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Abstract. Land and ocean carbon sinks play a major role
in regulating atmospheric CO2 concentration and climate.
However, their future efficiency depends on feedbacks in re-
sponse to changes in atmospheric CO2 concentration and cli-
mate, namely the concentration–carbon and climate–carbon
feedbacks. Since carbon dioxide removal (CDR) is a key mit-
igation measure in emission scenarios consistent with global
temperature goals in the Paris Agreement, understanding car-
bon cycle feedbacks under negative CO2 emissions is essen-
tial. This study investigates land carbon cycle feedbacks un-
der positive and negative CO2 emissions using an Earth sys-
tem model of intermediate complexity (EMIC) driven with
an idealized scenario of symmetric atmospheric CO2 concen-
tration increase (ramp-up) and decrease (ramp-down), run in
three modes. Our results show that the magnitudes of car-
bon cycle feedbacks are generally smaller in the atmospheric
CO2 ramp-down phase than in the ramp-up phase, except for
the ocean climate–carbon feedback, which is larger in the
ramp-down phase. This is largely due to carbon cycle inertia:
the carbon cycle response in the ramp-down phase is a com-
bination of the committed response to the prior atmospheric
CO2 increase and the response to decreasing atmospheric
CO2. To isolate carbon cycle feedbacks under decreasing
atmospheric CO2 and quantify these feedbacks more accu-
rately, we propose a novel approach that uses zero emission
simulations to quantify the committed carbon cycle response.
We find that the magnitudes of the concentration–carbon
and climate–carbon feedbacks under decreasing atmospheric
CO2 are larger in our novel approach than in the standard
approach. Accurately quantifying carbon cycle feedbacks in
scenarios with negative emissions is essential for determin-

ing the effectiveness of carbon dioxide removal in drawing
down atmospheric CO2 and mitigating warming.

1 Introduction

Anthropogenic CO2 emissions have increased substantially
since the preindustrial era, increasing the risk of “severe, per-
vasive, and irreversible impacts” to the Earth system (IPCC,
2022). In an effort to reduce greenhouse gas emissions, na-
tions adopted the Paris Agreement, which stipulated that sur-
face warming should be kept well below 2 ◦C above prein-
dustrial levels and encouraged efforts to further limit it to
1.5 ◦C (UNFCCC, 2015). Carbon dioxide removal (CDR) is
a key mitigation measure in emission scenarios that are con-
sistent with these climate goals (Ciais et al., 2013; Fuss et al.,
2014; Rogelj et al., 2018, 2019; IPCC, 2022).

The land and ocean carbon sinks play a major role in
regulating atmospheric CO2 concentration by absorbing ap-
proximately half of current anthropogenic CO2 emissions
(Friedlingstein et al., 2022). However, this rate of absorp-
tion is sensitive to changes in climate and atmospheric CO2
concentration (Cox et al., 2000; Boer and Arora, 2010, 2013;
Arora et al., 2013, 2020). As atmospheric CO2 concentra-
tion increases, carbon sinks will take up more carbon through
air–sea exchange and CO2 fertilization, resulting in a nega-
tive concentration–carbon cycle feedback (Boer and Arora,
2010; Arora et al., 2013; Schwinger and Tjiputra, 2018).
Conversely, changing climate, in response to the increas-
ing CO2 concentration, will decrease the ability of carbon
sinks to take up carbon, resulting in a positive climate–carbon
cycle feedback (Cox et al., 2000; Jones et al., 2003; Fung
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et al., 2005; Friedlingstein et al., 2006; Boer and Arora,
2010, 2013; Zickfeld et al., 2011; Friedlingstein et al., 2014;
Schwinger and Tjiputra, 2018).

Since the dominant feedback controlling land and ocean
carbon uptake is the negative concentration–carbon feed-
back, the land and ocean are currently carbon sinks (Arora
et al., 2020). However, the implementation of negative emis-
sions is expected to weaken or even reverse natural car-
bon sinks. If negative emissions are implemented but remain
lower than positive emissions (net-positive emissions), the
land and ocean carbon sinks continue to take up carbon,
albeit at a lower rate (Tokarska and Zickfeld, 2015; Jones
et al., 2016; Melnikova et al., 2021; Koven et al., 2022).
On land, the rate of carbon uptake declines because ecosys-
tem respiration increases more than gross primary produc-
tivity increases, whereas, in the ocean, the rate of uptake
declines following the declining CO2 emissions growth rate
(Melnikova et al., 2021). Once the amount of CO2 removed
from the atmosphere exceeds the amount of CO2 added to
the atmosphere (net-negative emissions), the carbon sinks
are expected to weaken further and may reverse (Cao and
Caldeira, 2010; Tokarska and Zickfeld, 2015; Jones et al.,
2016; Melnikova et al., 2021; Canadell et al., 2022; Koven et
al., 2022). Decreasing CO2 levels will weaken the CO2 fer-
tilization effect, decreasing net primary productivity (NPP)
more than soil respiration, resulting in a flux of carbon into
the atmosphere (Cao and Caldeira, 2010; Tokarska and Zick-
feld, 2015). Furthermore, the gradient in the partial pressure
of CO2 at the atmosphere–ocean interface will weaken and
eventually reverse, resulting in the outgassing of CO2 (Cao
and Caldeira, 2010; Tokarska and Zickfeld, 2015). Carbon
losses from the land and ocean following CDR are expected
to significantly decrease the effectiveness of CDR in drawing
down atmospheric CO2 (Tokarska and Zickfeld, 2015; Jones
et al., 2016; Zickfeld et al., 2021).

The behaviour of land carbon cycle feedbacks under pos-
itive and negative emissions is shown qualitatively in Fig. 1.
As the atmospheric CO2 concentration increases under pos-
itive emissions, the land sequesters more carbon, reducing
the atmospheric CO2 concentration (Boer and Arora, 2010;
Arora et al., 2013). However, under negative emissions, the
declining atmospheric CO2 concentration weakens and even-
tually reverses the land carbon sink, returning CO2 to the
atmosphere. The concentration–carbon feedback is nega-
tive because it promotes carbon sequestration under positive
emissions and drives carbon loss under negative emissions.
As the climate warms under positive emissions, the land
loses carbon to the atmosphere, increasing the atmospheric
CO2 and causing further warming (Cox et al., 2000; Jones et
al., 2003; Fung et al., 2005; Friedlingstein et al., 2006; Boer
and Arora, 2010, 2013; Zickfeld et al., 2011; Friedlingstein et
al., 2014). With cooling, the land carbon source weakens and
eventually turns into a carbon sink, sequestering carbon and
further cooling the climate under negative emissions. This
positive climate–carbon feedback acts to amplify warming

Figure 1. Carbon cycle feedback schematic illustrating the be-
haviour of the (a) negative concentration–carbon feedback and
(b) positive climate–carbon feedback. Each feedback loop starts
with an increase (under positive emissions) or decrease (under neg-
ative emissions) in atmospheric CO2 concentration or surface air
temperature. Arrows indicate a positive coupling (change in the
same direction) between components and lines with empty circles
indicate a negative coupling (change in the opposite direction) be-
tween components.

under positive emissions and enhance cooling under negative
emissions.

The goal of this study is to quantify land carbon cycle feed-
backs under negative emissions. We address two research
questions: (1) how does the magnitude of carbon cycle feed-
backs under negative emissions compare to that under posi-
tive emissions? (2) Is the approach currently used to quantify
carbon cycle feedbacks under positive emissions adequate to
quantify feedbacks under negative emissions? If not, how can
this approach be improved upon? This study investigates car-
bon cycle feedbacks under positive and negative emissions in
an Earth system model of intermediate complexity (EMIC)
driven with an idealized scenario of a 1 % yr−1 increase and
decrease in atmospheric CO2 concentration. Our study adds
to the small but growing body of research on carbon cycle
feedbacks under negative emissions (Schwinger and Tjipu-
tra, 2018; Melnikova et al., 2021) by exploring the behaviour
of these feedbacks, with a focus on land processes. We pro-
pose a novel approach for quantifying carbon cycle feed-
backs under negative emissions and provide insight into the
role of these feedbacks in determining the effectiveness of
carbon dioxide removal in reducing CO2 levels.
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2 Methodology

2.1 Model description

The University of Victoria Earth System Climate Model
(UVic ESCM, version 2.10) (Fig. 2) is a model of interme-
diate complexity with a horizontal grid resolution of 1.8 ◦

(meridional)× 3.6 ◦ (zonal) (Weaver et al., 2001; Mengis et
al., 2020). The model consists of a simplified atmospheric
model, a 3D ocean general circulation model, including
ocean inorganic and organic carbon cycle models, coupled to
a dynamic–thermodynamic sea ice model, and a land surface
model coupled to a vegetation model (including permafrost)
(Mengis et al., 2020). The atmosphere is a 2D energy–
moisture balance model with dynamical wind feedbacks. At-
mospheric heat and freshwater are transported through diffu-
sion and advection (Weaver et al., 2001), based on wind ve-
locities prescribed from monthly climatological wind fields
from NCAR/NCEP reanalysis data (Eby et al., 2013). The
19-layer 3D ocean general circulation model is based on the
Geophysical Fluid Dynamics Laboratory (GFDL) Modular
Ocean Model version 2 (MOM2; Pacanowski, 1995). The
coupled dynamic–thermodynamic sea ice model simulates
sea ice dynamics through elastic, viscous, and plastic defor-
mation and flow mechanisms (Weaver et al., 2001). Ocean
carbon is represented by an inorganic ocean carbon model
following the Ocean Carbon Model Intercomparison Proto-
col (OCMIP), and an NPZD (nutrient, phytoplankton, zoo-
plankton, detritus) model of ocean biology simulating carbon
uptake by the biological pump, accounting for phytoplankton
light and iron limitations (Keller er al., 2012). The land sur-
face model, based on the Hadley Centre Met Office Surface
Exchange Scheme (MOSES), simulates the terrestrial carbon
cycle and is coupled to the Top-Down Representation of In-
teractive Foliage and Flora including Dynamics (TRIFFID)
model which simulates vegetation and soil carbon (Meissner
et al., 2003). This model version also includes a permafrost
carbon model in the soil module that simulates permafrost
carbon through a diffusion-based scheme (MacDougall and
Knutti, 2016).

2.2 Model simulations

We performed a preindustrial spin-up simulation to equili-
brate the model with the preindustrial CO2 concentration
(∼ 285 ppm). All other greenhouse gas concentrations, sur-
face land conditions, and orbital parameters were held at
1850 levels according to the Coupled Model Intercompari-
son Project Phase 6 (CMIP6) experimental design protocol
(Eyring et al., 2016). The solar forcing was set to the 1850–
1873 mean and the volcanic forcing was held at its average
over 1850–2014, also consistent with the CMIP6 protocol
(Eyring et al., 2016).

To explore how the magnitude of carbon cycle feedbacks
under positive emissions differs from that under negative
emissions, we ran the “CDR-reversibility” simulation from
the Carbon Dioxide Removal Model Intercomparison Project
(CDRMIP; Keller et al., 2018). Starting from a preindustrial
equilibrium state, atmospheric CO2 concentration was pre-
scribed to increase at 1 % yr−1 until quadrupling, then de-
cline back to preindustrial levels at the same rate. Achiev-
ing such a rapid decline in CO2 concentration would only be
possible with substantial negative CO2 emissions (Boucher
et al., 2012). We refer to the section of the prescribed CO2
concentration trajectory with increasing CO2 concentration
as the ramp-up phase and the section with decreasing CO2
concentration as the ramp-down phase.

We also ran a zero emission simulation (“Zeroemit”) for
use in our novel approach for quantifying the “commit-
ted” carbon cycle response to increasing atmospheric CO2
during the ramp-up phase. This simulation was initialized
from the peak atmospheric CO2 concentration in the CDR-
reversibility simulation and run in emission-driven configu-
ration. Emissions were set to zero at the start of the simula-
tion, then CO2 was allowed to evolve for 500 years.

The CDR-reversibility and Zeroemit simulations were run
in three modes, following the C4MIP protocol for the quan-
tification of carbon cycle feedbacks (Friedlingstein et al.,
2006; Arora et al., 2013, 2020; Jones et al., 2016).

Fully coupled mode (FULL): the entire Earth system re-
sponds to the specified change in atmospheric CO2 concen-
tration or CO2 emissions – in this mode, the land and ocean
carbon sinks are subject to changing atmospheric CO2 con-
centration and temperature.

Biogeochemically coupled mode (BGC): the land and
ocean carbon sinks are subject to changing atmospheric CO2
concentration but not changing temperature – this is achieved
by prescribing a specified time-invariant CO2 concentration
to the radiation module (preindustrial CO2 concentration for
the CDR-reversibility simulation and quadruple the prein-
dustrial CO2 concentration for the Zeroemit simulation),
while the land and ocean carbon cycle modules see an evolv-
ing atmospheric CO2 concentration.

Radiatively coupled mode (RAD): the land and ocean
carbon sinks are subject to changes in temperature but no
change in atmospheric CO2 concentration – the land and
ocean carbon cycle modules see a specified time invariant
CO2 concentration (preindustrial CO2 concentration in the
CDR-reversibility simulation and quadruple the preindustrial
CO2 concentration in the Zeroemit simulation), while the ra-
diation module sees changing atmospheric CO2 concentra-
tion.

In both the CDR-reversibility and Zeroemit simulations,
non-CO2 forcings are held fixed at their preindustrial values.
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Figure 2. University of Victoria Earth System Climate Model (UVic ESCM) schematic. Energy, water, and carbon exchanges between model
components are represented by arrows. Figure reproduced with permission from Mengis et al. (2020).

2.3 Approaches to carbon cycle feedback quantification

In the first approach (referred to as the “standard” approach),
we use the CDR-reversibility simulation to quantify car-
bon cycle feedbacks under increasing and decreasing at-
mospheric CO2 concentration. Although this simulation is
highly idealized, the ramp-up phase is standardly used to
quantify carbon cycle feedbacks under positive emissions,
and therefore, allows easier comparison of these results to
other literature. The ramp-up phase represents the response
to increasing atmospheric CO2 alone. However, the ramp-
down phase represents the response to both the prior in-
creasing CO2 and decreasing CO2 because the latter is pre-
scribed when the system is still in a transient (that is, time-
evolving) state, responding to the prior atmospheric CO2 in-
crease (Zickfeld et al., 2016; Keller et al., 2018). As a result,
carbon cycle feedbacks quantified from the ramp-down phase
do not represent the response to decreasing atmospheric CO2
alone.

Our second and novel approach, therefore, aims to im-
prove the quantification of carbon cycle feedbacks under de-
creasing CO2 by isolating the carbon cycle response to de-
creasing CO2 alone. We use an experimental design utilizing
both the CDR-reversibility and Zeroemit simulations. Since
the Zeroemit simulation quantifies the committed or lagged
response to the prior positive emissions, the first 140 years
of this simulation was subtracted from the ramp-down phase
of the CDR-reversibility simulation to isolate the response

to decreasing CO2 alone. A similar approach was used in
Zickfeld et al. (2016) to quantify the temperature response
to decreasing atmospheric CO2. The main assumption made
here is that of linearity: that is, we assume that the commit-
ted carbon cycle response to the prior CO2 increase and the
carbon cycle response to the CO2 decrease combine linearly
to the total carbon cycle response in the ramp-down phase.
From our approach – referred to as the “inertia-corrected”
approach – we quantify carbon cycle feedbacks and compare
them to those from the first approach.

2.4 Carbon cycle feedback metrics

We use integrated flux-based feedback parameters
(Friedlingstein et al., 2006) to quantify carbon cycle
feedbacks in both approaches. In this framework, changes
in land and ocean carbon are expressed as the sum of two
terms: a term representing the change in land (ocean) carbon
in response to changes in atmospheric CO2, and a term
representing the change in land (ocean) carbon in response
to changes in surface air temperature:

1CX = βX1CA+ γX1T, (1)

where the subscript X represents land or ocean. The
concentration–carbon feedback parameter β quantifies the
carbon cycle response to changes in CO2 concentration
in units of petagrams of carbon per part per million
(PgC ppm−1), whereas the climate–carbon feedback param-
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eter γ quantifies the carbon cycle response to changes in
climate in units of petagrams of carbon per degree Celsius
(PgC ◦C−1).

The change in land (ocean) carbon due to changing atmo-
spheric CO2 concentration is determined using the biogeo-
chemically coupled (BGC) simulation. In this simulation, the
land and ocean only respond to changes in the CO2 concen-
tration, and therefore, this simulation can be used to quan-
tify the concentration–carbon feedback parameter β. Warm-
ing is still observed in these simulations because the water
use efficiency of vegetation increases at higher CO2 con-
centrations and changes in albedo due to shifts in vegetation
structure and spatial distribution, resulting in a small warm-
ing effect (Cox et al., 2004, Boer and Arora, 2013; Arora et
al., 2013). However, this warming is considered negligible in
this framework (Friedlingstein et al., 2006). Assuming that
1T = 0 in Eq. (1), the change in land (ocean) carbon due
to changes in atmospheric CO2 concentration is expressed as
follows:

1CX = βX1CA. (2)

Equation (2) can then be rearranged to solve for the
concentration–carbon feedback parameter β as follows:

βX =
1CX

1CA
. (3)

The change in land (ocean) carbon due to climate change
is determined using the radiatively coupled (RAD) simula-
tion. In this simulation, the land and ocean only respond to
changes in climate, and therefore, this simulation can be used
to quantify the climate–carbon feedback parameter γ . The
change in land (ocean) carbon due to climate change is ex-
pressed as

1CX = γX1T. (4)

Equation (4) can then be rearranged to solve for the climate–
carbon feedback parameter γ as follows:

γX =
1CX

1T
. (5)

An alternative method for quantifying the change in land
(ocean) carbon due to climate change uses the fully cou-
pled and biogeochemically coupled simulations (Arora et
al., 2013). Here, we refer to this method as the FULL–BGC
method. Here, the change in land (ocean) carbon in the bio-
geochemically coupled simulation (BGC) is subtracted from
that in the fully coupled simulation (FULL) and expressed as
the product of the climate–carbon feedback parameter, and
the difference between the surface air temperature changes
in the two simulations:

1CX =1C
FULL
X −1CBGC

X = γX(1T
FULL
−1T BGC). (6)

Equation (6) can then be rearranged to solve for the climate–
carbon feedback parameter γ as follows:

γX =
CFULL
X −1CBGC

X

1T FULL−1T BGC . (7)

The resulting feedback parameters differ from those quanti-
fied from the RAD mode (Eq. 5) alone due to nonlinearities
in carbon cycle feedbacks (Zickfeld et al., 2011; Schwinger
et al., 2014).

Feedback parameters under increasing atmospheric CO2
(ramp-up phase) are computed at the peak atmospheric
CO2 concentration (quadruple the preindustrial level) us-
ing changes in carbon pools, atmospheric CO2 concentra-
tion, and surface air temperature computed relative to prein-
dustrial levels. Feedback parameters under decreasing atmo-
spheric CO2 (ramp-down phase) are computed at the re-
turn to preindustrial levels (end of ramp-down phase) us-
ing changes in carbon pools, atmospheric CO2 concentration,
and surface air temperature computed relative to the time of
peak atmospheric CO2.

In the ramp-up phase, feedback parameters are positive for
land or ocean carbon gain and negative for land or ocean car-
bon loss. Note that the signs we refer to here are not the signs
of the feedback but rather the signs of the feedback param-
eters, which are generally opposite to the sign of the feed-
back because they are computed from the perspective of the
land and ocean, whereas the sign of the feedback is deter-
mined from the perspective of the atmosphere. In the ramp-
down phase, both atmospheric CO2 concentration and sur-
face air temperature decline relative to their values at the end
of the ramp-up phase, resulting in a negative denominator
(see Eqs. 3, 5, 7). Therefore, the sign convention is reversed:
feedback parameters are negative for a gain in land or ocean
carbon (positive numerator divided by negative denomina-
tor) and positive for a loss in land or ocean carbon (negative
numerator divided by negative denominator).

2.4.1 Isolating carbon cycle feedbacks under negative
emissions

When a CO2 decrease is prescribed from a transient state, the
land and ocean carbon pools not only respond to this CO2
decrease but also to the prior CO2 trajectory due to inertia in
these systems (Zickfeld et al., 2016). The land (ocean) car-
bon cycle responses in the ramp-down phase can, therefore,
be expressed as the sum of two terms: one term driven by the
sensitivities of land (ocean) to the CO2 and temperature de-
crease during the ramp-down phase (“SENS” for sensitivity)
and an inertia term that represents the lagged response to past
atmospheric CO2 and climate changes (“LAG”):

1CX =1C
SENS
X +1CLAG

X . (8)

The carbon pool response to the CO2 and temperature de-
crease can then be isolated as follows:

1CSENS
X =1CX −1C

LAG
X , (9)
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where 1CSENS
X is driven by the sensitivities to changes in

atmospheric CO2 (β) and temperature (γ ) in the ramp-down
phase and can be linearly decomposed in the same way as the
land and ocean carbon response in the standard framework
(Eq. 1):

1CSENS
X =1CX −1C

LAG
X = γX(1CA)+βX(1T ). (10)

Here, 1CA and 1T refer to the changes in atmospheric
CO2 and temperature in the ramp-down phase of the CDR-
reversibility simulation relative to their values at the end of
the ramp-up phase. This framework becomes identical to the
standard framework (Sect. 2.4) in cases where a change in
atmospheric CO2 is applied from a state of equilibrium, i.e.
1CLAG

X = 0.
Equation (10) can be rewritten for the biogeochemically

(1T = 0) and radiatively coupled simulations (1CA = 0),
respectively:

1CSENS
X =1CX −1C

LAG
X = βX(1CA), (11)

1CSENS
X =1CX −1C

LAG
X = γX(1T ). (12)

Rearranging the equations above allows for the calculation
of the feedback parameters, which measure the sensitivity
of the land and ocean carbon responses to changes in CO2
concentration and temperature in the ramp-down phase:

βX =
1CX −1C

LAG
X

1CA
, (13)

γX =
1CX −1C

LAG
X

1T
. (14)

The lagged responses of land and ocean carbon pools1CLAG
X

are calculated from the Zeroemit simulations run in the re-
spective mode (biogeochemically coupled for the calculation
of β and radiatively coupled for the calculation of γ ), and
they are then subtracted from the responses of the ramp-down
phase of the CDR-reversibility simulations run in the same
mode. The land (ocean) carbon changes, surface air temper-
ature, and CO2 concentration changes are computed relative
to the year of peak CO2 concentration (year 140 in the CDR-
reversibility simulation; year 1 in the zero emission simula-
tion).

3 Results

3.1 CDR-reversibility carbon cycle feedback analysis

Our results focus on the ramp-down phase of the CDR-
reversibility simulation and compare the system response in
this phase to that in the ramp-up phase. While the prescribed
atmospheric CO2 concentration for the CDR-reversibility
simulations is the same, the temperature response differs by
mode (Fig. 3a, b). In the FULL and RAD modes, surface air

temperature increases approximately linearly with increas-
ing atmospheric CO2 concentration, continues to increase for
approximately half a decade after atmospheric CO2 concen-
tration peaks, then decreases with decreasing CO2 concen-
tration. Surface air temperature declines more slowly in the
ramp-down phase due to the thermal inertia of the ocean,
and therefore, does not return to preindustrial levels by the
end of the ramp-down phase. The temperature response in
the FULL mode is consistent with earlier studies (Boucher
et al., 2012; Zickfeld et al., 2016; MacDougall, 2019; Ziehn
et al., 2020; Park and Kug, 2022). Surface air temperature in
the BGC mode changes only marginally: surface air tempera-
ture increases slightly with increasing CO2 concentration and
decreases as the CO2 concentration decreases. This temper-
ature change is driven by biophysical responses to changing
atmospheric CO2, in particular, changes in evaporative fluxes
as plants adjust stomatal conductance based on atmospheric
CO2 levels. Biophysical effects are also responsible for the
difference in warming between the FULL and RAD modes
(Arora et al., 2020). The temperature response in the ramp-
up phase of the FULL, BGC, and RAD modes is consistent
with Arora et al. (2020), while the temperature response in
the ramp-up and ramp-down phases of all three modes is con-
sistent with Schwinger and Tjiputra (2018).

3.1.1 Land carbon change in the FULL mode

Figure 3d shows land carbon pool changes as a function
of time. In the FULL mode, land carbon increases, stabi-
lizes, then begins to decrease 7 years before the peak at-
mospheric CO2 concentration is reached. Similar carbon
pool change patterns are observed for the soil carbon pool,
which starts decreasing roughly 20 years before the peak in
atmospheric CO2 concentration, but vegetation carbon de-
creases 2 years after the peak atmospheric CO2 concentra-
tion (Fig. 3e, f). Our results are qualitatively consistent with
Ziehn et al. (2020). However, they differ from other studies
(MacDougall, 2019; Arora et al., 2020) wherein the land car-
bon pool remains a carbon sink in the ramp-up phase. Mac-
Dougall (2019) shows that the soil carbon sink switches into
a source later in the ramp-up phase than our results show.
Furthermore, other studies (Boucher et al., 2012; Zickfeld et
al., 2016) show that both vegetation and soil carbon sinks
persist throughout the ramp-up phase.

Here, land carbon decreases throughout the ramp-down
phase (Fig. 3d), whereas earlier studies show continued in-
crease in the land carbon pool in the early ramp-down phase
(Boucher et al., 2012; Zickfeld et al., 2016; Park and Kug,
2021). Changes in land carbon are governed by the balance
between net primary productivity (NPP) and soil respiration.
The increase in the land carbon pool is driven by the CO2 fer-
tilization effect: photosynthesis is enhanced under increasing
CO2 concentration, increasing NPP (Fig. 3g) (Arora et al.,
2013). Soil respiration also increases with warming (Fig. 3g).
Initially, soil respiration remains below NPP, but the rate of
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Figure 3. (a) Prescribed atmospheric CO2 concentration anomaly; (b) surface air temperature (SAT) change; (c) atmosphere-to-land CO2
flux; and (d) land, (e) vegetation, and (f) soil carbon pool changes in the fully coupled (FULL), biogeochemically coupled (BGC), and
radiatively coupled (RAD) CDR-reversibility simulations. Panels (a), (b), and (d–f) are calculated relative to 1850 (preindustrial). Carbon
fluxes for the three modes are shown in the bottom row (g, h, i): NPP: net primary productivity, LLF: leaf litter flux, and SR: soil respiration.
Solid lines represent the ramp-up phase and dot-dashed lines represent the ramp-down phase. The vertical dotted lines mark the beginning
and end of the ramp-down phase.

increase of NPP declines faster and soil respiration exceeds
NPP towards the end of the ramp-up phase. This occurs due
to the different response timescales of NPP and soil respi-
ration: NPP depends on atmospheric CO2 changes, whereas
soil respiration depends on temperature change, which lags
behind the change in CO2 concentration (Cao and Caldeira,
2010). In the ramp-down phase, NPP decreases as the CO2
fertilization effect weakens, whereas soil respiration contin-
ues to increase for a year before decreasing at a slower rate
than NPP, driven by decreasing surface air temperature and
soil carbon.

3.1.2 Land carbon change in the BGC mode

In the BGC mode, land carbon increases in the ramp-up
phase, continues to increase until 16 years after the peak in
CO2 concentration, then decreases (Fig. 3d). A similar lag
is observed for both vegetation and soil carbon pools, but the
soil carbon sink persists for 5 years longer than the vegetation
carbon sink (Fig. 3e, f). Land carbon increases in the ramp-
up phase due to the CO2 fertilization effect, which increases
NPP (Fig. 3h) (Arora et al., 2013). In the UVic ESCM, soil
respiration depends on soil temperature, moisture, and car-
bon content (Cox et al., 2001; Mengis et al., 2020). Since
changes in surface air temperature in the BGC mode are
small (Fig. 3b), changes in the first two factors are negligible
and soil carbon content is the main driver of soil respiration

changes. Soil respiration increases with increasing soil car-
bon, but NPP remains higher, resulting in an increase in the
land carbon pool in the ramp-up phase (Fig. 3h). In the ramp-
down phase, NPP decreases as the CO2 fertilization effect
weakens, whereas soil respiration continues to increase be-
fore decreasing at a slower rate than NPP, following changes
in soil carbon (Fig. 3h). Net primary productivity (NPP) de-
clines below soil respiration, and land carbon begins to de-
crease.

3.1.3 Land carbon change in the RAD mode

Land carbon decreases in the ramp-up phase of the RAD
mode, continues to decrease until roughly 30 years after the
peak in atmospheric CO2 concentration, then switches into a
carbon sink (Fig. 3d). Both vegetation and soil carbon pools
exhibit a similar lag, but the vegetation carbon pool remains
a carbon source for a decade longer than the soil carbon pool
(Fig. 3e, f). Land carbon decreases in the ramp-up phase
because NPP decreases as plant respiration rates increase
(see Fig. S1 in the Supplement), whereas soil respiration in-
creases with warming (Fig. 3i), consistent with earlier litera-
ture (Arora et al., 2020). The NPP later increases due to veg-
etation shifts that occur on decadal to centennial timescales
(see Fig. S2) but remains lower than soil respiration. In the
ramp-down phase, NPP increases (Fig. 3i) as gross primary
productivity increases and plant respiration decreases with
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cooling, then later declines as gross primary productivity de-
clines, because cooler temperatures negatively impact veg-
etation growth in the high latitudes (see Figs. S1, S3). Soil
respiration decreases steadily with declining surface air tem-
perature, and after a few decades, declines below NPP, and
the land carbon pool begins to grow again.

3.1.4 Ocean carbon change in the FULL, BGC, and
RAD modes

In the FULL mode, the ocean carbon pool grows at a steady
rate, then begins to slowly lose carbon roughly three decades
after the peak in atmospheric CO2 concentration (Fig. 4a).
In the ramp-up phase, the partial pressure of CO2 in the at-
mosphere increases, strengthening the partial pressure gradi-
ent and driving an influx of CO2 into the ocean (Fig. 4b).
In the ramp-down phase, the gradient in partial pressure
weakens and eventually reverses, and the ocean carbon sink
switches into a source. Earlier studies forced with the CDR-
reversibility simulation also show ocean carbon uptake in
the ramp-up phase (MacDougall, 2019; Arora et al., 2020)
followed by delayed carbon loss in the ramp-down phase
(Boucher et al., 2012; Zickfeld et al., 2016).

The ocean exhibits a delayed response in the ramp-
down phase of the BGC and RAD modes consistent with
Schwinger and Tjiputra (2018). In the BGC mode, ocean
carbon increases in the ramp-up phase, continues to increase
for approximately half a century after the peak atmospheric
CO2 concentration, then switches into a source of carbon
(Fig. 4a). The partial pressure gradient of CO2 strengthens
in the ramp-up phase, driving CO2 uptake, then weakens and
reverses in the ramp-down phase, promoting carbon loss, but
the magnitude of the flux is larger than in the FULL mode
(Fig. 4b). In the RAD mode, ocean carbon decreases in the
ramp-up phase, continues to decrease for over a century in
the ramp-down phase, then switches into a weak carbon sink
(Fig. 4a). The ocean outgasses in the ramp-up phase, possi-
bly due to climate effects on ocean circulation and the solu-
bility pump (Cox et al., 2000; Fung et al., 2005; Friedling-
stein et al., 2006; Zickfeld et al., 2011). In the ramp-down
phase, the ocean remains a carbon source for over a cen-
tury before switching into a weak carbon sink. Ocean carbon
changes in the BGC and RAD modes are also driven by the
concentration–carbon and climate–carbon feedbacks. An in-
depth discussion of the mechanisms behind the ocean carbon
response is beyond the scope of this paper.

3.1.5 Sensitivity of land and ocean carbon pools

To assess the sensitivity of land and ocean carbon pools to
changes in atmospheric CO2 and temperature, we plot car-
bon changes in the BGC mode as a function of atmospheric
CO2 concentration (Fig. 5) and carbon changes in the RAD
mode as a function of surface air temperature (Fig. 6). The
trajectory of carbon change differs in the ramp-up and ramp-

down phases of the BGC mode (Fig. 5), a behaviour referred
to as hysteresis. Hysteresis in the land carbon pool is pri-
marily driven by the soil carbon pool, although the contri-
bution from the vegetation carbon pool is also significant
(Fig. 5a, c, d). The width of the hysteresis – measured as the
vertical distance between the ramp-up and ramp-down trajec-
tories – initially increases, then decreases (Fig. 5a–d), except
in the vegetation carbon pool where the width of the hystere-
sis increases throughout the ramp-down phase (Fig. 5c). The
land and ocean carbon pools in the RAD mode also exhibit
hysteresis (Fig. 6). The hysteresis in the land carbon pool is
dominated by the soil carbon pool (Fig. 5d), and the width
of the hysteresis appears to increase throughout the ramp-
down phase for all carbon pools except the vegetation car-
bon, which shows nearly constant hysteresis. The observed
hysteresis in the land and ocean carbon pools in the BGC
and RAD modes is likely largely due to climate system in-
ertia: the carbon cycle response in the ramp-down phase is a
combination of the response to both increasing and decreas-
ing CO2 concentrations.

Despite the restoration of preindustrial atmospheric CO2
levels in the BGC mode, the land and ocean carbon pools
do not return to their preindustrial states. At the end of the
ramp-down phase, the land carbon pool holds approximately
250 PgC more than at the preindustrial state, with 80 PgC re-
maining in the vegetation carbon pool and 170 PgC remain-
ing in the soil carbon pool (Fig. 5a, c, d) due to time lags as-
sociated with vegetation and soil carbon turnover. The ocean
carbon pool holds much more carbon (615 PgC) than at the
preindustrial state (Fig. 5b). In the RAD mode, the land and
ocean carbon lost in the ramp-up phase is not completely re-
gained in the ramp-down phase, though this response would
be expected, given the asymmetric surface air temperature
response in this mode. By the end of the RAD mode, the
land carbon pool holds approximately 300 PgC less than at
the preindustrial state, with the vegetation carbon pool ac-
counting for 70 PgC and the soil carbon pool accounting for
the remaining 230 PgC (Fig. 6a, c, d). The ocean holds only
70 PgC less than at the preindustrial state, but unlike the land
carbon pool, a minuscule amount of ocean carbon is regained
in the ramp-down phase (Fig. 6b).

Previous studies have shown carbon cycle hysteresis in the
FULL mode of the CDR-reversibility simulation (Boucher
et al., 2012; Zickfeld et al., 2016; Jeltsch-Thömmes et al.,
2020; Park and Kug, 2022), consistent with our results (see
Fig. S4). However, in most of these studies, the vegetation
and soil carbon pools do not return to their preindustrial
states by the end of the ramp-down phase (Boucher et al.,
2012; Zickfeld et al., 2016; Park and Kug, 2022). Our results
for the FULL mode of the CDR-reversibility simulation show
that the vegetation and soil carbon pools are very close to
their preindustrial states by the end of the ramp-down phase
(see Fig. S4), consistent with Ziehn et al. (2020), who show a
near-return to the preindustrial state in the vegetation carbon
pool.
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Figure 4. (a) Ocean carbon change and (b) atmosphere-to-ocean CO2 flux in the fully coupled (FULL), biogeochemically coupled (BGC),
and radiatively coupled (RAD) CDR-reversibility simulations. Ocean carbon change is calculated relative to 1850 (preindustrial). Solid lines
represent the ramp-up phase and dot-dashed lines represent the ramp-down phase. The vertical dotted lines mark the beginning and end of
the ramp-down phase.

Figure 5. (a) Land, (b) ocean, (c) vegetation, and (d) soil carbon pool changes as a function of atmospheric CO2 concentration, taken from
the biogeochemically coupled (BGC) CDR-reversibility simulation ramp-up and ramp-down phases and the inertia-corrected approach. All
values are calculated relative to 1850 (preindustrial).

3.1.6 Carbon cycle feedback parameters quantified
from CDR-reversibility simulations

Table 1 shows the carbon cycle feedback parameters quanti-
fied using the Friedlingstein et al. (2006) carbon cycle feed-
back framework (see Sect. 2.4). The concentration–carbon
feedback parameter (β), which quantifies the concentration–
carbon feedback, is computed as the change in land or ocean
carbon per unit change in atmospheric CO2 concentration in
the BGC mode. The climate–carbon feedback parameter (γ )
quantifies the climate–carbon feedback as the change in land

or ocean carbon per unit change in surface air temperature
in the RAD mode (referred to as the RAD approach). An
alternative approach to quantifying the climate–carbon feed-
back involves taking the difference between the fully cou-
pled and biogeochemically coupled simulations and comput-
ing the change in land or ocean carbon per unit change in
surface air temperature from that difference (referred to here
as the FULL–BGC approach).

In the CDR-reversibility simulation, the magnitudes of β
and γ for both land and ocean are smaller in the ramp-down
phase (under negative emissions) than in the ramp-up phase
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Figure 6. (a) Land, (b) ocean, (c) vegetation, and (d) soil carbon pool changes as a function of surface air temperature change, taken from
the radiatively coupled (RAD) CDR-reversibility simulation ramp-up and ramp-down phases and the inertia-corrected approach. All values
are calculated relative to 1850 (preindustrial).

(under positive emissions), except the ocean climate–carbon
feedback parameter, which is larger (Table 1). Climate–
carbon feedback parameters calculated using the FULL–
BGC approach (shown in parentheses) are consistent in sign
with those calculated using the RAD approach, but the mag-
nitudes of these feedback parameters are larger (see Fig. S5
for hysteresis figures for this approach). Carbon cycle feed-
back parameters are smaller in the ramp-down phase be-
cause the land and ocean carbon pools show a lagged re-
sponse to changes in CO2 concentration and climate in the
early ramp-down phase. In the ocean, this lagged response to
changes in climate is much greater, and carbon loss contin-
ues throughout the ramp-down phase (shown by the positive
ocean climate–carbon feedback parameter). As a result, feed-
back parameters in the ramp-down phase are underestimated.
Improving this quantification could be achieved by quantify-
ing and removing this inertia.

3.2 Isolating carbon cycle feedbacks under negative
emissions

3.2.1 Zeroemit simulation: quantifying climate system
inertia

Zero emission simulations quantify committed changes due
to the prior CO2 trajectory. Changes in atmospheric CO2
concentration in zero emission simulations are driven by the
carbon sinks, which in turn are influenced by the CO2 con-
centration and climate. Following cessation of emissions,
the CO2 concentration in the FULL mode declines steadily,
mainly driven by ocean carbon uptake consistent with results
from MacDougall et al. (2020) (Fig. 7a). The CO2 concen-
tration in the BGC mode declines more than in the FULL

mode because both land and ocean remain carbon sinks. In
the RAD mode, the CO2 concentration increases as both
land and ocean carbon decrease, releasing CO2 into the at-
mosphere. Changes in atmospheric CO2 concentration, to-
gether with changes in ocean heat uptake and surface albedo,
drive changes in surface air temperature. In the FULL mode,
the warming effect of declining ocean heat uptake domi-
nates over the cooling effect of declining CO2 concentration,
resulting in continued warming (MacDougall et al., 2020)
(Figs. 7b, S6). The decline in CO2 concentration is partly
offset by permafrost carbon release from the soil (Fig. 7e).
Surface air temperature in the RAD mode increases more
than in the FULL mode because the CO2 concentration in-
creases, causing further warming. Surface air temperature
remains relatively constant in the BGC mode. In the FULL
mode, the land switches into a source of carbon after emis-
sions cease, consistent with the behaviour of the UVic ESCM
in the Zero Emissions Commitment Model Intercomparison
Project (ZECMIP; MacDougall et al., 2020) (Fig. 7c). Veg-
etation carbon continues to increase (Fig. 7d), whereas soil
carbon decreases (Fig. 7e). The ocean remains a carbon sink
after cessation of emissions (Fig. 7f). In the BGC mode, the
ocean remains a strong carbon sink after CO2 emissions are
set to zero, whereas land carbon initially increases then de-
creases (Fig. 7c, f). Vegetation carbon increases throughout
the zero emission phase, whereas soil carbon initially in-
creases then slowly decreases (Fig. 7d, e). Both land and
ocean carbon decrease in the RAD mode (Fig. 7c, f) with
both vegetation and soil carbon pools driving this decrease
(Fig. 7d, e).
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Table 1. Carbon cycle feedback parameters under positive and negative emissions quantified at 4×CO2 (quadruple the preindustrial CO2
level) from the CDR-reversibility simulation and using the proposed inertia-corrected approach. Feedback parameters for negative emissions
are positive for land or ocean carbon loss and negative for land or ocean carbon gain, opposite to the sign convention for feedbacks under
positive emissions. Values shown in parentheses were calculated using the FULL–BGC approach for quantifying climate–carbon feedbacks
(see Eq. 7). Feedback parameters quantified from the CDR-reversibility simulation can also be derived from Figs. 5 and 6 respectively by
taking the slope of the land or ocean response at the same time points at which they are computed.

Simulations(s) used for calculation
of feedback parameters

Positive emissions (ramp-up) Negative emissions (ramp-down)

βL βO γL γO βL βO γL γO

(PgC ppm−1) (PgC ◦C−1) (PgC ppm−1) (PgC ◦C−1)

CDR-reversibility simulation taken at
4×CO2 for positive emissions and at
return to preindustrial for negative emissions

0.96 0.88 −117.8
(−121.5)

−7.36
(−22.7)

0.68 0.16 −56.4
(−67)

10.8
(31.1)

Inertia-corrected approach taken at 4×CO2
for positive emissions and at return to
preindustrial for negative emissions

0.96 0.88 −117.8 −7.36 0.80 0.84 −157.1 −18.1

3.2.2 Inertia-corrected approach: isolating the
response to negative emissions

The inertia-corrected approach uses the zero emission sim-
ulations described in the previous section to isolate the re-
sponse to negative emissions in the CDR-reversibility sim-
ulations by taking the difference between the ramp-down
phase of the RAD (BGC) CDR-reversibility simulation and
the RAD (BGC) zero emission simulation. In the BGC mode,
despite our attempt to reduce climate system inertia in our
novel approach, carbon pools do not return to their preindus-
trial states at the time that atmospheric CO2 returns to prein-
dustrial levels (Fig. 5). In the RAD mode, all carbon pools
eventually gain more carbon than they held at their preindus-
trial states (Fig. 6).

The inertia-corrected approach removes the initial carbon
increase in the CDR-reversibility BGC mode (Fig. 5) and re-
moves the initial carbon decrease in the CDR-reversibility
RAD mode (Fig. 6), reducing the width of the hysteresis.
Zickfeld et al. (2016) used zero emissions to isolate the
response to negative emissions and observed a reduction
in the initial carbon change at the beginning of the ramp-
down phase consistent with our results. In our approach,
the hysteresis may persist because of the different config-
urations in which the CDR-reversibility and Zeroemit sim-
ulations were run: that is, the former were run with pre-
scribed atmospheric CO2 concentration, whereas the latter
were emissions-driven, which may also impact the quantifi-
cation of the inertia. Another possibility may be irreversible
changes in vegetation distribution in the CDR-reversibility
ramp-down phase that are caused by state changes rather than
inertia. When the CO2 decrease is prescribed, the Earth sys-
tem is in a state of elevated CO2 concentration and surface
air temperature, which may lead to a different vegetation re-
sponse than to an equivalent CO2 increase applied from a

preindustrial state (Zickfeld et al., 2021). Alternatively, the
remaining hysteresis may show that the linearity assumption
made in this experiment is not satisfied; the linearity assump-
tion made here is that the total carbon cycle response in the
ramp-down phase is a linear combination of the committed
response following increasing CO2 concentration and tem-
perature, and the response is driven by the decrease in atmo-
spheric CO2 and temperature in the ramp-down phase (see
Sect. 2.4.1: Eq. 8)

After isolating the response to negative emissions alone
in the inertia-corrected approach, the magnitudes of βL and
βO are smaller in the ramp-down phase as compared to their
respective magnitudes in the ramp-up phase, but the magni-
tudes of γL and γO become larger in the ramp-down phase
(Table 1). In the ramp-down phase, the magnitudes of β and
γ from our novel approach are larger compared to those from
the CDR-reversibility simulation, implying greater land and
ocean carbon loss due to changes in CO2 concentration alone
and greater land and ocean carbon gain due to changes in
climate alone. For example, a decrease in atmospheric CO2
of 1 ppm would result in the loss of 0.68 PgC of land car-
bon in the standard approach and 0.80 PgC of land carbon
in our approach due to changes in CO2 concentration alone,
whereas cooling by 1 ◦C would result in land carbon gain
of 56.4 PgC in the standard approach and almost 3 times as
much (157.1 PgC) in our approach due to changes in climate
alone.

4 Discussion

Our results from the CDR-reversibility simulation show that,
due to changes in CO2 concentration alone, carbon pools take
up carbon in the ramp-up phase, continue to take up carbon
in the early ramp-down phase, then switch into sources of
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Figure 7. (a) Atmospheric CO2 concentration anomaly, (b) surface air temperature anomaly, (c) land carbon change, (d) vegetation carbon
change, (e) soil carbon change, and (f) ocean carbon change for the zero emission simulations relative to 1850 (preindustrial). ALL denotes
the CDR-reversibility ramp-up phase from which all modes are initialized; BGC – biogeochemically coupled, RAD – radiatively coupled,
and FULL – fully coupled. Solid lines are for the ramp-up phase; dashed lines are for the zero emission phase.

carbon. Due to changes in climate alone, carbon pools lose
carbon in the ramp-up phase, continue to lose carbon in the
ramp-down phase, then switch into carbon sinks. Further-
more, the land and ocean carbon pools do not return to their
preindustrial states at the end of both modes, suggesting that
land and ocean carbon changes in the ramp-up phase are ir-
reversible on centennial timescales. The differences in the
magnitudes of carbon cycle feedbacks in the ramp-up and
ramp-down phases, as quantified by feedback parameters, are
likely largely due to climate system inertia. This inertia gen-
erally reduces the magnitude of both feedbacks in the ramp-
down phase (under negative emissions) relative to feedbacks
in the ramp-up phase (under positive emissions), implying
reduced land and ocean carbon loss due to changes in CO2
concentration alone and reduced land carbon gain due to the
changes in climate. The exception is the ocean that continues
to lose carbon in the ramp-down phase, implying increased
carbon loss due to changes in climate alone.

To quantify the carbon cycle inertia, that is, the response
to the prior increasing CO2 trajectory, we ran zero emission
simulations in fully coupled, biogeochemically coupled, and
radiatively coupled modes. Consistent with previous studies,
the ocean continues to sequester carbon in the fully cou-
pled zero emission simulation (MacDougall et al., 2020).
The terrestrial biosphere switches into a carbon source after
emissions cease. Carbon uptake, largely by the ocean sink,

decreases the atmospheric CO2 concentration. Surface air
temperature increases due to the interplay between declin-
ing CO2 concentration and ocean heat uptake (Matthews and
Caldeira, 2008; Solomon et al., 2009; Arora et al., 2013).
While the carbon cycle response is consistent with the be-
haviour of the UVic ESCM in the Zero Emissions Com-
mitment Model Intercomparison Project (ZECMIP; Mac-
Dougall et al., 2020), the UVic ESCM response in ZECMIP
is noticeably different from the rest of the Earth system mod-
els. On centennial timescales, the UVic ESCM is the only
model with a positive zero emissions commitment. However,
most of the other models do not represent permafrost car-
bon. The carbon pools in the biogeochemically coupled and
radiatively coupled zero emission simulations also exhibit in-
ertia: the land and ocean carbon pools continue to grow after
cessation of emissions in the biogeochemically coupled sim-
ulation, whereas both carbon pools reduce in the radiatively
coupled simulation.

Assuming linearity in the response to increasing and
decreasing CO2 concentrations (see Sect. 2.4.1: Eq. 8),
we subtract the zero emission simulations from the CDR-
reversibility simulations, to isolate the response to negative
emissions alone. We find that in the ramp-down phase, the
magnitudes of β and γ from our novel approach are gener-
ally larger as compared to those from the CDR-reversibility
simulation, implying greater land and ocean carbon loss due
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to changes in CO2 concentration and greater land and ocean
carbon gain due to changes in climate if feedback parame-
ters from our approach are applied instead. Furthermore, land
and ocean carbon changes in the ramp-up phase remain irre-
versible in our simulations.

A similar feedback analysis was conducted for ocean car-
bon cycle feedbacks using the Norwegian Earth System
Model (NorESM; Schwinger and Tjiputra, 2018). Schwinger
and Tjiputra calculated ocean concentration–carbon and
climate–carbon feedback parameters using the same carbon
cycle feedback framework and CDR-reversibility simula-
tions used here. Their results also show a lagged ocean car-
bon response to the prior increasing CO2 trajectory in the
ramp-down phase, and as a result, the magnitude of both car-
bon cycle feedbacks is smaller in the ramp-down phase than
in the ramp-up phase.

We compare carbon cycle feedback parameters quanti-
fied from the CDR-reversibility ramp-up phase to model
means and standard deviations from CMIP5 and CMIP6 –
the fifth and sixth phases of the Coupled Model Intercompar-
ison Project, respectively (Arora et al., 2020) (see Table S1
in the Supplement). The concentration–carbon feedback pa-
rameter for land (βL) is generally consistent with those from
CMIP5 and CMIP6, while the ocean concentration–carbon
feedback parameter (βO) lies slightly above the CMIP6 range
(mean± 1 standard deviation). The land climate–carbon
feedback parameter (γL) lies well above the CMIP5 and
CMIP6 ranges, implying a stronger sensitivity to warming
relative to CMIP5 and CMIP6 models. The ocean climate–
carbon feedback parameter (γO) lies slightly above the
ranges for CMIP5 and CMIP6. We have included feedback
parameters in the Supplement at twice the preindustrial CO2
concentration (2×CO2), which are more relevant, in terms
of atmospheric CO2 levels and warming, for real-world mit-
igation scenarios (Table S2).

We use the UVIC ESCM, an EMIC, due to the number
of simulations and length of model integration required in
this study. Compared to comprehensive Earth system models,
EMICs generally have coarser resolution and represent less
Earth system processes at a lower level of detail. Moreover,
the version of the UVic ESCM used here does not represent
the nitrogen cycle on land and its coupling to the carbon cy-
cle, which has ramifications for the estimated magnitude of
carbon cycle feedbacks. Models without a nitrogen cycle ex-
hibit greater land carbon gain under increasing CO2 concen-
trations relative to other CMIP5 and CMIP6 models: that is,
the concentration–carbon feedback parameter is more posi-
tive (Table S1). They also exhibit greater carbon loss under
increasing CO2 concentrations: that is, the climate–carbon
feedback parameter is more negative. Therefore, the magni-
tude of both carbon cycle feedbacks in this study is gener-
ally larger under increasing CO2 concentrations relative to
other CMIP5 and CMIP6 models with a nitrogen cycle. Due
to the exclusion of the nitrogen cycle, the UVic ESCM is ex-
pected to exhibit greater land carbon gain due to changes in

climate alone under decreasing CO2 concentrations relative
to CMIP5 and CMIP6 models with a nitrogen cycle. Nitrogen
mineralization will likely decline as surface air temperature
declines, reducing land carbon gain due to changes in cli-
mate alone in a model with the nitrogen cycle. The direction
of land carbon change due to changes in CO2 concentration
alone is less certain. With the consideration of nitrogen lim-
itation, the already weakened CO2 fertilization effect under
declining CO2 concentrations could be further constrained,
exacerbating the carbon loss due to changes in CO2 concen-
tration alone. However, this may be counteracted by an en-
hanced rate of photosynthesis as declining CO2 concentra-
tions decrease carbon–nitrogen ratios.

Each of the two approaches used here to quantify carbon
cycle feedback parameters has its benefits and drawbacks.
Because the CDR-reversibility simulation is commonly used
in literature (Schwinger and Tjiputra, 2018; Keller et al.,
2018; Zickfeld et al., 2016), it allows easier comparison of
results across models. However, research shows that this ide-
alized scenario may delay the land sink-to-source transition
and underestimate ocean carbon uptake and the strength of
the permafrost carbon feedback (MacDougall, 2019). Fur-
thermore, this scenario requires a period of high positive
emissions followed immediately by a period of high negative
emissions. The yearly rate of increase in atmospheric CO2
concentration (1 % yr−1) in the ramp-up phase is twice the
rate inferred from historical data (MacDougall, 2019), and
achieving such a strong peak and decline is highly unlikely
given the scale of negative emission technologies required.

In their 2016 paper, Zickfeld et al. used zero emission
simulations to correct for the thermal and carbon cycle in-
ertia in a suite of CDR-reversibility simulations, similar to
our novel approach in this study. This reduced, but did not
eliminate the climate system inertia, consistent with our re-
sults. Although our approach does not eliminate the inertia,
it provides a more accurate estimate of the magnitude of car-
bon cycle feedbacks in the ramp-down phase by reducing
the response to the prior CO2 trajectory, bringing the es-
timate closer to a quantification of carbon cycle feedbacks
under negative emissions alone. The remaining inertia may
be associated with the different configurations in which the
CDR-reversibility and Zeroemit simulations were run: the
former were run in concentration-driven mode, whereas the
latter were emissions-driven. Therefore, changes in land and
ocean carbon fluxes affect the atmospheric CO2 concentra-
tion in the zero emission simulations but not in the CDR-
reversibility simulations. Alternatively, the remaining inertia
may be related to irreversible changes in vegetation distribu-
tion in the CDR-reversibility simulations. Lastly, the linear-
ity assumption made in this experimental design (Sect. 2.4.1,
Eq. 8) may not hold: that is, the total carbon cycle response
in the ramp-down phase may not be a linear combination of
the committed response following increasing CO2 concen-
tration and temperature as well as the response driven by the
decrease in atmospheric CO2 and temperature in the ramp-
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down phase. If the responses to increasing and decreasing
CO2 concentrations are not additive, then the zero emission
simulations may not quantify and remove all the inertia in the
CDR-reversibility simulations.

5 Conclusions

Carbon cycle feedbacks under negative emissions have pre-
viously been quantified from the ramp-down phase of the
CDR-reversibility simulation. However, this approach under-
estimates the magnitudes of carbon cycle feedbacks because
the response in the ramp-down phase includes climate sys-
tem inertia effects that generally weaken both feedbacks. Our
novel approach aims to reduce the inertia in the ramp-down
phase, thereby improving the quantification of carbon cycle
feedbacks under negative emissions. We find that the magni-
tudes of the concentration–carbon and climate–carbon feed-
backs under negative emissions are larger in our approach
as compared to the standard approach. The concentration–
carbon feedback drives greater land and ocean carbon re-
lease under negative emissions in our approach than in the
standard approach. The climate–carbon feedback promotes
more land and ocean carbon sequestration in our approach
than in the standard approach. This has two implications:
using feedback parameters from the standard approach will
(1) underestimate land and ocean carbon release under neg-
ative emissions due to changes in CO2 concentration alone
(concentration–carbon feedback) and (2) underestimate land
and ocean carbon gain due to changes in climate alone
(climate–carbon feedback). Given that the concentration–
carbon feedback is the dominant feedback, quantifying car-
bon cycle feedbacks under negative emissions from the
CDR-reversibility simulation will result in the underestima-
tion of carbon loss under negative emissions, thereby overes-
timating the effectiveness of negative emissions in drawing
down CO2.

Future research should test the robustness of these results
in a multi-model framework. A first step could be analysing
the CDR-reversibility simulations in three modes (biogeo-
chemically coupled, radiatively coupled, and fully coupled)
in the next CMIP phase. In addition, increasing and decreas-
ing CO2 trajectories could be applied from an equilibrium
state to overcome issues related to climate system inertia.
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