current values weighted by the
fractional coverage of the vegetation categories (Verseghy,
1993). More details can be found in Appendix A. The over-
all surface albedo of a grid cell is computed as a weighted
mean using the fractional coverages for the four sub-areas.
Twenty ground layers represent the soil profile, starting with
10 layers of 0.1 m thickness. The thicknesses of the layers
gradually increase to 30 m for a total ground depth of over
61 m. Liquid and frozen soil moisture contents, and soil tem-
perature, are determined prognostically for permeable soil
layers. The biogeochemistry component of CLASSIC used
here represents vegetation in terms of nine PFTs: needleleaf
evergreen trees (NLE), needleleaf deciduous trees (NLD),
broadleaf evergreen trees (BLE), broadleaf cold deciduous
trees (BCD), broadleaf dry deciduous trees (BDD), C3 and
Cy4 crops (C3C/C4C), and C3z and C4 grasses (C3G/C4G).
These nine PFTs map directly onto the four PFTs used by
CLASSIC’s physics component. When the physics and bio-
geochemistry components are coupled together, as in the case
of simulations carried out in this study, the structural at-
tributes of vegetation including leaf area index, canopy mass,
rooting depth, and vegetation height are simulated dynami-
cally as a function of environmental conditions by the bio-
geochemistry component. When the biogeochemistry com-
ponent is turned off, specified structural attributes of vege-
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tation for use by the physics component are extracted from
look-up tables.

2.4.2 Simulation setup

Gridded meteorological data based on the Climatic Research
Unit (CRU) and Japanese reanalysis (JRA) (CRUJRA, https:
//crudata.uea.ac.uk/cru/data/hrg/, last access: July 2022) are
used to drive CLASSIC simulations. The data are constructed
by regridding data from the JRA and adjusting where possi-
ble to align with the CRU TS 4.05 data. The blended prod-
uct from January 1901 to December 2020 has the 6-hourly
temporal resolution of the reanalysis product but monthly
means adjusted to match the CRU data (Harris, 2020). The
6-hourly data are disaggregated on the fly within CLASSIC
into half-hourly data following the methodology by Melton
and Arora (2016) for the following seven meteorological
variables that are used to force the model: 2 m air temper-
ature, total precipitation, specific humidity, downward solar
radiation flux, downward longwave radiation flux, surface
pressure, and wind speed. Surface temperature, surface pres-
sure, specific humidity, and wind speed are linearly interpo-
lated. Longwave radiation is uniformly distributed across a 6-
hour period, and shortwave radiation is diurnally distributed
over a day based on a grid cell’s latitude and day of year
with the maximum value occurring at solar noon. Precipi-
tation is treated following Arora (1997), where the total 6 h
precipitation amount is used to determine the number of wet
half hours in a 6h period. The 6 h precipitation amount is
then spread randomly, but conservatively, over the wet half-
hourly periods. In CLASSIC, the phase of precipitation is
determined by a threshold surface air temperature with three
options available (Bartlett et al., 2006). The 0 °C air temper-
ature threshold is used to partition precipitation into rain or
snow in this study. This choice does not have a significant im-
pact on the simulated surface albedo in CLASSIC especially
during the February—March months when the snow cover is
near its maximum (Wang et al., 2014).

Two simulations over the 1850-2020 historical period are
performed using PFTs derived from the ESA-CCI and the
GLC2000 datasets respectively, which is the only difference
between the two simulations. Static PFTs are used in the
simulations where the fractional coverage of PFTs is pre-
scribed and does not vary through time. Besides land cover
and meteorological forcings, CLASSIC requires globally av-
eraged atmospheric CO, concentration and geographically
varying time-invariant soil texture and soil permeable depth.
The atmospheric CO; concentration values are provided by
the Global Carbon Project protocol (Friedlingstein et al.,
2019). The soil texture information consists of the percent-
age of sand, clay, and organic matter and is derived from the
SoilGrids250m dataset (Hengl et al., 2017), and permeable
soil depth is based on Shangguan et al. (2017). The simu-
lations are performed at a 0.22° rotated latitude—longitude
grid over a domain including Canada and part of Alaska
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(Fig. 3). Pre-industrial simulations that correspond to the
year 1850 are required prior to doing the historical simula-
tions so that model’s carbon pools, including leaf biomass
which determines leaf area index, are spun up to near equilib-
rium for each land cover. The pre-industrial simulations use
1901-1920 meteorological data repeatedly with atmospheric
CO; concentration specified at its 1850 level. Each histori-
cal simulation is then initialized from its corresponding pre-
industrial simulation after it has reached equilibrium (with
carbon fluxes to conditions corresponding to the year 1850).
For the period 1851-1900, the CRUJRA meteorological data
for the first 20 years (1901-1920) are used repeatedly. For the
1901-2020 period the meteorological data corresponding to
each actual year are used. The period from 2001 to 2015 was
selected for analyzing the simulated results.

3 PFT mapping methods

The CW-table for the ESA-CCI LC dataset is generated
through a multi-step process that combines multiple land
cover maps at different spatial and categorical resolutions
with ancillary data on tree cover and vegetation height
(Fig. 2). This includes the following steps:

1. combining two existing land cover maps (NALCMS and
VLCE) to produce a harmonized 30 m land cover (hy-
brid) map with improved categorical precision (as de-
scribed in Sect. 2.1);

2. creating a CW-table for the hybrid land cover map
through a direct mapping of classes from the hybrid
map onto the CLASSIC PFTs, such that each land cover
class corresponds to a particular mix of PFTs as repre-
sented in CLASSIC. This step is supported by vegeta-
tion height data from an airborne lidar campaign over
parts of Canada;

3. computing the sub-pixel fractional composition for
classes in the ESA-CCI land cover map (300 m reso-
lution) based on the 30 m hybrid land cover dataset and
the Hansen tree cover fraction dataset;

4. using the sub-pixel fractional composition analysis to
create a CW-table for mapping the ESA-CCI land cover
classes onto PFTs as represented in CLASSIC; and

5. since the ESA-CCI dataset is global, the CW-table de-
veloped over Canada is extended to the whole globe.

3.1 CW-table for mapping hybrid LC classes to
CLASSIC PFTs

Among the nine CLASSIC PFTs, BLE and BDD forests are
not present in Canada. These are primarily tropical PFTs as
represented in CLASSIC. NLD accounts for less than 1 %
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of coniferous forests in Canada (Wang et al., 2019). There-
fore, we do not consider NLD, BLE, and BDD from here
on in this study. Considering the fine resolution (30 m) of
the hybrid map, especially relative to the model resolution
(~ 16km) used in this study, we assign fractions of 1.0 to
the two pure forest classes (LC210 and LC220), the cropland
(LC15), and the five non-vegetative classes (LC16 to LC32)
in its CW-table (Table 1). The mixed-wood category (LC230)
is split evenly into NLE and BCD in the table based on the
definition in the VLCE legend (Hermosilla et al., 2018; Wul-
der et al., 2003). Note that in Table 1, broadleaf deciduous
trees (BDD and BCD) are considered together and separated
later into their cold and drought deciduous versions. Simi-
larly, crops and grasses (C3 and C4) are considered together
and separated later into their C3 and Cy4 varieties. The rea-
son for this is that the separation of broadleaf trees into their
cold and deciduous phenotypes is based on latitude (Wang et
al., 2006). The separation of crops and grasses based on their
photosynthetic pathway (C3 or C4) is done based on the Cy4
fraction from Still and Berry (2003), which is available at 1°
resolution.

CLASSIC explicitly represents shrub PFTs (Meyer et al.,
2021), but this work does not use that model version, and
therefore the fraction of tall shrubs is assigned to one of the
tree PFTs as was done in creating the CW-table for GLC2000
for use with CLASSIC (Wang et al., 2006). Four (LC2 —
sub-polar taiga needleleaf forest, LC50 — shrubland, LC80
— wetland, and LC81 — wetland—treed) out of the 17 classes
in the hybrid map are characterized by a mosaic of trees,
shrubs, and herbaceous vegetation. The vegetation coverage
for canopy height above 2 m from lidar plots is used to inform
the partitioning of forest (tall vegetation) to non-forest (low
vegetation) fractions for these mixed classes. We overlay the
lidar plots on the hybrid land cover map in ArcGIS. Sam-
ples (20 to 40, note that these classes do not cover large areas
in Canada) for the four mixed classes in the hybrid map are
selected where there are lidar data. The vegetation coverage
data (for canopy height above 2 m) from lidar plots for sam-
ples of each class are used to compute an average coverage
of tall vegetation (> 2 m) for that class, which is then used to
assign forest fractions for these four classes in Table 1.

The distribution of tree species from Beaudoin et
al. (2014) is used to guide the separation of coniferous versus
broadleaf forest fractions. For example, for the wetland—treed
category (LC81), maps of tree species show that conifer-
ous forests dominate wetland—treed regions, while broadleaf
forests are generally non-existent. We, therefore, assign most
of the forest fraction to NLE (0.55), only 0.05 to BCD,
0.35 to grasses, and the remaining to the bare ground for
LCS81 (Table 1). The presence of evergreen shrubs is rare in
Canada according to National Forest Inventory ground plot
data (Gillis et al., 2005); thus we only assign an estimated
tall shrub fraction (0.20) in the shrub class (LC50) to BCD.
The sub-polar or polar classes (LC11 to LC13) are located
above the treeline and mainly consist of low shrubs and grass.
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Figure 2. Schematic flow chart of the process for creating the cross-walking table for ESA-CCI land cover (LC) dataset. NALCMS: the
North America Land Change Monitoring System; VLCE: the Virtual Land Cover Engine; TCF: tree cover fraction.

The fractions of grass (including low shrubs) and bare ground
are based on field surveys of fractional vegetation cover and
tundra PFT data in Bjorkman et al. (2018) and Macander et
al. (2020) (by computing the average fractions at the field
sites which overlap with the sub-polar or polar classes in the
hybrid/NALCMS land cover map). High-resolution images
from Google Earth engine or Bing Maps are also used to ex-
amine the ratio of vegetated versus bare ground for all classes
in which bare ground is present.

3.2 CW-table for mapping ESA-CCI LC classes to
CLASSIC PFTs over Canada

3.2.1 The error and sub-pixel fractional error matrices

A standard approach for the accuracy assessment of LC prod-
ucts is to use an error matrix. It is a square array or table of
numbers arranged in rows and columns, in which the classifi-
cation from the LC product (usually represented by the rows)
is compared to the reference data (usually represented by the
columns) for each category (Congalton, 1991). The major
diagonal of the matrix presents the number of correct clas-
sifications indicating the agreement between the LC and the
reference data for each category. In practice, fine-resolution
regional maps are often used to assess large-scale LC prod-
ucts derived from coarse-resolution data (Cihlar et al., 2003).
In such cases, the fine-resolution reference data are aggregat-
ed/regridded to match the grid of the coarse-resolution data.
Several classes in the reference data may be present in a sin-
gle coarse-resolution pixel depending on the homogeneity of
the landscape. In order to compare the reference and the LC
data on a one-to-one basis, the dominant LC class (the class
with the most abundant fractions based on all fine-resolution
pixels in the reference data) is often assigned to the regridded
reference pixel.
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The sub-pixel fractional error matrices have been intro-
duced as a more appropriate way of assessing the accuracy of
mixed pixels by Latifovic and Olthof (2004). In contrast with
an error matrix where only the dominant LC class is used as
described above, the sub-pixel fractional error matrix is pro-
duced by assigning sub-dominant LC classes from all fine-
resolution pixels in the reference data to the corresponding
single coarse-resolution pixel. It thus allows a quantitative
assessment of the fractional composition of the LC classes
in the coarse-resolution dataset. In this study, both the 30 m
Hansen TCF data and the 30 m hybrid LC map are used to
compute the sub-pixel fractional error matrices of the 300 m
ESA-CCI dataset (Tables 2 and 3). However, the objective
here is not an accuracy assessment as in Latifovic and Olthof
(2004) but rather to obtain the fractional composition of the
LC classes in the ESA-CCI product and to inform the PFT
mapping process. We refer to this process as the sub-pixel
fractional composition analysis in the rest of this paper. Sub-
pixel fractional composition analyses are first performed for
each ecozone, and then weighted mean fractions for each
ESA-CCI class are computed based on pixel counts in each
of the ecozones (see the location of ecozones in Fig. 1).

For the Hansen TCF data, results are shown only for
the ESA-CCI LC classes containing forests in Canada (Ta-
ble 2). In the ESA-CCI legend (Table 4), two sub-classes for
broadleaf (LC61 and LC62) and needleleaf (LC71 and LC72)
forests are included as the closed (> 40 % forest cover) and
open (10%—-40% forest cover) categories apart from the
main classes (LC60 and LC70, closed to open (> 15 %)).
As expected, the TCF is larger for the closed classes than
for the main and the open classes (Table 2). In Table 2,
we also include ratios of TCF between the main class and
the closed class, and between the open class and the closed
class. We note that the ratios are different for broadleaf
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Table 1. Cross-walking table for mapping the 30 m hybrid land cover map to CLASSIC PFTs in Canada. Nine PFTs in CLASSIC: NLE —
needleleaf evergreen trees, NLD — needleleaf deciduous trees, BLE — broadleaf evergreen trees, BCD — broadleaf cold deciduous trees, BDD
— broadleaf dry deciduous trees, C3C-C3 crops, C4C—C4 crops, C3G-C3 grasses, and C4C—Cy grasses.

ID Map description 1 2 3 4+5 6+7 849 Urban Lake Bare
NLE NLD BLE BCD C3C C3G
BDD C4C C4G
2 Sub-polar taiga 0.20 0.60 0.20
needleleaf forest
11 Sub-polar or polar 0.65 0.35
shrubland-lichen—
moss
12 Sub-polar or polar 0.45 0.55
grassland-lichen—
moss
13 Sub-polar or polar 0.10 0.90
barren—lichen—moss
15 Cropland 1.0
16 Barren lands 1.0
17 Urban 1.0
20 Water 1.0
31 Snow/ice 1.0
32 Rock/rubble 1.0
50 Shrubland 0.20 0.60 0.20
80 Wetland 0.05 0.85 0.10
81 Wetland-treed 0.55 0.05 0.35 0.05
100 Herbs 0.80 0.20
210  Coniferous 1.0
220  Broadleaf 1.0
230  Mixed wood 0.50 0.50

(main class vs. closed class: 68.5/86.7 = 0.8; open class vs.
closed class: 0.43/86.7 = 0.43) and needleleaf (main class
vs. closed class: 39.3/61.7 = 0.6; open class vs. closed class:
23.2/61.7 = 0.38) forests, which need to be taken into ac-
count when creating the CW-table for the ESA-CCI dataset.

To obtain representative class compositions of the ESA-
CCI dataset, only homogenous ESA-CCI pixels are included
in the sub-pixel composition analyses based on the hybrid
LC data. The homogenous pixels are defined following the
method in Herold et al. (2008). To quantify landscape het-
erogeneity, 3 x 3 pixel neighbourhoods are assessed for the
ESA-CCI data. A neighbourhood is considered homogenous
if only one LC class is present. The weighted mean fraction
for each class is computed from ecozones with more than 10
homogenous ESA-CCI pixels for that class (Table 3). Only
13 out of the 37 ESA-CCI classes are included in Table 3;
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the rest of the classes either have limited presence in Canada
or are non-vegetative (Table 4).

In the hybrid CW-table (Table 1), four LC classes (2, 81,
210, and 230) contribute to the fractional cover of NLE, and
five LC classes (50, 80, 81, 220, and 230) contribute to the
fractional cover of BCD. In Table 3, we also include an inte-
grated fractional cover (F) for NLE and BCD (last two rows)
for each of the ESA-CCI classes based on the following for-
mula:

N
F=Y Fl; x F2;, (1)
i=1
where F'1; are fractions in Table 3, F2; are fractions in Ta-
ble 1, and N is the number of hybrid LC classes contributing
to NLE (N =4) or BCD (N =5) as shown in Table 1. As
an example, the fraction of NLE for the LC70 (tree cover
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Table 2. The sub-pixel fractional tree cover fraction for ESA-CCI (European Space Agency — Climate Change Initiative) land cover classes
(with forest cover) based on the Hansen TCF (tree cover fraction) dataset in Canada. Ratios of TCF between the main class and the closed

class and between the open class and the closed class are also included.

ESA-CCIclass ESA-CCI class description Tree cover  Ratio of TCF relative
fraction (%) to closed class

30 Mosaic cropland (> 50 %)/natural vegetation (< 50 %) 13.7

40 Mosaic natural vegetation (> 50 %)/cropland (< 50 %) 45

60 Tree cover broadleaved deciduous closed to open (> 15 %) 68.5 0.8

61 Tree cover broadleaved deciduous closed (> 40 %) 86.7 1

62 Tree cover broadleaved deciduous open (15 %—40 %) 37.4 0.43

70 Tree cover needleleaf evergreen closed to open (> 15 %) 39.3 0.6

71 Tree cover needleleaf evergreen, closed (> 40 %) 61.7 1

72 Tree cover needleleaf evergreen open (15 %—40 %) 23.2 0.38

90 Tree cover mixed 80.9

100 Mosaic tree and shrub (> 50 %)/herbaceous cover (< 50 %) 37.3

110 Mosaic herbaceous cover (> 50 %)/tree and shrub (< 50 %) 19.6

120 Shrubland 28.1

150 Sparse vegetation (tree shrub herbaceous cover) (< 15 %) 4

160 Tree cover, flooded fresh/brackish 43

180 Shrub or herbaceous cover, flooded 26.9

Table 3. The sub-pixel fractional composition for ESA-CCI classes (columns, homogenous ESA-CCI pixels) based on the hybrid land cover
map (rows) for dominant land cover classes in Canada. The fractions for NLE and BCD are computed based on Eq. (1).

Hybrid/ Hybrid description 30 40 60 70 71 90 100 120 130 140 150 160 180
ESA-CCI

class

2 Sub-polar taiga needleleaf forest 0.02 0.01 0.01

11 Sub-polar/polar shrubland-lichen—moss 0.01  0.05

12 Sub-polar/polar grassland-lichen—moss 0.04 0.03 0.01 024 027 0.03 0.04
13 Sub-polar/polar barren—lichen—moss 0.02 0.01 002 0.01 034 0.09 0.02
15 Cropland 092 037 0.02 0.1

16 Barren lands 0.01 0.15 0.17

50 Shrubland 0.01 007 0.06 0.3 0.05 004 032 046 0.09 0.14 025 0.06

80 Wetland 0.03 0.08 02 005 0.03 027 02 002 0.06 0.09 037 075
81 Wetland—treed 0.01 001 0.17 0.07 0.03 0.11 0.12 043 0.15
100 Herbs 0.06 027 0.08 0.02 0.02 006 0.09 072 001 003 001 0.01
210 Coniferous 0.01 002 029 072 0.07 0.04 0.03 0.01 0.02 0.06

220 Broadleaf 001 0.13 057 0.02 0.0l 028 007 001 0.01 0.01

230 Mixed wood 0.1 014 0.09 0.07 052 0.12 0.03 0.02

NLE Needleleaf evergreen 0.07 009 044 08 032 019 016 001 002 0.05 031 0.08
BCD Broadleaf cold deciduous 001 0.19 0.66 009 0.06 057 0.18 0.09 002 002 0.03 005 0.03

needleleaf evergreen closed to open) in ESA-CCI data in Ta-
ble 3 (see the NLE row and the column for class 70) is ob-
tained as follows: F' = 0.02x0.204-0.17x0.554-0.29x 1.0+
0.09x0.5 = 0.44. This process reduces the subjectivity in as-
signing the ESA-CCI land cover classes to CLASSIC’s two
tree PFTs (NLE and BCD) that are present in Canada since
the process is based on the high-resolution hybrid LC data.

3.2.2 CW-table for the ESA-CCI LC dataset over
Canada

Tables 2 and 3 thus form the basis for creating the CW-table
for mapping the ESA-CCI LC classes to CLASSIC’s PFTs
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(Fig. 2 and Table 4). For the ESA-CCI class LC61 (Tree
cover broadleaved deciduous closed, not included in Table 3
due to limited presence in Canada), ratios of TCF for LC60
vs. LC61 in Table 2 and the fractions of LC60 (tree cover
broadleaved deciduous closed to open) in Table 3 are used to
derive fractions for LC61 in Table 4. The remapping of LC62
(tree cover broadleaved deciduous open) and LC72 (Tree
cover needleleaf evergreen open) into CLASSIC’s PFTs is
done in a similar way. Since NLD is not included in either Ta-
ble 2 or Table 3, the needleleaf deciduous tree cover classes
(LCB80-82) are assigned to the same fractions as the needle-
leaf evergreen tree cover classes (LC70-72). For simplicity,
the fractions in Table 3 are rounded to values with either “0”
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Table 4. Cross-walking table for mapping ESA-CCI land cover dataset to CLASSIC PFTs.

ID ESA-CCI class description 1 2 3 445 647 8+9 Urban Lake Ocean Bare
NLE NLD BLE BCD C5C 3G
BDD Cy4C C4G

10 Cropland, rainfed (CR) 0.80 0.20
11 CR herbaceous cover 0.90 0.10
12 CR tree or shrub cover 0.60 0.30 0.10
20 Cropland, irrigated, or post-flood 0.05 0.85 0.10
30 Mosaic cropland (> 50 %)/natural vegetation 0.05 0.15 0.60 0.20
(tree, shrub, herb)
40 Mosaic natural vegetation (tree, shrub, herb) 0.10 0.20 0.40 0.30
> 50 %/crop
50 Tree cover broadleaved evergreen closed to open 0.95 0.05 0.0
60 Tree cover broadleaved deciduous closed to open 0.70 0.25 0.05
61 Tree cover broadleaved deciduous closed 0.90 0.10
62 Tree cover broadleaved deciduous open 0.40 0.40 0.20
70 Tree cover needleleaf evergreen closed to open 0.85 0.05 0.10
71 Tree cover needleleaf evergreen, closed 0.85 0.05 0.10
72 Tree cover needleleaf evergreen open 0.35 0.10 0.40 0.15
73 Replace LC70 in Canada 0.45 0.10 0.30 0.15
80 Tree cover needleleaf deciduous closed to open 0.05 0.40 0.10 0.35 0.10
81 Tree cover needleleaf deciduous closed 0.05 0.80 0.05 0.15
82 Tree cover needleleaf deciduous open 0.05 0.30 0.10 0.45 0.15
90 Tree cover mixed 0.25 0.05 0.60 0.10
100  Mosaic tree and shrub (> 50 %)/herbaceous cover 0.15 0.05 0.20 0.45 0.15
(< 50 %)
110 Mosaic herbaceous cover (> 50 %)/tree and shrub 0.05 0.05 0.10 0.65 0.15
(< 50 %)
120 Shrubland 0.30 0.45 0.25
121 Shrubland evergreen 0.15 0.15 0.45 0.25
122 Shrubland deciduous 0.30 0.45 0.25
130 Grassland 0.70 0.30
140  Lichens and mosses 0.20 0.80
150  Sparse vegetation (tree shrub 0.05 0.35 0.60
herbaceous cover) (<15 %)
151  Sparse tree (<15 %) 0.05 0.35 0.60
152 Sparse shrub (<15 %) 0.30 0.70
153  Sparse herbaceous cover (<15 %) 0.30 0.70
160  Tree cover, flooded fresh/brackish 0.30 0.10 0.45 0.1 0.05
170  Tree cover, flooded saline water 0.30 0.10 0.40 0.1 0.10
180  Shrub or herbaceous cover, flooded 0.10 0.05 0.45 0.15 0.15 0.10
190  Urban areas 0.025 0.025 0.15 0.75 0.05
200  Bare areas 1.0
201  Consolidated bare areas 1.0
202  Unconsolidated bare areas 1.0
210 Water bodies 1.0
220  Permanent snow and ice 1.0
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or “5” at the hundredth place when used in Table 4. For the
rest of the classes not included in either Table 2 or Table 3,
values are based on the default CW-table from the ESA-CCI
user guide (Table 7-2, ESA, 2017). The spatial distribution of
LC classes is also taken into consideration when determining
the fractions in the CW-table. For example, the sparse vege-
tation class (LC150) is mainly distributed above the treeline
in alpine and Arctic tundra environments. Thus we only as-
sign 0.05 to BCD and the rest to C3G/C4G and bare ground
(Table 4).

The six CLASSIC PFTs (those present in Canada) are pro-
duced from the hybrid and the ESA-CCI maps based on Ta-
bles 1 and 4 respectively. The PFTs from the hybrid map
are used as a reference here to map ESA-CCI land cover
classes to CLASSIC’s PFTs. To make the spatial distribution
of PFTs from ESA-CCI agree better with those from the hy-
brid dataset, fractions for the following classes in Table 4 are
adjusted upward by 0.05: LC60 from 0.65 to 0.70 for BCD;
LC71 and LC81 from 0.80 to 0.85 for NLE; and LC120 from
0.10 to 0.15 for BCD. Values for LC10-20 are also slightly
adjusted to reduce crop fractions.

Based on Table 4, the fractional coverage of nine CLAS-
SIC PFTs are also produced on a global scale and used in of-
fline CLASSIC simulations in Arora et al. (2022), who carry
out a comprehensive assessment of the impact of using two
different LC datasets (ESA-CCI versus GLC2000) for rep-
resenting the nine PFTs in the CLASSIC model. However,
some adjustments to Table 4 are found to be necessary. This
is because fractions of NLE (needleleaf evergreen forests) in
Eurasia are found to be too low relative to the Hansen TCF
data, with maximum values only around 0.45 in most NLE-
dominated areas, where the maximum TCF from the Hansen
dataset is around 0.80. This indicates that the needleleaf ev-
ergreen forests classes (LC 70-72) in the ESA-CCI map may
represent different forest/tree cover fractions in Canada and
Eurasia, which is confirmed by sub-pixel fractional compo-
sition analyses based on the Hansen TCF dataset. Details are
presented in Appendix B.

4 Results

4.1 Comparison of PFTs from hybrid, ESA-CCI, and
GLC2000 data

Figure 3 shows the spatial distribution of PFTs derived
from the hybrid, ESA-CCI, and GLC2000 LC datasets re-
spectively. C4 crops (C4C) and grasses (C4G) are sparse in
Canada as would be expected since C4 PFTs grow only in
warmer temperatures when the average monthly temperature
exceeds 22 °C (Fox et al., 2018). Based on the fractional dis-
tribution of C4 vegetation in Still and Berry (2003) and the
hybrid map, the average fraction is 0.5 % for C4 crops and
0.1 % for C4 grasses in Canada. Therefore, only four out of
the six PFTs (those present in Canada) are shown in Fig. 3.
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The C4 fraction product from Still and Berry (2003) is avail-
able at a much coarser spatial resolution (1°) than other land
cover products used in this study, and it is a global product.
As such then, the estimated Cy4 fractions for crops/grasses in
Canada used here may not completely agree with those from
regional estimates. In general, the spatial distributions of the
PFTs from the ESA-CCI and the hybrid datasets agree well
except for Cs grasses (C3G) (Fig. 3j and k). This is not sur-
prising given that the CW-table for the ESA-CCI dataset is
based on the hybrid map. Areas mapped as C3G in hybrid
(Fig. 3j) were mainly classified as sparse vegetation (LC150)
in the ESA-CCI legend (Table 4). However, LC150 from
ESA-CCI was also found in some areas of the high Arctic
islands, where barren land is the dominant class in the hybrid
map (grey coloured areas in Fig. 1). If too much grass were
assigned to LC150, it would yield unrealistically large frac-
tional coverage of grass in the high Arctic islands. In Table 4,
for LC150, 0.05 is assigned to BCD, 0.35 to grasses, and the
rest to the bare ground for LC150, which yields a total vege-
tation cover of 40 % and is more than the definition (< 15 %
vegetation) used in the ESA-CCI legend. Yet, this still re-
sults in less C3G and less bare ground in the ESA-CCI map
(Fig. 3k and n) than those from the hybrid map (Fig. 3j and
m). This suggests that it is not ideal to classify areas in the
high Arctic islands and in the Arctic tundra region as being
in the same land cover category.

There are large differences in the spatial distribution of the
PFTs based on the GLC2000 LC product and those based on
the hybrid and ESA-CCI datasets (Figs. 3 and 4). Relative
to PFTs from ESA-CCI, GLC2000 has less NLE and more
BCD in northwestern Canada and more NLE in southern and
eastern Canada (Fig. 4a and b). GLC2000-based CLASSIC
PFT fractions also exhibit more crops, less grass, and more
bare ground (Fig. 4c—e). These differences partly stem from
the differences in the ESA-CCI and GLC2000 LC datasets,
but they are also due to how the fractions in the CW-tables
of the two datasets are used to translate LC data to fractional
coverage of PFTs as demonstrated in Wang et al. (2019).

4.2 Bias in simulated surface albedo and LAI

The top row of Fig. 5 shows the bias in winter albedo (March)
simulated by CLASSIC when using PFT distributions based
on the ESA-CCI (Fig. 5a) and GLC2000 products (Fig. 5b).
While model biases are the result of both the driving geo-
physical and meteorological data that are used to force the
model, as well as the model itself, the comparison between
the two simulations does show the effect of differences in
the distribution of PFTs. Relative to observed surface albedo
from MODIS, there are relatively large negative biases in the
southwest of Hudson Bay and central Quebec, while there are
relatively large positive biases in western Canada and Alaska
in the simulation when using the GLC2000 product to ob-
tain PFT distributions (Fig. 5b). Both the negative and the
positive biases are largely reduced in the simulation using
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Figure 3. The spatial distribution of CLASSIC PFTs based on the hybrid (left), ESA-CCI (middle), and GLC2000 (right) land cover datasets
respectively. The maps for C4C and C4G are not shown for their fractions are small (0.5 % for C4 crops and 0.1 % for C4 grasses) in Canada.

The last panel shows fractions for bare ground from the three datasets.

PFT distributions based on the ESA-CCI product (Fig. 5a).
The lower row of Fig. 5 shows the spatial distribution of
the difference in surface albedo (Fig. 5c) and leaf area in-
dex (Fig. 5d) between the two simulations, which are closely
correlated (r = —0.85). Given the same meteorological forc-
ing dataset is used to drive both simulations, the differences
in the simulated LAI are due mainly to the different PFT dis-
tributions used in the two simulations. Since NLE is the only
PFT with LAI > 0 during winter in Canada, the LAI differ-
ence in March as shown in Fig. 5d is mainly due to the dif-
ferent fractional coverage of NLE based on the ESA-CCI and
GLC2000 products (Fig. 4a).

In contrast, the large positive albedo biases (up to ~ 0.4)
in southern Canada are more or less the same in both simu-
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lations (Fig. 5a and b), where the dominant PFT is C3 crops
(Fig. 3h and i). Those positive albedo biases are likely due
to the standing crop stubble and the lack of the representa-
tion of blowing snow and its sublimation currently in CLAS-
SIC (Harder et al., 2018; Pomeroy et al., 1993). Harder et
al. (2018) showed that the height of the stubble over wheat
and canola field in Saskatchewan, Canada, may range from
10 to 40 cm, with a maximum PAI (plant area index) of 1.0.
Wang et al. (2016) showed that surface albedo in CLASSIC
decreased exponentially with increasing PAI for the bare or
snow-covered canopy over snow, while most reductions of
the albedo were achieved through the increase of PAI from O
to 1.0. They showed that surface albedo decreased from 0.75
to 0.31 in CLASSIC when PAI increased from O to 1.0 for the
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Figure 4. The difference in PFTs based on ESA-CCI and GLC2000 datasets for selected PFTs (a) NLE, (b) BCD, (¢) C3C, (d) C3G, and

(e) bare.

bare canopy over snow, which appears to account for most of
the positive albedo biases in the agricultural areas of south-
ern Canada (Fig. 5a and b). Improvements to the crop module
of CLASSIC to improve cropland albedo are currently being
considered.

5 Summary and conclusions

A hybrid land cover map at 30m resolution is created by
merging the NALCMS and VLCE land cover products over
Canada. Vegetation height data from lidar plots, tree species,
and high-resolution images are used to inform the creation of
a CW-table for mapping the 17 LC classes of the hybrid map
to six CLASSIC PFTs that are present in Canada. Both the
hybrid map and the Hansen tree cover fraction data are used
to compute the sub-pixel fractional composition of the LC
classes in the ESA-CCI LC dataset, which is then used to cre-
ate a cross-walking table for mapping the 37 ESA-CCI cate-
gories to CLASSIC PFTs over the model’s Canadian domain.
Based on the new CW-tables, PFT distributions are produced
from the hybrid and the ESA-CCI LC products, respectively,
and are compared with those based on the GLC2000 dataset
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currently used in CLASSIC. The results show that the spatial
distribution of PFTs from the ESA-CCI dataset is in better
agreement with those from the hybrid map, while there are
large differences in the PFTs from the GLC2000 dataset and
from the hybrid/ESA-CCI datasets. The CW-table developed
over Canada is adjusted and used to map PFTs based on the
ESA-CCI LC product for use in CLASSIC simulations at the
global scale.

Our PFT mapping approach for the ESA-CCI dataset is
mainly based on sub-pixel fractional composition analyses
using the hybrid map and the Hansen tree cover fraction data,
and therefore the accuracy of the latter two datasets affects
the PFT mapping process. Some LC categories in the ESA-
CCI legend either have limited presence or no presence in
Canada, such as the needleleaf deciduous trees, broadleaf ev-
ergreen trees, and broadleaf dry deciduous trees, etc., and the
sub-pixel fractional composition analyses therefore cannot
be performed for these LC categories. The needleleaf decid-
uous tree cover classes are assigned to the same fractions as
the needleleaf evergreen tree cover classes in the CW-table,
and values based on the default CW-table from the ESA-CCI
user guide are used for the other LC categories. Therefore,
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Figure 5. Surface albedo bias (relative to MODIS) in CLASSIC simulations using PFT distributions based on (a) ESA-CCI and (b) GLC2000
land cover products. Panels (¢) and (d) show the difference in simulated surface albedo (c) and leaf area index (d) between the two simulations.

potentially large uncertainties may be associated with these
classes in the resulting fractional coverage of PFTs especially
at the global scale. Similar analyses for other regions (e.g.
Eurasia and tropics) for which high-quality regional land
cover maps are available will be helpful in reducing these
uncertainties in the future work. In addition, the exercise of
mapping PFTs at the global scale in this study reveals that
there are inconsistencies in the representation of fractional
coverage for some LC categories in the ESA-CCI map for
different regions of the globe. Future improvements in the
consistency of the LC categories globally in the ESA-CCI
LC product would greatly benefit the land surface and the
Earth system modelling community. In the meantime, cau-
tion should be exercised when using this product for map-
ping PFTs represented in any LSM based on a single cross-
walking table at the global scale.

CLASSIC simulations driven with meteorological data
from the CRU-JRA product show that the simulated win-
ter albedo is improved when using PFT distributions based
on the ESA-CCI LC product compared to that based on the
GLC2000 product, which is consistent with findings from
previous studies. While CLASSIC simulations could also
have been performed using its PFT distributions based on the
hybrid LC product, the reason for using the ESA-CCI-based
PFT fractions for CLASSIC is that ESA-CCI is a global
product. CLASSIC simulations are routinely performed at
the global scale both in the framework of the Canadian Earth
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System Model (Swart et al., 2019), where CLASSIC serves
as its land component, and offline where global CLASSIC
simulations driven with the CRU-JRA meteorological data
contribute to the annual global carbon budget assessments of
the Global Carbon Project (Friedlingstein et al., 2020; Seiler
et al., 2021). Untreated crop stubble appears to be contribut-
ing to the positive winter albedo biases in southern Canada,
which needs to be addressed in a future version of CLASSIC.
These results underscore the importance of accurate repre-
sentation of vegetation distribution in a realistic simulation
of surface albedo in LSMs.

Previous methods for mapping PFTs from LC datasets
have mainly been based on class descriptions, expert knowl-
edge, and the spatial distribution of global biomes, which
is a largely subjective process. As a consequence, a PFT
method developed for mapping one LC dataset to PFTs rep-
resented in one model cannot be easily transferred to other
LC datasets even for deriving PFTs in the same model. The
development of satellite and computing technology has en-
abled the creation of more detailed global LC products at
finer spatial resolutions in recent years; however, the lack of
an objective PFT mapping method impedes the implementa-
tion of the new improved LC products in LSMs. Here, we
have proposed a method to inform the cross-walking process
using sub-pixel fractional composition analyses based on a
tree cover fraction dataset and a fine-resolution LC map. Our
results suggest that the sub-pixel fractional composition anal-
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yses provide an effective way to reduce uncertainties in the
cross-walking process and therefore, to some extent, objecti-
fies the otherwise subjective process. The PFT mapping ap-
proach developed in this study can also be applied to other
LC datasets for mapping PFTs used in other LSMs.

Appendix A

In CLASSIC, the surface albedo for a canopy over snow (o)
is

a =ac (1 —x) (1 = fsnow) + e, snow (1 — x) (fsnow)
+Usnow X Tc (A1)
x =exp(—K - PAI), (A2)

calculated using separate parameters (o, Oc, snow> Tc and K)
for both the visible (VIS) and near-infrared (NIR) bands,
where o is the snow-free canopy albedo, o gnow the snow-
covered canopy albedo, finow the fraction of the canopy with
snow on it, and ogew the snowpack albedo. . is canopy
transmissivity and is modelled using Beer’s law approach,
ignoring multiple reflections (Verseghy et al., 1993). K is an
extinction coefficient that varies with vegetation type. The
appearance of 7. in the last term of Eq. (A1) accounts for the
shading of the snowpack by the canopy, converting the sim-
ulated snowpack albedo to an effective value of the canopy
gaps. PAI is plant area index which is the sum of leaf area
index and stem area index.

Appendix B

Based on Table 4, the fractional coverage of nine CLASSIC
PFTs is also produced on a global scale. However, some ad-
justments to Table 4 were found necessary. This is because
fractions of NLE (needleleaf evergreen forests) in Eurasia
are found to be too low relative to the Hansen TCF data,
with maximum values of only around 0.45 in most NLE-
dominated areas, where the maximum TCF from the Hansen
dataset is around 0.80. Needleleaf evergreen forests are rep-
resented by LC classes 70 (closed to open), 71 (closed), and
72 (open). Examining the ESA-CCI LC map shows that in
Eurasia nearly all needleleaf evergreen forests are classified
as LC70 (closed to open), with only fewer than 400 pixels
as LC71 (closed), and none as LC72 (open). In contrast, in
Canada 36 % of needleleaf evergreen forests are classified as
LC70 (closed to open), 64 % as LC71 (closed), and less than
1 % as LC72 (open). This is understandable given that sub-
classes were only assigned where surface samples were avail-
able (ESA, 2017). Sub-pixel fractional composition analyses
of the ESA-CCI classes based on the Hansen TCF dataset
show that in Eurasia TCF for LC70 (closed to open) is 66 %
and for LC71 (closed) is 35 % (note the few pixels within this
class). This is in contrast with those in Canada where the TCF
for LC70 (closed to open) is 39 % and for LC71 (closed) is
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62 %, explaining the too low NLE fractions in Eurasia when
mapping PFTs based on Table 4 and also the too high TCF in
northwestern Canada when mapping PFTs based on the de-
fault CW-table (Wang et al., 2018). In order to apply Table 4
globally, the original LC70 (closed to open) was split into
two classes: LC73 (a new class), which is the same as LC70
over Canada (and zero everywhere else), and LC70 (revised),
which is the same as before except zero over Canada. The
fractions for the new LC70 class are made the same as for
LC71 in Table 4, which applies to NLE outside of Canada.
Essentially, the closed-to-open needleleaf forest LC70 class
over Eurasia is treated as the closed needleleaf forest.

Code and data availability. More information about the CLAS-
SIC land surface model and its Fortran code are available
at https://cccma.gitlab.io/classic_pages/ (last access: July 2022,
Melton, 2022). The VLCE LC map and the lidar plot data were
from the Canadian Forest Service of Natural Resources Canada
(https://opendata.nfis.org/mapserver/nfis-change_eng.html, last ac-
cess: June 2021). The NALCMS LC map was from the Canada
Centre for Remote Sensing (https://open.canada.ca/data/en/dataset/
c688b87f-e85f-4842-b0e1-a8f79ebf1133, last access: May 2020).
The MODIS albedo data were from the online data pool at the
NASA Land Processes Distributed Active Archive Center (LP
DAAC; https://Ipdaac.usgs.gov/data_access, last access: July 2018).
The tree cover fraction data were from the Global Land Analysis
and Discovery laboratory in the Department of Geographical Sci-
ences at the University of Maryland (https://glad.umd.edu/Potapov/
TCC_2010/, last access: October 2018). The GLC2000 LC map
was downloaded from the EU Science Lab (https://forobs.jrc.ec.
europa.eu/products/glc2000/data_access.php, last access: Septem-
ber 2018). The ESA-CCI LC map was provided by ESA (https:
/Iwww.esa-landcover-cci.org. last access: August 2017).
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