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Abstract. Using statistical methods that do not directly
represent the causality between variables to attribute cli-
mate and plant traits as controlling ecosystem functions may
lead to biased perceptions. We revisited this issue using a
causal graphical model, the Bayesian network (BN), capa-
ble of quantifying causality by conditional probability ta-
bles. Based on expert knowledge and climate, vegetation, and
ecosystem function data from the FLUXNET flux stations,
we constructed a BN representing the causal relationship of
climate–plant-trait–ecosystem functions. Based on the sen-
sitivity analysis function of the BN, we attributed the con-
trol of climate and plant traits over ecosystem functions and
compared the results with those based on random forests and
correlation analysis. The main conclusions of this study in-
clude the following: BN can be used for the quantification
of causal relationships between complex ecosystems in re-
sponse to climate change and enables the analysis of indi-
rect effects among variables. The causality reflected in the
BN is as good as the expert knowledge of the causal links.
Compared to BN, the feature importance difference between
“mean vapor pressure deficit and cumulative soil water in-

dex” and “maximum leaf area index and maximum vegeta-
tion height” reported by random forests is higher and can
be overestimated. With the causality relation between corre-
lated variables constructed, a BN-based sensitivity analysis
can reduce the uncertainty in quantifying the importance of
correlated variables. The understanding of the mechanism of
indirect effects of climate variables on ecosystem functions
through plant traits can be deepened by the chain casuality
quantification in BNs.

1 Introduction

Ecosystem functions are the capacity of natural processes
and components to provide goods and services that satisfy
human needs, either directly or indirectly (de Groot et al.,
2002). Ecosystem functions include the physicochemical and
biological processes within the ecosystem to maintain ter-
restrial life. Terrestrial ecosystems have provided a vari-
ety of important ecosystem functions for our society (Man-
ning et al., 2018). Plant traits’ role as important determi-
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nants of ecosystem functions has been widely recognized
(Chapin et al., 2000), and various trait syndromes can result
in distinct broad differences in ecosystem functions (Reich-
stein et al., 2014). In the context of global climate change,
it is also essential to understand the potential changes in
ecosystem functions (Grimm et al., 2013). The response of
terrestrial ecosystem functions to changes in climate, plant
traits, and the corresponding mechanisms is complex due to
enormous spatial and temporal variations across ecosystems,
climate zones, and also space scales and timescales (Diaz
and Cabido, 1997; Madani et al., 2018; Myers-Smith et al.,
2019). Given the enormous variations, on the global scale,
these issues have not been clarified well.

In the past decades, measurements of ecosystem functions
have been increasingly available to support studies of the re-
lations between ecosystem functions and climate variables.
For example, eddy-covariance flux tower observations (Bal-
docchi, 2014) for carbon flux (i.e., net ecosystem exchange
– NEE) and water flux (i.e., evapotranspiration – ET) have
been widely used to investigate changes in ecosystem func-
tions and their responses to climate change, vegetation con-
dition changes, etc. (Jung et al., 2020, 2010; Migliavacca et
al., 2021; Peaucelle et al., 2019). With the increase in such
observations, various statistical analysis approaches such as
machine learning (Barnes et al., 2021; Migliavacca et al.,
2021; Reichstein et al., 2019; Shi et al., 2022a, b; Tramon-
tana et al., 2016) have been used to mine the hidden in-
formation on the effects of climate change and its induced
changes in, for example, vegetation on ecosystem function
variables such as carbon and water flux, which has not been
understood in depth by process-based models (e.g., biogeo-
chemistry models; Sakschewski et al., 2016). For example,
using random forests (RFs) and principal component anal-
ysis (PCA), a recent study (Migliavacca et al., 2021) quan-
tified the three main axes of terrestrial ecosystem functions
and their drivers based on observations of carbon and water
fluxes at FLUXNET stations (Pastorello et al., 2020) and var-
ious climate and plant trait variables. Generally, data-driven
approaches have become increasingly important recently in
this area (Reichstein et al., 2019).

However, compared to the process-based models, most
of these data-driven approaches lack representation of the
causality and detailed processes in the relations between
ecosystem functions and climate despite the widely rec-
ognized complex causal interactions between ecosystems
and climate systems (Reichstein et al., 2014). Conventional
methods such as multiple linear regression have been ques-
tioned in attribution studies of the relationship between cli-
mate and the carbon cycle (Wang et al., 2022). For exam-
ple, the use of multiple linear regression may underestimate
the direct effect of soil moisture possibly due to the covari-
ance between variables (Wang et al., 2022). For machine
learning techniques, current common algorithms such as RF
(Migliavacca et al., 2021) can report the importance of fea-
tures (IMP) to measure their contributions to the prediction

model. However, IMP-based attribution to the target vari-
able can also be unreliable if considerable confounders and
correlations between predictor variables exist (Strobl et al.,
2008; Toloşi and Lengauer, 2011). The less relevant predic-
tors can replace the predictive predictors (due to correlation)
and thus receive undeserved high feature importance (Strobl
et al., 2008). Correlations between predictors can lead to bi-
ased IMP-based findings. It is thus important to recognize
the difference between correlation and causality in these ap-
proaches and represent detailed causal relations between fea-
tures rather than the unreliable IMP rankings generated from
correlated features.

Bayesian network (BN) is a causal graphical model based
on conditional probability representation (Friedman et al.,
1997; Pearl, 1985) that characterizes the transmission of
cause and effect through conditional probabilities between
variables. Currently, BN has been used in modeling causal re-
lationships in many fields and has demonstrated advantages
in causal interpretation, including in the fields such as hy-
drology and ecology (Chan et al., 2010; Keshtkar et al., 2013;
Milns et al., 2010; Pollino et al., 2007; Shi et al., 2021a, b;
Trifonova et al., 2015). However, BN has rarely been used
in the study of the attribution of changes in ecosystem func-
tions. Therefore, this study used BN to attribute the controls
of climate and plant traits over ecosystem functions by quan-
tifying the causal relationships involved. The data used were
from a previous study (Migliavacca et al., 2021) which ex-
tracted ecosystem function, climate, and plant trait variables
from FLUXNET flux stations. The construction of the causal
structure of BN referred to the previous expert knowledge
of this system (Reichstein et al., 2014). Further, by compar-
ing BN-based attribution analysis, linear correlation analysis,
and RF-based IMP reported by the previous study (Migli-
avacca et al., 2021), we investigated the added value of using
BN for causal analysis and discuss its prospects in this paper.

2 Methodology

2.1 Data

The used variables (Table 1) include the carbon and water
fluxes of the FLUXNET flux tower sites and the ecosystem
function variables derived from them, as well as information
on the corresponding climate variables and plant traits:

a. Ecosystem function variables: underlying water-use ef-
ficiency (uWUE), maximum evapotranspiration (ET-
max), maximum surface conductance (GSmax), max-
imum net CO2 uptake of the ecosystem (NEPmax),
gross primary productivity at light saturation (GPPsat),
mean basal ecosystem respiration at a reference temper-
ature of 15 ◦C (Rb), and apparent carbon-use efficiency
(aCUE).
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b. Plant trait variables: ecosystem-scale foliar nitrogen
concentration (Nmass), maximum leaf area index
(LAImax), and maximum vegetation height (Hc) (of the
202 sites in total (Migliavacca and Musavi, 2021), 101
sites have Nmass data, 153 sites have LAImax data, and
199 sites have Hc data, and only 98 have data on all
these three plant trait variables).

c. Climate variables: mean incoming shortwave radiation
(SWin), mean temperature (Tair), mean vapor pressure
deficit (VPD), mean annual precipitation (P ), and cu-
mulative soil water index (CSWI).

These data have different producing processes, including
those calculated from flux data and site records and those
extracted from remote sensing data. The detailed calculation
methods can be found in Migliavacca et al. (2021).

2.2 BN for analyzing causal relations

2.2.1 BN structures

Based on expert knowledge (Reichstein et al., 2014), we con-
structed the structure of BN containing the causal relation-
ships between plant traits and ecosystem function variables:
“BN_plant_trait”. The causal links between the variables are
referred to in the relationship diagram in the upper part of
Fig. 1. Further, we added the climate variables and the cor-
responding causal relationships, expanding “BN_plant_trait”
to “BN_plant_trait_climate”, which further incorporates the
climate variables and their impacts on the system (Fig. 1).
The explanation of added causal links was shown in Table 2.

Each node is discretized for the BN compiling by the
software Netica. The equal quantile (Nojavan et al., 2017)
three-level discretization (the distribution of nodes (Fig. S1
in the Supplement) is divided into three levels) for each node
is applied by the discretization thresholds of 0 %, 33.33 %,
66.67 %, and 100 % percentile values of the data distribution
(Table 1) given the limitation of the amount of training data.

2.2.2 BN evaluation and node sensitivity analysis

Based on the Bayesian network (BN), the joint impacts of
multiple variables and their causal relations are analyzed. A
BN can be represented by nodes X1, X2, X3 to Xn and the
joint distribution (Pearl, 1985):

P (X)= P (X1,X2, . . .,Xn)=

n∏
i=1

P (Xi |pa(Xi)) , (1)

where pa(Xi) is the probability of the parent node Xi .
Expectation–maximization (Moon, 1996) is used to address
the data with missing values and then compile the BN.

We used k-fold cross-validation to verify the reliability of
the BN. The k-fold approach has been widely used in pre-
vious studies for the validation of BNs (Marcot, 2012). In
this study, k is set as 10, as commonly done (Marcot and

Figure 1. The structure of two Bayesian networks (BNs) for the
attribution of variations in ecosystem functions. “BN_plant_trait”
in the median part incorporated the causal effects of plant traits
(slight green boxes) on ecosystem functions (white boxes) from ex-
pert knowledge as shown in the relation diagram in the upper part
(Reichstein et al., 2014). “BN_plant_trait_climate” in the lower part
further incorporated the causal impacts of climate variables (light
blue boxes).

Hanea, 2021). We choose ETmax, GPPsat, and NEPmax for
the cross-validation of accuracy; the predicted status (status
with the highest probability bar value) of the nodes will be
compared with the actual status, and the classification accu-
racy will be calculated. These three nodes are the main ter-
minal nodes and primary objectives of the BN and represent
the main water- and carbon-related ecosystem functions, re-
spectively. The accuracy of these three variables can largely
reflect the overall performance of BN.

A sensitivity analysis is used for the evaluation of the
strength of the causal relations between nodes based on mu-
tual information (MI). MI is calculated as the entropy reduc-
tion in the child node resulting from changes found at the
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Table 1. The variables used and the discretization of their values in BN.

Variable
node

Definition and units Type Approach (Migliavacca et al., 2021) Discretization in BN
(equal quantile thresh-
olds: 0 %, 33.33 %,
66.67 %, and 100 %
percentile values)

uWUE Underlying water-use efficiency
[gC kPa0.5 kg H2O−1]

Ecosystem
functions

It was calculated from GPP, VPD, and ET (Zhou
et al., 2014). The median of the half-hourly re-
tained uWUE values was used for each site. It
was further filtered by the following conditions:
(i) SWin > 200 W m−2; (ii) no precipitation event
for the last 24 h, when precipitation data are avail-
able; and (iii) during the growing season: daily
GPP > 30 % of its seasonal amplitude.

0.068, 2.51, 3.18, 5.332

ETmax Maximum evapotranspiration in the
growing season [mm]

Ecosystem
functions

ETmax was computed as the 95th percentile of ET
in the growing season. It was also filtered by the
same filtering applied to the uWUE calculation.

0.059, 0.17, 0.23, 0.423

GSmax Maximum surface conductance
[m s−1]

Ecosystem
functions

GSmax was computed by inverting the Penman–
Monteith equation after calculating the aerody-
namic conductance. The 90th percentile of the half-
hourly GS of each site was calculated and used as
the GSmax of each site.

0.0013, 0.0077, 0.0123,
0.0566

NEPmax Maximum net CO2 uptake
of the ecosystem
[µmol CO2 m−2 s−1]

Ecosystem
functions

NEPmax was computed as the 90th percentile of the
half-hourly net ecosystem production in the grow-
ing season (when daily GPP is > 30 % of the GPP
amplitude).

1.953, 15.3, 24.4, 42.82

GPPsat Gross primary productivity at light
saturation [µmol CO2 m−2 s−1]

Ecosystem
functions

GPPsat was computed as the 90th percentile es-
timated from half-hourly data by fitting the hy-
perbolic light response curves. The 90th percentile
from the GPPsat estimates of each site was ex-
tracted.

3.042, 17.49, 27.74,
47.6

Rb Mean basal ecosystem respiration
at a reference temperature of 15 ◦C
[µmol CO2 m−2 s−1]

Ecosystem
functions

Rb was derived from nighttime NEE measurements.
For each site, the mean of the daily Rb value was
computed.

0.144, 2.07, 3.12, 10.67

aCUE Apparent carbon-use efficiency Ecosystem
functions

aCUE was calculated by aCUE= 1− (Rb/GPP),
and the median value of daily aCUE is used.

−1.19, 0.4, 0.74, 1

Nmass Ecosystem-scale foliar nitrogen
concentration [gN 100 g−1]

Plant trait Nmass was computed as the community-weighted
average of foliar N% of the major species at the site
sampled at the peak of the growing season or gath-
ered from the literature (Musavi et al., 2016, 2015;
Fleischer et al., 2015; Flechard et al., 2020).

0.65, 1.15, 1.76, 4.44

LAImax Maximum leaf area index
[m2 m−2]

Plant trait LAImax was collected from the literature (Migli-
avacca et al., 2011; Flechard et al., 2020), the
FLUXNET Biological Ancillary Data Management
(BADM) product, and/or site principal investiga-
tors.

0.17, 2.27, 4.5, 12.9

Hc Maximum vegetation height [m] Plant trait Hc was collected from the literature (Migliavacca et
al., 2011; Flechard et al., 2020), the BADM product,
and/or site principal investigators.

0.04, 1.7, 16.0, 80.1

SWin Mean incoming shortwave
radiation [W m−2]

Climate SWin was from FLUXNET data. 54.43, 134.18, 182.44,
266.04

Tair Mean temperature [◦C] Climate Tair was from FLUXNET data. −10.45, 6.62, 14.73,
28.1

VPD Mean vapor pressure deficit [hPa] Climate VPD was from FLUXNET data. 0.62, 3.38, 5.76, 26.08
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Table 1. Continued.

Variable
node

Definition and units Type Approach (Migliavacca et al., 2021) Discretization in BN
(equal quantile thresh-
olds: 0 %, 33.33 %,
66.67 %, and 100 %
percentile values)

P Mean annual precipitation
[cm yr−1]

Climate P was from FLUXNET data. 5.51, 45.28, 79.29,
256.61

CSWI Cumulative soil water index Climate-
related soil
water
availability

CSWI was computed as a measure of water avail-
ability (Nelson et al., 2018).

−93.49, −1.24, 2.01,
4.47

parent node (Shi et al., 2020):

MI=H (Q)−H (Q |F )

=

∑
q

∑
f
P (q, f ) log2

(
P (q,f )

P (q)P (f )

)
, (2)

where H represents the entropy, Q represents the target node,
F represents the set of other nodes, and q and f represent the
status of Q and F . In this study, we assessed the sensitivity of
ecosystem function variables to climate and plant trait vari-
ables.

2.2.3 Comparing different approaches used for
attribution analysis

Further, to clarify the added value of considering causal-
ity in the attribution analysis of controls over ecosystem
functions, the results of the BN-based sensitivity analysis
(BN_sens) were compared with the other two approaches.
They are the results of the absolute values of additional lin-
ear correlation analysis (linear_corr) in this study and the
findings in Migliavacca et al. (2021) using RF feature impor-
tance (RF_imp). BN_sens and linear_corr directly measure
the effects of plant traits and climate variables on ecosys-
tem function variables, while RF_imp measures their effects
on the three principal components (PC1, PC2, and PC3) of
ecosystem function variables, which were reported as the
three major axes of ecosystem functions by Migliavacca et
al. (2021). It was obtained from a principal component anal-
ysis of 12 ecosystem function variables which included the
six variables uWUE, ETmax, GSmax, NEPmax, GPPsat, and
Rb used in the methods BN_sens and linear_corr. The first
axis (PC1) explains 39.3 % of the variance and is domi-
nated by maximum ecosystem productivity properties, as in-
dicated by the loadings of GPPsat and NEPmax, and max-
imum evapotranspiration (ETmax). The second axis (PC2)
explains 21.4 % of the variance and refers to water-use strate-
gies as shown by the loadings of water-use efficiency met-
rics, evaporative fraction, and GSmax. The third axis (PC3)
explains 11.1 % of the variance and includes key attributes
that reflect the carbon-use efficiency of ecosystems. PC3 is

dominated by apparent carbon-use efficiency, basal ecosys-
tem respiration (Rb), and the amplitude of evaporative frac-
tion (Migliavacca et al., 2021).

3 Results

3.1 Correlation analysis

A linear correlation analysis of the variables (Fig. 2)
showed significant (P < 0.05) linear correlations between
the ecosystem function variables and some of the climate and
plant trait variables. SWin and VPD showed negative corre-
lations with these ecosystem function variables. LAImax and
Hc showed significant positive relationships with most of the
ecosystem function variables and significant negative rela-
tionships with SWin and VPD. Nmass only showed a posi-
tive relationship with ETmax. In addition, the majority of the
ecosystem function variables showed significant (P < 0.05)
positive correlations with each other.

3.2 BN-based analysis

We compiled two different BNs (i.e., BN_plant_trait and
BN_plant_trait_climate) (Fig. 3) and found that the probabil-
ity distributions of the values of the common nodes (ecosys-
tem function and plant trait variable nodes) differed a lit-
tle (e.g., in the probability distribution of LAImax, Hc, and
Nmass) between the two BNs. Compared to BN_plant_ trait,
in BN_plant_trait_climate, the climate variables of sites with
missing plant trait data forced the changes in the probability
distributions of LAImax, Hc, and Nmass. In the EM algo-
rithm, for sites with missing plant trait data, existing rela-
tionships (obtained from observations from other sites) be-
tween plant trait variables and climate variables are used in
the data interpolation of plant trait variables. In BN_plant_
trait_climate, the added linkages of climate variables to plant
trait variables resulted in higher probability values of the
low-value status of the plant trait variables.

The 10-fold cross-validation of the nodes ETmax, GPPsat,
and NEPmax showed relatively high accuracy. The classifi-
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Table 2. Explanation of the added causal links between climate variable nodes, plant trait nodes, and ecosystem function variable nodes in
the BNs.

Casual links Explanation References

Parent
node

Child
node

VPD uWUE uWUE=GPP ·VPD0.5/ET Zhou et al. (2014)

VPD GSmax Stomatal and surface conductance declines under an
increase in VPD

Grossiord et al. (2020), Wever et al. (2002)

VPD GPPsat Leaf and canopy photosynthetic rates decline when atmo-
spheric VPD increases due to stomatal closure

Yuan et al. (2019), Konings et al. (2017)

VPD CSWI CSWI declines under an increase in VPD Nelson et al. (2018)

Tair VPD Higher air temperature corresponds to higher saturated wa-
ter vapor pressure and can drive an increase in VPD

Yuan et al. (2019)

Tair Hc The temperature limitation on canopy height variation Moles et al. (2009)

Tair Nmass Increase in air temperature may decrease plant nitrogen
concentration and leaf nitrogen content.

Weih and Karlsson (2001), Reich and Oleksyn
(2004)

Tair Rb Temperature strongly influences Rb through the laws of
thermodynamics

Davidson and Janssens (2006), Enquist et al.
(2003), Brown et al. (2004)

SWin LAImax Solar radiation affects vegetation conditions and phenology Günter et al. (2008), Liu et al. (2016), Borchert et
al. (2015), Wagner et al. (2017)

SWin Hc Solar radiation affects the distribution and composition of
ecosystems through photosynthesis and the water cycle

Borchert et al. (2015), Guisan and Zimmermann
(2000), Piedallu and Gégout (2007)

SWin GPPsat Solar radiation affects ecosystem productivity and plant
growth

Monteith (1972), Borchert et al. (2015), Guisan and
Zimmermann (2000)

P Hc The hydraulic limitation hypothesis on canopy height vari-
ation

Moles et al. (2009), Ryan and Yoder (1997), Koch
et al. (2004)

P Nmass Leaf nitrogen concentration per unit mass may decrease
with increasing precipitation

Santiago and Mulkey (2005), Wright and Westoby
(2002)

P CSWI CSWI declines under a decrease in P Nelson et al. (2018)

CSWI LAImax Soil moisture affects vegetation conditions Patanè (2011)

CSWI Rb Soil moisture affects the temperature dependence of ecosys-
tem respiration

Xu et al. (2004), Flanagan and Johnson (2005),
Wen et al. (2006)

CSWI GPPsat Soil moisture can reduce GPP through ecosystem water
stress

Green et al. (2019)

cation accuracy (Table S1 in the Supplement) of the status of
ETmax was 60.9 %, the classification accuracy of the status
of NEPmax was 84.2 %, and the classification accuracy of
the status of GPPsat was 75.2 %.

We performed sensitivity analyses (Fig. 4) on the ecosys-
tem function variables in both BNs to assess their sensitivity
to various climate and plant trait variables. We also calcu-
lated the difference in sensitivity MI between the two BNs
(Fig. 4) to compare the change in sensitivity of ecosystem
functions to each variable after adding further climate vari-
ables to the plant trait variables only. The sensitivity of dif-

ferent ecosystem function variables to plant traits and cli-
mate variables was highly variable in both BNs. The mag-
nitude of sensitivity of ecosystem function nodes to plant
traits and climate variables was related to whether these plant
traits and climate variables were set as their parent nodes.
In BN_plant_trait, carbon fluxes GPPsat and NEPmax were
more sensitive to Nmass and LAImax due to the parent node
setting. For the water flux ETmax, it does not have high sen-
sitivity to plant trait variables such as LAImax and Hc, al-
though these plant trait variables are set as the parent nodes

Biogeosciences, 20, 2727–2741, 2023 https://doi.org/10.5194/bg-20-2727-2023
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Figure 2. Correlation coefficient matrix of ecosystem functions and climate and plant trait variables for FLUXNET sites. Only correlation
coefficients with p values less than the 0.05 level of significance are shown.

of ETmax. This indicates the difference in the strength of the
control effects of plant traits on carbon and water fluxes.

In the sensitivity analysis of BN_plant_trait_climate, the
sensitivity patterns of the ecosystem function variables
changed as a result of the inclusion of climate variables
and the change in causality they introduced. The sensitiv-
ity of the ecosystem function variables to climate variables
was significantly increased (especially for Tair, VPD, and
CSWI). The control of plant traits over ecosystem functions
in BN_plant_trait is also partially transformed into an indi-
rect effect of climate variables by first controlling plant trait
variables and then controlling ecosystem functions. For ex-
ample, in BN_plant_trait_climate, for GPPsat, a decrease in
the sensitivity of GPPsat to LAImax and an increase in the
sensitivity to Tair was observed after the causal chain of Tair
influencing Hc, LAImax, and then GPPsat was set. This can
be explained by the fact that higher temperatures promote
vegetation growth and thus may increase LAImax, which
then indirectly alters the probability distribution of the GPP-
sat node. In previous studies based on statistical methods that
did not consider the chain causality, this indirect control over
GPPsat from Tair may have been included in the contribu-
tion of LAImax to GPPsat. Similarly, a chain causality of
P by first affecting Nmass and then indirectly GPPsat was
also found. However, the effect of P by first affecting Hc

and LAImax and then indirectly affecting ETmax and GS-
max appears to be not large.

3.3 Comparing results from RF-based, BN-based
analysis, and correlation analysis

All three methods show the importance of the plant trait vari-
ables in explaining the variation in various ecosystem func-
tion variables (Table 3). LAImax was the most important of
the three methods in explaining the variation in maximum
ecosystem productivity properties (corresponding to PC1).
In contrast to the results of the other two methods, in lin-
ear_corr, SWin and VPD were the least important, while P

was more important. Comparing RF_imp and BN_sens, the
overall pattern of importance is similar, but there are differ-
ences. For water-use strategies (corresponding to PC2), Hc is
ranked first and LAI last in RF_imp, but in BN_sens, LAI is
slightly more important than Hc. In linear_corr, Hc and LAI
are of similar importance. For PC3, VPD ranks first and is
more important than Tair in RF_imp. But in BN_sens, Tair is
more important than VPD. Among the three moisture-related
climate variables (i.e., VPD, P , and CSWI), CSWI appears
to be the least important in RF_imp but is comparable to VPD
in BN_sens.

https://doi.org/10.5194/bg-20-2727-2023 Biogeosciences, 20, 2727–2741, 2023
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Figure 3. The two compiled BNs (“BN_plant_trait” and “BN_ plant_trait_climate”). The bars of each node represent its probability distri-
bution. At the bottom part of each node, the left and right side values of the “±” are the mean and standard deviation of the distribution,
respectively.

Given the limitations of RF_imp in responding to the cor-
related variables (Strobl et al., 2008), the difference between
the significance of VPD and CSWI reported by RF_imp
may be overestimated. For the ecosystem functions related
to water-use strategies, the difference between LAImax and
Hc reported by BN_sens is also much smaller than the differ-
ence reported by RF_imp. It implied that, with the causality
relation between correlated variables constructed, BN_sens
reduced the uncertainty in quantifying the importance of cor-
related variables.

4 Discussions

Based on BN, this study investigates the prospect of using
causal graphical models to revisit and attribute the control of
climate and plant trait variations over ecosystem functions.
Because of the inclusion of the constraints provided by expert

knowledge (Reichstein et al., 2014) and other perceptions
from many previous studies, a BN-based attribution analysis
is relatively reliable in terms of the represented mechanisms
of causal links. It can update our knowledge of the contribu-
tion of some teleconnection variables through causal chains.
The effective implementation of BN-based causal analysis
may depend on the reliability of the causal relationships pro-
vided by expert knowledge (directional links between vari-
ables). We can establish the connection relationships and net-
work structures between variables from expert knowledge
and assign the specific quantification of the connection re-
lationships (conditional probability tables) to observations
(Shi et al., 2021a). If further combined with findings from
process-based models, it is promising to significantly im-
prove our understanding of the complex climate–plant-trait–
ecosystem function relationships by comparing detailed rela-
tionships and structural influences between variables.
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Figure 4. Sensitivity of ecosystem function variables to other variables in different networks based on mutual information (MI). The left
column is the sensitivity analysis of BN_plant_trait, the middle column is the sensitivity analysis of BN_plant_ trait_climate, and the right
column is the difference between the reported sensitivity of BN_plant_ trait_climate and the sensitivity of BN_plant_trait. For BN_plant_trait,
the MI values of climate variables to ecosystem function variables are all 0 because they do not contain climate variables. For each ecosystem
function in these two BNs, its sensitivity to its child node is not shown (set as 0) because child nodes are not considered causal variables and
thus are not evaluated in the attribution.
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Table 3. Comparisons of relationships of ecosystem functional variables to plant traits and climate variables in different analyses.

Method Ecosystem functional
variable

Plant trait and climate variable

Nmass LAImax Hc SWin Tair VPD P CSWI

RF_imp PC1 10.8 % 16.6 % 14.5 % 7.6 % 9.1 % 11.7 % 6.7 % 4.0 %
PC2 5.1 % 4.5 % 14.9 % 10.7 % 11.2 % 7.4 % 9.0 % 8.3 %
PC3 7.0 % 2.8 % 5.4 % 9.3 % 8.0 % 15.4 % 6.5 % 4.9 %

BN_sens GPPsat 0.0635 0.1980 0.0766 0.0299 0.0116 0.0221 0.0232 0.0380
NEPmax 0.0464 0.1482 0.0588 0.0168 0.0064 0.0065 0.0181 0.0142
ETmax 0.0006 0.0424 0.0076 0.0028 0.0063 0.0174 0.0006 0.0122
uWUE 0.0228 0.0321 0.0174 0.0012 0.0023 0.0080 0.0066 0.0072
GSmax 0.0022 0.1464 0.0246 0.0115 0.0239 0.0793 0.0019 0.0429
Rb 0.0880 0.0043 0.0021 0.0106 0.1177 0.0317 0.0053 0.0602
aCUE 0.0049 0.0138 0.0056 0.0033 0.0117 0.0009 0.0004 0.0007

Linear_corr GPPsat 0.67 0.46 0.13 0.20 0.48
NEPmax 0.63 0.56 0.13 0.48
ETmax 0.44 0.47 0.30
uWUE 0.45 0.47 0.15
GSmax 0.28
Rb 0.57 0.35 0.21 0.33 0.43
aCUE

Note: method RF_imp is random forest variable importance (Migliavacca et al., 2021) (see Methodology section). Method linear_corr is linear correlation
analysis with the absolute values of Pearson correlation coefficients (see Methodology section). Method BN_sens is a BN-based sensitivity analysis with
sensitivity MI values reported.

BN essentially factorized the joint probability distribution
between various variables into a series of conditional prob-
ability distributions (Ramazi et al., 2021), and the reliability
of this approach relied on the setting of causal control re-
lationships between nodes. Expert knowledge was thus crit-
ical in the construction of BNs, especially when modeling
complex systems. In addition to the causal relationship be-
tween nodes, the meaning represented by each node, the data
source and/or approach, and the spatial and temporal reso-
lutions may also have impacts on the results. For example,
in this study, for multiple water-use efficiency-related vari-
ables in Migliavacca et al. (2021), uWUE was chosen, and
for Rb, the mean value of Rb was chosen. The results of
BN-based analysis may vary if different representations or
meanings of nodes are selected. The way the data of each
variable is observed and produced, the spatial and temporal
resolutions of the data, and other issues can also affect the un-
derstanding of the role of these variables in the data-driven
BN. Some variables may be very important in the attribu-
tion of actual ecosystem function variation, but their impor-
tance may be underestimated due to limitations in the inher-
ent observational accuracy of their data and differences in
their spatial and temporal scales from other variables. In ad-
dition, some variables such as soil moisture may be difficult
to obtain due to the lack of continuous site-scale long-term
observations. Using the water balance method to calculate
CSWI as a proxy may introduce errors. Since the CSWI cal-
culation method relies on P , the obtained relationship be-
tween P , CSWI, and other nodes may have contained empir-

ical components. If the availability of measurements of some
nodes is low, modelers should be cautious about the empir-
ical dependencies with other nodes that may be included in
the alternative data approaches. Thus, the alternative use of
multiple derivatives of a variable and data generated by dif-
ferent methods for the construction of different BNs can help
us to recognize how the uncertainty in the nodes and data can
influence BN-based attribution findings. Different node dis-
cretization schemes may also affect the conditional probabil-
ity table between nodes as well as the sensitivity (Nojavan et
al., 2017). Other alternative discretization schemes with the
commonly used three levels may also be effective, such as
using “mean−SD” (mean minus 1 standard deviation) and
“mean+SD” (mean plus 1 standard deviation) as discretiza-
tion thresholds, which will result in a change in the relation-
ship between BN nodes. Further if extreme values such as the
5th and 95th percentiles are used in the node value discretiza-
tion, it may be beneficial for quantifying the causal control of
extreme conditions of nodes over other nodes.

When considering higher-order effects (Bairey et al.,
2016), the relationships between plant traits, climate vari-
ables, and ecosystem function variables can be very complex.
One variable may affect the relationship between two other
variables rather than directly affecting these two variables
(Bairey et al., 2016). BN may have limitations in directly
analyzing such higher-order effects because BN requires the
modeler to explicitly set direct causal relationships between
nodes. To analyze the higher-order effects, we can add nodes
that directly represent the relationship between the variables.
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For example, the correlation coefficient of two variables can
be used as a node, and this node is connected to other nodes
in the BN so that the control effect of other nodes on this cor-
relation coefficient can be explored. Such implements may be
useful to deepen the impact of various higher-order effects.

Moreover, the BN in this study was mainly based on data
averaged over multiple years, thus possibly partially underes-
timating the effect of temporal variations in the relationships
between variables. Another limitation of the BN proposed
above is that the causal relationships between variables are
unidirectional, while it is difficult to represent interactions
and feedback between variables (Marcot and Penman, 2019).
In future studies, to address these two issues, a BN based on
temporal dynamics can be promising (Fig. 5). By refining the
interaction of temporal lags between variables, it is possible
not only to incorporate temporal variation but also to con-
trol factors that attribute interactions and feedback between
variables. For example, the interaction and feedback mecha-
nisms of VPD, soil moisture, and ET with lag effects (Fig. 5)
and their impacts on ecosystems have attracted extensive in-
terest from researchers (Anderegg et al., 2019; Humphrey
et al., 2021; Lansu et al., 2020; Liu et al., 2020; Xu et al.,
2022; Zhou et al., 2019), but conventional statistical methods
have been ineffective in analyzing such relationships with
both interactive causality and temporal lags. In contrast, the
BN proposed here, which incorporates feedback effects and
lagged effects that were common in climate–ecosystem rela-
tions (Lin et al., 2019), is potentially able to address this issue
from a data-driven approach. In the practical modeling, dif-
ferent periods of the same node may still not be independent.
Therefore, the split scheme of such periods may be critical.
For example, a period between two precipitation events can
be treated as one sample, which can enhance independence
between periods. Subsequently, such a period can be divided
into smaller periods such as t , t−1, and t−2 to aggregate the
node values to appropriate timescales. Thus one sample can
represent the interaction relationship between variables with
lags in this period. Finally, we can integrate records of such
periods between two precipitation events from sites across
different climate zones and biomes to build synthesis models
for a global analysis of such problems. Such research frame-
works in BN-based modeling may be difficult due to high
computational costs given the large amount of data. Fortu-
nately, recently proposed new causal models have the po-
tential to address this limitation, such as the introduction of
causality into deep learning frameworks (Luo et al., 2020;
Cui and Athey, 2022). If further combined with the findings
of process-based models, our understanding of climate and
ecosystem interactions and feedback and their mechanisms
in time will hopefully be deepened.

Figure 5. The future BNs with the temporal causality further con-
sidered addressing the causality of the interaction between vari-
ables. The VPD–CSWI–ET relationship is used here as an example.
t , t − 1, and t − 2 denote the current period, the last period, and the
period before the last period, respectively. The network on the left
only considers the effect of VPD on CSWI without considering the
feedback of CSWI on the VPD. The network on the right charac-
terizes the VPD–CSWI interaction with the feedback from CSWI at
period t − 1 to VPD at period t .

5 Conclusion

Based on BN, we revisited and attributed the contribution of
climate and plant traits to global terrestrial ecosystem func-
tions. The major conclusions of this study include the follow-
ing:

1. BN can be used for the quantification of causal relation-
ships between complex ecosystems in response to cli-
mate change and enables the analysis of indirect effects
among variables.

2. Compared to BN, the feature importance difference be-
tween “VPD and CSWI” and “LAImax and Hc” re-
ported by random forests is higher and can be overes-
timated.

3. With the causality relation between correlated variables
constructed, BN_sens can reduce the uncertainty in
quantifying the importance of correlated variables.

4. The understanding of the mechanism of indirect effects
of climate variables on ecosystem functions through
plant traits can be deepened by the chain casuality quan-
tification in BNs.
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