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Abstract. Global biogeochemical ocean models help to in-
vestigate the present and potential future state of the ocean,
its productivity and cascading effects on higher trophic lev-
els such as fish. They are often subjectively tuned against
data sets of inorganic tracers and surface chlorophyll and
only very rarely against organic components such as particu-
late organic carbon or zooplankton. The resulting uncertainty
in biogeochemical model parameters (and parameterisations)
associated with these components can explain some of the
large spread of global model solutions with regard to the cy-
cling of organic matter and its impacts on biogeochemical
tracer distributions, such as oxygen minimum zones (OMZs).
A second source of uncertainty arises from differences in the
model spin-up length as, so far, there seems to be no agree-
ment on the required simulation time that should elapse be-
fore a global model is assessed against observations.

We investigated these two sources of uncertainty by op-
timising a global biogeochemical ocean model against the
root-mean-squared error (RMSE) of six different combina-
tions of data sets and different spin-up times. Besides nu-
trients and oxygen, the observational data sets also included
phyto- and zooplankton, as well as dissolved and particulate
organic phosphorus (DOP and POP, respectively). We fur-
ther analysed the optimised model performance with regard
to global biogeochemical fluxes, oxygen inventory and OMZ
volume.

Following the optimisation procedure, we evaluated the
RMSE for all tracers located in the upper 100 m (except for
POP, for which we considered the entire vertical domain),
regardless of their consideration during optimisation. For the
different optimal model solutions, we find a narrow range
of the RMSE, between 14 % of the average RMSE after

10 years and 24 % after 3000 years of simulation. Global
biogeochemical fluxes, global oxygen bias and OMZ vol-
ume showed a much stronger divergence among the mod-
els and over time than RMSE, indicating that even models
that are similar with regard to local surface tracer concentra-
tions can perform very differently when assessed against the
global diagnostics for oxygen. Considering organic tracers in
the optimisation had a strong impact on the particle flux ex-
ponent (Martin b) and may reduce much of the uncertainty in
this parameter and the resulting deep particle flux. Indepen-
dent of the optimisation setup, the OMZ volume showed a
particularly sensitive response with strong trends over time,
even after 3000 years of simulation time (despite the constant
physical forcing); a high sensitivity to simulation time; and
the highest sensitivity to model parameters arising from the
tuning strategy setup (variation of almost 80 % of the ensem-
ble mean).

In conclusion, calibration against observations of organic
tracers can help to improve global biogeochemical models
even after short spin-up times; here especially, observations
of deep particle flux could provide a powerful constraint.
However, a large uncertainty remains with regard to global
OMZ volume and its evolution over time, which can show
very dynamic behaviour during the model spin-up, which
renders temporal extrapolation to a final equilibrium state
difficult if not impossible. Given that the real ocean shows
variations on many timescales, the assumption of observa-
tions representing a steady-state ocean may require some re-
consideration.
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1 Introduction

Global biogeochemical ocean models, especially when com-
bined with data assimilation techniques, serve as useful tools
to generate spatially and temporally consistent global fields
of dissolved and particulate ocean tracers, such as nutri-
ents, oxygen or organic constituents, from sparse observa-
tions. More important, when embedded in Earth system mod-
els, they can be used to investigate the present state of the
ocean and its biogeochemistry, including its productivity
(e.g. Kwiatkowski et al., 2017), up to higher trophic levels
(e.g. Chust et al., 2014; Stock et al., 2014) and fish (Galbraith
et al., 2017; Mullon et al., 2017; Stock et al., 2017), as well
as its sensitivity to a changing climate. Besides the direct ef-
fects of productivity on fish production, complex feedback
processes, particularly when leading to ocean deoxygenation
and expanding oxygen minimum zones (OMZs), are likely to
impact on the stock and recruitment of fish. For example, the
amount of organic matter produced at the surface and then
exported to and recycled within the mesopelagic zone (about
200–1000 m) can have significant effects on OMZs. Com-
plex interactions between different biogeochemical compo-
nents can lead to large uncertainties with regard to the loca-
tion and extent of OMZs simulated by global models (Cabre
et al., 2015; Kriest and Oschlies, 2015), which may hamper
our ability to reproduce and project the habitat of commer-
cially relevant, oxygen-sensitive fish species (Stramma et al.,
2012).

The relevance and prospects of marine biogeochemical
model applications seem obvious, but challenges remain in
finding unambiguous solutions for the global distribution and
flux of mass and in quantifying the uncertainties of respective
model estimates (Schartau et al., 2017). The choice of values
assigned to the biogeochemical model parameters is known
to have considerable effects on model performance (Kriest
et al., 2010, 2012). Albeit undisputed, problems of parame-
ter identification remain underrated, and sensitivity analyses
of the entire parameter space are the exception rather than the
rule, even at local or regional scales (Arhonditsis and Brett,
2004; Leles et al., 2016). Likewise, a comprehensive analysis
of model performance with regard to all simulated state vari-
ables is not always carried out. This bears the risk that, during
calibration, one simulated tracer is improved at the cost of an
unconstrained one (as, for example, shown in Kriest, 2017),
a problem known as calibration bias (Arhonditsis and Brett,
2004). For example, almost 2 decades ago, far less than half
of the studies reviewed by Arhonditsis and Brett (2004) re-
ported performance statistics for all simulated state variables.
If narrowed down to global biogeochemical model applica-
tions, validation becomes more difficult due to the sparsity
and type of data available at a global scale; while the global
coverage of concentration measurements of nutrients or oxy-
gen is relatively good, observations of plankton and organic
matter are less abundant. While most of the models applied
in CMIP5 and CMIP6 have been evaluated with regard to

dissolved inorganic tracers (e.g. Seferian et al., 2020), anal-
ysis of model skill, especially with regard to higher trophic
levels, is carried out less often (but see, for example, Petrik
et al., 2022, who examined CMIP6 models with regard to
mesozooplankton).

During model calibration, the calibration bias can have
significant effects on optimal parameter estimates and may
affect model performance with regard to simulated biogeo-
chemical fluxes such as primary and secondary production.
For instance, amongst different model configurations that
yield equally good fits to global nutrients and oxygen con-
centrations (with differences between root-mean-square er-
rors1RMSE≤ 6 %), Kriest et al. (2017) revealed significant
differences in primary production (17 %) and grazing (84 %).
Also, different tuning approaches might explain some of the
spread in global primary production found in global model
inter-comparisons (Bopp et al., 2013; Kwiatkowski et al.,
2014). When primary (and sometimes secondary or export)
production simulated by biogeochemical (BGC) models is
used to estimate present and future stocks and production of
higher trophic levels (HTLs) or fish (Galbraith et al., 2017;
Mullon et al., 2017; Stock et al., 2017), it is likely that BGC
model uncertainties will propagate into HTL estimates.

Another important aspect of model uncertainty relates to
the models’ spin-up time. Global models are started from
some observed or assumed distributions of simulated tracers.
However, their inherent assumptions, as expressed through
the model components, equations, constants, forcing and
boundary conditions, may diverge from the real world. When
the model is simulated forward in time, the inherent assump-
tions will translate into a specific simulated tracer distribu-
tion and will likely diverge from the observations (unless
we have a perfect model). The discrepancy between model
and observations will change over the simulation (spin-up)
time, until finally, under climatological, seasonally varying
forcing, the model reaches an equilibrium or steady state.
This equilibrium is characterised by a steadily repeating an-
nual cycle, in which the tracer concentrations at all locations
change from year to year by only a negligible amount. In
equilibrium, the model output then reflects only the assump-
tions that went into the model and is usually independent of
the initial tracer distribution and, in the case of tracer ex-
change through open boundaries, the initial tracer inventory.

Because of the slow ocean overturning circulation, it re-
quires millennia of numerical integration to reach an equili-
brated biogeochemical state on a global scale (Wunsch and
Heimbach, 2008). The length of the spin-up time depends on
the upper boundary condition (e.g. Wunsch and Heimbach,
2008; Primeau and Deleersnijder, 2009; Siberlin and Wun-
sch, 2011), the lower and lateral boundary condition (e.g.
Roth et al., 2014), and the tracer considered; for example,
tracers with distant sources and sinks (such as nitrogen) may
require longer timescales to reach equilibrium than tracers
that exchange quickly with the atmospheric boundary (such
as oxygen; Kriest and Oschlies, 2015). However, given the
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high computational demand of global models, we find a wide
variety of model spin-up times, from decades (e.g. Dietze
and Loeptien, 2013; Kwiatkowski et al., 2014; Henson et al.,
2015; Le Quere et al., 2016) up to centuries and even mil-
lennia (e.g. 200–12 000 years; Seferian et al., 2016); some-
times model parameters are adjusted during spin-up (Lindsay
et al., 2014). The spin-up times of the most recent versions
of CMIP6 ocean models span a wide range, from 150 years
up to 12 000 years, an even wider range than that applied
earlier during CMIP5 (500 to 11 900 years; Seferian et al.,
2020). Given the wide range of model spin-up times, we
may find some unwanted impact on model ranking in inter-
comparison studies (Seferian et al., 2016). While a short-
term simulation and calibration effort may provide valuable
insight into plankton dynamics and may help in constraining
predominant seasonal variations at the sea surface (Doney
et al., 2009; Le Quere et al., 2016), inferences with respect
to long-term, large-scale changes in the deep ocean remain
unwarranted. For example, a model setup that yields good
model performance after a few decades or centuries of simu-
lation can give rise to unfavourable model results with regard
to large-scale tracer distributions and inventories on millen-
nial timescales (Seferian et al., 2016; Kriest and Oschlies,
2015).

We here investigate the driving factors that contribute to
potential biases in parameter tuning and analyse their effect
on global model performance with regard to several combi-
nations of metrics, parameters to be calibrated and simula-
tion timescales. Initially, we optimised four parameters that
determine the turnover of organic matter in the euphotic zone
of a global biogeochemical ocean model and two parameters
related to oxygen consumption and particle flux (with two
different ranges of potential parameter values). The choice
of the six parameters was partly motivated by the results
from earlier optimisations (Kriest et al., 2017, 2020); our
aim was also that every parameter should at least affect di-
rectly one of the biogeochemical state variables simulated
by the model. This initial optimisation procedure is con-
strained by surface observations of all of our model’s biogeo-
chemical tracers, namely phosphate, nitrate, oxygen and dis-
solved organic matter (DOM), as well as observational coun-
terparts for particulate organic components (phytoplankton,
zooplankton and detritus). To account for the uncertainty of
the particle flux parameter b, which can have a large in-
fluence on large-scale nutrient distribution (e.g. Kwon and
Primeau, 2006; Kriest et al., 2012), this initial optimisation
setup against the full data set was applied with two different
potential ranges of b.

By including all simulated tracers in the misfit function in
the two initial optimisations, we aim to avoid the calibration
bias mentioned above. In particular, we obviate any tendency
of the optimisation procedure to reduce misfits in inorganic
tracer concentrations to the disadvantage of (otherwise un-
constrained) organic components, such as DOM or plankton
biomass. In three further experiments, we then successively

omitted observations of organic constituents and reduced the
number of parameters to be optimised, thereby investigat-
ing the impact of different data types on optimisation per-
formance.

Because changes in plankton parameters especially affect
model performance, mainly at the surface, which adjusts
on timescales of years (see also Le Quere et al., 2016),
these five optimisations were carried out after a spin-up of
only 10 years. A final optimisation then applies a spin-up of
3000 years. To account for the unresolved effects on deep-
tracer concentrations over long timescales, we also investi-
gate how the optimal model solutions of the short-term op-
timisations perform globally after 3000 years, when the ef-
fects of model parameters are propagated to the deep ocean
via the large-scale ocean overturning circulation. This ex-
amines whether the model solutions that perform best at the
ocean surface on decadal timescales are also appropriate in
the context of longer timescales and larger spatial scales. In
our analysis of optimised model results, we not only evaluate
the tracer residuals but also examine the effect of calibra-
tion on global biogeochemical tracer fluxes, oxygen inven-
tory and OMZ volume as potentially important interfaces to
higher trophic levels.

2 Model structure and optimisations

2.1 Ocean biogeochemical model

All model simulations and optimisations apply the transport
matrix method (TMM; Khatiwala, 2007, 2018), which rep-
resents the joint effects of advection and mixing in the form
of monthly mean transport matrices (TMs) derived from a
circulation field of the Estimating the Circulation and Cli-
mate of the Ocean (ECCO) project. ECCO provides circu-
lation fields that yield a best fit to hydrographic and remote
sensing observations over the 10-year period 1992 through
2001 with a horizontal resolution of 1◦× 1◦ and 23 levels
in the vertical (Stammer et al., 2004). Monthly mean wind
speed, temperature and salinity of the same model are used
to compute air–sea gas exchange of oxygen and temperature-
dependent growth of phytoplankton and cyanobacteria.

The biogeochemical model describes the cycling of phos-
phorus, nitrogen and oxygen in a stoichiometrically con-
sistent manner (MOPS – Model of Oceanic Pelagic Stoi-
chiometry; Kriest and Oschlies, 2015). The model contains
seven components, of which five are calculated in phospho-
rus units, namely phytoplankton, zooplankton, detritus, dis-
solved organic phosphorus and phosphate. Additionally, ni-
trate and oxygen are simulated, with biogeochemical inter-
actions among the different elements coupled via fixed stoi-
chiometric ratios. In contrast to the fixed phosphorus inven-
tory, total nitrogen can be altered in response to variations
in denitrification and nitrogen fixation. Likewise, the oxygen
inventory may change according to variations in model pa-
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rameters in combination with air–sea gas exchange and cir-
culation. Details of the model can be found in Kriest and Os-
chlies (2015), and the initial calibration of the model is op-
timisation “ECCO∗” described in Kriest et al. (2020), which
serves as starting point for the optimisations presented here.

2.2 Data sets for optimisation

To assess model skill for all seven simulated tracers, we
have compiled a data set of corresponding observations, as
detailed in Appendix A1. Similarly to the optimisations by
Kriest et al. (2017, 2020), simulated nutrients and oxygen
are assessed against the objectively analysed data of Garcia
et al. (2006a, b). For phytoplankton, we use surface chloro-
phyll data derived from remote sensing (Malin, 2013) and
converted to phytoplankton phosphorus by applying the al-
gorithm by Sathyendranath et al. (2009) while assuming a
fixed-molar carbon-to-phosphorus ratio of 122 mol C :mol P.
We note that this data set provides a quasi-synoptic global
data coverage but only for the uppermost layer of the ocean;
furthermore, it includes the above-mentioned assumptions
about the Chl :C ratio of chlorophyll. The simulated zoo-
plankton biomass is evaluated against annual averages, de-
rived from monthly mesozooplankton biomass data provided
by Moriarty and O’Brien (2013). According to a preceding
analysis at the few locations where both micro- and meso-
zooplankton data are available, annual averages of mesozoo-
plankton biomass are similar to those of microzooplankton
biomass (see Appendix A1). Therefore, we assume the sim-
ulated bulk zooplankton biomass can be compared against
mesozooplankton biomass observations that are multiplied
by a factor of 2. Because there is no direct observational
equivalent to simulated detritus, we assume that simulated
phytoplankton, half of the simulated zooplankton biomass
(considered to be the less motile microzooplankton com-
ponent) and detritus contribute to particulate organic matter
(POM), and we compare this quantity to the data set by Mar-
tiny et al. (2014). Because this biogeochemical component
can sink quite rapidly into the deep ocean, in contrast to the
other data types, we consider here the entire vertical domain.
Finally, observations of DOP were compiled from various
sources, covering locations in the Atlantic, Pacific and Indian
oceans (see Appendix A1).

We note that, in contrast to the inorganic tracers and phyto-
plankton, the data sets for organic components (particularly
zooplankton, POP and DOP) are much more sparse in space
and time (see also Appendix A1 and Table A1). They are
typically sampled and measured during ship cruises and pro-
vide rather a local snapshot of the biogeochemical system
that is likely to be affected by the local physical conditions.
The sparseness and episodic nature of the observations in
conjunction with the coarse and climatological global model
circulation can pose some limitations for the assessment of
model skill against these tracers, which are discussed fur-
ther below. In this first attempt to calibrate a global model

against all simulated tracers and thereby examine the poten-
tial impact of a calibration bias on various timescales, we
neglect the data sparsity in our optimisation and assume that
the observations are representative, at least to some extent, of
the average state of a larger geographic domain. By applying
various metrics to a posteriori model assessment, we evaluate
the consequences of this assumption, as detailed in the next
section.

2.3 The misfit function and other metrics

Model misfit (i.e, the cost function applied during op-
timisation) was calculated by the root-mean-square error
(RMSE) between simulated and observed annual mean trac-
ers mapped onto the respective three-dimensional model ge-
ometry (see also Kriest et al., 2017, 2020; Kriest, 2017). By
considering annual means, we neglect any mismatch between
the temporal variation of simulated and observed tracers;
this choice was motivated by the climatological forcing of
the applied circulation, which could not reproduce the tem-
poral variability inherent in many of the observational data
sets. Deviations between the model and observations were
weighted by the volume of each individual grid box, Vi , ex-
pressed as the fraction of total ocean volume V T

j where ob-
servations exist for tracer j . The sum of weighted deviations
was then normalised by the global mean concentration of the
observational data of tracer j (oj ), and the resulting dimen-
sionless numbers were added to provide the scalar misfit over
all seven tracers, J opt

RMSE:

J
opt
RMSE =

7∑
j=1

J
opt
RMSE(j)

=

7∑
j=1

1
oj

√√√√ Nj∑
i=1
(mi,j − oi,j )2

Vi

V T
j

, (1)

where j = 1,2, . . . ,7 indicates the tracer type (phosphate, ni-
trate, oxygen, phytoplankton, zooplankton and dissolved and
particulate organic phosphorus), and i = 1, . . . ,Nj denotes
the model grid boxes where observations exist. oi,j are the
observations (in units of mmol P m−3 for all tracers except
nitrate and oxygen), and mi,j are the model equivalents. For
a model that deviates from the observations by less than the
global mean value of each observed variable, the cost func-
tion value is smaller than 7.

In the different optimisations, we considered different
combinations of data sets and spatial domains for the eval-
uation of the misfit function J opt

RMSE (see below, Sect. 2.4),
yielding different properties of that metric. Therefore, the re-
sults obtained with Eq. (1) for the different optimisation se-
tups cannot be compared directly. For an independent and in-
formative comparison of the optimal model performance and
to examine the consequences and limitations of the metric

Biogeosciences, 20, 2645–2669, 2023 https://doi.org/10.5194/bg-20-2645-2023



I. Kriest et al.: Tuning of global BGC models 2649

applied through Eq. (1), we evaluated several other metrics a
posteriori for the optimal model solutions.

Firstly, we calculated Eq. (1) for nutrients, oxygen, zoo-
plankton and DOP in the upper 100 m, phytoplankton in the
surface layer, and POP through the entire vertical domain,
regardless of whether these data were all considered during
optimisation. We name this metric J post

RMSE.
Secondly, we calculated several performance statistics

such as the volume-weighted RMSE, the global bias B, the
unbiased RMSE (RMSE’, i.e. RMSE with bias subtracted),
the normalised standard deviation σ ∗ and the Pearson corre-
lation coefficient r . These quantities are related through

RMSE’2
= RMSE2

−B2 and
RMSE’
σo

=

√
1+ σ ∗2− 2σ ∗ r

(Taylor, 2001; Jolliff, 2009), where σ ∗ = σm/σo is the (spa-
tial) standard deviation of the model data divided by that of
the observations, and the global bias B is given by the dif-
ference between volume-weighted average concentrations in
the model and the observations. To compare the bias of dif-
ferent model components, we also evaluated the normalised
bias B∗, i.e. the bias divided by the global mean of ob-
servations. Volume weighting was obtained through Ferret’s
tools for averaging, calculation of variance and regression.
We note that, in the absence of any model bias, RMSE will
equal the unbiased RMSE’, and the mismatch between model
and observations indicates a mismatch between the ampli-
tude (as given by the standard deviation) and the phase or
spatial match (as given by the correlation coefficient) of two
spatial patterns. Following Jolliff (2009), we therefore refer
to r , σ ∗ and RMSE’ as pattern statistics or pattern matching.

2.4 Experimental setup

Using MOPS coupled to ECCO TMs, Kriest et al. (2020)
optimised six biogeochemical model parameters against
global nutrients and oxygen following a model spin-up of
3000 years (ECCO∗ in Kriest et al., 2020). To explore the ef-
fects of data sets and spin-up length, we modified the setup
by Kriest et al. (2020) and performed five optimisations that
have the following common characteristics:

– Starting from observed inorganic tracer distributions
(Garcia et al., 2006a, b) and globally constant organic
tracer concentrations of 10−4 mmol P m−3 (as in Kriest
et al., 2020), model spin-up time was only 10 years be-
fore the evaluation of Eq. (1).

– Because of the short spin-up time and our focus on the
adjustment of parameters related to surface processes,
calculations of the models’ fits to nutrient and oxygen
concentrations were restricted to the upper 100 m.

These five optimisations differed with respect to (i) their
combinations of organic tracers considered in the misfit func-

tion and (ii) the number, type and variational ranges of pa-
rameters to be optimised (Table 1). The five short-term op-
timisations are complemented by a sixth one, in which we
spun up the model over 3000 years before evaluating an
extended misfit function that includes nutrients and oxygen
throughout the entire vertical domain in addition to surface
plankton and particulate organic matter (Table 1). As noted
above, 3000 years of spin-up may even be too short to reach
steady state. Indeed, a perfect optimisation setup would de-
rive the spin-up time depending on, e.g. a Euclidean norm;
however, this so far does not seem feasible in the current
technical setup of optimisation, where 10 model simulations
with different sets of parameters run in parallel and where the
setup that is slowest to adjust would determine the computa-
tional demand of every iteration, resulting in a large poten-
tial computational overhead. However, after 3000 years, lo-
cal tracer concentrations will only show small changes over
time and with small effects on the misfit function (Kriest,
2017), even if the global inventories of oxygen and nitrate
may still show some drift (Kriest and Oschlies, 2015). The
six optimisations are identified by the length of the spin-up
time (S for short and L for long), the number of parameters
to be optimised (four or six) and, starting from optimisations
against all tracer types (All), the successive removal of spe-
cific tracer types (-DOP or -Org) or spatial domains (SO –
see below) from the misfit function.

S6∗-All: wide boundaries for the particle flux exponent
In our initial optimisation, we allow the detritus sinking
speed, expressed through the particle flux exponent
b (see also Kriest and Oschlies, 2008, 2015), to vary
between 0.5 to 1.8. The other five parameters subject
to optimisation are the light affinity of phytoplankton
(expressed as a half-saturation irradiance Ic), the maxi-
mum zooplankton growth rate (µZOO), two parameters
that regulate the production and decay of DOP (σDOP
and λDOP, respectively), and the oxygen demand for
every mole of phosphorus remineralised, R−O2 :P.

S6-All: narrow boundaries for the particle flux exponent
This setup is similar to S6∗-All but with values of the
particle flux exponent b being restricted to a lower
bound of 1. With such restriction, we follow findings
of earlier optimisations where estimates of optimal b
ranged between 1 (Kwon and Primeau, 2006) and 1.46
(Kriest et al., 2020).

S6-DOP: excluding DOP data Based on S6-All, we here
exclude DOP data from Eq. (1), which allows us to in-
vestigate the relevance of DOP data for constraining the
estimates of the six parameters of interest. In particular,
we are interested in whether the two DOP parameters
σDOP and λDOP can be efficiently constrained by a mis-
fit function that lacks information on DOP.

S4-SO: excluding Southern Ocean phytoplankton data
For experiment S4-SO, we reduce the number of
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parameters for optimisation simply by adopting the
best estimates of the DOP parameters σDOP and λDOP
obtained from S6-All. Furthermore, we exclude DOP
and chlorophyll data south of 40◦ S, which embraces
large HNLC (high-nutrients, low-chlorophyll) regions
where phytoplankton growth is limited by iron. With
this approach, we want to analyse whether the neglect
of iron limitation in MOPS yields a bias in parameter
estimates of the light affinity and/or zooplankton graz-
ing. Such biased estimates may result from parameter
adjustments that compensate for the unresolved iron
limitation in HNLC regions. We note that, in an inter-
mediate step, we carried out an optimisation similar
to S4-SO but with the Southern Ocean data included.
This optimisation resulted in parameters which were
very similar to those obtained from S4-SO and hence
produced very similar model results. We therefore do
not include these in our further model analysis but
present the results of this complementary optimisation
(here named S4-DOP) in Table S1 in the Supplement.

S4-Org: excluding all organic data Optimisation S4-Org
tests the impact of organic tracer data and how they
can affect optimal parameter estimates and model per-
formance in general. The setup of S4-Org is similar to
S4-SO, but it excludes observations of organic tracers
everywhere, which leaves only surface data (0–100 m)
of nutrients and oxygen to enter Eq. (1).

L4-SO: including deep nutrients and oxygen We finally
investigate the impact of deep nutrient and oxygen con-
centrations on the optimal model solution by extending
the model spin-up time to 3000 years and then con-
sider global nutrients and oxygen in the evaluation of
the misfit function. Otherwise, the setup is the same as
for S4-SO, i.e. with DOP and phytoplankton data ex-
cluded south of 40◦ S.

The six models setups with the respective optimised pa-
rameter sets were analysed at two time slices, namely after 10
and 3000 years of spin-up. With these cross-validation model
runs, we investigate the impact of spin-up time on the model
performance on various timescales. In particular, we extend
all model runs of the optimal S scenarios to 3000 years; like-
wise, we also analyse the model performance of L4-SO after
10 years of simulation. For a consistent comparison of model
performance after optimisation we always include all tracers
in the different metrics, regardless of the contribution to the
misfit during optimisation.

Optimisations were carried out using an evolutionary esti-
mation of distribution algorithm, namely the covariance ma-
trix adaption evolution strategy (CMA-ES; Hansen and Os-
termeier, 2001; Hansen, 2006). A detailed description of how
this algorithm is embedded in the coupled biogeochemistry–
TMM framework is given in Kriest et al. (2017). Briefly,
during each iteration (generation), the algorithm defines a

population of 10 individuals (10 biogeochemical parameter
vectors of length n for n parameters to be optimised), sam-
pled from a multivariate normal distribution in Rn. For every
individual parameter vector, the model is run for a 10-year
period (in the S scenarios) or 3000 years (L4-SO). Results
of the corresponding model solution are evaluated via the
misfit function (Eq. 1). The statistical properties of the cur-
rent population, as well as of previous generations, are used
to update a mean vector and a (scaled) covariance matrix,
whose elements reveal how sensitive the misfit function is to
specific variations of parameter values. An ensemble of new
parameter values is sampled according to the updated mean
estimates and covariance matrix in Rn respectively. With the
repeated updates, the parameter-sampling space is gradually
adapted towards a region of lower misfit function values un-
til no further reduction of the lowest misfit function value
can be achieved. Ideally, the mean of the final ensemble of
parameter estimates represents the global minimum of the
parameter–misfit-function manifold.

3 Results and discussion

We first evaluate the performance of the optimisation proce-
dure and compare the optimised model solutions against the
best solution obtained with ECCO∗ in Kriest et al. (2020),
for which global data of nutrients and oxygen were used and
a model spin-up of 3000 years was considered. We then eval-
uate the contribution of the different data types to the model
misfit function (Eq. 1), as well as to the model performance
measured by the following independent diagnostics: (i) Pear-
son correlation coefficient; (ii) unweighted RMSE against
all observations; (iii) biogeochemical fluxes, such as primary
production or particle flux; (iv) global oxygen inventory; and
(v) OMZ volume. Results of these skill metrics are also con-
trasted with those obtained in earlier global model studies.
We finally compare the spread of model solutions that arise
from the distinct optimisation setups (Table 1) with those ob-
tained on different simulation timescales.

3.1 Optimal parameter estimates and optimisation
performance

The different optimisation setups generate parameter esti-
mates that are all distinct from those originally derived for
the reference ECCO∗ configuration (see Table 2). Optimal
estimates of the half-saturation irradiance, Ic, are at least
twice as high as that of ECCO∗. These higher estimates re-
duce the light affinity of the phytoplankton in our ensemble
of optimal model solutions. Apart from the S4-Org setup, op-
timal values of the maximum grazing rate µZOO exceed the
ECCO∗ estimate. A reduced light affinity together with an
enhanced grazing pressure can be expected to reduce max-
ima in phytoplankton biomass. Only the S4-Org setup, for
which all organic data are excluded from the misfit function,
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Table 1. Experimental setup of different model runs and optimisations: range of parameters and data sets included in Eq. (1). Parameter
values in italics are fixed, i.e. not subject to optimisation.

S6∗-All S6-All S6-DOP S4-SO S4-Org L4-SO Unit

Spin-up time

10 3000 Years

Parameters

Ic 4–48 W m−2 d−1

µZOO 1–3 d−1

R−O2 :P 150–200 mol O2 :mol P

b 0.5-1.8 1–1.8

σDOP 0–0.5 Fixed at 0
λDOP 0.036–36 Fixed at 0.1848 yr−1

Observations

PO4 0–100 m Full depth (mmol P) m−3

NO3 0–100 m Full depth (mmol N) m−3

O2 0–100 m Full depth (mmol O2) m−3

DOP 0–100 m – (mmol P) m−3

Surface Phy Global 40◦ S–80◦ N – 40◦ S–80◦ N (mmol P m−3)

Zoo 0–100 m – 0–100 m (mmol P) m−3

POP Full – Full depth (mmol P) m−3

comprises a value for the maximum grazing rate that is much
lower than that of ECCO∗. Notably, it is this particular setup
that also yields the highest possible value of the exponent of
the particle flux profile (b = 1.8), which enhances shallow
remineralisation of particulate organic matter and reduces
the particle flux to the ocean interior. For all other setups,
estimates of b remain lower (0.8 to ≈ 1) than the ECCO∗

reference value (b = 1.46). Optimal estimates of R−O2 :P,
which regulates oxygen demand of remineralisation, are al-
ways larger than that of ECCO∗, with values for S6-DOP
and S4-Org being at its upper limit of 200 mol O2 :mol P. In
general, best model fits to observations are achieved when
the fraction of DOP production (σDOP), which regulates the
production of DOP through zooplankton sloppy feeding and
phytoplankton exudation, has values that are one-third that
of ECCO∗ or lower. We note that another source of DOP is
a linear mortality rate of phyto- and zooplankton of 0.01 d−1

(see Kriest and Oschlies, 2015). Values of the DOP decay
rate (λDOP) are almost unchanged from those of ECCO∗, ex-
cept for a higher rate estimate in the S6∗-All setup.

The efficiency of the optimisation procedure can be de-
duced from the number of generations required for conver-
gence (L in Table 2). The number of generations for iden-
tifying an optimal solution is not affected by the imposed
range of possible parameter values for b, as is apparent when
comparing setup S6-All (L= 138) and the setup S6∗-All
(L= 140). Clearly, DOP data are helpful for constraining the

full set of six model parameters to be optimised. This is indi-
cated by the large number of iterations (L= 349) needed for
the optimisation S6-DOP. Yet, even in the absence of DOP
data and despite a larger number of iterations, our results re-
veal that rate estimates of DOP production and decay can
be obtained, similarly to estimates achieved with DOP data
included. When fixing values of the two DOP parameters to
their best estimates of S6-All, the number of parameters to be
optimised is reduced to four (S4-SO and S4-Org). Because
of the reduced dimensionality of the problem, convergence
is now accomplished faster (L= 87 and 115, respectively).
The fastest convergence is achieved by extending the model
spin-up time and by the additional consideration of the deep
nutrients in L4-SO. However, this comes at the cost of a 300-
fold increase in simulation time.

Regardless of the optimisation setup, values of the minima
of the normalised misfit function J post

RMSE are mostly similar
among the different model setups optimised against organic
tracers when the misfit is evaluated a posteriori for all trac-
ers and regions (Table 2 and Fig. 1). Compared to the so-
lution of ECCO∗, which shows a misfit of 7.072, J post

RMSE de-
creases by 14 % (S6-DOP, J post

RMSE = 6.082) to 15 % (S∗6-All,
J

post
RMSE = 6.03) in optimisations that include organic tracers

(Table 2 and Fig. 1). Excluding organic tracers in the optimi-
sation (S4-Org) results in a misfit that is only a few percent
smaller than that of ECCO∗, an optimised solution that dis-
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Table 2. Results of different model optimisations: number of generations L until optimisation convergence, final optimal metrics J post
RMSE (see

Sect. 2.3) and optimal parameters (in italics – parameter values fixed in the respective optimisation). Values in squared parentheses show the
range of parameter values for which the misfit function is within 0.1 % of its minimum value. Note that the misfit J post

RMSE presented here
includes every tracer and region, even if disregarded during optimisation. For comparison, we also provide the parameter estimates and the
misfit of the configuration ECCO∗ described in Kriest et al. (2020), which resulted from an optimisation against global nutrients and oxygen
after a spin-up of 3000 years.

S6∗-All S6-All S6-DOP S4-SO S4-Org L4-SO ECCO∗

L 140 138 349 87 115 39 –

J
post
RMSE 6.030 6.052 6.082 6.046 6.874 6.125 7.072

Optimal parameters:

Ic 34.44 33.98 31.57 28.84 38.38 22.11 9.65
[31.4–37.4] [31.5–35.0] [28.3–34.7] [26.0–31.8] [32.4–39.9] [17.2–25.2]

µZOO 2.801 2.594 2.895 2.807 1.021 2.369 1.893
[2.63–2.87] [2.45–2.72] [2.63–3.00] [2.44–3.00] [1.00–1.33] [2.10–2.79]

R−O2 :P 187.8 188.3 200.0 200.0 189.5 169.3 151.1
[185.9–193.6] [181.3–190.4] [194.0–200.0] [184.9–200.0] [180.0–190.6] [161.8–175.9]

b 0.803 1.000 1.000 1.000 1.800 1.024 1.461
[0.77–0.83] [1.00–1.02] [1.00–1.04] [1.00–1.03] [1.78–1.80] [1.00–1.09]

σDOP 0.028 0.000 0.049 0.000 0.000 0.000 0.150
[0.02–0.07] [0.00–0.00] [0.00–0.07]

λDOP 0.238 0.184 0.168 0.184 0.184 0.184 0.170
[0.20–0.34] [0.15–0.22] [0.12–0.24]

regarded organic tracers as well. Thus, a 14 % to 15 % reduc-
tion of the misfit appears as a robust result when introducing
organic tracers as additional constraints.

To summarise, considering the trade-off between simula-
tion time (S vs. L setups), number of iterations required (L
in Table 2) and the improvement of the misfit (Eq. 1) for all
tracers and regions, it is apparent that a good prior estimate of
the production and decay parameters for DOP, as in S4-SO,
helps to achieve a reasonable model fit to observations while
keeping the computational costs relatively low. In contrast,
the omission of organic observations from the misfit func-
tion, as in S4-Org, deteriorates the model fit to observations
in the upper 100 m and on shorter timescales.

3.2 Optimal model performance for various surface
metrics on different timescales

Improved fits to surface nutrients are achieved from the opti-
misations, exhibiting a substantial reduction in J post

RMSE down
to about one-half that of ECCO∗ (Fig. 1 and Table S2 in
the Supplement). The improvement in representing plankton
concentrations is less pronounced (less than 10 %) in contrast
to a 25 % reduction of J post

RMSE of DOP (Table S2 in the Sup-
plement). Much of the adjustment is due to a reduction in
normalised bias B∗ (see Sect. 2.3), which decreases to less
than 5 % that of ECCO∗ for plankton and DOP and becomes

less than 20 % for nutrients (Fig. 1 and Table S2 in the Sup-
plement). However, the inorganic tracers’ contribution to the
total misfit function J post

RMSE is small, whereas the organic trac-
ers still have a considerable residual misfit, particularly POP
and zooplankton.

The large remaining misfit can be explained by a lack of
spatial correlation between observed and modelled patterns,
as is evident from Taylor diagrams in Fig. 2. Even after op-
timisation, the correlation coefficients r (see Sect. 2.3) of
the different organic components remain low, between 0.3
and 0.4 for phytoplankton and less than 0.2 for zooplank-
ton. Likewise, the RMSE’ (RMSE with bias subtracted) is
quite large. Thus, an optimisation with observations of or-
ganic tracers included does not reduce the pattern error (r
and RMSE’), which explains the similar performance of S4-
Org compared to the other model setups.

Simulated organic tracers exhibit a spatial variability σ ∗

(see Sect. 2.3) that is much lower compared to observations
in all setups where organic tracers are considered (Fig. 2).
The solution of S4-Org yields a greater spatial variability
of (phyto)plankton and POP, which actually agrees better
with the observed variability. The larger variability of organic
components in S4-Org likely arises because of its large opti-
mal value for b, which triggers shallow remineralisation and
thus a larger nutrient supply to the surface. Combined with
a low grazing rate, this allows phytoplankton to reach higher
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Figure 1. Components of J post
RMSE (a, b) and normalised bias B∗ (c, d) of the optimised model runs and from ECCO∗ by Kriest et al. (2020).

(a, c) After 10 years, (b, d) after 3000 years. The different fractions of the bars denote the contribution of each tracer j to the misfit. Note
that metrics have been evaluated for every tracer and region, even if these where not considered in the optimisation (DOP in S6-DOP, S4-SO,
S4-Org and L4-SO; organic tracers in S4-Org; phytoplankton south of 40◦ S in S4-SO and L4-SO).

phytoplankton biomass (Fig. S1 in the Supplement), thereby
generating larger variance.

All metrics (J post
RMSE, RMSE’, correlation r , normalised

standard deviation σ ∗ and normalised bias B∗) show simi-
lar responses to parameter changes after a simulation time of
3000 years (Figs. 1 and 2, right panels). Therefore, a spin-up
length of 10 years seems to be sufficient to examine model
skill with respect to surface metrics. However, this stability
can be due to the low sensitivity of the metrics because of the
coarse circulation that may dampen the differences at various
timescales.

Compared to S4-SO, optimisation L4-SO combined two
changes to the misfit function, namely a change of spin-up
length before evaluation of the misfit function and the consid-
eration of deep inorganic tracers. The combination of these
two changes was necessitated by the long timescales of deep-
ocean processes and circulation, which require a long spin-
up to induce effects on deep tracers. To disentangle the ef-
fects of these changes, one could (i) either consider deep in-
organic tracers after a short spin-up time or (ii) spin-up the

model over 3000 years and apply the same metric as in S4-
SO (surface nutrients and organic tracers). For the first case
(i), we note that, after a short spin-up time, simulated deep
tracers would still be very near the model’s initial condition,
resulting in a misfit that is less informative and not very sen-
sitive to changes in model parameters. Considering the alter-
native case (ii), an extended spin-up time applied with the
same metric as in S4-SO may likely result in surface met-
rics similar to those obtained with a short spin-up time. This
is indicated by Figs. 1 and 2, which show posterior surface
metrics of L4-SO that are quite similar on both timescales. In
addition, they are also quite similar to those of S4-SO, which
applied a shorter spin-up time. These results suggests that the
consideration of deep nutrients and oxygen in L4-SO is espe-
cially important for the parameter regulating the respiratory
oxygen demand R−O2 :P but does not strongly affect the bio-
geochemical turnover and tracer distribution at the surface.

Figure 3 indicates the best model setups with respect to
the different metrics. In general, solutions from optimisa-
tions against organic tracer data perform well for many met-
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Figure 2. Taylor diagrams for annual mean oxygen (circles), phosphate (squares), nitrate (diamonds), phytoplankton (stars), zooplankton
(triangles), DOP (pluses) and POP (inverted triangles) after 10 years (a) and after 3000 years (b). Regardless of optimisation setup (S vs.
L setups), the metrics shown in this plot consider only the fit in the upper 100 m, except for that of POP, which always covers the entire
vertical domain, and phytoplankton, which is based on phytoplankton in the first model layer (0–10 m; see Table 1). Colours indicate model
solution from the optimisations listed in Table 1. Small black symbols additionally show results of ECCO∗. Normalised standard deviation
σ∗ is displayed on the x and y axes. The correlation coefficient r is indicated by dashed radial lines (azimuthal position), and the (unbiased)
RMSE’ is visible as the distance of a symbol from 1 on the abscissa. Note that metrics have been evaluated for every tracer and latitude, even
if these were not considered in the optimisation, as explained in Sect. 2.3.

rics regarding organic tracers. On the other hand, S4-Org,
which considers only the misfit of dissolved inorganic trac-
ers, performs best for the bias (expressed as |B|), J post

RMSE, r
and RMSE’ of nutrients. Surprisingly, L4-SO outperforms
the other model setups with regard to the correlation between
observed and simulated plankton and POP (Fig. 3) despite
the fact that optimisation also has to consider deep nutrients
and oxygen. A good correlation between observed and sim-
ulated POP and zooplankton is also obtained with ECCO∗,
which was not optimised against any organic tracers (Kri-
est et al., 2020) but only against global inorganic tracers.
This points towards a potential tight coupling between POP
(and its sinking flux) and global nutrient and oxygen distribu-
tion, in agreement with earlier studies (Kwon and Primeau,
2006; Kriest et al., 2012). Yet, in many cases, metrics that are
closely related to spatial surface patterns, such as RMSE’,
J

post
RMSE and r , are quite insensitive to the optimisation strat-

egy (see hatched patterns in Fig. 3). The small difference in
model outcomes with respect to the correlation coefficient r
of nutrients and oxygen can be explained by the fact that r
was already high prior to optimisation, leaving little room
for further improvement of the overall spatial patterns (see
also Fig. 2). Thus, all model setups remain, more or less, at
the same low-level model fit with regard to pattern-matching
metrics, whereas global (integral) metrics such as the bias or
the normalised standard deviation are more sensitive to the
optimisation strategy.

The metrics for surface nutrients obtained in our experi-
ments agree well with those of other global model studies
(see Table S3 in the Supplement), in particular with regard to
the high correlation coefficient (between 0.93–0.96), small
bias and a normalised variance around 1. Global model stud-

Figure 3. Summary of optimal model setups after 10 years of simu-
lation for different metrics (y axis) and tracers (x axis). The former
include the deviation of normalised model standard deviation from
1 (absolute values), RMSE’ and Pearson correlation coefficient r
(see also Fig. 2), normalised RMSE J post

RMSE, and global bias B, ex-
pressed as an absolute value (see also Sect. 2.3). The colour code in-
dicates the best model solution for the respective tracer and metrics.
Hatched fields indicate that, within that specific metric, the respec-
tive tracer range is less than 10 % of the average of all six model
setups.

ies also sometimes report model performance with respect
to chlorophyll but not always in the same way. Some stud-
ies report a correlation of log-transformed chlorophyll be-
tween 0.6 and 0.7 (Dunne et al., 2013; Moore et al., 2013;
Aumont et al., 2015), which is higher than we could achieve
with our optimisations (r of log-transformed phytoplankton
between 0.36 to 0.48 after 10 years of simulation and be-
tween 0.27 and 0.51 after 3000 years). Correlation of un-
transformed chlorophyll varies much more, from high val-
ues of ≈ 0.85 (Le Quere et al., 2016, 10-year average after
a model spin-up of 10 years) to lower values around 0.3 to
0.4 (Yool et al., 2013; Seferian et al., 2013). When analysing
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the performance of six different BGC models in a common
circulation, Kwiatkowski et al. (2014) found variable fits to
observations, resulting in a range of r between almost zero
to 0.5 (see also Table S3 in the Supplement). With r ranging
between 0.3 and 0.4, our model results are at the lower end of
this range. The quite low spatial variability observed in our
study agrees with the low variability reported for half of the
models tested by Kwiatkowski et al. (2014).

For organic tracers other than chlorophyll, an evaluation
of model skill has been carried out less often. Stock et al.
(2014, 2020) and Aumont et al. (2015) report a fit of sim-
ulated to observed mesozooplankton, with r between 0.37–
≈ 0.5, which is higher than the fit of our model ensemble
(generally around 0.1). The models applied in these studies
all distinguish between meso- and microzooplankton. This
indicates that a more complex parameterisation of zooplank-
ton, and thus a larger number of free parameters, may im-
prove the model fit to corresponding data.

After fitting a global model against observed DOC, DON
and DOP, Letscher et al. (2015) achieved correlations of log-
transformed data of semi-labile DOP in the upper 500 m be-
tween 0.3 and 0.44, which is higher than in our study (0.18 to
0.22 and 0.15 to 0.20 for spin-up times of 10 and 3000 years,
respectively). Depending on model setup, the bias in their
model solutions ranged between −25 % and 136 % of the
observed value (Letscher et al., 2015, their Table 4). With re-
gard to r , the performance of our optimised model solutions
appears to be seemingly poor, but at the same time, the bias
could be reduced down to−3 % and 3 % for S6∗-All after 10
and 3000 years, respectively. For comparison, the bias in the
ECCO∗ solution is still 96 % (195 %) after 10 (3000) years.

In summary, our model representations of surface nutri-
ents and DOP benefit most from optimisation, yet much of
the improvement, especially for DOP, is due to an extensive
reduction of the bias. The pattern error, as expressed through
RMSE’ or r , improves slightly for the inorganic tracers but
hardly for the organic tracers. This lack of improvement in
the simulated patterns of the organic tracers can likely be at-
tributed to the coarse spatial resolution (1◦× 1◦) and clima-
tological circulation applied in the experiments. In contrast
to this, observations, especially of zooplankton, DOP and
POP, depend on local hydrodynamics and episodic events
which are not resolved by this type of model. This seems to
impede an improvement towards observed patterns, leaving
only room for an improvement in the bias.

A potential solution to this problem could be to apply
optimisation to a coupled physical–biogeochemical model
that more realistically resolves the physical environment at
high spatial and temporal scales. However, such a model
could hardly be simulated at a global scale over more than
a few decades. In addition, even a model that resolves ed-
dies and filaments well may not exactly reproduce the posi-
tion and timing of mesoscale physical features such as eddies
and filaments, again with consequences for biogeochemical

variables and hence the pattern-matching statistics such as
RMSE’ or correlation.

A misfit function that involves point-wise, local data–
model residuals, such as the J opt

RMSE applied during optimi-
sation, will attribute to tracers some high error caused by the
dynamical representation of physics that does not resolve lo-
cal real-time and (sub)mesoscale dynamics (representation
error). Because of the large contribution of the pattern er-
rors to the overall J opt

RMSE, most parameter estimates are pre-
sumably biased. We speculate that the introduction of obser-
vational error information appears to be essential for over-
coming the problem of paucity of the organic data, which
is apparently less critical for the large amount of global,
objectively analysed, inorganic data of nutrient concentra-
tions. Such observational error information may combine un-
certainties in measurements (or in observational data prod-
ucts) with the representation error that accounts for spatio-
temporal variability unresolved by the model. This would
require switching from RMSE to a likelihood-based metric.
Rather than summing up point-wise local residuals, combin-
ing data to describe their statistical properties on a regional
scale is one way of obviating pattern errors to affect pa-
rameter estimation. The problem of pattern errors affecting
parameter estimates can be reduced if the means of possi-
bly log-transformed data of specified ocean regions are com-
bined with spatial variance information, e.g. as in Chien et al.
(2022), who considered biomes derived by Fay and McKin-
ley (2014) as regional entities.

3.3 Global biogeochemical fluxes

After a spin-up of 10 years, all experiments except S4-Org
exhibit lower global primary production than the observa-
tional estimates (Fig. 4). The underestimation of primary
production in high latitudes could be caused by the low
light affinity of phytoplankton (Table 2), which affects phyto-
plankton growth, especially in high latitudes. This is less ex-
pressed in the tropics and subtropics, where light limitation
plays a smaller role. Interestingly, the setup with the low-
est light affinity, S4-Org, reveals the highest global (Fig. 4)
and zonally averaged (Fig. S2 in the Supplement) primary
production, indicating that the reasons for the variations in
this flux have to be sought elsewhere. Most likely, shallow
remineralisation induced by b = 1.8 in S4-Org increases sub-
surface nutrient concentrations and hence nutrient supply to
the euphotic zone, thereby increasing production, especially
in the tropics (Fig. S2 in the Supplement). Extending the
model runs to 3000 years further enhances global primary
production in the solution of S4-Org. Here, the northward
transport of unutilised nutrients from the Southern Ocean,
caused by shallow remineralisation and light limitation, es-
pecially in S4-Org, might play a role (see Figs. S3 and S2
in the Supplement, which show zonally averaged inorganic
tracers and biogeochemical fluxes), a feature that has already
been noticed by, for example, Keller et al. (2016). Global pri-
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mary production of our model ensemble is somewhat at the
lower end of the large range of 28 and 82 Pg C yr−1 obtained
with other global models (see also Table S4), but within the
range of more recent estimates between 22 to 57 Pg C yr−1

of CMIP6 models (Seferian et al., 2020).
The high maximum grazing rates (Table 2) cannot com-

pensate for the impacts of the low primary production on
global grazing fluxes in model setups S6∗-All to S4-SO and
L4-SO, resulting in a global grazing flux that is only about
half of the observed estimate. We note that the grazing esti-
mates by Steinberg and Landry (2017) are based on an as-
sumed global primary production of 50 Pg C yr−1 (i.e. much
larger than simulated by most of our model experiments);
however, even when correcting our results of global grazing
by the respective underestimates in production, the models
would remain biased low. Also, our simulated global grazing
turns out to be lower than the grazing simulated by Aumont
et al. (2015) (see Fig. 4 and Table S4 in the Supplement) or
Stock et al. (2014). Both models by Aumont et al. (2015)
and Stock et al. (2014) distinguish between two or three zoo-
plankton classes, whereas in our study, all zooplankton types
are aggregated into a single class, representing large, motile
organisms such as copepods, as well as microzooplankton
such as ciliates and flagellates. Explicitly resolving the latter
group with its higher grazing rates and turnover could result
in a larger global grazing of zooplankton; for example, in
the study by Aumont et al. (2015), microzooplankton con-
tributes to more than 90 % of total grazing on phytoplankton
and 78 % in the study by Stock et al. (2014). Together with
the underestimated zooplankton biomass noted above, this
indicates that a more detailed representation of zooplankton
might provide a more realistic potential link to models of
higher trophic levels (as, e.g. in Stock et al., 2017).

In contrast to primary production and grazing, global ex-
port production is similar in all model simulations (Fig. 4)
despite the considerable differences in optimal b (Table 2).
The similarity in export production arises mainly from the
compensating effects of lower primary production but faster
sinking for the model runs with b / 1. For S4-Org (with
b = 1.8), the enhanced primary production is clearly com-
pensated for by the slower sinking of particles. Our results
are thus consistent with the notion that, for all reasonable
parameter settings, it is the ocean circulation that controls
new production and export production (Oschlies, 2001; Naj-
jar et al., 2007; Kriest et al., 2020)

Global particle flux at 2000 m simulated by our differ-
ent model setups depends strongly on the optimal value of
b, with the largest flux obtained by b = 0.8 (S6∗-All) and
the lowest by b = 1.8 (S4-Org). The flux of the four model
configurations with b ≈ 1 falls within values suggested by
Honjo et al. (2008, 0.43 PgC yr−1) and Henson et al. (2012,
0.66 PgC yr−1) but is larger than the estimates by Dunne et al.
(2007, 0.2 PgC yr−1) and Guidi et al. (2015, 0.33 PgC yr−1).
The low value of b = 0.8 in setup S6∗-All causes a deep
particle flux that exceeds the high global estimate by Hen-

son et al. (2012), whereas S4-Org, with b = 1.8, simulates
a global flux that is below all other estimates at 2000 m
depth. Except for the extreme values of S4-Org and S6∗-
All, the range of simulated global particle flux coincides
with that of other model studies, ranging between 0.16 and
0.81 Pg C yr−1 (see also Table S4 in the Supplement).

The range in particle flux profiles applied in the differ-
ent model setups also affects the (particle) transfer efficiency
TE, as calculated by dividing the simulated particle flux at
1000 m by the particle flux at a depth of 100 m. Dividing
global mean particle flux at these two depths, our model sim-
ulations with b = 1 and after a spin-up of 10 years exhibit
a TE of 0.17–0.18, which agrees with the observed range re-
ported by Wilson et al. (2022). Considering the full set of our
model experiments results in TE between 0.06 (S4-Org with
b = 1.8) and 0.23 (S6*-All, b = 0.8). This variation is almost
as large as that of different global models analysed by Wil-
son et al. (2022), which vary between TE= 0.03 (UKESM1-
0-LL) and TE= 0.25 (IPSL-CM5A2-INCA).

We note that, when diagnosing TE from simulated model
fluxes, a considerable fraction of the transfer of particulate
organic matter is due to processes other than particle sink-
ing. While theoretically it seems straightforward to derive
the (nominal) TE directly from the applied particle flux pro-
file (for example, b = 1 would result in TE= 0.1), TE diag-
nosed from our simulated model fluxes exceeds this value
by 70 % to 80 %. The discrepancy between the nominal and
diagnosed TE arises from many facts – for example, the
additional physical transport of particulate organic matter
through mixing or upwelling, reduced remineralisation in
oxygen minimum zones and/or numerical diffusion (Kriest
and Oschlies, 2011). Because of the very variable setup of
global models that differ in resolution, physical and biogeo-
chemical aspects, it may be difficult to disentangle the rea-
sons for their divergence in TE. However, our results suggest
that variations in model parameters (especially the particle
flux parameter) may account for a considerable fraction, but
not all, of the variation in TE.

Given the many assumptions that go into observed global
estimates of deep particle flux and the potentially strong
effect of this flux on transfer efficiency and carbon stor-
age, we additionally examined simulated particle flux against
three different data sets of sediment trap observations (see
Sect. A2 in the Appendix). While the correlation coefficient
of ECCO∗ to observations ranged between 0.22 to 0.28 for
the three different data sets (no figure), optimisation im-
proves the correlation between simulated and observed parti-
cle flux to values between 0.3 and 0.41 after 10 years (Figs. 5
and S4, S5 and S6 in the Supplement), which declines to
0.24 to 0.39 after 3000 years. These correlations are only
slightly better than those found by Schwinger et al. (2016),
who tested four different sinking parameterisations in a sub-
jectively tuned global model and found r between 0.11 and
0.32 (the highest value was achieved with a spatially vary-
ing particle flux length scale). Depending on b, in agreement
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Figure 4. Global annual biogeochemical fluxes (Pg C yr−1) of primary production (a), zooplankton grazing (b), export production (c) and
particle flux at 2000 m (d) of different model setups. Coloured bars show flux after 10 years (as in the optimisations), and hatched bars show
the flux when the model is simulated with the same parameters over 3000 years. Straight lines denote observational flux estimates by Carr
et al. (2006, PP), Steinberg and Landry (2017, grazing by micro- and mesozooplankton), Lutz et al. (2007, EP), Dunne et al. (2007, EP and
F2000), Honjo et al. (2008, EP and F2000), Henson et al. (2012, EP and F2000) and Guidi et al. (2015, F2000). Thin dashed lines show
results of other global model studies listed in Table S4 in the Supplement. Light- and dark-shaded areas in panels (a) and (c) indicate the
range of fluxes simulated by CMIP6 and CMIP6 models, respectively (Seferian et al., 2020, their Table 4). Star indicates results of ECCO∗

by Kriest et al. (2020).

with the comparison for global flux at 2000 m (Fig. 4), parti-
cle flux averaged over the individual sites and depths can be
biased very high (S6∗-All with b = 0.8) or low (S4-Org, b =
1.8) and is otherwise between 66 and 212 mmol C m−2 yr−1

(Figs. S4, S5 and S6 in the Supplement). After 3000 years,
both bias and variance show a smaller range of the model
ensemble (see Figs. 4 and 5).

Thus, for model setups with b ≈ 1 or less, the turnover
at the sea surface seems to be reduced, and the transport to
the ocean interior might be too high, at least when applying
a particle flux exponent of b = 0.8. Given that differences in
deep particle flux between the model setups are larger in year
10 than in year 3000, this diagnostic could serve as a quite ro-
bust estimator that may constrain model solutions even after
short spin-up periods. However, the spread of observed parti-
cle flux to the ocean interior is large, and the uncertainties in
these observations remain high (e.g. Kähler and Bauerfeind,
2001; Scholten et al., 2001; Buesseler et al., 2008; Siegel
et al., 2008); we thus so far lack a strong observational con-
straint on this global flux.

3.4 Oxygen inventory and OMZ volume

On long timescales, nutrient and oxygen concentrations in
the deep ocean are mainly determined by the value assigned
to the particle flux exponent b and the large-scale circulation
(e.g. Kwon and Primeau, 2006; Kriest et al., 2012). Such
model behaviour is also evident from the normalised stan-
dard deviation of the global nutrient distribution that varies
between ≈ 0.8 to 1.2 for phosphate and nitrate, with S4-Org
(b = 1.8) showing a strong underestimate of spatial variance
(Fig. 6). Despite these variations, all model setups show simi-
larly high correlations to observations and low RMSE’. Con-

sidering oxygen, the models differ mostly with respect to
the correlation coefficient and RMSE’; again, S4-Org shows
the largest deviation from observations, whereas the other
model setups are more or less similar. Even though S4-Org is
the only optimisation setup that exclusively targets inorganic
tracers (but only for the surface), its solution shows the worst
match to observations at a global scale and after 3000 years
of model spin-up. The best model performance with regard
to global nutrients is obtained with either S6-All, S6-DOP
or S4-SO (i.e. model setups with b = 1), but L4-SO clearly
outperforms all other setups with regard to the global oxygen
distribution and variance.

In addition to tracer distributions, the global nitrate and
oxygen inventory may also be affected by changes in model
parameters (Kriest and Oschlies, 2015). Indeed, the six op-
timal model setups presented here show significant dif-
ferences in globally averaged oxygen concentrations: af-
ter 3000 years, the oxygen bias varies between −13.6 and
24.1 mmol O2 m−3 (Fig. 7), i.e. between about −8 % to
14 % of the global observational mean. We emphasise that
this variation arises solely from changes in biogeochemical
model parameters and is not a result of circulation changes.
Again, results of L4-SO outcompete the results of all other
model setups with regard to this metric. The solution of L4-
SO includes a good representation of nitrate (Fig. S7 in the
Supplement), and the good match of the oxygen does not
come at the cost of nitrate as a complementary oxidant. Setup
S4-Org, which targets only surface inorganic tracers, per-
forms worst with respect to nitrate (Fig. S7 in the Supple-
ment). Thus, to achieve a good fit for model estimates of the
global oxygen and/or nitrate inventory after millennial simu-
lation times, it seems necessary to either consider the global
data and long spin-up times for calibration (as in L4-SO) or
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Figure 5. Taylor diagrams for simulated particle flux after a spin-up of 10 years (a) and 3000 years (b) compared to data set by Honjo et al.
(2008, inverted triangles), Lutz et al. (2007, triangles) and Mouw et al. (2016, circles). Colours indicate model type.

Figure 6. Taylor diagrams for annual mean phosphate (a), nitrate (b) and oxygen (c) after 3000 years and analysed over the global domain.
Colours indicate model type. Note that metrics have been evaluated for every tracer and latitude, even if these were not considered in the
optimisation.

– in the case of short spin-up times – to also include organic
tracer data (as in S6∗-All, S6-ALL, S6-DOP or S4-SO).

The bias range found in our study is similar to that of
many models analysed by Bopp et al. (2013), though in their
study one model exhibited a very large positive bias of more
than 53 mmol m−3, and two models were biased very low,
down to −42 mmol m−3, leading to an overall model spread
of 96 mmol m−3. We note that, in our study, changes in oxy-
gen inventory are only induced by biogeochemical parameter
changes, whereas Bopp et al. (2013) report values for mod-
els of different complexity, circulation, forcing and spin-up
time, which explains the larger variation of oxygen in that
study.

Differences in global oxygen bias between the model se-
tups (Fig. 7) do not mirror those for primary production, ex-
port production, grazing or particle flux (Fig. 4). This find-
ing reinforces the complex and non-linear nature of processes
that determine the ocean’s oxygen concentration, even under
climatological forcing. Indeed, over the timescale from 10 to
3000 years, the trajectories over time of the global oxygen

bias differ substantially among the different model setups
(Fig. 8) and can be roughly sorted into three groups. The first
group, consisting of S4-SO, S6-DOP and S6∗-All, shows av-
eraged oxygen concentrations that decrease with time. These
three models are characterised by either a high oxygen de-
mand of remineralisation (R−O2 :P = 200 mol O2 :mol P) to-
gether with a particle flux exponent of b = 1 or a moderately
high R−O2 :P of 187.8 mol O 2 mol P and b = 0.8 (S6∗-All).
In the second group (L4-SO and S6-All, both with b ≈ 1
and a moderate R−O2 :P), the oxygen bias first decreases un-
til about year 2000 and then increases afterwards until ap-
proaching almost zero drift in year 3000. In the remaining
third group, which only consists of S4-Org, oxygen increases
over the entire trajectory, likely owing to the very shallow
remineralisation depth induced by b = 1.8, in conjunction
with a moderate value for R−O2 :P of 189.5 mol O2 :mol P.
Focusing on individual model trajectories, the oxygen bias
varies over time between 4.4 mmol O2 m−3 (L4-SO) and
24.1 mmol O2 m−3 (S4-Org) or between 3 % and 14 % of the
observed value; the variation decreases to less than 5 % if we
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Figure 7. Oxygen bias (a) and bias of OMZ volume, with OMZs defined as O2 < 50 mmol m−3 (b). Global bias B and OMZ volume
calculated from the difference between simulated model results after a spin-up of 3000 years and the observed values from Garcia et al.
(2006b). A star indicates the performance of ECCO∗ by Kriest et al. (2020). Horizontal dashed lines indicate values listed for the different
models in Table 2 of Bopp et al. (2013).

restrict our analysis to the shortest spin-up time applied in
CMIP6 of 150 years (see large vertical bars at the abscissa
in Fig. 8). After 3000 years, the model solutions have di-
verged by 37.7 mmol O2 m−3 or 22 % of the observed global
average oxygen concentration. We note that, at this time,
some setups still show considerable trends. To summarise,
in our study, maximum variations caused by spin-up length
(24.1 mmol O2 m−3) and model setup (37.7 mmol O2 m−3 at
year 3000) are considerable and could potentially explain
25 % and 40 % of the spread observed by Bopp et al. (2013).

The global OMZ volume bias is more sensitive to parame-
ter changes and spin-up length than global oxygen bias. After
3000 years and for a criterion of 50 mmol O2 m−3, the OMZ
volume bias varies between−31 % and 54 % of the observed
volume of 56.7× 106 km3 (Fig. 7). In particular, the output
of S6-All shows a very good agreement with observed OMZ
volume, followed by the solution of S6∗-All and, surpris-
ingly, of S4-Org (Fig. 7) that still shows a declining trend
(Fig. 8).

Like global average oxygen, the metric pattern of the
model setups does not resemble any of the other metrics such
as RMSE or global biogeochemical fluxes (compare Fig. 7
with Figs. 1 and 4). Simulated OMZ volume shows a very
dynamic and non-linear trajectory, that depends strongly on
the model configuration: for an OMZ defined by a criterion
of O2 < 50 mmol O2 m−3, the simulated OMZ volume bias
of individual model setups varies over time between 11 %
and 61 % of the observed OMZ volume (Fig. 8). All models
show an initial decrease within the first few decades, which is
followed by an increase. The strength of the decline and the
timing of the turning point seem to depend on b. Setup S4-
Org with a high b shows the most dynamic trajectory with a
strong initial decline, a late turning point and a second turn-

ing point. This second turning point is less pronounced in
most other setups; it is absent in the solution of S4-SO that
shows an almost continuous increase in OMZ volume bias.

After 3000 years, the OMZ bias seems to depend mostly
on the oxygen demand of remineralisation R−O2 :P. Models
with the largest values of the parameter (S4-SO, S6-DOP)
show a strong overestimate of OMZ volume, whereas L4-SO,
with R−O2 :P = 169.3 mol O2 :mol P, shows the most nega-
tive bias (Figs. 7 and 8). The spread among the optimised
models at this time is almost as large (84 %) as the observed
volume of 56.7×106 km3 but is still much smaller than the
spread of 212.5×106 km3 reported by Bopp et al. (2013).

Yet, even after 3000 years, some models have not reached
equilibrium with respect to the OMZ volume bias (Fig. 8). In
particular, a large value of b, as in S4-Org, induces a highly
dynamic trajectory, which prevents a quantification of its fi-
nal equilibrium state with regard to OMZ volume. The highly
non-linear trajectories of the OMZ volume bias and the pos-
sible presence of several turning points indicate that many
processes play a considerable role in their evolution, and
these act on timescales of decades to at least centuries. Thus,
any model skill assessment that relies on a continuous propa-
gation of a trend simulated within the first few hundred years,
such as that applied by Seferian et al. (2016) for average
oxygen or that implicitly assumed by Dietze and Loeptien
(2013), might misrepresent the ultimate, equilibrium state of
the model.

https://doi.org/10.5194/bg-20-2645-2023 Biogeosciences, 20, 2645–2669, 2023



2660 I. Kriest et al.: Tuning of global BGC models

Figure 8. Oxygen bias (a) and OMZ volume bias (defined by O2 < 50 mmol O2m −3; (b)) over the entire model trajectory of 3000 years (in
log scale). Bias calculated with reference to Garcia et al. (2006b). Circles indicate values listed in Table 2 of Bopp et al. (2013). Vertical red
and blue bars at the abscissa denote the model spin-up times of different CMIP5 and CMIP6 models listed in Seferian et al. (2020). Numbers
give the observed value from Garcia et al. (2006b, i.e. the reference data set used in this study).

3.5 Contributions of tuning strategy and spin-up
length to model uncertainty

As shown above, the optimised models exhibit a consider-
able spread among parametric model setups and also differ in
J

post
RMSE, biogeochemical fluxes and oxygen diagnostics when

evaluated at two different time slices. Figure 9 illustrates the
extent of variability arising from these two sources (paramet-
ric setup arising from optimisation vs. simulation time) for
different diagnostics. For a given diagnostic, the left and right
boundaries of a rectangle show the minimum and maximum
range among the six different parametric model setups eval-
uated at two different time slices (after 10 and 3000 years
of simulation). We note that, for most diagnostics, the left
boundary indicates the range among models when analysed
after 10 years of spin-up, and the right boundary indicates the
range among models when analysed after 3000 years of spin-
up. An exception to this is deep particle flux, where the vari-
ability among the models decreases over time (see above).
The upper and lower boundaries depict the maximum and
minimum difference over time (10 and 3000 years) among
the six individual model setups; i.e. the lower boundary in-
dicates the value for the model with the lowest temporal dif-
ference, and the upper boundary indicates the value of the
model with the largest difference. Hence, all parametric and
temporal differences of each diagnostic fall within the re-
spective rectangle. A wide rectangle indicates that the vari-
ability caused by the parametric setup is very different at the
two different time slices. A high rectangle indicates that the
temporal variability of model setups is very different for the
individual parametric setups.

To obtain a common scale, the range of each diagnostic
has been normalised by the respective average before evalu-
ating the minimum and maximum. This approach allows us
to evaluate the potential variability (with regard to paramet-
ric setup and time) of each diagnostic in comparison to other
diagnostics (as indicated by the rectangles’ position on the x
and y axes). Likewise, it also allows us to compare the vari-
ability induced by the parametric setup (x axis) to that of the
spin-up length (y axis): rectangles located in the lower right
corner indicate diagnostics whose variability is dominated by
parameters, whereas those in the upper left corner are dom-
inated by the spin-up length. For better visibility, Fig. 9 de-
picts the values on a logarithmic scale. The numerical values
are also shown in Table S5 in the Supplement.

The spread between parametric model setups (see also 1
parameters of Table S5 in the Supplement) of primary pro-
duction (green outlines in Fig. 9) and grazing (blue outlines)
is generally 2 to 3 times larger than that of J post

RMSE (orange
rectangle). Export production (dark-green rectangle) shows
only a small variation of about the same size as J post

RMSE, but
its variability shows a declining trend over time (see Table S5
in the Supplement). The quite narrow rectangle outlines of
the biogeochemical fluxes indicate that inter-model variation
more or less persists at the two time slices, i.e. after 10 and
3000 years of spin-up. Particle flux (dark-brown rectangle)
exhibits the largest variation among the different paramet-
ric model setups. Because of the large differences in opti-
mal b and because this parameter controls the propagation
of organic matter from the surface to the ocean interior (see
above), deep particle flux after 10 years already varies by
more than 140 % of the average value (right border of dark-
brown rectangle and Table S5 in the Supplement), which is
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Figure 9. Graphic summarising the different sources of variability in model results caused by model setup (parameter sets) and spin-up
time before model analysis for biogeochemical fluxes, oxygen inventory and OMZ volume. The x axis depicts the minimum and maximum
variational range due to differences in model setup (parameters) after 10 and 3000 years of model spin-up time. The y axis shows the
minimum and maximum range due to spin-up time among the six individual model setups. All values have been normalised by the average
over the respective axis (model setup or time) and are shown on a logarithmic scale. Rectangle colours or outlines denote the different
diagnostics as labelled, with the orange rectangle indicating the range of J post

RMSE (Eq. 1). The region below the 1 : 1 diagonal indicates a
higher variation because of the parametric setup, and the region above indicates a higher variation due to simulation time. Left panel: ranges
across all six model setups; right panel: with S4-Org excluded. See Table S5 in the Supplement for numbers and details.

more than 10 times the variation of J post
RMSE. After 3000 years,

its variation is still 4 times that of J post
RMSE. Because all mod-

els started from the same initial oxygen distribution, which
does not change much within the first decade of simulation,
the variation among the different model setups with regard
to oxygen (grey hatched rectangle) and OMZ volume (grey
rectangle) is quite small after 10 years (< 1 % and 12 %, re-
spectively; see left borders of the corresponding rectangles
and Table S5 in the Supplement), but the variation of OMZ
volume increases strongly with simulation time and reaches
about 80 % of the model average after 3000 years (right bor-
der of grey rectangle and Table S5 in the Supplement), which
is comparable to the maximum variation of primary produc-
tion and grazing.

The sensitivity to spin-up length (lower and upper borders
of the rectangles in Fig. 9) is very different for the individual
model configurations and can be very small, between 0.4 %
for primary production (lower border of green rectangle) and
3.1 % for J post

RMSE (lower border of orange rectangle; see also
1 Time of Table S5 in the Supplement). Individual models
can exhibit a quite-large variation over time. For instance,
depending on parametric model setup, the OMZ volume may
change by up to 48 % (upper border of grey rectangle), and
the simulated global particle flux may change by even 60 %
(upper border of brown rectangle), while primary production,
grazing and export can only reach a maximum variation over
time of about 20 % for individual model setups. However,
much of the inter-model and temporal model spread is caused

by the model setup S4-Org, which applies a high value for the
particle flux parameter b.

As discussed above, the very large value of b = 1.8 in
setup S4-Org induces slow sinking and shallow reminerali-
sation, which, on long timescales, increases subsurface nutri-
ents (Fig. S3 in the Supplement), primary and export produc-
tion, grazing, and ultimately deep particle flux in the tropics
and subtropics (Fig. S2 in the Supplement). These complex
feedbacks result in a large temporal amplitude of biogeo-
chemical fluxes on millennial timescales. Omitting S4-Org
from the analysis (right panel in Fig. 9) results in a general
decrease in the spread of biogeochemical fluxes and average
oxygen caused by different parameter settings (rectangles are
shifted to the left) and also smaller differences in paramet-
ric setup at the two different time slices (rectangles become
narrower). In particular, maximum variations due to model
parametric setup are approximately only one-half (after 10
years) to one-third (after 3000 years) of the full ensemble for
most biogeochemical fluxes (see also the values in parenthe-
ses in Table S5 in the Supplement). The reduced ensemble
also displays a lower maximum temporal variation for bio-
geochemical fluxes (the upper rectangle boundaries moving
downwards). This is especially true for the maximum tempo-
ral variation of deep particle flux, whose maximum temporal
change is reduced to less than 15 %.
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In contrast to the biogeochemical fluxes, the maximum
variation in OMZ volume over time remains the same be-
cause the reduced ensemble still includes setup S4-SO,
which shows the largest amplitude of the model trajectory
(Fig. 8). To summarise, both model setup and spin-up time
can play an important role in the simulation of primary
production, grazing and deep particle flux but especially
for OMZ volume. Much of this variability disappears when
omitting setup S4-Org, with its very high value for b from
the analysis; yet, the large sensitivity of OMZ volume to pa-
rameters and spin-up length remains, indicating that a variety
of mechanisms and processes (such as the oxygen demand of
remineralisation and large-scale circulation) affect the evolu-
tion of this diagnostic.

An even larger variability exists for global models that also
differ in circulation and/or model complexity (1 GCMs of
Table S5 in the Supplement). Because global model spin-up
times vary strongly (see also Fig. 8) and because there is no
general agreement on the minimum spin-up times of global
models (except for recent recommendations to spin up un-
forced models for at least 500 to 2000 years; Eyring et al.,
2016; Orr et al., 2017), it is difficult to disentangle the various
sources of variability in these simulations. Our results sug-
gest that mainly differences in biogeochemical model setup
contribute to this, but a considerable fraction can also be at-
tributed to the spin-up length, especially for global OMZ vol-
ume, which is most sensitive to model parameters and spin-
up length.

Our analysis of the different sources of model variability
has so far focused on biogeochemical fluxes and oxygen.
It remains to be investigated if this analysis is applicable
to tracers with different boundary exchanges and residence
times, such as the carbon cycle, which is driven by an atmo-
spheric signal and characterised by different residence times.
Yet, at least after 250 years, tracers related to the carbon sys-
tem may still show a considerable drift that is in the range
obtained for oxygen and nitrate, which warrants a careful
consideration and potential correction when analysing and
comparing model results (as, e.g. in Seferian et al., 2016).

4 Conclusions

We applied different optimisation strategies to calibrate a
global biogeochemical ocean model against observed inor-
ganic and organic tracers. Optimal parameter sets diverge
strongly with regard to the particle flux exponent b, which
is quite influential for the vertical and large-scale distribu-
tion of nutrients and oxygen (e.g. Kwon and Primeau, 2006;
Kriest et al., 2012). The wide range of b is mainly caused
by an optimisation that disregarded observations of organic
tracers, which resulted in a high optimal b of 1.8. Optimi-
sations that considered organic components arrived at b ≈ 1
or less. Values of b around 1 agree with results by Kwon
and Primeau (2006) but are lower than those of earlier op-

timisations against inorganic tracers in the same circulation
(Kriest et al., 2020). It is likely that the low optimal values
of b found in the present study are caused by its (indirect)
effect on phytoplankton: a low value of b reduces nutrient
recycling and hence primary production within the euphotic
zone, which eventually leads to a less positive phytoplankton
bias. We note, however, that especially b but also other op-
timal model parameters not only depend on the data set and
misfit applied for optimisation but also on circulation (Kriest
et al., 2020), especially when combined with long spin-up
times. It remains to be investigated whether our results can
be transferred to other model configurations that apply dif-
ferent circulations and/or model structures.

Despite the large range of some optimal model parameters,
the resulting model solutions yield similar values of the nor-
malised, volume-weighted root-mean-squared error (J post

RMSE),
showing a range ≤ 14 % of the average J post

RMSE after 10 years
of simulation and a range of 24 % when extending the simu-
lations with optimal parameters to 3000 years. Models cali-
brated with organic tracer data show some improved perfor-
mance with regard to J post

RMSE, mainly through a reduction in
bias, and the difference in J post

RMSE decreases to less than 3 %.
Since the root-mean-squared error combines bias and pat-

tern error information, major improvements in model perfor-
mance may not be well reflected by this metric during opti-
misation. For example, errors in circulation can cause a large
pattern error, especially for sparse and episodic observations
of organic tracers. These errors cannot be further reduced
by any adjustment of biogeochemical parameter values. One
way to examine the effects of circulation errors on the met-
ric’s ability to resolve optimal model parameters would be
to calibrate the model against synthetic data derived from
an earlier simulation (an identical-twin experiment). Such an
approach could provide deeper insight into the importance
of organic tracers for model calibration and, if combined
with different sampling strategies of the pseudo-data, also
into the impact of data sparsity. However, the pseudo-data
will typically be representative for one particular model setup
and may not reflect the full misfit sensitivity over a range
of model characteristics. A second possible approach could
involve the development and application of a an alternative
misfit function. Such a metric could include an assessment
of the tracers’ observed and simulated statistical properties
within specified ocean regions instead of calculating local
point-wise residuals as in the root-mean-squared error (e.g.
Chien et al., 2022). We note that, in addition to the choice of
data sets, a different choice in the mathematical form of the
misfit function could considerably impact optimal parame-
ter estimates and simulated biogeochemical turnover (Evans,
2003).

Diagnostics such as global primary production and graz-
ing, global and local particle flux, oxygen bias, and OMZ
volume show a large divergence among the models and over
time that is not reflected by differences in RMSE.
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– Global primary production and grazing exhibit a similar
pattern of model performance after 10 and 3000 years of
spin-up, but the difference between the model setups in-
creases over the long spin-up, eventually becoming al-
most twice as high as the observational uncertainty of
40 Gt C yr−1. Yet, the range of primary production ob-
tained in our study is well below the range documented
for other global models, which can be attributed to dif-
ferences in circulation and biogeochemical model com-
plexity.

– Global export production is very similar among the op-
timal model setups, likely because all model runs pre-
sented here applied the same circulation and because of
the antagonistic effects of particle sinking and nutrient
supply from subsurface waters. The variation of 14 % to
17 % found in our study is less than one-fourth of the
spread among other GCMs (which differ in many as-
pects, such as circulation) and is much lower than the
spread of observational estimates.

– Owing to the wide range of optimal estimates for pa-
rameter b, the variation among the different model con-
figurations with regard to deep particle flux is larger
than 100 % of the average and about as large as the
spread across other GCMs and that of observed esti-
mates. The temporal variation depends strongly on the
applied b. With shallow remineralisation, as induced by
a large value of b = 1.8, complex global feedback pro-
cesses cause a considerable temporal variation of 60 %,
which is reduced to less than 15 % when this model
setup is omitted. The differences in deep global (and
local) particle flux between the individual model setups
become smaller over time (in contrast to all other global
biogeochemical fluxes, where the differences amplify
over time). In addition, the setup with b = 1.8, which
performs worst with regard to deep particle flux after
10 years, also performs badly with regard to the global
bias of oxygen and nitrate after 3000 years. Hence, the
model’s representation of particle flux might serve as
an early criterion for model performance with regard to
the potential long-term inventory of the non-conserved
inorganic tracers that do not depend on the initial condi-
tions. It remains to be investigated if and to what extent
deep particle flux can be used as a performance indica-
tor when applied to other metrics or when the model is
started from initial conditions that differ from the ob-
served climatologies applied in this study.

– Global average oxygen changes by up to 12 % over time
for the individual models, and the difference among the
model setups is strongly amplified after 3000 years of
simulation, when it reaches almost 22 % of the ensem-
ble mean. A large fraction of this variation can be at-
tributed to values of particle flux parameter b. For mod-
els with b ≤ 1, temporal variations of oxygen narrow

down, and differences of global average oxygen be-
tween model setups are reduced to 8 %.

– Global OMZ volume, when defined by O2 <

50 mmol m−3, varies by 48 % of the ensemble
mean after 3000 years. This variation is about one-fifth
of the spread across other global models that also vary
with regard to physics, model complexity and spin-up
time. We stress that simulated global OMZ volume
is characterised by a highly non-linear trajectory
over time, with several turning points. This variation
indicates that temporal extrapolations from some initial
trend, as suggested by Seferian et al. (2016) and applied
by Dietze and Loeptien (2013), do not provide robust
estimates of the global OMZ volume.

The dependence of simulated global biogeochemical
fluxes on tuning strategy and the resulting model param-
eters can have consequences for models of higher trophic
levels, such as fish, that often rely on primary production
and/or export of organic matter to the mesopelagic and deep
ocean. The interactions between biogeochemistry and fish
may be further complicated through feedback effects of fish
on biogeochemical features such as oxygen distributions
(e.g. Bianchi et al., 2021), which can only be investigated
through two-way coupled models (e.g. Aumont et al., 2018).
A careful examination of model uncertainties with regard to
simulated biogeochemical fluxes and OMZs, which might af-
fect large, commercially relevant fish (Stramma et al., 2012),
could support precautionary approaches to estimate present
and future fish stocks (see also Schnute and Richards, 2001).

Overall, the best performance with regard to oxygen and
OMZ volume was obtained by tuning strategies that either
apply long (millennial) timescales of simulation or include
observations of organic tracers in the misfit function. Given
the computational expense of long-term simulations and the
likely dependence of global oxygen distribution on particle
flux to the deep ocean, we speculate that well-confined ob-
servational estimates of particulate organic matter flux to the
ocean interior may help to constrain global models, even
when these are spun up for only a few decades or centuries.
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Appendix A: Data sets and metrics

A1 Equivalents to model tracers

Nutrients and oxygen Kriest et al. (2020) calibrated MOPS
against observed nutrients and oxygen from interpolated
climatologies (Garcia et al., 2006a, b). Here, we use the
same data set but restrict it to the upper 100 m, which
reduces the number of data points for each tracer by
about one-third (see Table A1). The restriction also ap-
proximately halves the (unweighted) global mean nu-
trient concentration, whereas average oxygen is slightly
increased.

Phytoplankton For model calibration of phytoplankton,
we used chlorophyll data derived from remote sens-
ing (MODIS-Aqua; Malin, 2013, downloaded on
8 April 2020). The surface data are available as a
monthly climatology on a 9 km grid. After averaging to
annual mean chlorophyll, the data were averaged onto
the ECCO grid. Chlorophyll was converted to carbon
using the algorithm derived by Sathyendranath et al.
(2009) and then to phosphorus using a C :P ratio of
122 mol C :mol P. The resulting data set contains 36 800
data points, which are all located in the surface layer
(0–10 m), with minimum and maximum values of 0
and 0.27 mmol P m−3, respectively, and an unweighted
mean of 0.016 mmol P m−3 (see Table A1).

Zooplankton For model calibration of zooplankton we used
the MAREDAT data set of mesozooplankton (Mori-
arty and O’Brien, 2013). This sparse data set contains
42 245 data points of monthly mean mesozooplankton
(in mg C m−3) on a 1× 1 degree grid. After averag-
ing over a year and mapping onto the ECCO grid, we
obtained a total of 35 202 data points. Conversion to
phosphorus was carried out by assuming a C :P ratio of
122 mol C :mol P. The model does not distinguish be-
tween micro- and mesozooplankton but aggregates both
types into one single component. Unfortunately, ob-
servations of microzooplankton are much more sparse
(only 2029 monthly data in the data set by Buitenhuis
et al., 2013) than those of mesozooplankton and are
often taken at other locations and during other times.
Based on an analysis at stations where both small and
large zooplankton observations are available, we esti-
mated an approximate ratio of micro- to mesozooplank-
ton of 1. For comparison with the model, we therefore
multiplied the data obtained from mesozooplankton ob-
servations by 2, resulting in minimum and maximum
concentrations of 0 and 0.272 mmol P m−3 and an un-
weighted average of 0.006 mmol P m−3 (see Table A1).
Restricting the gridded data to the upper 100 m reduces
the sample size by about one-third, with little effect on
the global average.

Particulate organic matter (detritus) There is no direct
observational equivalent to simulated detritus; the near-
est type of observations are probably those of particu-
late organic phosphorus (POP), nitrogen (PON) or car-
bon (POC). However, due to the methods applied, these
observations also contain phytoplankton and possibly a
fraction of smaller zooplankton. For model evaluation,
we downloaded the data set by Martiny et al. (2014,
data set CNP_data_DRYAD_edit_2.csv, downloaded on
16 April 2020), which contains more than 40 000 entries
of particulate organic matter (POM) in units of phos-
phorus (POP), nitrogen (PON) and carbon (POC). Af-
ter omitting entries where depth was not given, we ob-
tained 6940 data entries for POP and 46 705 data entries
for PON. Because of the much higher data frequency
for PON, we used this variable as a further diagnos-
tic and converted it to POP using a stoichiometric ratio
of 16 mol N :mol P, which is also applied internally by
the model. For regridding onto the model grid, we av-
eraged all data that fall within a 1× 1 degree area, with
depth intervals as in ECCO, without any consideration
of sampling date, thereby obtaining 6513 data points,
with minimum and maximum concentrations of 0 and
1.69 mmol P m−3, respectively, and an unweighted av-
erage of 0.052 mmol P m−3 (see Table A1).

DOP Most observations of dissolved organic phospho-
rus (DOP) have been compiled by Angela Landolfi.
They include data from cruises 36N, AMT10, AMT12,
AMT14, AMT15, AMT16 and AMT17 (Torres-Valdes
et al., 2009); the BIOSOPE cruise (Moutin et al., 2008);
and published data from the North Atlantic (cruise
D279, April–May 2004, Landolfi et al., 2008) and the
Indian Ocean (cruise CD139, March–April 2002; Lan-
dolfi unpubl.). In the compilation, we only included data
with a positive (good) quality flag. We further included
data read from Fig. 02 of Yoshimura et al. (2007). Data
were gridded onto a 1× 1 degree grid, with the depth
axis as defined in ECCO. After regridding, we obtained
1445 data points, with minimum and maximum values
of 0 and 3.92 mmol P m−3 and an unweighted average
of 0.145 mmol P m−3. Restricting the domain to the up-
per 100 m reduces the sample size to 814 data points
and increases the global average concentration by about
one-quarter (see Table A1).
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Table A1. Observational data: number of observations over the full model domain and for the upper 100 m only, minimum and maximum
concentration, and average concentration over full domain and upper 100 m. See Sect. A in the Appendix for further details.

Type Number Min Max Average Source

Full 0–100 m Full 0–100 m

PO4 682 604 218 610 0.02 3.9 1.6 0.76 Garcia et al. (2006a)
NO3 682 604 218 610 0 49.2 21.6 8.71 Garcia et al. (2006a)
O2 682 604 218 610 2.00 406.5 206.7 256.2 Garcia et al. (2006b)
Phytoplankton 36 800 36 800 0 0.27 0.016 0.016 Malin (2013)
(Meso)zooplankton 35 202 25 613 0 0.27 0.006 0.006 Moriarty and O’Brien (2013)
POP 6513 4354 0 1.69 0.052 0.068 Martiny et al. (2014)
DOP 1445 814 0 3.92 0.145 0.181 Torres-Valdes et al. (2009)

Moutin et al. (2008)
Yoshimura et al. (2007)
Landolfi et al. (2008)

A2 Data sets for particle flux

The data set by Honjo et al. (2008, Table 3) consists of 152
data points of particle flux, derived from at least annual de-
ployments of sediment traps between 382 and 8431 m depth.
The data set by Lutz et al. (2007, Table 1) includes 245 data
points of particle flux, derived from sediment traps between
140 and 5847 m depth, most of which were deployed for at
least 1 year or a long-enough time to reproduce the seasonal
cycle. Thirdly, Mouw et al. (2016) provide an extensive data
set of sediment traps, also including much data from short-
term deployments. Restricting this to data over a deployment
period of at least 360 d, we obtained 369 data points between
depths of 200 and 5847 m. Note that, because of model to-
pography, the final number of data points for model compar-
ison is less.

Code and data availability. The basic TMM and MOPS code
used for the ocean biogeochemical simulations are available
to download from https://doi.org/10.5281/zenodo.1246300 (Khati-
wala, 2018). Modifications to the MOPS code for the specific
experiments described in this paper, along with model output,
data sources and scripts to assemble the data sets used for opti-
misation, are available under https://hdl.handle.net/20.500.12085/
b174de1c-0bed-47f5-9718-7a8d44d1d2d1 (Kriest et al., 2023).
The optimisation algorithm CMA-ES applied in this study is avail-
able from the Supplement of Kriest et al. (2017).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-20-2645-2023-supplement.
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