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Abstract. Terrestrial carbon cycle models are routinely used
to determine the response of the land carbon sink under ex-
pected future climate change, yet these predictions remain
highly uncertain. Increasing the realism of processes in these
models may help with predictive skill, but any such addi-
tion should be confronted with observations and evaluated
in the context of the aggregate behavior of the carbon cycle.
Here, two formulations for leaf area index (LAI) phenology
are coupled to the same terrestrial biosphere model: one is
climate agnostic, and the other incorporates direct environ-
mental controls on both timing and growth. Each model is
calibrated simultaneously to observations of LAI, net ecosys-
tem exchange (NEE), and biomass using the CARbon DAta-
MOdel fraMework (CARDAMOM) and validated against
withheld data, including eddy covariance estimates of gross
primary productivity (GPP) and ecosystem respiration (Re)
across six ecosystems from the tropics to high latitudes. Both
model formulations show similar predictive skill for LAI and
NEE. However, with the addition of direct environmental
controls on LAI, the integrated model explains 22 % more
variability in GPP and Re and reduces biases in these fluxes
by 58 % and 77 %, respectively, while also predicting more
realistic annual litterfall rates due to changes in carbon allo-
cation and turnover. We extend this analysis to evaluate the
inferred climate sensitivity of LAI and NEE with the new
model and show that the added complexity shifts the sign,
magnitude, and seasonality of NEE sensitivity to precipita-
tion and temperature. This highlights the benefit of process
complexity when inferring underlying processes from Earth

observations and representing the climate response of the ter-
restrial carbon cycle.

1 Introduction

Terrestrial ecosystems play a critical role in the Earth’s cli-
mate system due to their varied couplings to and feedbacks
between carbon, water, and energy with the atmosphere. Im-
proving our ability to quantify and predict the response of
terrestrial ecosystems to climate is essential to advancing our
understanding of these feedbacks and predicting future cli-
mate change (Booth et al., 2012). Despite their importance,
there remains considerable uncertainty in our understand-
ing of the terrestrial carbon cycle, undermining our ability
to make accurate predictions of future carbon—climate feed-
backs (Friedlingstein et al., 2014; Huntzinger et al., 2017;
Piao et al., 2013).

Vegetation phenology is a key component of terrestrial
ecosystem dynamics as it is directly linked to key processes
in the carbon, water, and energy cycles (e.g., photosynthe-
sis, autotrophic respiration, evapotranspiration, and surface
albedo), making it an area of focus in understanding the cli-
mate response of ecosystems. Phenology refers to the timing
of periodic events in plant development such as reproduction,
bud burst, canopy senescence, activity—dormancy cycles, and
carbon allocation. Quantitatively, the leaf area index (LAI)
represents the one-sided surface area of leaves per area of
ground surface. LAl is a cornerstone biophysical quantity for
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monitoring vegetation phenology, as it can be observed glob-
ally from space, and for representing the canopy in terrestrial
biosphere models (TBMs), a key component of Earth sys-
tem models (Sellers et al., 1997). LAI mediates the canopy
interception of radiation, and thus it directly controls pro-
cesses such as surface albedo and the rates of photosynthesis
and transpiration. Indirectly, LAI also has significant impacts
such as influencing how much precipitation reaches the soil
surface, altering plant-available water and evaporation from
the soil and canopy surfaces. It also represents the mass of
foliar carbon in the canopy, coupling these processes to the
cycling of carbon within the plant and litterfall that supplies
carbon to the soil (Richardson et al., 2013).

A variety of concepts have been used to represent LAI
dynamics in TBMs, including ecohydrological equilibrium
(Yang et al., 2018), optimality principles such as the max-
imization of plant net carbon gain (Caldararu et al., 2014;
Manzoni et al., 2015), direct carbon supply (Xin et al., 2020),
demand for growth (Schiestl-Aalto et al., 2015), and ap-
proaches that consider climate and biophysical controls more
directly (Jolly et al., 2005; Knorr et al., 2010; Stockli et al.,
2008). Mechanistic modeling approaches are lacking, a re-
flection of our limited fundamental understanding of pro-
cesses such as bud burst, leaf longevity, canopy senescence,
and their variability across species (Cooke et al., 2012). Ob-
servations have shown that the dynamics of LAI are cor-
related with environmental variables (Clelend et al., 2007),
particularly temperature, water availability, and photoperiod
(Delpierre et al., 2016; Tio et al., 2014; Richardson et al.,
2013), although variability also occurs within and across
species for a given climate (Cole and Sheldon, 2017; Marc-
hand et al., 2020). In the absence of mechanistic understand-
ing, it is important that model formulations are generalized
and calibrated to available observations (e.g., Wheeler and
Dietze, 2021). Therefore, many TBMs use semiempirical
representations of LAI which depend on an understanding of
these correlations. While many of these models have shown
fidelity in representing LAI dynamics (e.g., Stockli et al.,
2008), vegetation phenology remains a large source of uncer-
tainty in models and is therefore an ongoing area of research
(Migliavacca et al., 2012; Richardson et al., 2012; Seiler et
al., 2022).

In the context of carbon—climate feedbacks, it is critical
to understand the role of LAI phenology in mediating the
carbon cycle, particularly net ecosystem exchange of carbon
(NEE) (Richardson et al., 2012). However, few studies have
investigated whether a more complex model representation
of LAI can actually improve predictions of NEE or how these
improvements affect the sensitivity of the terrestrial carbon
balance to climate. These additional steps are needed to eval-
uate how the representation of specific processes in mod-
els ultimately affects the integrated response of NEE to cli-
mate (Fisher and Koven, 2020). Neglecting these steps runs
the risk of biased predictions of future carbon—climate feed-
backs.
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In this study we use a Bayesian parameter data assimi-
lation system to generate a data-informed representation of
LAL its coupling to NEE, and the climate sensitivity of
both LAI and NEE. Data assimilation or model-data fu-
sion (MDF) provides a framework for systematically com-
bining observations with a model (Rayner et al., 2019). To
understand a complex system like the terrestrial carbon cy-
cle, MDF is a useful approach to improve model performance
and mechanistic understanding by constraining the diverse
set of processes and their interactions contributing to carbon
exchange (Fisher and Koven, 2020; MacBean et al., 2016).

For the present study, we consider two key aspects of
model uncertainty: (i) that the model formulation must accu-
rately represent the main processes that govern LAI, NEE,
and their response to climate (Schwalm et al., 2019) and
(ii) that the parameters of the model must be appropriately
assigned (Prentice et al., 2015). For a given model, MDF
can provide a parameterization that is statistically consis-
tent with observations and their uncertainties. When applied
equally across multiple model structures, MDF can be used
to evaluate different model structures and their impact on the
data-informed processes (e.g., Famiglietti et al., 2021). Here,
we investigate two model formulations for LAI and perform
MDF at six flux tower sites distributed across diverse ecosys-
tems from the tropics to high latitudes (Baldocchi, 2008). We
implement a prognostic, climate-sensitive LAI submodel in
a TBM and benchmark this against an empirical diagnos-
tic LAI submodel used in a previous version of the same
TBM (Bloom and Williams, 2015; Quetin et al., 2020). We
constrain both TBMs using multiple observations of carbon
states and fluxes and then use these data-informed models to
infer the climate sensitivity of NEE. The main objectives of
this study are to (i) investigate the impact of a more complex
process representation of LAI on predicting LAI and NEE
dynamics in an MDF system, (ii) evaluate the impact of a
more complex process representation of LAI on inferring the
processes underlying NEE, GPP, and Re, and (iii) evaluate
how a change in LAI process representation affects the cli-
mate sensitivity of the terrestrial carbon cycle at seasonal and
annual timescales.

2 Methods
2.1 Study sites

The study is focused at six sites distributed from the tropics
to high latitudes (Fig. 1) that are part of a global network
of eddy covariance flux sites, FLUXNET (Pastorello et al.,
2020). These sites cover a range of climate zones and pheno-
logical strategies (Table 1), allowing for more robust model
evaluation and climate sensitivity analysis in the global con-
text. Following Famiglietti et al. (2021), we selected these
sites based on the following criteria: (i) meteorological forc-
ing data availability, (ii) observational data availability in-
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cluding repeat woody biomass observations and eddy covari-
ance measurements of carbon dioxide and water vapor fluxes,
(iii) temporal coverage of at least 10 years, (iv) no inten-
sive human management (e.g., agriculture or logging), and
(v) vegetation dominated by the C3 photosynthetic pathway.

2.2 Model-data fusion

To quantitatively evaluate the impacts of the process repre-
sentation of LAI on the net carbon balance and its climate
sensitivity, we utilized the CARbon DAta-MOdel fraMework
(CARDAMOM, Bloom and Williams, 2015; Bloom et al.,
2016). CARDAMOM is a Bayesian MDF system used to re-
trieve time-invariant parameters and initial conditions for the
Data Assimilation Linked ECosystem (DALEC) TBM and
has been used widely as a diagnostic tool to infer stocks and
fluxes of carbon and water (Bloom et al., 2020; Quetin et
al., 2020; Yin et al., 2020; Smallman et al., 2021). CAR-
DAMOM has the capability to assimilate a diverse range of
observations (Bloom et al., 2020; Famiglietti et al., 2021)
and shows comparable performance to more complex ter-
restrial biosphere models when it is constrained by observa-
tions (Quetin et al., 2020). It has advantages over other MDF
frameworks as it does not rely on definitions of plant func-
tional types or on steady-state assumptions.

CARDAMOM is also capable of utilizing different
DALEC model formulations (Famiglietti et al., 2021). A
number of DALEC model versions have been developed for
various purposes (Williams et al., 2005; Famiglietti et al.,
2021). Recent developments have incorporated more pro-
cesses, as CARDAMOM is increasingly being used to diag-
nose climate sensitivity of terrestrial carbon and water cycles
(Bloom et al., 2020; Ge et al., 2022; Smallman and Williams,
2019; Yang et al., 2022). With this in mind, we implemented
a climate-sensitive LAI phenology submodel in a version of
DALEC, which is described further below.

2.3 Observations and model forcing

Multiple types of observations were used to constrain the
processes relevant to LAI, NEE, and their interactions. This
helps prevent overfitting and ensures a consistent view of
the terrestrial carbon cycle is achieved between model and
data (Kaminski et al., 2013). Observations used include
monthly LAI, monthly NEE, and annual woody biomass.
Observations of LAI were retrieved from the Earth Ob-
servation Copernicus 1km gridded product over each site,
which includes a time-varying uncertainty estimate that we
utilized (Fuster et al., 2020; Verger et al., 2014). Obser-
vations of NEE using the eddy covariance technique are
from the FLUXNET2015 database (Pastorello et al., 2020).
The time-varying uncertainty estimate for NEE was based
on propagating instrumentation error (0.58 g Cm~2d~!, Hill
et al., 2012) and temporal aggregation due to missing sub-
monthly time steps. Uncertainty due to temporal aggrega-
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tion was estimated based on site-specific statistical models
derived from subsampling time periods without missing val-
ues. Aggregation and instrumentation uncertainty was then
combined assuming uncertainties are fully correlated. The in
situ woody biomass observations were converted into esti-
mates of aboveground and belowground biomass (ABGB)
using allometric scaling based on principal investigator ad-
vice at each site. Further details on all of the observations
used can be found in Famiglietti et al. (2021).

The study period at each site ranges from 11 to 16 years
(Table 1). The data were split into two periods, a training
window (calibration) and a prediction window (validation).
The first 5 years were used for calibration, and the remaining
data were used for validation. Climate forcing data for the
model consisted of downward shortwave radiation, air tem-
perature (average 2 m minimum and maximum), precipita-
tion, vapor pressure deficit, and atmospheric carbon dioxide
concentration.

To support model evaluation, we used gross primary pro-
ductivity (GPP) and ecosystem respiration (Re) fluxes from
the FLUXNET-partitioned NEE (Pastorello et al., 2020). We
selected GPP and Re estimates derived using nighttime par-
titioning; i.e., Re is determined as a nighttime Re fitted to
a function of temperature extrapolated into the daytime, and
thus GPP is estimated as the residual between Re and NEE.
These data were withheld from the model calibration step,
thus providing a stringent metric of model skill in represent-
ing the processes governing carbon cycling. There are three
primary motivations for withholding these data for valida-
tion: (i) these are model-based products, (ii) the NEE obser-
vations and the GPP and Re estimates are not wholly inde-
pendent, and (iii) we only assimilate observations that can be
produced directly from Earth observations to permit global
application of this framework in future work.

2.4 Model description

The DALEC model version used here has been fully de-
scribed elsewhere (Bloom and Williams, 2015; Bloom et al.,
2016; Quetin et al., 2020; Yang et al., 2022; Yin et al., 2020).
We describe, in brief, the representation of the carbon cy-
cle in DALEC. A full description of the water balance can
be found in Bloom et al. (2020), which includes a plant-
available soil water pool and a plant-unavailable soil water
pool. Following this, we describe the two separate implemen-
tations of LAI phenology used in this study that are linked
to same representation of carbon and water cycles, i.e., the
same TBM but different LAI phenology submodels. Com-
mon model parameters between the two models are shown in
Table Al.

2.4.1 Carbon balance

The carbon cycle in DALEC consists of six carbon pools (la-
bile, foliar, wood, fine root, litter, and soil) and simulates pool
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Figure 1. Study site locations overlaid onto the land cover type map from the Moderate Resolution Imaging Spectroradiometer, MODIS,

2016 (MCD12Cl1, Friedl and Sulla-Menashe, 2015).

Table 1. Description of the study sites, including the site name, FLUXNET code, dominant plant functional type (PFT), location, mean

annual temperature (MAT), and mean annual total precipitation (MAP).

Site ID Dominant PFT Lat,long MAT MAP Study period
) (O (mm)
Howard Springs AU-How  Tropical woody savanna —12.49,131.15 27.0 1449  2001-2014
Hyytiala FI-Hyy Boreal evergreen needleleaf 61.85,24.29 3.8 709  1999-2014
Le Bray FR-LBr  Temperate evergreen needleleaf 4472, -0.77 13.6 900  1998-2008
Puechabon FR-Pue Temperate evergreen broadleaf 43.74, 3.60 13.5 883  2000-2014
Guyaflux GF-Guy  Tropical evergreen broadleaf 5.28,-52.92 257 3041  2004-2018
Harvard Forest US-Hal Temperate deciduous broadleaf 42.54, =72.17 6.2 1071 1998-2012

transfers using ordinary differential equations. The NEE of
an undisturbed ecosystem is calculated as

NEE = (Rh + Ra) — GPP = Re — GPP, (1)

where GPP is the gross primary productivity, Rh is the het-
erotrophic respiration from litter and soil carbon, Ra is the
autotrophic respiration, and Re is the ecosystem respiration
representing the sum of Rh and Ra. The representation of
GPP is based on the Aggregated Canopy Model (Williams et
al., 1997, ACM), with the specific implementation described
in Bloom et al. (2016). The ACM is a parsimonious approach
for representing GPP with calibration (Williams et al., 1997).
It requires inputs of temperature, carbon dioxide concentra-
tion, downward shortwave radiation, and LAI. The GPP sim-
ulated by the ACM is then scaled by a soil moisture limi-
tation factor that is calculated using the plant-available soil
water and a parameter for the wilting point.

2.4.2 LAI phenology models

The focus of this study is on the representation of LAI phe-
nology. We implemented a new submodel for LAI phenol-
ogy in DALEC, based on the model of Knorr et al. (2010).
As a benchmark, we also utilized a diagnostic LAI phe-
nology submodel commonly used in CARDAMOM stud-
ies, the Combined Deciduous-Evergreen Analytical model
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(CDEA). These two DALEC model formulations are denoted
as DALECkporr and DALECcpga, respectively.

CDEA model

The CDEA model is a relatively simple model for simulating
the phenology, growth, and turnover of LAI, with full de-
scriptions described elsewhere (Bloom and Williams, 2015;
Famiglietti et al., 2021; Quetin et al., 2020), with the spe-
cific formulation the same as that of Bloom et al. (2020).
In brief, the CDEA model computes leaf onset and leaf fall
factors that govern the flux of carbon from the plant labile
carbon pool (Cjap) to the foliar carbon pool (Cgy) and the
flux of carbon from Cy, to the litter carbon pool (Cj;), re-
spectively. Carbon can also be supplied directly from GPP
via a fractional allocation parameter. The leaf onset and leaf
fall factors are based on a day-of-year approach that gov-
erns the timing of phenological events, including peak day
of year for labile turnover (supporting leaf growth) and for
foliar turnover (controlling litterfall). A parameter that gov-
erns the leaf longevity determines how much of the canopy is
turned over each year. The CDEA model is a relatively sim-
ple and generic representation of LAI phenology and consists
of eight parameters and two initial condition parameters for
Clab and Cg) (Table B1). There is no representation of direct
environmental control on the timing of phenological events
(e.g., spring onset, fall senescence), and hence these are fixed
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from year to year. However, environmental effects on GPP
can propagate through to LAI via changes in carbon alloca-
tion, thus allowing for the magnitude of LAI to be indirectly
sensitive to climate via changes in carbon supply.

Knorr model

The new LAI phenology model implemented in DALEC is a
prognostic model governed by environmental constraints on
the timing and growth of the canopy. A full description of the
model can be found in Knorr et al. (2010). Here, we briefly
describe the model and its novel implementation in DALEC
which includes coupling to the carbon and water cycles. The
Knorr LAI model as implemented in DALEC consists of 10
parameters and 4 initial condition parameters (Table C1).

The prevailing understanding of the dynamics of LAI
across global biomes is that there are three primary environ-
mental controls: temperature, photoperiod, and water avail-
ability (Richardson et al., 2012). The Knorr model considers
all three as potentially limiting factors, with the specific dy-
namics governed by climate and model parameterization. In
addition, we couple LAI phenology to the plant carbon bal-
ance and incorporate a function for carbon supply limitation
on LAI growth, thus providing a fourth potentially limiting
factor.

Representing activity—dormancy triggers in a population

A common approach to modeling leaf phenology is to use
one or more growth triggers (or thresholds) that transition a
plant into or out of an active growth state. This is problematic
as it is often modeled using a discrete, binary formulation,
which makes these functions unrealistic when representing
a population of individuals (e.g., within a model grid cell).
In reality, plants within a given population do not reach these
thresholds simultaneously (Cooke et al., 2012) and thus a dis-
tribution of threshold values to represent the population of in-
dividuals is more realistic, and this is likely to result in a rel-
atively smooth transition toward the new growth state when
integrated over the population. A discrete formulation is also
non-differentiable, which is problematic for derivative-based
MDF techniques. Knorr et al. (2010) developed a convenient
solution to this problem by representing threshold parameters
with a normal distribution in space.

Two temperature thresholds, one for temperature and one
for photoperiod, are each represented by a cumulative normal
distribution function (®). The multiplication of these two cu-
mulative normal distributions gives the fraction of individu-
als within the population that are in an active growth state, f,
as

f:(l)(T;T¢>q)<tdt_tc), (2)

where T represents the air temperature memory, analogous
to the growing degree days concept (Eq. 20, Knorr et al.,
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2010), Ty is a parameter representing the mean temperature
threshold for leaf onset, T is a parameter representing the 1o
spatial range of Ty, 74 is the day length, 7. is a parameter rep-
resenting the mean day length threshold for leaf senescence,
and t; is a parameter representing the 1o spatial range of 7.

Temporal dynamics of LAI

The temporal evolution of LAI is represented by the follow-
ing ordinary differential equation:

dLAI()

LAI(t)
ar =& (LAIpax (1) —LAI(1))- f — -

(=1, )

where 11, is a parameter describing the longevity of leaves
during senescence and LAI,,x is the maximum potential LAI
computed as

LAImax (1) = v(A, LALw), )

where v represents a quadratically smoothed minimum func-
tion (see Eq. C2), Aisa parameter describing the maximum
LAI (as limited by factors such as structure), and LAl is
the LAI based on water availability, computed by

LAIw(?) = w, (5)

E - tww

where W represents the plant-available soil water, E is the
evapotranspiration rate, and Ty is a parameter representing
the expected length of water deficit periods tolerated before
leaf shedding. We note that this differs from the original for-
mulation for water limitation such that we use E instead of
transpiration as in Knorr et al. (2010), considering this ver-
sion of DALEC does not differentiate between the two.

Coupling to the carbon balance

While the fundamentals of the Knorr model are grounded
in biophysical concepts for activity—dormancy of individuals
in a population of plants, it only predicts the net change in
LAI Coupling LAI dynamics to the carbon cycle requires
additional assumptions which were not defined in the orig-
inal model description (Knorr et al., 2010). First, in both
DALECcpga and DALECkpor, LAI is related to Cyyp via a
parameter for the leaf mass of carbon per area, LMA, as fol-
lows:

Cfo1 = LAI- LMA. (6)

Second, we must consider that inputs to Cg,) come from
plant carbon allocation and outputs go to Cy;;, with the rate of
change in Cg,) represented by

dCeo1 (1)
dr
where Fc 1ap2fol represents the flux of carbon from Ciyp to

Ctol, and Fc foro1i¢ represents the flux of carbon from Cyo to
Ciit.

= FC 1ab2fol (t) — Fc for21it (1), @)

Biogeosciences, 20, 2455-2484, 2023
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The carbon supplied via net primary productivity (i.e.,
GPP — Ra) into Cj,, provides the substrate to grow new
leaves. To represent Fc 1ab2fol, We consider both the supply
and demand of carbon for new foliar growth. The supply of
labile carbon is the sum of new labile production at time ¢
(Eq. C1) and Cyyp, at the end of the previous time step (ex-
pressed as a flux over the time step, At), represented by

Crab(t — 1)
FC,fol,supply @)= Flabprod @+ A—t (®)

This formulation implies that the entire Cj,p pool is avail-
able for foliar growth at any given time step, which is consis-
tent with findings that Cj,, does not follow first-order decay
kinetics (Martinez-Vilalta et al., 2016). We do not consider
constraints on the release of stored labile carbon such as the
phloem loading rate (e.g., Trugman et al., 2018).

For the demand for new foliar growth, we make the as-
sumption that there is a gross demand flux of carbon from
Clab to Cgo when the canopy LAI is in a net growth state.
Conversely, when the canopy (LAI) is in a net senescent
state, there is zero gross demand flux of carbon from Ciy,.
This is represented by

®

dLAI(7)
FC fol,demand (f) = max | 0, LMA - = ,

where dL‘gtI(t) is computed from Eq. (3). The actual Fc 1ap2fol

is computed as the smoothed minimum of the supply and
demand fluxes as follows:

Fe tab2fol (1) = v (FC fol,supply (1), FC,fol,demand (7)), (10)

where v represents a quadratically smoothed minimum func-
tion (Eq. C2). This formulation ensures that new foliar
growth only occurs when carbon substrate is available.

The litterfall flux, Fc fol21it, also depends on whether the
canopy is in a phase of growth or senescence. Here, we in-
corporate an additional term that is necessary to represent
litterfall. We note that when the Knorr model is in a fully
active growth phase (i.e., f = 1), which may occur during
canopy closure or in evergreen systems, the model (Eq. 3)
would predict zero LAI loss and hence zero litterfall. Obser-
vations across the major global biome types show that litter-
fall never goes completely to zero (Zhang et al., 2014), as
leaves are being turned over constantly at a rate governed by
factors such as longevity, herbivory, and disturbance, even
if this is not evident from ecosystem-scale LAI observations
(Albert et al., 2019). To overcome this limitation, we add an
additional term for loss of LAI via a nominal background
turnover rate (6go)). Therefore, the litterfall flux is computed
as

Fe fo21it ()
.. dLAI
Ofo1 - Crol, if i @ 0

LMA . dLﬁ# + 6501 - Cro1,  Otherwise

Y
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This formulation ensures that some litter production oc-
curs regardless of the growth—senescence state of the Knorr
LAI model while ensuring conservation of mass.

2.4.3 Optimization algorithm

Following previous CARDAMOM efforts, we jointly re-
trieve the probability distribution of DALEC time-invariant
process parameters and initial state conditions (henceforth
vector x) given the observational constraints (henceforth vec-
tor 0) using a standard Bayesian inference formulation,
where

p(x]0) p(x)p(0lx). 12)

p(x) is the prior probability distribution of x, and p(O|x)
is proportional to the likelihood of x given observations O
(L(x]0)). The prior probability of x, p(x), is character-
ized as the product of (i) a log-uniform prior distribution
based on ecologically plausible minimum and maximum val-
ues and (ii) ecological and dynamical constraints (EDCs),
where p(x) is equal to O if DALEC parameter combinations
or simulation outputs meet ecological conditions; these are
described in Bloom and Williams (2015) and Bloom et al.
(2016).

For a given DALEC run, the likelihood, L(x|0), is defined
as

L(x|0) = LyA1 - LNEE - Lviomass» (13)

where Liar, LNEE, and Lpjomass are the model—observation
mismatches. Each likelihood term is derived as

L* =exp (—% > ((Mi - Oi)Z/U,-Z)) : (14)

where M;, O;, and U; represent the model output, corre-
sponding observation, and uncertainty, which represent the
combined effects of model and observation error on model-
data mismatch.

To sample p(x|0), we used a differential-evolution
Metropolis—Hastings Markov chain Monte Carlo (DE-
MCMC) algorithm (Ter Braak, 2006) with 200 walkers
(Levine et al., 2023); in previous efforts we used an adap-
tive Metropolis—Hastings MCMC (Haario et al., 2001). We
found that the two algorithms overall give statistically similar
results with comparable run times; however, the DE-MCMC
algorithm was found to be more stable and less likely to gen-
erate chains trapped in local minima.

2.5 Model analysis and diagnostics
2.5.1 Parameter uncertainty reduction

Following model calibration using CARDAMOM, it is use-
ful to evaluate the constraint that the observations provide
on the model parameters. The prior probability density func-
tion (PDF) for the parameters is log uniform between the as-
sumed minimum and maximum prior limits. The posterior

https://doi.org/10.5194/bg-20-2455-2023



A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE 2461

PDFs for each parameter are represented by the subsampled
solutions from the CARDAMOM optimization, and hence
the posterior PDF can take any form. Uncertainty reduction
in the parameters was quantified using the relative change
in interquartile range (IQR) from the prior to the posterior,

given by 100 x <1 - Tlgll:ﬁ)' Note that this is calculated
after transforming posterior parameter subsamples into log
space to ensure consistency with the prior PDFs. The relative
change metric is analogous to the relative uncertainty reduc-
tion calculated by the change in 1o uncertainty used in other
MDF studies (e.g., Knorr et al., 2010; Norton et al., 2019),
but here the PDFs can be non-normal, and therefore the IQR
provides a simple and more representative metric of the un-
certainty without the assumption of normality.

2.5.2 Model performance

The model—data fit and predictive skill were evaluated using
multiple statistical metrics. For the model output we used
the ensemble median of CARDAMOM subsamples at each
time step. We used Pearson’s correlation coefficient () to
evaluate the model skill at capturing the variability, the root
mean squared error (RMSE) to evaluate the magnitude of the
model-observation residuals, and mean bias (bias) to evalu-
ate the model prediction bias. The best benchmark for model
performance is whether it can predict data outside of the cal-
ibration period; therefore, all model skill metrics presented
are computed over the validation period.

The year-to-year variation, or interannual variability
(IAV), in carbon cycle processes is better related to climate—
carbon cycle relationships (Piao et al., 2020). Therefore, on
top of the monthly variability, we report model skill at cap-
turing TAV in LAI, NEE, GPP, and Re over the validation
period. We computed the IAV of the annual means as well as
on a seasonal basis. For the tropical savanna site, AU-How,
we define the annual mean by the site’s hydrological year,
which goes from September to the following August (Hut-
ley and Beringer, 2010), and compute seasonal IAV based on
austral seasons.

Trend analyses were performed using linear regression
over the entire simulation period (calibration and validation)
to increase temporal coverage. Only months where observa-
tions are available were included to ensure a direct compari-
son between the modeled and observed trends.

2.5.3 Climate sensitivity

A key aim of this study is to evaluate the climate sensitivity of
the carbon cycle following MDF with the two model formu-
lations. We focused on two climatic drivers, temperature and
precipitation. Temperature can impact a number of carbon
cycle processes, including turnover rates of carbon pools and
the physiological response of GPP and LAI. Precipitation im-
pacts plant-available soil water, W, and evapotranspiration,
E. Hence, precipitation can impact GPP in both model for-
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mulations via a soil moisture factor and Knorr LAI directly
via the balance between W and E. We also computed the cli-
mate sensitivity to vapor pressure deficit, but this sensitivity
was found to be multiple orders of magnitude smaller than
temperature and precipitation, so we did not include it in the
analysis.

We used the finite-difference method to compute the in-
trinsic climate sensitivity of LAI and NEE to precipitation
and temperature. All simulations were performed using the
forward model, M, and CARDAMOM posterior parameter
set, popt. First, the model was run using the prescribed forc-
ing data (F') and pop to generate the control simulation. Sec-
ond, we perturbed the precipitation and temperature forc-
ing data (denoted as F’), independently, over the entire sim-
ulation period and ran the model forward to generate the
perturbed simulations. The size of the forcing perturbation
needs to be sufficiently small to avoid a nonlinear response
in the model. For the precipitation (P) perturbation we used
SF=8P=1x10"3mmd~!, and for the temperature (7')
perturbation we use § F = 8T = 1 x 107> °C (applied to both
the minimum and maximum air temperatures). With the con-
trol and perturbed simulations, we computed the derivative of
the model output, LAI and NEE, with respect to the climate
forcing variables, precipitation and temperature, by

5X _ M (F', pop) = M (F, popt)
§F SF '

where X represents the model output (LAI or NEE) and F
represents either precipitation or temperature. This gave a
time series of the intrinsic precipitation and temperature sen-
sitivities of LAI and NEE. We then decomposed these intrin-
sic sensitivities into (i) seasonal sensitivity by computing the
monthly climatology over all simulation years and (ii) aver-
age annual sensitivity by computing the average over the last
n years of the simulation period.

To compare and evaluate the relative strength of precipita-
tion sensitivity and temperature sensitivity, it was necessary
to normalize the intrinsic sensitivities to a common unit. To
do this, we scaled the intrinsic sensitivities by the respec-
tive climate variability. For the seasonal sensitivity analysis,
we multiplied the monthly average intrinsic sensitivity by the
monthly interannual variability, computed as the standard de-
viation of each month in the simulation period. For the an-
nual sensitivity analysis, we multiplied the annual average
intrinsic sensitivity by the interannual variability, computed
as the standard deviation of the annual mean temperature or
annual total precipitation. This is calculated using

85X

Sx =37 0 (F), (16)

15)

where S§ provides a measure of the climate sensitivity, S,
of quantity X to the variability in forcing F. This generated
four sensitivity metrics, two for LAI (SE AT’ Sf Ap) and two
for NEE (SI\TIEE, SIGEE), which are evaluated on seasonal and
annual timescales.
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3 Results and discussion
3.1 Model-data fit

The time series of LAI and NEE at each site is shown
in Fig. 2 for the calibration and validation periods, in-
cluding the two models and the observations. This shows
the CARDAMOM posterior PDF for both models at each
site. Predictive skill over the validation period (r, RMSE,
bias) at each site and for all site data combined is sum-
marized in Fig. 3 and scatter plots in Fig. Al. Pearson’s r
shows that NEE temporal variability is better captured by
the DALECkporr model at four of the six sites (AU-How,
FR-LBr, FR-Pue, GF-Guy), while both models show com-
parable performance at the remaining two sites (FI-Hyy, US-
Hal), with equal correlations between the two models with
all site data combined (r = 0.83). The RMSE in NEE for
both models is comparable for each site, with smaller resid-
uals from DALECkor at three sites (AU-How, FR-LBr, FR-
Pue), larger residuals at two sites (FI-Hyy, US-Hal), and
equivalent residuals at GF-Guy. For all site data combined,
RMSE = 0.96 gCm~2d~! for both models. There is a small
high bias in model NEE at most sites (< 0.5gCm~2d"),
with DALECcpga showing a slightly lower bias for all site
data combined (0.16 gC m—2 d_l) compared to DALECknorr
(0.21 gCm~2d~"), indicating that both models slightly un-
derestimate net carbon uptake across the sites.

Predictive skill for LAI (Fig. 3) shows that DALECkyorr
captures a larger proportion of the variability at one site
(FR-Pue) and less at three sites (FI-Hyy, FR-LBr, GF-Guy),
while both models perform similarly well at the remaining
two sites (AU-How, US-Hal). With all site data combined,
there is equal correlation with » =0.93. The RMSE for
LAI shows that the DALECcpga residuals are smaller than
DALECknorr at three sites (AU-How, FI-Hyy, US-Hal), in-
dicating better performance, while DALECkporr Shows better
performance at FR-LBr and FR-Pue, and finally, both mod-
els show similar performance at GF-Guy. Across the sites,
there is a marginally better performance by DALECcpga
(RMSE = 0.55m? m~2) relative to DALECknorr (RMSE =
0.57 m?> m~2). Both models tend to systematically underes-
timate LAI, as both models are biased low by 0.23 m? m~2
for all site data.

Both models capture the across-site variability in
ABGB with r=0.99, as shown in Fig. Al. However,
DALECcpga has smaller residuals for all site data com-
bined, with RMSE =472 g C m~2 and bias= —217gCm™2,
versus RMSE = 952 ¢ Cm™2 and bias= —609 gCm~2 for
DALECknorr-

Observed and modeled trends for LAI and NEE are
shown in Fig. A3. Observed LAI shows a significant trend
at two sites, FR-LBr (p < 0.05) and FR-Pue (p < 0.001).
DALECcpEa also shows a significant trend at these two sites
but overestimates the magnitude of the trend at FR-LBr by a
factor of 2 and misrepresents the sign of the trend at FR-Pue.
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DALECcpEga also produces a significant positive trend at FI-
Hyy (p < 0.05) and a negative trend at GF-Guy (p < 0.001),
neither of which are shown by the observations. DALECknorr
does not predict a significant trend in LAI at any site.
No site shows a significant trend in observed NEE, which
DALECkpr is consistent with. DALECcpga , however, pre-
dicts a significant positive NEE trend (p < 0.05), suggesting
a weakening carbon sink consistent with the strong negative
trend in modeled LAI. This suggests that DALECcpga can
produce unrealistic trends in both LAI and NEE, whereas
DALECxkuorr tends to be more stable at these timescales.

Evaluation of the model-data fit to the IAV of LAI
and NEE on annual and seasonal timescales reveals dis-
tinct patterns (Fig. A2). On a seasonal basis, the [AV in
LAI for winter, spring, and summer is represented simi-
larly well by both models. However, fall IAV in LAI is cap-
tured better by DALECcpga. This leads to a slightly bet-
ter performance by DALECcpga in capturing LAI IAV on
an annual basis. For NEE, DALECkor performs slightly
better at capturing IAV across sites with r =0.45 and
RMSE =0.33gCm~2d ™!, while DALECcpga is r = 0.33
and RMSE = 0.35gCm~2d~!, with the largest differences
in fit occurring during fall.

CARDAMOM fits a global cost function which consid-
ers all observations in the MDF simultaneously. Therefore,
tradeoffs can occur between the fit to different observa-
tions, both in time and across the observation types (Kato et
al., 2013). The results demonstrate that changing the model
structure modifies how CARDAMOM converges to an opti-
mal fit for the global cost function. There can therefore be
compensatory effects between the fit to LAI and NEE obser-
vations. This occurs for the fall IAV in LAI and NEE, where
DALECknor better captures observed fall IAV in NEE, yet
it performs worse at capturing observed fall TAV in LAI
(Fig. A2). In other cases, a different model structure can lead
to improved fit in both LAI and NEE, such as at FR-Pue
for DALECkuorr, sSuggesting the integrated model structure is
overall improved. In any case, assimilating multiple observa-
tional data streams simultaneously has benefits over assim-
ilating data streams in separate, sequential steps (Kaminski
etal., 2013). A sequential approach requires all uncertainties
from each step to be propagated to the next, and this can be
challenging when dealing with nonlinear models. By assimi-
lating multiple data streams simultaneously, the complemen-
tarity of the observations can be exploited and a more con-
sistent view of the terrestrial carbon cycle can be achieved.

3.2 Underlying parameters and process constraints

Here, we describe the estimated model parameters and their
uncertainty reduction. First, we focus on the Knorr LAI phe-
nology parameters, which govern the link between local cli-
mate and phenology, and then follow up with a comparison
of the remaining shared parameters of the two models.
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Figure 2. Model—data fit shown as time series at each site and for each CARDAMOM LAI model formulation, for LAI (top two rows)
and NEE (bottom two rows). Assimilated observations are shown as black markers (calibration) and withheld observations as red markers
(validation). The gray shading shows the DALECcpga model, and the green shading shows the DALECky o model.

The parameter uncertainty reduction, calculated as the rel-
ative reduction in IQR from the prior to the posterior (see
Sect. 2.5.1), for the Knorr LAI phenology parameters dif-
fers across sites (Fig. A5). There are 9 process parameters
in the Knorr LAI model (excluding initial conditions) across
six sites, giving a total of 54 estimated LAI phenology pa-
rameters. Of these, 14 parameters show an uncertainty re-
duction of more than 80 %, 15 show an uncertainty reduction
between 50 % and 80 %, and 8 show an uncertainty reduc-
tion between 20 % and 50 %. The temperate deciduous for-
est site, US-Hal, sees the strongest uncertainty reductions in
LAI phenology parameters, with seven of the nine parame-
ters being constrained by more than 50 %. The weakest un-
certainty reductions in LAI phenology parameters occur at
the tropical evergreen forest site, GF-Guy, with just two pa-
rameters showing uncertainty reductions greater than 50 %.

Across all the sites, the parameter representing the struc-
tural maximum LAL A, is well constrained, showing an ap-
proximate normal posterior PDF and an uncertainty reduc-
tion of more than 80 %, indicating that A is well character-
ized by the MDF regardless of the site. The parameter for the
mean temperature threshold at leaf onset, Ty, shows strong
uncertainty reductions of 66 %—80 % at the four cooler sites
(FI-Hyy, FR-LBr, FR-Pue, US-Hal) and weaker uncertainty
reductions of 35 %-39 % at the two warmer tropical sites
(AU-How, GF-Guy). This highlights the stronger role of tem-
perature in LAI phenology at the cooler sites. The param-
eter for the mean photoperiod at leaf senescence, 7., shows
strong uncertainty reductions at all the sites except the trop-
ical evergreen forest (GF-Guy). There are small reductions
in uncertainty of 5 %—18 % for the parameter governing wa-
ter limitation on LAI (i.e., drought deciduousness), tw, with
the strongest reductions (15 %—18 %) at AU-How, FI-Hyy,
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and US-Hal. The parameter tw is a proxy for the drought-
deciduous behavior of phenology, with larger values indicat-
ing a stronger drought-deciduous strategy. The FR-LBr, FR-
Pue, and GF-Guy sites show the strongest drought-deciduous
behavior, while the FI-Hyy and US-Hal sites show the weak-
est. The leaf growth rate parameter, &, the leaf longevity
parameter, kiear, and the background foliar turnover rate,
Ofoliar, tend to show moderate uncertainty reductions across
the sites, although GF-Guy shows a lower constraint on &
and kleaf-

These results are distinguished from previous MDF stud-
ies that used the same phenology model, where phenologi-
cal types and strategies were differentiated a priori (Kamin-
ski et al., 2012; Kato et al., 2013; Knorr et al., 2010). In
these studies, each plant functional type used a different prior
PDF, while certain parameters were set as constants, effec-
tively switching off some environmental factors that gov-
ern the growth triggers and senescence of LAI As outlined
in Knorr et al. (2010), this has advantages if there is suffi-
cient prior knowledge about the species at each study site;
however, in most cases these details are based on limited
evidence or are entirely unknown. Extending these priors
beyond well-characterized sites or for global-scale analyses
with satellite data requires further assumptions, often by clas-
sifying plant functional types, which has significant short-
comings (see Van Bodegom et al., 2012). Overconfidence
in prior knowledge can be problematic considering that the
prior PDFs have a significant impact on the inferred param-
eters and, therefore, the climatic controls of both LAI and
NEE. Here, we applied equivalent prior PDFs at all the sites,
thus allowing CARDAMOM to infer the controls based only
on the observations and local climate. The posterior LAI phe-
nology parameters generally show moderate to strong uncer-
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Figure 3. Panel (a) shows the model—data fit statistics for the assimilated observational data streams, LAI (top), and NEE (bottom) over
the validation period. Panel (b) shows the model—data fit statistics for the withheld observational data streams, GPP (top), and Re (bottom)
over the validation period. Markers show Pearson’s correlation coefficient (r), RMSE, and bias per study site and for all site data combined.
The corresponding time series showing the model—data fits are shown in Fig. 2 for LAI and NEE and Fig. A4 for GPP and Re. All site data

combined scatter plots are shown in Fig. Al.

tainty reductions, indicating the ability of CARDAMOM to
improve knowledge on phenological controls. The advantage
of this approach is that environmental controls on LAI phe-
nology emerge from the MDF system, exemplified by the
stronger temperature control of spring leaf onset in cooler
climate forests compared to warmer tropical sites. Further-
more, Knorr et al. (2010) fixed a priori the LAI water limi-
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tation parameter, Ty, to be zero for cooler forest plant func-
tional types so that LAI is never impacted by water availabil-
ity. We find that, even for the cooler forest sites, the posterior
Tw is nonzero, indicating that water limitation plays a role
in LAI dynamics, a finding that is also supported by empiri-
cal evidence (Buermann et al., 2018; Zhang et al., 2020). We
note that switching off the photoperiod regulation process for
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canopy senescence, as was done in Knorr et al. (2010) for
some PFTs, would likely lead to much larger tw values than
those in our study, and this would have implications for the
link between water availability and LAI dynamics.

There are a number of common parameters between
DALECkpor and DALECcpga (Table Al). The posterior
PDFs for these shared parameters are shown in Fig. A6. The
canopy efficiency, a key parameter for GPP, has a higher me-
dian in DALECkporr at four of the six sites, while it is the
same at FR-Pue and lower at GF-Guy. The inferred carbon
use efficiency for DALECxkporr, equal to the ratio of NPP
to GPP (defined by 1 — fauw), is approximately the same
at three sites (FR-LBr, GF-Guy, US-Hal), higher at two
sites (AU-How, FR-Pue), and lower at one site (FI-Hyy).
The inferred LMA at each site is systematically lower in
DALECkyrr- Parameters that govern plant carbon allocation
and turnover show distinct differences between DALECcpga
and DALECkporr. The DALECk 0y model shows lower frac-
tional allocation of NPP to the foliar pool across sites, consis-
tent with the lower LMA, as less carbon is required to main-
tain the same LAI. DALECkporr also shows a systematically
lower fractional allocation to roots but a higher fractional al-
location to wood. Despite this, the woody residence time is
about 60 %—80 % lower in DALECkporr, as the turnover rate
of woody biomass is significantly higher at all the sites. Com-
bined, these differences lead to a lower carbon residence time
in vegetation in the DALECkyor model.

A key process linked with LAI phenology is litter-
fall production. We find that the litterfall rates predicted
by the DALECcpga and DALECkper models are sub-
stantially different. In DALECknorr, average annual lit-
terfall rates range between 5.0 and 12.9MgCm~2yr~!.
These fall well within the range of litterfall rates reported
across global forest ecosystems, which range from 1 to
14MgCm~2yr~! (Zhang et al., 2014). The DALECcpEa
model predicts significantly higher litterfall rates at four sites
(AU-How, FI-Hyy, FR-LBr, US-Hal), ranging between 15.6
and 37.0MgCm~2yr~!, which greatly exceeds observed
rates documented by Zhang et al. (2014). DALECkpor in-
fers litterfall rates at GF-Guy, the tropical evergreen site, that
are well within the range observed for that ecosystem type,
while DALECcpga predicts almost factor 2 lower litterfall,
which is below the range observed for tropical forests. Over-
all, this implies that the carbon allocation, turnover, and, sub-
sequently, litterfall are more realistic in DALECkporr-

Parameters governing the water cycle are generally poorly
constrained by the observations, and both models tend to in-
fer similar median parameter values. With no hydrology ob-
servations used here, there is no expectation of strong con-
straint on these processes. Despite this, it is notable that
DALECkyorr provides a relatively strong constraint (~ 80 %)
on the initial water pool size (W') across the sites, perhaps a
consequence of the process link between W and the water-
limited LAI (Egs. 4, 5).
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3.3 Validation of inferred GPP and Re fluxes

The two model structures implemented in CARDAMOM
lead to differences in simulated GPP and Re, the com-
ponent fluxes of NEE. Comparison of the model-inferred
GPP and Re to the FLUXNET-partitioned GPP and Re
over the validation period is shown in Fig. A4 and sum-
mary statistics in Fig. 3. We reiterate that no GPP or
Re data were used during calibration. Almost invariably,
DALECknorr has a higher correlation, lower RMSE, and
lower bias in GPP and Re relative to DALECcpga. For
GPP, with all site data combined, the model-data fit of
DALECknorr gives r=0.78, RMSE=25gCm2d!,
and bias=—-0.8gCm2d~!, while DALECcpga
gives r=0.63, RMSE=3.5gCm2d~!, and
bias=—1.8gCm~2d~'. Qualitatively, the fit to GPP
shows similar performance to another recent CARDAMOM
study that assimilated GPP and ET data (Smallman and
Williams, 2019). The inferred Re shows a similar RMSE
and bias to the GPP model—data fit, although the correlations
tend to be lower than for GPP in both models, with r = 0.51
for DALECkporr and r =0.20 for DALECcpga. These
results indicate that use of DALECknor in CARDAMOM
leads to a better representation of the component fluxes
underlying NEE despite a similar fit to assimilated data
streams NEE and LAIL

The improvement in the predictive skill of GPP by
DALECkporr occurs predominantly at four of the six sites:
AU-How, FR-LBr, FR-Pue, and GF-Guy. Both models simu-
late GPP as a function of the local climate, LAI, the canopy
efficiency parameter, and the wilting point parameter that
scales with W to impose soil moisture limitation. The differ-
ence in inferred GPP between the two models can be traced
to the latter three of these factors. We find that the improved
prediction of GPP by DALECkporr occurs due to a higher
canopy efficiency at AU-How and FR-LBr and a weaker soil
moisture limitation at FR-Pue and GF-Guy. For the FI-Hyy
site, even though the GPP predictions are similar between
Knorr and DALECcpEga, the underlying mechanisms are dif-
ferent as DALECkporr has a 46 % higher canopy efficiency,
which compensates for the lower LAI. At US-Hal, the in-
ferred mechanisms controlling GPP are very similar between
the two models.

At the two cooler climate forest sites, FI-Hyy and US-
Hal, both DALECkporr and DALECcpga show similar per-
formance against FLUXNET GPP and Re data. This suggests
that DALECcpga is adequate at inferring NEE component
fluxes at these sites. While difficult to trace precisely why
this occurs, it may relate to the development of the ACM
GPP model, which was originally formulated to represent
cool climate forests (Williams et al., 1997). It is notable that
the model-inferred GPP and Re perform worst at the tropical
evergreen site, GF-Guy, with low correlation and the high-
est residuals (RMSE and bias) of any site. This follows from
the relatively poor model-data fit to LAI and NEE at GF-
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Guy (Fig. 3). At this site the seasonal variability in LAI and
NEE is small relative to the data uncertainty, so seasonal vari-
ability carries little weight in the MDF system, potentially
making it difficult for CARDAMOM to resolve the seasonal
dynamics or its controls. Modeling GPP and LAI at tropical
sites has been a longstanding challenge. Evidence has shown
that the coupling of leaf-age-dependent changes in photo-
synthetic capacity drives seasonal dynamics GPP, suggesting
that models need to separate LAI into cohorts to better rep-
resent these leaf demography processes (Wu et al., 2016), a
level of complexity that is not currently considered in any
version of the DALEC model.

3.4 Climate sensitivity of LAI and NEE

Here, we present and discuss the inferred climate sensitiv-
ities of LAI and NEE for both models. The focus is on
DALECkorr as it provides the relatively more process-based
representation of LAI; however, we also explore the results
from the DALECcpga model as it provides a useful test case
for the effect of model structure on inferred climate sensitiv-
1ties.

3.4.1 Temperature sensitivities

The median S{ A7 On an annual timescale ranges from
zero to strongly positive depending on the model and site.
At all six sites, DALECcpga shows a larger SLT A than
DALECknorr, perhaps indicative of the strong dependence
of the CDEA formulation on temperature via carbon supply
and a lack of direct climate controls. Both the DALECknorr
and DALECcpga models infer the largest annual SE A7 at
the two colder forest sites (FI-Hyy, US-Hal), which is con-
sistent with theoretical understanding of limiting factors
on LAI (Caldararu et al., 2014; Richardson et al., 2013).
DALECknorr infers a low annual SE Ap at the remaining four
sites, with a median annual SE Al of near zero for AU-How,
FR-Pue, and GF-Guy, while there is a small positive median
annual S{ A1 at the FR-LBr site. DALECcpga, however, in-
fers moderately strong S{ A at the remaining four sites and a
median SE a1 for the two warm tropical sites (AU-How, GF-
Guy) that exceed the SE a1 Of two cooler temperate forest sites
(FR-LBr, FR-Pue). In neither model does the LAI show a
negative sensitivity to temperature.

The seasonality of the inferred S7,| from the DALECcpga
and Knorr models shows distinct differences (Figs. 4-5).
DALECcpga tends to show a strong positive SEAI year-
round, often with a peak during the middle or late parts of
the growing season. DALECcpga also infers strong posi-
tive values during winter, even at the winter-dormant forest
sites (FI-Hyy, US-Hal), which goes against ecophysiolog-
ical understanding at these sites (Richardson et al., 2013).
For DALECKkorr, the seasonality of SE Ap 18 centered on
spring onset, with very low S/ ; at other times of the year.
These seasonal patterns of S ,; suggest that DALECknorr
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is more consistent with empirical understanding of temper-
ature effects on LAI that show the temperature sensitivities
are strongest during spring onset (Richardson et al., 2012;
Piao et al., 2019).

Generally, at sites with a strong positive SE Ap On €ither an-
nual or seasonal timescales, there is also a strong negative
SI\TIEE (stronger carbon uptake with increased temperature),
indicating the impact of LAI climate sensitivity on the sen-
sitivity of NEE and the interrelated nature of these two pro-
cesses. For DALECcpEga, the larger positive S{ ap generally
leads to more negative SICEE, evident on seasonal timescales
and by the negative annual S|z across all the sites. At four
sites, the inferred median S§EE by the two models differs
in sign and magnitude, highlighting the impact of changes
to the model formulation of LAI on the inferred temperature
sensitivity of NEE. DALECkyrr shows more variable annual
Stgg across the sites, as the inferred median annual Sfgg
can be either positive or negative depending on the site. Sea-
sonally, when there is a strong positive SE ap (€.g., spring at
FI-Hyy, FR-LBr, and US-Hal), there is a concomitant neg-
ative SI\TIEE, demonstrating how a positive LAI temperature
sensitivity leads to stronger carbon uptake and that there is a
strong seasonal dependence of this link on DALECkperr. At
these same three sites, other times of the year show a positive
S§EE, suggesting that LAI plays less of a role in governing
Sygeg outside of spring (Figs. A7-A8).

3.4.2 Precipitation sensitivities

At all the sites, Sf a1 iIn DALECcpEA is effectively zero (AU-
How, FI-Hyy) or highly uncertain (FR-LBr, FR-Pue, GF-
Guy, US-Hal). This may reflect the weak process link be-
tween water availability and LAI dynamics in DALECcpga,
considering the connection is mediated via the soil moisture
limitation of GPP and subsequent changes in allocation of
carbon to the foliar pool, which itself is buffered by the labile
carbon pool, making LAI relatively insensitive to changes in
water availability. In DALECkyorr, there is often a weak but
consistently positive Sf A7 With a more tightly constrained un-
certainty, which implies that increases in precipitation lead
to small increases in LAI This is consistent with the Knorr
model formulation for water limitation on LAI (Eq. 5), where
changes in evapotranspiration (£) and/or plant-available soil
water (W) can mediate LAI directly via the tw parameter.
More specifically, an increase in the ratio of W to E can in-
crease LAI as there is less water limitation. The opposite is
therefore also true, where a decline in the ratio of W to E
will lead to a reduction in LAI, for example, due to a de-
cline in precipitation. The inferred Sf a1 from DALECknory is
strongest at the AU-How and FR-LBr sites, with smaller Sf Al
values at the three temperate and boreal forest sites, and ef-
fectively zero Sf A1 @t GF-Guy. Despite the lower tw inferred
at AU-How across the sites, there is a relatively stronger Sf Al
which may be due to higher evaporative demand at this trop-
ical site causing larger imbalances between E and W.
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The influence of water availability on the Knorr LAI has
a clear seasonality at some sites, with Sf A1 typically being
largest during the mid to late growing season (Figs. 4-5).
This seasonal dependence is consistent with recent evidence
of late growing season water limitation on productivity at
many forest sites (Buermann et al., 2018; Zhang et al., 2020).
The evident seasonal dependence of water limitation on LAI
in the Knorr model gives promise for an MDF approach to
exploring the compensatory effects of temperature and water
limitation on growing season phenology and productivity.

At most sites the inferred annual median SI‘\?EE from both
the DALECcpga and Knorr models is negative, indicating
an increase in net carbon uptake with increased precipita-
tion. Only US-Hal shows a consistently positive annual SﬁEE
across the uncertainty range and for both models. This is
due to the strong positive sensitivity of Re to precipitation
and very small positive sensitivity of GPP to precipitation in-
ferred at the US-Hal site (Fig. A8). The seasonality in SﬁEE
shows considerable differences across sites, but it is evidently
influenced by Sf ap- For example, DALECk o shows a small
positive Sf a1 during the peak growing season at AU-How
(austral summer), and this leads to a stronger sensitivity of
summer carbon uptake to precipitation. Similarly, the small
positive Sf a1 at FI-Hyy during the late growing season pro-
duces a slight seasonal shift in S§EE to later in the year. At
other sites the low Sf a1 from DALECkyorr is coupled with
a very low SIQ)EE (FR-Pue, GF-Guy), whereas DALECcpga
infers large and highly uncertain SZgy values at these sites.
The addition of the process-based Knorr model seems to
help stabilize the sensitivity of NEE to precipitation at these
two sites, as the exceptionally large and uncertain Sf Ap from
DALECcpEga maps into SI‘\?EE.

3.5 Significance and limitations

Developing models that balance process realism with relia-
bility and robustness is key to better predictions of carbon—
climate feedbacks (Prentice et al., 2015). The climate sen-
sitivity of LAI is an important mechanism of terrestrial
carbon—climate feedbacks, as it is closely coupled to both
GPP and NEE (Richardson et al., 2013). Here, we imple-
mented a new model for LAI phenology in CARDAMOM
that includes processes such as temperature and photoperiod
controls on growth and senescence triggers, water limitation
on LAI growth rate, and coupled LAI dynamics to plant car-
bon allocation and litterfall. Many previous studies have de-
veloped and tested climate-sensitive LAI phenology models
against LAI data directly (e.g., Fox et al., 2022; Jolly and
Running, 2004; Stockli et al., 2008; Viskari et al., 2015).
However, in the context of carbon—climate feedbacks, it is
critical that both model formulation and parameterization of
LAI consider their close coupling to other processes in the
carbon cycle. By confronting multiple processes with obser-
vations simultaneously in CARDAMOM, we were able to
generate a parameterization that provides a more integrated
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view of the carbon cycle (Kaminski et al., 2013). Further-
more, by extending the validation beyond the assimilated
data streams, we were able to rigorously evaluate model skill.
This is a key step toward a better model representation of the
aggregate behavior of the terrestrial carbon cycle (Fisher and
Koven, 2020).

Including the two model formulations allowed us to eval-
uate how the increase in the complexity of LAI phenol-
ogy influenced the fit to assimilated data streams (LAI,
NEE, biomass) and wholly withheld data streams (GPP, Re).
Evidently, the DALECcpga model is a parsimonious ap-
proach for fitting data, appears to give reliable predictions
of the assimilated data streams (Fig. 3), and even outper-
forms DALECknorr at capturing LAI TAV. The close cou-
pling of LAI with GPP and plant allocation in DALECcpga
may provide flexibility in fitting LAI data. However, at four
sites, DALECcpga predicts significant positive (FI-Hyy) or
negative (FR-LBr, FR-Pue, GF-Guy) trends in LAI that are
not present in the observations, nor are they predicted by
DALECknorr- At one site (FR-LBr), this leads to a signifi-
cant trend in DALECcpga model NEE that is not supported
by the observations, suggesting that DALECcpga may lead
to large biases in the predicted net carbon balance over longer
periods. The tighter coupling between climate and LAI phe-
nology in DALECkpor may help moderate LAI and GPP
dynamics during the prediction period, preventing unrealis-
tic model trends. This difference in model formulation also
leads to a significantly reduced bias in GPP by DALECkperr
and may imply that the DALECcpga model is overfitting to
the LAI data. It is also important to consider that the satel-
lite LAI observations can have systematic biases that we do
not consider in the MDF system, as CARDAMOM only con-
siders random errors. Satellite LAI retrievals can be partic-
ularly challenging over boreal (e.g., FI-Hyy), tropical (e.g.,
GF-Guy), and open woody savannas (e.g., AU-How) due to
effects such as low solar zenith angle, snow and cloud con-
tamination, visibility of the understory, and a lack of valida-
tion data (Fang et al., 2019). For example, the seasonal am-
plitude of satellite LAI is often overestimated in boreal ev-
ergreen systems (Heiskanen et al., 2012). Other potential er-
ror sources include spatial sampling differences between the
eddy covariance tower footprint (NEE, GPP, Re), biomass
samples, and the footprint of Copernicus satellite LAI data.
The limitations of the observations imply caution when over-
fitting to any one data stream and that correcting these sam-
pling biases should allow us to better reconcile models and
data. Further evaluation of the two models suggests that
DALECkr better captures temporal variability and magni-
tude of FLUXNET GPP and Re data and predicts more real-
istic annual litterfall rates compared to a global compilation
of observations (Zhang et al., 2014). Overall, despite the skill
of DALECcpEga at simulating LAI and NEE over the valida-
tion period, when considering the coupling with the carbon
balance and the underlying processes, DALECkpor provides
more reliable and robust performance.
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Figure 4. The seasonal pattern of model—data fit to LAI and NEE and the inferred climate sensitivity of LAI and NEE to interannual variations
in precipitation and air temperature.

Future work may explore how additional observations can ter availability for plant growth are key future directions of
constrain more uncertain regions of model parameter space. research. Observational constraints on the dynamics of W
Doing so will help to further constrain ecosystem carbon and E would be beneficial considering the large uncertainty
cycle dynamics and the sensitivity to climate. In particular, of the parameters associated with these processes (Fig. A6)
constraining processes governing the water cycle and wa- and could lead to differences in the estimates of Sf Ar and
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Figure 5. The seasonal pattern of model-data fit to LAI and NEE, and the inferred climate sensitivity of LAI and NEE to interannual

variations in precipitation and air temperature.

S¥Eg- At large scales, observations of terrestrial water stor-
age by the NASA Gravity Recovery and Climate Experiment
(GRACE) satellites (Tapley et al., 2004) can help inform
hydrologic parameters and state variables in CARDAMOM
(e.g., Massoud et al., 2022). At the site scale, in situ soil
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moisture measurements and eddy covariance measurements
of E may be more useful (Smallman and Williams, 2019).
Joint constraint of GPP and LAI may also help to constrain
the two underlying controls of GPP, i.e., light interception
which is mediated by LAI and light utilization for photo-
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Table 2. Annual temperature sensitivity per site, variable (LAI, NEE), and model in CARDAMOM. The values represent the median annual
temperature sensitivity, with the 25th to 75th percentile range in parentheses.

Annual temperature sensitivity per site

AU-How FI-Hyy FR-LBr FR-Pue GF-Guy US-Hal

SP DALECcDEA (11.7 to 2167.57) (18.1 to 3315.62) (1.4 to 52.219) (2310 95.53; (4.2 t0 127.52) (19.5 to 2294.1;)
DALECKnor (0 to 0.3(; (14 to 2152.;; (0.0 to 7(.)5(? (0 to 1.9(; (0 to 2.6(; (1.7 to 4197.;;

St DALECepEA (1120 —_6%15) (—4.4 10 —_1381) (1.6 to_O(.)f; (1.3 to_()(.)b6) (-1.51t0 —_o(.)j; (—2.7 to_z(.);
DALECKnorr (—1.4to 3(.)65) (=55 to_Ol.gj (0.2 to 3%'35) (1.7to 74.‘33) (—0.6 to_()(.).71) (=9.4to 7(.);;

* LAI sensitivities are scaled by 103.

Table 3. Annual precipitation sensitivity per site, variable (LAIL, NEE), and model in CARDAMOM. The values represent the median annual
precipitation sensitivity, with the 25th to 75th percentile range in parentheses.

Annual precipitation sensitivity per site

AU-How FI-Hyy FR-LBr FR-Pue GF-Guy US-Hal

DALEC 0.0 0.0 58.5 471.9 164.7 0.0

SP CDEA (0.0 to 0.0) (0.0 t0 50.3) (0.0 to 139.1) (309.5 t0 656.5)  (0.0t0373.3) (0.0 to 28.9)
0.2 0.1 0.4 0.1 0.0 0.1

DALECKnorr (0.0 to 1.8) (0.0 t0 0.8) (0.0 to 24.5) (0.0 t0 0.7) 00t00.3) (0.0t 0.6)

DALEC —-0.0 -1.0 —-30.1 —-96.9 —-20.8 2.1

St CDEA (=0.1t00) (=55t0—0.1) (=53.5t00.0) (—146.5t0—68.2) (=363t00.0) (0.41t06.3)
—-0.5 -15 —-50.5 —1.1 0.02 44

DALECKno —(_j 816-02) (=3.6t0-0.6) (—73.5t0 —0.6) (=73.1100.5) (—0.04t00.08) (2.0 0 9.8)

* LAI sensitivities are scaled by 103

synthesis which is mediated by plant physiology, and may
help further resolve the climate sensitivity of these processes.
Satellite observations of solar-induced chlorophyll fluores-
cence show promise in this regard (Frankenberg et al., 2011),
as they have been shown to inform model parameters for
both GPP and LAI (Norton et al., 2018) and improve spa-
tiotemporal patterns of GPP (Parazoo et al., 2015; Norton
et al., 2019). Even without direct observational constraints
on GPP, the MDF setup gave reasonable estimates of the
underlying fluxes, GPP, and Re, with the best performance
by DALECKkorr- Separating out NEE into these component
fluxes has been a longstanding challenge in carbon cycle sci-
ence (Schimel and Schneider, 2019). Extending this analysis
to more diverse ecosystems is needed to evaluate the robust-
ness of this result. There are opportunities to extend this to
larger scales by using available observational data streams,
such as atmospheric inversion estimates of NEE, estimates
of biomass from passive microwave and radar sensors, and
satellite LAI products (Schimel and Schneider, 2019). Over-
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all, our results demonstrate that, when assimilating these data
streams into a model, the model process representation sig-
nificantly affects how information from observations is prop-
agated through to parameters and target processes and that
extending model evaluation to withheld data streams pro-
vides critical insight into model skill.

Joint constraint of LAI and NEE using observations led
to important inferences about the climate sensitivity of
the ecosystem carbon balance at the six study sites. From
DALECknorr, most temperate and boreal sites show that
SE ar occurs almost exclusively during spring onset, which
leads to a stronger seasonality in SICEE. At some sites (AU-
How, FR-LBr, FR-Pue), the two models infer SIGEE of oppo-
site sign, demonstrating how process representation of LAI
leads to differences in optimized model behavior and re-
sponse to climate. Furthermore, MDF with DALECkoyr in-
fers stronger SE A &t colder climate forest sites, as expected
from ecophysiological understanding and empirical observa-
tions (Richardson et al., 2013), highlighting the ability to
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infer temperature controls on phenology across biomes us-
ing this framework. The influence of water availability on
LAI at temperate and boreal sites is strongest at the peak
or late in the growing season, whereas at the tropical wood-
land savanna site (AU-How) it impacts LAI from the begin-
ning to the end of the growing season, suggesting biome-
specific water controls on phenology. Further development of
data-constrained SLT Ar and Sf 1 Will help to reduce the large
spread in Earth system model predictions of LAI (Mahowald
etal., 2016).

The temporal structure of the inferred climate sensitivities
has implications for the response of ecosystem carbon cy-
cling to a changing climate. Variability in climate forcing,
due to both natural and anthropogenic factors, is not uniform
in time or space, with seasonal dependencies on both the vari-
ability and trend (Franzke et al., 2020). The inferred sensitiv-
ities to temperature and precipitation (Figs. 4-5) show strong
seasonality, so the seasonal structure of future climate change
will have a strong impact on the response of the carbon cy-
cle. For example, a change in spring temperature forcing will
have markedly different impacts on LAI and NEE than an
equivalent change in fall temperature forcing due to seasonal
differences in the intrinsic sensitivity of the terrestrial carbon
cycle. The intrinsic sensitivity to climate is the combination
of a number of distinct yet interrelated processes, each of
which can have different effects on the net carbon balance.
Here, the inferred temperature sensitivities of LAI, S[ Al» A€
positive definite in all cases. However, the inferred temper-
ature sensitivities of NEE, SZ..., can be positive or negative
depending on the site and season. The climate sensitivities of
NEE integrate over a number of underlying processes, each
of which can have differences in sign and magnitude in their
sensitivities (e.g., GPP and Re can respond oppositely to pre-
cipitation, Fig. A7—AS8). Constraining these sensitivities us-
ing diverse observations provides a robust way toward better
representation of carbon—climate feedbacks.

Many phenological processes operate on timescales
shorter than the monthly time step used in this analysis.
Therefore, accurately resolving specific phenological events
such as spring onset or fall senescence events, which can
occur within days to weeks, is outside the scope of this
study. However, the necessary mechanisms are included in
the Knorr LAI model, providing a path toward finer timescale
analyses, which would help to characterize phenological re-
sponses to climate and the relationship with NEE. In any
case, as outlined by Keenan et al. (2020), data-informed pro-
cess modeling is key to resolving these processes, as imple-
mented here, so that explicit consideration of processes and
observational uncertainties can be mapped onto the inferred
climate sensitivities.
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4 Conclusions

This study demonstrates a holistic approach to model de-
velopment for the purpose of improving model representa-
tion of the climate response of the terrestrial carbon cycle.
We integrated a new formulation for LAI phenology into
the DALEC terrestrial biosphere model, outlining the cou-
pling to the carbon and water cycles, and performed MDF
using CARDAMOM to calibrate the model against diverse
Earth observations. Relative to the previous LAI phenology
model in DALEC, the new DALEC model showed improved
representation of the underlying processes governing the net
ecosystem carbon balance, GPP, and Re but similar perfor-
mance against the assimilated observations, LAI, NEE, and
biomass. This analysis was carried forward to evaluate the
data-informed climate sensitivity of the new model struc-
ture and parameterization, which showed large changes in the
seasonality, sign, and magnitude of LAI and NEE sensitivi-
ties to temperature and precipitation. The added process re-
alism of LAI phenology in DALEC/CARDAMOM provided
more realistic and robust predictions of the terrestrial carbon
cycle and its response to climate, highlighting the important
role that LAI phenology plays in representing the terrestrial
carbon cycle, especially when considered in an MDF system.
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Appendix A: DALEC model parameters

Table A1. DALEC model parameters that are shared, with the same
physical meaning in both DALECcpga and DALECkyerr. This in-
cludes process parameters and initial conditions along with their
prior range. Note: W: plant-available soil water pool, Wy: plant-
unavailable soil water pool. The allocation fraction to wood fyood
is computed as 1 — fauto — flab — ffol — Sfroot in DALECcpgA and
1 — fauto — flab — froot in DALECKpory-

Class  No. Description Symbol Prior range
1 Canopy GPP efficiency Ceff 5-50
_§ 2 Wilting point ® 1-10000
§ 3 NPP fraction to Cjap fab 0.01-0.5
£ 4 Leaf carbon mass per area LMA 5-200
=] 5 Fraction of GPP respired Jauto 0.2-0.8
° 6  NPP fraction to Croot Froot 0.01-1
= 7 Wood carbon turnover rate Owood 0.000025-0.001
8  Root carbon turnover rate Oroot 0.0001-0.01
= 9  Litter carbon turnover rate Blit 0.0001-0.01
g 2 10 Soil carbon turnover rate BOsoil 0.0000001-0.001
5 § 11 Turnover rate for litter—soil transfer  6};1250i1 0.0001-0.01
5 ‘E 12 Decomposition temperature rate [4 0.018-0.08
13 Moisture factor for decomposition Sp 0.01-1
= 14 Underlying water use efficiency uWUE 0.5-30
§’ 15 W runoff focal point W Qmax 1-100 000
< 16 Wy runoff focal point wemx 1-100 000
= 17 W to Wy runoff fraction h20xter 0.01-1
18 Initial Cpap Ch 1-2000
g 19 Initial Cgo Ciol 1-2000
E 2 Initial ! 1-2
% 2(1) lni:iZI gmm ggom 1-100 ggg
S wood wood
= 22 Initial Cy; fit 1-2000
E 23 Initial Cy5) C;oil 1-200 000
24 Initial W pool wt 1-10000
25 Initial W, pool wi 1-10000
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Figure Al. Model-data fit to assimilated observations (NEE,
LAI, ABGB) and wholly withheld observations (GPP, Re) over
the validation period for the DALECcpga model (left) and the
DALECkorr model (right). Each color represents a different site.
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Figure A2. Model-data fit statistics for the interannual variability on an annual and seasonal basis against the assimilated observations
(LAIL NEE) and wholly withheld data (GPP, Re) over the validation period, with all the sites combined. Markers show Pearson’s correlation
coefficient (r), RMSE, and bias per study site and for all site data combined.
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Figure A3. Observed and modeled trends over the calibration and validation period for LAI and NEE, including the observations (red dots),
DALECcpgpa model (gray line and shading), and DALECKk o model (green line and shading). The slope, Pearson’s r, and significance

level for the linear regression are shown in each panel of the figure.
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Figure AS. LAI phenology posterior parameter PDFs for the Knorr model, shown as the log-normalized PDFs between the minimum
(normalized constraint = () and maximum (normalized constraint = 1) parameter bounds. The violin plot shows the full posterior PDF, the
solid vertical bars indicate the 25th to 75th percentile range (IQR), and the horizontal solid lines indicate the median. The percentages at the
top of the figure indicate the parameter uncertainty reduction from prior to posterior, reported as the reduction in log-normalized IQR (see

Sect. 2.5.1).
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Figure A6. Posterior parameter PDFs for the common process parameters of the DALECcpga model (gray) and DALECk o model (green),
excluding initial conditions. Violin plots of “normalized constraint” show the log-normalized PDFs between the minimum (normalized
constraint = 0) and maximum (normalized constraint = 1) parameter bounds. The violin plot shows the full posterior PDF, the solid vertical
bars indicate the 25th to 75th percentile range (IQR), and the horizontal solid lines indicate the median. The percentages at the top of the
figure indicate the parameter uncertainty reduction from prior to posterior, reported as the reduction in log-normalized IQR (see Sect. 2.5.1).
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Figure A7. The seasonal pattern of model-simulated GPP and Re and the inferred climate sensitivity of GPP and Re to interannual variations
in precipitation and air temperature.
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Figure A8. The seasonal pattern of model-simulated GPP and Re and the inferred climate sensitivity of GPP and Re to interannual variations
in precipitation and air temperature.
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Appendix B: CDEA model description and parameters

The leaf onset factor (¢onset), Which is used to compute the
carbon pool transfer from Ciyp, to Crol, was originally defined
in Bloom and Williams (2015, Eq. A7) but was subsequently
updated to include a variable residence time for Cj,p (Bloom
et al., 2020), with a formulation of

o) In(B1ap) — In(Grap — 1)
Gonset (1) = —=-
T Consetv/2
o t—donset+osl . ’
. e_(sln(ft)lt'mnzetﬁ) 9 (Bl)

where Ojap, Conset> and donger are time-invariant parameters
(Table B1) and osl is calculated by

Cronsetﬁ>

> (B2)

osl = offset (91ab,

__ 365.25
and s = =

The leaf fall factor (¢ra1), which is used to compute the
carbon pool transfer from Cy, to Cyi; (i.e., litter production),
was originally defined in Bloom and Williams (2015, Eq. A8)
but was subsequently updated to include a variable residence
time for Cyo1 (Bloom et al., 2020), with a formulation of

_ 2 (1) —In( — 1)
Pranft) = ﬁ ( Crfall\/E )

2
[ win( t=defantost) 2
.e (Sl]’l( s ) Cl’fallﬁ> , (BS)

2

where 0o, Crfall, and dyfa)) are time-invariant parameters (Ta-
ble B1) and where osl is calculated by

Crrall/2
— ]

osf = offset <9f01, (B4)

The Cs, is updated at each time step by

Cfol(t + 1) = ffolNPP(t) + ¢0nset(t)clab(t)
+ (1 — ¢ran (7)) Cro1 (1), (BS)

and Cy,p, is updated at each time step by

Clab( +1) = fiab (NPP(#) — froaNPP(7))
+ (1 — Ponset(?)) Ciab (). (B6)

Table B1. DALECcpga LAI phenology parameters, including process parameters and initial conditions, along with their prior range.

Class No. Description Symbol  Prior range Units
1 NPP fraction to Cgo ? Soliar 0.01-0.5 -
2 Cjyp (eaf) lifespan 6ol 1.01-8 -
3 Cjyp lifespan Olab 1.01-8 -
4 Peak day of year for Cjyp, turnover  dopset 365.25-1461° d
LAI phenology 5 Peak day of year for Cyo) turnover  dyfqy) 365.25-1461° d
6  Cjyp release period Cronset 30.4375-100 d
7  Leaf fall period Crfall 30.4375-150 d
8  Leaf carbon mass per area LMA 5-200 gC m~2
9 Initial Cjyp Cl 1-2000 gCm2
10 TInitial Cg) Cl 1-2000 gCm~2

4 This parameter is used in DALECcpga to allow for direct carbon allocation to Cgy, whereas DALECKporr does not, as Cyyy is only

supplied with carbon from Cjyy,.

b Uses a circular prior range that extends beyond 365.25 to prevent edge jumping during optimization (e.g., 31 December to
1 January), as this parameter is used in a sine function with an annual period, so the actual day-of-year value can be computed as

modulo 365.25.
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Appendix C: Knorr model description
The labile production flux is computed by
Flabprod (1) = (GPP — Ra) fiab = NPP fiap, (ChH

where GPP is the gross primary productivity, Ra is the au-
totrophic respiration, NPP is the net primary productivity,
and fiap is a parameter representing the fraction of NPP allo-
cated to the labile pool.

The quadratic smoothing function is given in Knorr et
al. (2010, Eq. 25); we use n = 0.99.

x+y—+(&x+y)?—4nxy

2n

v(x,y) = (C2)

A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE

Table C1. DALECkyorr LAI phenology parameters, including process parameters and initial conditions, along with their prior range.

Class No. Description Symbol Prior range  Units
1 Mean temperature at leaf onset Ty 268.15-323.15 Kelvin
2 Spatial range of T T; 0.1-10  Kelvin
3 Linear growth constant & 0.001-0.5 d~1
4 Inverse of leaf longevity? kleaf 0.001-0.5 d~!
5  Maximum intrinsic LAI LAInax 0.1-10 mZm™2
6  Length of dry spell before leaf shedding  tw 0.1-300 d
LAI phenology 7  Mean day length at leaf shedding tc 2-22 h
8  Spatial range of 7. tr 0.1-6 h
9  Background leaf turnover rate Bsoliar 0.001-0.1 -
10 Leaf carbon mass per area LMA 5-200 gC m~2
11 Initial Cpyp Cl 1-2000 gCm™2
12 Initial Cyy Chol 1-2000 gCm™2
13 Initial air temperature memory T 268.15-323.15 Kelvin
14 TInitial LAy ® LAL, 0.01-1 -

4 Only during canopy senescence.
b Defined as the fraction of LAlImax.

Code and data availability. The model code, including
DALEC and CARDAMOM, used in this paper is available at
https://doi.org/10.5281/zenodo.8063861 (Norton, 2023). The
input data (meteorological forcing, observations, calibration
configuration for CARDAMOM), output data (calibrated model
states, fluxes, and parameters) and postprocessing code used for
the statistical analyses and to generate figures are available at
https://doi.org/10.5281/zenodo.7793974 (Norton et al., 2023).

Author contributions. AJN and AAB designed the research. AJN
conducted the modeling and analysis, with support from AAB, PAL,
and SM. TLS processed the observational data. AJN prepared the
manuscript and handled revisions. All the authors contributed to in-
terpretation and manuscript revisions.

Biogeosciences, 20, 2455-2484, 2023

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. A portion of this research was supported by
the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Admin-
istration. Alexander Norton, Anthony Bloom, Nicholas Parazoo,
Paul Levine, Shuang Ma, and Renato Braghiere were all supported
by the Jet Propulsion Laboratory, California Institute of Technol-
ogy. Nicholas C. Parazoo was funded and supported by the NASA
Earth Science Division (ESD) Making Earth Science Data Records

https://doi.org/10.5194/bg-20-2455-2023


https://doi.org/10.5281/zenodo.8063861
https://doi.org/10.5281/zenodo.7793974

A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE

for Use in Research Environments (MEaSUREs) and Arctic Boreal
Vulnerability Experiment (ABoVE) programs and the National Sci-
ence Foundation (NSF) Arctic Natural Sciences program. T. Luke
Smallman was supported by the UK’s National Centre for Earth
Observation.

Financial support. Part of the funding for this study was
provided through NASA Carbon Cycle Science (grant no.
NNH20ZDAOOIN-CARBON).

Review statement. This paper was edited by Eyal Rotenberg and
reviewed by two anonymous referees.

References

Albert, L. P., Restrepo-Coupe, N., Smith, M. N., Wu, J., Cha-
vana-Bryant, C., Prohaska, N., Taylor, T. C., Martins, G. A.,
Ciais, P, Mao, J., Arain, M. A., Li, W., Shi, X., Ricciuto,
D. M., Huxman, T. E., McMahon, S. M., and Saleska, S.
R.: Cryptic phenology in plants: Case studies, implications,
and recommendations, Glob. Change Biol., 25, 3591-3608,
https://doi.org/10.1111/gcb.14759, 2019.

Baldocchi, D.: TURNER REVIEW No. 15. ’Breathing’ of the ter-
restrial biosphere: Lessons learned from a global network of car-
bon dioxide flux measurement systems, Aust. J. Bot., 56, 1-26,
https://doi.org/10.1071/BT07151, 2008.

Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dy-
namics in a data-limited world: integrating ecological “common
sense” in a model-data fusion framework, Biogeosciences, 12,
1299-1315, https://doi.org/10.5194/bg-12-1299-2015, 2015.

Bloom, A. A., Exbrayat, J. F,, Van Der Velde, I. R., Feng, L.,
and Williams, M.: The decadal state of the terrestrial carbon
cycle: Global retrievals of terrestrial carbon allocation, pools,
and residence times, P. Natl. Acad. Sci. USA, 113, 1285-1290,
https://doi.org/10.1073/pnas.1515160113, 2016.

Bloom, A. A., Bowman, K. W., Liu, J., Konings, A. G., Wor-
den, J. R., Parazoo, N. C., Meyer, V., Reager, J. T., Worden,
H. M., Jiang, Z., Quetin, G. R., Smallman, T. L., Exbrayat,
J.-F., Yin, Y., Saatchi, S. S., Williams, M., and Schimel,
D. S.: Lagged effects regulate the inter-annual variability of
the tropical carbon balance, Biogeosciences, 17, 6393-6422,
https://doi.org/10.5194/bg-17-6393-2020, 2020.

Booth, B. B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox,
P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R,
and Lloyd, J.: High sensitivity of future global warming to
land carbon cycle processes, Environ. Res. Lett., 7, 024002,
https://doi.org/10.1088/1748-9326/7/2/024002, 2012.

Buermann, W., Forkel, M., O’Sullivan, M., Sitch, S., Friedlingstein,
P.,, Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lom-
bardozzi, D., Nabel, J. E. M. S., Tian, H., Wiltshire, A. J., Zhu,
D., Smith, W. K., and Richardson, A. D.: Widespread seasonal
compensation effects of spring warming on northern plant pro-
ductivity, Nature, 562, 110-114, https://doi.org/10.1038/s41586-
018-0555-7, 2018.

https://doi.org/10.5194/bg-20-2455-2023

2481

Caldararu, S., Purves, D. W., and Palmer, P. I.: Phenology as a strat-
egy for carbon optimality: a global model, Biogeosciences, 11,
763-778, https://doi.org/10.5194/bg-11-763-2014, 2014.

Clelend, E., Chuine, I., Menzel, A., Mooney, H., and
Schwartz, M.: Shifting plant phenology in response
to global change, Trends Ecol. Evol., 22, 357-365,

https://doi.org/10.1016/j.tree.2007.04.003, 2007.

Cole, E. F. and Sheldon, B. C.: The shifting phenological land-
scape: Within- and between-species variation in leaf emergence
in a mixed-deciduous woodland, Ecol. Evol., 7, 1135-1147,
https://doi.org/10.1002/ece3.2718, 2017.

Cooke, J. E. K., Eriksson, M. E., and Junttila, O.: The dynamic
nature of bud dormancy in trees: environmental control and
molecular mechanisms, Plant Cell Environ., 35, 1707-1728,
https://doi.org/10.1111/j.1365-3040.2012.02552.x, 2012.

Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot,
S., Rutishauser, T., and Rathgeber, C. B.: Temperate and
boreal forest tree phenology: from organ-scale processes
to terrestrial ecosystem models, Ann. For. Sci., 73, 5-25,
https://doi.org/10.1007/s13595-015-0477-6, 2016.

Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S.,
Quetin, G. R., Meyer, V., Parazoo, N. C., Stettz, S. G., Yang,
Y., Bonal, D., Bloom, A. A., Williams, M., and Konings, A. G.:
Optimal model complexity for terrestrial carbon cycle prediction,
Biogeosciences, 18, 2727-2754, https://doi.org/10.5194/bg-18-
2727-2021, 2021.

Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An
Overview of Global Leaf Area Index (LAI): Methods, Prod-
ucts, Validation, and Applications, Rev. Geophys., 57, 739-799,
https://doi.org/10.1029/2018RG000608, 2019.

Fisher, R. A. and Koven, C. D.: Perspectives on the Future
of Land Surface Models and the Challenges of Represent-
ing Complex Terrestrial Systems, J. Adv. Model. Earth Sy.,
12, e2018MS001453, https://doi.org/10.1029/2018MS001453,
2020.

Fox, A. M., Huo, X., Hoar, T. J., Dashti, H., Smith, W. K., MacBean,
N., Anderson, J. L., Roby, M., and Moore, D. J. P.: Assimi-
lation of Global Satellite Leaf Area Estimates Reduces Mod-
eled Global Carbon Uptake and Energy Loss by Terrestrial
Ecosystems, J. Geophys. Res.-Biogeo., 127, €2022JG006830,
https://doi.org/10.1029/2022JG006830, 2022.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi,
S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A.,
and Yokota, T.: New global observations of the terrestrial car-
bon cycle from GOSAT: Patterns of plant fluorescence with
gross primary productivity, Geophys. Res. Lett., 38, L17706,
https://doi.org/10.1029/2011GL048738, 2011.

Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H., Laepple,
T., Lambert, F., Nilsen, T., Rypdal, K., Rypdal, M., Scotto, M.
G., Vannitsem, S., Watkins, N. W., Yang, L., and Yuan, N.: The
Structure of Climate Variability Across Scales, Rev. Geophys.,
58, e2019RG000657, https://doi.org/10.1029/2019RG000657,
2020.

Friedl, M. and Sulla-Menashe, D.: MCDI12C1 MODIS-
/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg
CMG V006, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D.,
Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in

Biogeosciences, 20, 2455-2484, 2023


https://doi.org/10.1111/gcb.14759
https://doi.org/10.1071/BT07151
https://doi.org/10.5194/bg-12-1299-2015
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.1088/1748-9326/7/2/024002
https://doi.org/10.1038/s41586-018-0555-7
https://doi.org/10.1038/s41586-018-0555-7
https://doi.org/10.5194/bg-11-763-2014
https://doi.org/10.1016/j.tree.2007.04.003
https://doi.org/10.1002/ece3.2718
https://doi.org/10.1111/j.1365-3040.2012.02552.x
https://doi.org/10.1007/s13595-015-0477-6
https://doi.org/10.5194/bg-18-2727-2021
https://doi.org/10.5194/bg-18-2727-2021
https://doi.org/10.1029/2018RG000608
https://doi.org/10.1029/2018MS001453
https://doi.org/10.1029/2022JG006830
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1029/2019RG000657
https://doi.org/10.5067/MODIS/MCD12C1.006

2482

CMIPS Climate Projections due to Carbon Cycle Feedbacks,
J. Climate, 27, 511-526, https://doi.org/10.1175/JCLI-D-12-
00579.1, 2014.

Fuster, B., Sanchez-Zapero, J., Camacho, F., Garcfa-Santos, V.,
Verger, A., Lacaze, R., Weiss, M., Baret, F., and Smets, B.: Qual-
ity Assessment of PROBA-V LAI, fAPAR and fCOVER Collec-
tion 300 m Products of Copernicus Global Land Service, Remote
Sens., 12, 1017, https://doi.org/10.3390/rs12061017, 2020.

Ge, R., He, H., Zhang, L., Ren, X., Williams, M., Yu, G., Luke
Smallman, T., Zhou, T., Li, P, Xie, Z., Wang, S., Wang, H.,
Zhou, G., Zhang, Q., Wang, A., Fan, Z., Zhang, Y., Shen,
W., Yin, H.,, and Lin, L.: Climate Sensitivities of Carbon
Turnover Times in Soil and Vegetation: Understanding Their Ef-
fects on Forest Carbon Sequestration, J. Geophys. Res.-Biogeo.,
127, €2020JG005880, https://doi.org/10.1029/2020JG005880,
2022.

Haario, H., Saksman, E., and Tamminen, J.:
tive  Metropolis  Algorithm, Bernoulli, 7,
https://doi.org/10.2307/3318737, 2001.

Heiskanen, J., Rautiainen, M., Stenberg, P., Mbttus, M.,
Vesanto, V.-H., Korhonen, L., and Majasalmi, T.. Sea-
sonal variation in MODIS LAI for a boreal forest
area in Finland, Remote Sens. Environ., 126, 104-115,
https://doi.org/10.1016/j.rse.2012.08.001, 2012.

Hill, T. C, Ryan, E., and Williams, M.: The use of COj
flux time series for parameter and carbon stock estimation
in carbon cycle research, Glob. Change Biol., 18, 179-193,
https://doi.org/10.1111/.1365-2486.2011.02511.x, 2012.

Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King,
A. W., Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., Fisher, J.
B., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C,,
Maignan, F., Mao, J., Parazoo, N., Peng, S., Poulter, B., Ricci-
uto, D., Shi, X., Tian, H., Wang, W., Zeng, N., and Zhao, F.:
Uncertainty in the response of terrestrial carbon sink to environ-
mental drivers undermines carbon-climate feedback predictions,
Scientific Reports, 7, 4765, https://doi.org/10.1038/s41598-017-
03818-2, 2017.

Hutley, L. B. and Beringer, J.: Disturbance and climatic drivers
of carbon dynamics of a North Australian tropical Savanna, in:
Ecosystem Function in Savannas Measurement and Modeling at
Landscape to Global Scales, edited by: Hill, M. J. and Hanan, N.
P., CRC Press, 1st edn., 57-75, https://doi.org/10.1201/b10275,
2010.

Tio, A., Hikosaka, K., Anten, N. P., Nakagawa, Y., and Ito, A.:
Global dependence of field-observed leaf area index in woody
species on climate: A systematic review, Global Ecol. Biogeogr.,
23, 274-285, https://doi.org/10.1111/geb.12133, 2014.

Jolly, W. M. and Running, S. W.: Effects of precipitation and soil
water potential on drought deciduous phenology in the Kalahari,
Glob. Change Biol., 10, 303-308, https://doi.org/10.1046/j.1365-
2486.2003.00701.x, 2004.

Jolly, W. M., Nemani, R., and Running, S. W.: A generalized, bio-
climatic index to predict foliar phenology in response to climate,
Glob. Change Biol., 11, 619-632, https://doi.org/10.1111/j.1365-
2486.2005.00930.x, 2005.

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P.-P.: Consistent assimilation of MERIS
FAPAR and atmospheric CO; into a terrestrial vegetation model

An Adap-
223-242,

Biogeosciences, 20, 2455-2484, 2023

A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE

and interactive mission benefit analysis, Biogeosciences, 9,
3173-3184, https://doi.org/10.5194/bg-9-3173-2012, 2012.

Kaminski, T., Knorr, W., Schiirmann, G., Scholze, M., Rayner,
P. J., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering,
R., Gobron, N., Grant, J. P., Heimann, M., Hooker-Stroud, A.,
Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi,
E. N., Kostler, C., Mathieu, P.-P., Pinty, B., Reick, C. H., Ro-
denbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., van
Scheltinga, A. T., Vossbeck, M., Widmann, H., and Ziehn, T.:
The BETHY/JSBACH Carbon Cycle Data Assimilation Sys-
tem: experiences and challenges, J. Geophys. Res.-Biogeo., 118,
1414-1426, https://doi.org/10.1002/jgrg.20118, 2013.

Kato, T., Knorr, W., Scholze, M., Veenendaal, E., Kaminski, T.,
Kattge, J., and Gobron, N.: Simultaneous assimilation of satellite
and eddy covariance data for improving terrestrial water and car-
bon simulations at a semi-arid woodland site in Botswana, Bio-
geosciences, 10, 789-802, https://doi.org/10.5194/bg-10-789-
2013, 2013.

Keenan, T. F,, Richardson, A. D., and Hufkens, K.: On quantify-
ing the apparent temperature sensitivity of plant phenology, New
Phytol., 225, 1033-1040, https://doi.org/10.1111/nph.16114,
2020.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Gier-
ing, R., and Mathieu, P. P.: Carbon cycle data assimilation with
a generic phenology model, J. Geophys. Res.-Biogeo., 115,
G04017, https://doi.org/10.1029/2009JG001119, 2010.

Levine, P., Bilir, E., Bloom, A., Braghiere, R., Famiglietti, C., Kon-
ings, A., Longo, M., Ma, S., Massoud, E., Meyer, V., Norton,
A., Parazoo, N., Quetin, G., Smallman, L., Williams, M., Wor-
den, J., Worden, M., Worden, S., and Yang, Y.: Constraining car-
bon, water, and energy cycling using diverse Earth observations
across scales: the CARDAMOM 3.0 approach, EGU General As-
sembly 2023, Vienna, Austria, 24-28 Apr 2023, EGU23-10918,
https://doi.org/10.5194/egusphere-egu23-10918, 2023.

MacBean, N., Peylin, P., Chevallier, F., Scholze, M., and Schiir-
mann, G.: Consistent assimilation of multiple data streams in a
carbon cycle data assimilation system, Geosci. Model Dev., 9,
3569-3588, https://doi.org/10.5194/gmd-9-3569-2016, 2016.

Mahowald, N., Lo, F., Zheng, Y., Harrison, L., Funk, C., Lom-
bardozzi, D., and Goodale, C.: Projections of leaf area in-
dex in earth system models, Earth Syst. Dynam., 7, 211-229,
https://doi.org/10.5194/esd-7-211-2016, 2016.

Manzoni, S., Vico, G., Thompson, S., Beyer, F., and Weih, M.: Con-
trasting leaf phenological strategies optimize carbon gain under
droughts of different duration, Adv. Water Resour., 84, 37-51,
https://doi.org/10.1016/j.advwatres.2015.08.001, 2015.

Marchand, L. J., Dox, 1., Gri¢ar, J., Prislan, P., Leys, S., Van den
Bulcke, J., Fonti, P., Lange, H., Matthysen, E., Pefiuelas, J., Zuc-
carini, P., and Campioli, M.: Inter-individual variability in spring
phenology of temperate deciduous trees depends on species, tree
size and previous year autumn phenology, Agr. Forest Meteorol.,
290, 108031, https://doi.org/10.1016/j.agrformet.2020.108031,
2020.

Martinez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch,
G., Palacio, S., Piper, F. L., and Lloret, F.: Dynamics of non-
structural carbohydrates in terrestrial plants: a global synthesis,
Ecol. Monogr., 86, 495-516, https://doi.org/10.1002/ecm.1231,
2016.

https://doi.org/10.5194/bg-20-2455-2023


https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.3390/rs12061017
https://doi.org/10.1029/2020JG005880
https://doi.org/10.2307/3318737
https://doi.org/10.1016/j.rse.2012.08.001
https://doi.org/10.1111/j.1365-2486.2011.02511.x
https://doi.org/10.1038/s41598-017-03818-2
https://doi.org/10.1038/s41598-017-03818-2
https://doi.org/10.1201/b10275
https://doi.org/10.1111/geb.12133
https://doi.org/10.1046/j.1365-2486.2003.00701.x
https://doi.org/10.1046/j.1365-2486.2003.00701.x
https://doi.org/10.1111/j.1365-2486.2005.00930.x
https://doi.org/10.1111/j.1365-2486.2005.00930.x
https://doi.org/10.5194/bg-9-3173-2012
https://doi.org/10.1002/jgrg.20118
https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.5194/bg-10-789-2013
https://doi.org/10.1111/nph.16114
https://doi.org/10.1029/2009JG001119
https://doi.org/10.5194/egusphere-egu23-10918
https://doi.org/10.5194/gmd-9-3569-2016
https://doi.org/10.5194/esd-7-211-2016
https://doi.org/10.1016/j.advwatres.2015.08.001
https://doi.org/10.1016/j.agrformet.2020.108031
https://doi.org/10.1002/ecm.1231

A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE

Massoud, E. C., Bloom, A. A., Longo, M., Reager, J. T., Levine, P.
A., and Worden, J. R.: Information content of soil hydrology in a
west Amazon watershed as informed by GRACE, Hydrol. Earth
Syst. Sci., 26, 1407-1423, https://doi.org/10.5194/hess-26-1407-
2022, 2022.

Migliavacca, M., Sonnentag, O., Keenan, T. F., Cescatti, A.,
O’Keefe, J., and Richardson, A. D.: On the uncertainty of phe-
nological responses to climate change, and implications for
a terrestrial biosphere model, Biogeosciences, 9, 20632083,
https://doi.org/10.5194/bg-9-2063-2012, 2012.

Norton, A.: CARDAMOM-framework/CARDAMOM_v2.3: Publi-
cation: Norton et al. 2023, Version CARDAMOM_v2.3, Zenodo
[code], https://doi.org/10.5281/zenodo.8063861, 2023.

Norton, A., Bloom, A. A., Parazoo, N. C., Levine, P. A., Ma, S.,
Braghiere, R. K., and Smallman, L. T.. CARDAMOM Phenol-
ogy Study: Dataset and Analysis Code, Version 1.0, Zenodo [data
set], https://doi.org/10.5281/zenodo.7793974, 2023.

Norton, A. J., Rayner, P. J., Koffi, E. N., and Scholze, M.: As-
similating solar-induced chlorophyll fluorescence into the terres-
trial biosphere model BETHY-SCOPE v1.0: model description
and information content, Geosci. Model Dev., 11, 1517-1536,
https://doi.org/10.5194/gmd-11-1517-2018, 2018.

Norton, A. J., Rayner, P. J., Koffi, E. N., Scholze, M., Silver, J.
D., and Wang, Y.-P.: Estimating global gross primary produc-
tivity using chlorophyll fluorescence and a data assimilation sys-
tem with the BETHY-SCOPE model, Biogeosciences, 16, 3069—
3093, https://doi.org/10.5194/bg-16-3069-2019, 2019.

Parazoo, N. C., Barnes, E., Worden, J., Harper, A. B., Bowman,
K. B., Frankenberg, C., Wolf, S., Litvak, M., and Keenan, T. F.:
Influence of ENSO and the NAO on terrestrial carbon uptake in
the Texas-northern Mexico region, Global Biogeochem. Cy., 29,
1247-1265, https://doi.org/10.1002/2015GB005125, 2015.

Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015
dataset and the ONEFlux processing pipeline for eddy covariance
data, Scientific Data, 7, 225, https://doi.org/10.1038/s41597-
020-0534-3, 2020.

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,
Ahlstrom, A., Anav, A., Canadell, J. G., Cong, N., Huntingford,
C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M.
R., Lu, M,, Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun,
Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation
of terrestrial carbon cycle models for their response to climate
variability and to CO 2 trends, Glob. Change Biol., 19, 2117-
2132, https://doi.org/10.1111/gcb.12187, 2013.

Piao, S., Liu, Q., Chen, A., Janssens, 1. A., Fu, Y., Dai, J., Liu, L.,
Lian, X., Shen, M., and Zhu, X.: Plant phenology and global cli-
mate change: Current progresses and challenges, Glob. Change
Biol., 25, 1922-1940, https://doi.org/10.1111/gcb.14619, 2019.

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G.,
Ciais, P, Friedlingstein, P., and Sitch, S.: Interannual variation of
terrestrial carbon cycle: Issues and perspectives, Glob. Change
Biol., 26, 300-318, https://doi.org/10.1111/gcb.14884, 2020.

Prentice, 1. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Re-
liable, robust and realistic: the three R’s of next-generation
land-surface modelling, Atmos. Chem. Phys., 15, 5987-6005,
https://doi.org/10.5194/acp-15-5987-2015, 2015.

Quetin, G. R., Bloom, A. A., Bowman, K. W., and Konings, A.
G.: Carbon Flux Variability From a Relatively Simple Ecosys-
tem Model With Assimilated Data Is Consistent With Terres-

https://doi.org/10.5194/bg-20-2455-2023

2483

trial Biosphere Model Estimates, J. Adv. Model. Earth Sy.,
12, 2019MS001889, https://doi.org/10.1029/2019MS001889,
2020.

Rayner, P. J., Michalak, A. M., and Chevallier, F.: Fundamentals
of data assimilation applied to biogeochemistry, Atmos. Chem.
Phys., 19, 13911-13932, https://doi.org/10.5194/acp-19-13911-
2019, 2019.

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G,,
Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., De-
sai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough,
C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., Mccaughey,
H., Migliavacca, M., Monson, R. K., Munger, J. W., Poul-
ter, B., Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schae-
fer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J., and Xue,
Y.: Terrestrial biosphere models need better representation of
vegetation phenology: Results from the North American Car-
bon Program Site Synthesis, Glob. Change Biol., 18, 566-584,
https://doi.org/10.1111/j.1365-2486.2011.02562.x, 2012.

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y.,
Sonnentag, O., and Toomey, M.: Climate change, phenol-
ogy, and phenological control of vegetation feedbacks to
the climate system, Agr. Forest Meteorol., 169, 156-173,
https://doi.org/10.1016/j.agrformet.2012.09.012, 2013.

Schiestl-Aalto, P., Kulmala, L., Mikinen, H., Nikinmaa, E.,
and Maikeld, A.: CASSIA - a dynamic model for pre-
dicting intra-annual sink demand and interannual growth
variation in Scots pine, New Phytol,, 206, 647-659,
https://doi.org/10.1111/nph.13275, 2015.

Schimel, D. and Schneider, F. D.: Flux towers in the sky:
global ecology from space, New Phytol.,, 224, 570-584,
https://doi.org/10.1111/nph.15934, 2019.

Schwalm, C. R., Schaefer, K., Fisher, J. B., Huntzinger, D.,
Elshorbany, Y., Fang, Y., Hayes, D., Jafarov, E., Michalak,
A. M., Piper, M., Stofferahn, E., Wang, K., and Wei, Y.: Di-
vergence in land surface modeling: linking spread to struc-
ture, Environmental Research Communications, 1, 111004,
https://doi.org/10.1088/2515-7620/ab4a8a, 2019.

Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein,
P., Anthoni, P, Goll, D., Jain, A. K., Joetzjer, E., Lienert, S.,
Lombardozzi, D., Luyssaert, S., Nabel, J. E. M. S., Tian, H.,
Vuichard, N., Walker, A. P., Yuan, W., and Zaehle, S.: Are Ter-
restrial Biosphere Models Fit for Simulating the Global Land
Carbon Sink?, J. Adv. Model. Earth Sy., 14, €2021MS002946,
https://doi.org/10.1029/2021MS002946, 2022.

Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall,
F. G., Berry, J. A,, Collatz, G. J., Denning, A. S., Mooney, H.
A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers,
A.: Modeling the Exchanges of Energy, Water, and Carbon Be-
tween Continents and the Atmosphere, Science, 275, 502-509,
https://doi.org/10.1126/science.275.5299.502, 1997.

Smallman, T. L. and Williams, M.: Description and valida-
tion of an intermediate complexity model for ecosystem pho-
tosynthesis and evapotranspiration: ACM-GPP-ETv1, Geosci.
Model Dev., 12, 2227-2253, https://doi.org/10.5194/gmd-12-
2227-2019, 2019.

Smallman, T. L., Milodowski, D. T., Neto, E. S., Koren, G., Ometto,
J., and Williams, M.: Parameter uncertainty dominates C-cycle
forecast errors over most of Brazil for the 21st century, Earth

Biogeosciences, 20, 2455-2484, 2023


https://doi.org/10.5194/hess-26-1407-2022
https://doi.org/10.5194/hess-26-1407-2022
https://doi.org/10.5194/bg-9-2063-2012
https://doi.org/10.5281/zenodo.8063861
https://doi.org/10.5281/zenodo.7793974
https://doi.org/10.5194/gmd-11-1517-2018
https://doi.org/10.5194/bg-16-3069-2019
https://doi.org/10.1002/2015GB005125
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1111/gcb.12187
https://doi.org/10.1111/gcb.14619
https://doi.org/10.1111/gcb.14884
https://doi.org/10.5194/acp-15-5987-2015
https://doi.org/10.1029/2019MS001889
https://doi.org/10.5194/acp-19-13911-2019
https://doi.org/10.5194/acp-19-13911-2019
https://doi.org/10.1111/j.1365-2486.2011.02562.x
https://doi.org/10.1016/j.agrformet.2012.09.012
https://doi.org/10.1111/nph.13275
https://doi.org/10.1111/nph.15934
https://doi.org/10.1088/2515-7620/ab4a8a
https://doi.org/10.1029/2021MS002946
https://doi.org/10.1126/science.275.5299.502
https://doi.org/10.5194/gmd-12-2227-2019
https://doi.org/10.5194/gmd-12-2227-2019

2484

Syst. Dynam., 12, 1191-1237, https://doi.org/10.5194/esd-12-
1191-2021, 2021.

Stockli, R., Rutishauser, T., Dragoni, D., O’Keefe, J., Thornton, P.
E., Jolly, M., Lu, L., and Denning, A. S.: Remote sensing data as-
similation for a prognostic phenology model, J. Geophys. Res.-
Biogeo., 113, G04021, https://doi.org/10.1029/2008JG000781,
2008.

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P.
F., and Watkins, M. M.: GRACE Measurements of Mass
Variability in the Earth System, Science, 305, 503-505,
https://doi.org/10.1126/science.1099192, 2004.

Ter Braak, C. J. F.: A Markov Chain Monte Carlo version of the
genetic algorithm Differential Evolution: easy Bayesian com-
puting for real parameter spaces, Stat. Comput., 16, 239-249,
https://doi.org/10.1007/s11222-006-8769-1, 2006.

Trugman, A. T., Detto, M., Bartlett, M. K., Medvigy, D., Anderegg,
W. R. L., Schwalm, C., Schaffer, B., and Pacala, S. W.: Tree car-
bon allocation explains forest drought-kill and recovery patterns,
Ecol. Lett., 21, 1552-1560, https://doi.org/10.1111/ele.13136,
2018.

Van Bodegom, P. M., Douma, J. C., Witte, J. P. M., Or-
dofiez, J. C., Bartholomeus, R. P, and Aerts, R.: Going be-
yond limitations of plant functional types when predicting
global ecosystem-atmosphere fluxes: exploring the merits of
traits-based approaches, Global Ecol. Biogeogr., 21, 625-636,
https://doi.org/10.1111/j.1466-8238.2011.00717.x, 2012.

Verger, A., Baret, F.,, and Weiss, M.: Near Real-Time Vegetation
Monitoring at Global Scale, IEEE J. Sel. Top. Appl., 7, 3473—
3481, https://doi.org/10.1109/JSTARS.2014.2328632, 2014.

Viskari, T., Hardiman, B., Desai, A. R., and Dietze, M. C.: Model-
data assimilation of multiple phenological observations to con-
strain and predict leaf area index, Ecol. Appl., 25, 546-558,
https://doi.org/10.1890/14-0497.1, 2015.

Wheeler, K. I. and Dietze, M. C.: Improving the monitoring of
deciduous broadleaf phenology using the Geostationary Oper-
ational Environmental Satellite (GOES) 16 and 17, Biogeo-
sciences, 18, 1971-1985, https://doi.org/10.5194/bg-18-1971-
2021, 2021.

Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden,
M. L., Shaver, G. R., and Johnson, L. C.: Predict-
ing gross primary productivity in terrestrial ecosystems,
Ecol. Appl., 7, 882-894, https://doi.org/10.1890/1051-
0761(1997)007[0882:PGPPIT]2.0.CO;2, 1997.

Biogeosciences, 20, 2455-2484, 2023

A. J. Norton et al.: Inferring climate sensitivity of LAI and NEE

Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and
Kurpius, M. R.: An improved analysis of forest carbon dynam-
ics using data assimilation, Glob. Chang. Biol., 11, 89-105,
https://doi.org/10.1111/j.1365-2486.2004.00891.x, 2005.

Wu, J., Albert, L. P, Lopes, A. P., Restrepo-Coupe, N., Hayek, M.,
Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Pro-
haska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira,
M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G.,
Huxman, T. E., Huete, A. R., Nelson, B. W., and Saleska, S. R.:
Leaf development and demography explain photosynthetic sea-
sonality in Amazon evergreen forests, Science, 351, 972-976,
https://doi.org/10.1126/science.aad5068, 2016.

Xin, Q., Zhou, X., Wei, N., Yuan, H., Ao, Z., and Dai,
Y.: A Semiprognostic Phenology Model for Simulating
Multidecadal Dynamics of Global Vegetation Leaf Area
Index, J. Adv. Model. Earth Sy., 12, e2019MS001935,
https://doi.org/10.1029/2019MS001935, 2020.

Yang, J., Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.:
Applying the Concept of Ecohydrological Equilibrium to Pre-
dict Steady State Leaf Area Index, J. Adv. Model. Earth Sy., 10,
1740-1758, https://doi.org/10.1029/2017MS001169, 2018.

Yang, Y., Bloom, A. A., Ma, S., Levine, P, Norton, A., Para-
700, N. C., Reager, J. T., Worden, J., Quetin, G. R., Smallman,
T. L., Williams, M., Xu, L., and Saatchi, S.: CARDAMOM-
FluxVal version 1.0: a FLUXNET-based validation system
for CARDAMOM carbon and water flux estimates, Geosci.
Model Dev., 15, 1789-1802, https://doi.org/10.5194/gmd-15-
1789-2022, 2022.

Yin, Y., Bloom, A. A., Worden, J., Saatchi, S., Yang, Y., Williams,
M., Liu, J., Jiang, Z., Worden, H., Bowman, K., Frankenberg,
C., and Schimel, D.: Fire decline in dry tropical ecosystems
enhances decadal land carbon sink, Nat. Commun., 11, 1900,
https://doi.org/10.1038/s41467-020-15852-2, 2020.

Zhang, H., Yuan, W., Dong, W., and Liu, S.: Seasonal patterns of lit-
terfall in forest ecosystem worldwide, Ecol. Complex., 20, 240-
247, https://doi.org/10.1016/j.ecocom.2014.01.003, 2014.

Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S., and Gentine, P.:
Large and projected strengthening moisture limitation on end-of-
season photosynthesis, P. Natl. Acad. Sci. USA, 117,9216-9222,
https://doi.org/10.1073/pnas.1914436117, 2020.

https://doi.org/10.5194/bg-20-2455-2023


https://doi.org/10.5194/esd-12-1191-2021
https://doi.org/10.5194/esd-12-1191-2021
https://doi.org/10.1029/2008JG000781
https://doi.org/10.1126/science.1099192
https://doi.org/10.1007/s11222-006-8769-1
https://doi.org/10.1111/ele.13136
https://doi.org/10.1111/j.1466-8238.2011.00717.x
https://doi.org/10.1109/JSTARS.2014.2328632
https://doi.org/10.1890/14-0497.1
https://doi.org/10.5194/bg-18-1971-2021
https://doi.org/10.5194/bg-18-1971-2021
https://doi.org/10.1890/1051-0761(1997)007[0882:PGPPIT]2.0.CO;2
https://doi.org/10.1890/1051-0761(1997)007[0882:PGPPIT]2.0.CO;2
https://doi.org/10.1111/j.1365-2486.2004.00891.x
https://doi.org/10.1126/science.aad5068
https://doi.org/10.1029/2019MS001935
https://doi.org/10.1029/2017MS001169
https://doi.org/10.5194/gmd-15-1789-2022
https://doi.org/10.5194/gmd-15-1789-2022
https://doi.org/10.1038/s41467-020-15852-2
https://doi.org/10.1016/j.ecocom.2014.01.003
https://doi.org/10.1073/pnas.1914436117

	Abstract
	Introduction
	Methods
	Study sites
	Model–data fusion
	Observations and model forcing
	Model description
	Carbon balance
	LAI phenology models
	Optimization algorithm

	Model analysis and diagnostics
	Parameter uncertainty reduction
	Model performance
	Climate sensitivity


	Results and discussion
	Model–data fit
	Underlying parameters and process constraints
	Validation of inferred GPP and Re fluxes
	Climate sensitivity of LAI and NEE
	Temperature sensitivities
	Precipitation sensitivities

	Significance and limitations

	Conclusions
	Appendix A: DALEC model parameters
	Appendix B: CDEA model description and parameters
	Appendix C: Knorr model description
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

