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Abstract. Accurate measurement of vegetation density met-
rics including plant, wood and leaf area indices (PAI, WAI
and LAI) is key to monitoring and modelling carbon storage
and uptake in forests. Traditional passive sensor approaches,
such as digital hemispherical photography (DHP), cannot
separate leaf and wood material, nor individual trees, and re-
quire many assumptions in processing. Terrestrial laser scan-
ning (TLS) data offer new opportunities to improve under-
standing of tree and canopy structure. Multiple methods have
been developed to derive PAI and LAI from TLS data, but
there is little consensus on the best approach, nor are meth-
ods benchmarked as standard.

Using TLS data collected in 33 plots containing 2472 trees
of 5 species in Mediterranean forests, we compare three TLS
methods (lidar pulse, 2D intensity image and voxel-based) to
derive PAI and compare with co-located DHP. We then sepa-
rate leaf and wood in individual tree point clouds to calculate
the ratio of wood to total plant area (α), a metric to correct
for non-photosynthetic material in LAI estimates. We use in-
dividual tree TLS point clouds to estimate how α varies with
species, tree height and stand density.

We find the lidar pulse method agrees most closely with
DHP, but it is limited to single-scan data, so it cannot deter-
mine individual tree properties, including α. The voxel-based
method shows promise for ecological studies as it can be ap-
plied to individual tree point clouds. Using the voxel-based
method, we show that species explain some variation in α;
however, height and plot density were better predictors.

Our findings highlight the value of TLS data to improve
fundamental understanding of tree form and function as well
as the importance of rigorous testing of TLS data processing
methods at a time when new approaches are being rapidly
developed. New algorithms need to be compared against tra-
ditional methods and existing algorithms, using common ref-
erence data. Whilst promising, our results show that metrics
derived from TLS data are not yet reliably calibrated and val-
idated to the extent they are ready to replace traditional ap-
proaches for large-scale monitoring of PAI and LAI.

1 Introduction

Leaf area index (LAI), defined as half the amount of green
leaf area per unit ground area (Chen and Black, 1992), deter-
mines global evapotranspiration, phenological patterns and
canopy photosynthesis and is therefore an essential climate
variable (ECV), as well as a key input in dynamic global veg-
etation models (Sea et al., 2011; Weiss et al., 2004). Accu-
rate measurements of leaf, wood and plant area indices (LAI,
WAI and PAI) have historically been derived from labour-
intensive destructive sampling (Baret et al., 2013; Jonckheere
et al., 2004), so over large spatial or temporal scales these can
only be measured indirectly, typically with remote sensing.
Large-scale remote sensing, using spaceborne and airborne
instruments, has been widely used to estimate LAI over large
areas (Pfeifer et al., 2012), but it requires calibration and val-
idation using in situ measurements to constrain information
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retrieval (Calders et al., 2018). Non-destructive in situ vege-
tation index estimates have historically been made by mea-
suring light transmission below the canopy and using sim-
plifying assumptions about canopy structure to estimate the
amount of intercepting material (e.g. Beer–Lambert’s law;
Monsi and Saeki, 1953). The most common method, digi-
tal hemispherical photography (DHP; Fig. 1a), requires both
model assumptions and subjective user choices during data
acquisition and processing in order to estimate both PAI
and LAI (Breda, 2003). DHP images are processed by sep-
arating sky from canopy, but not photosynthetic from non-
photosynthetic vegetative material, so additional assump-
tions are needed to calculate either LAI or WAI (Jonckheere
et al., 2004; Pfeifer et al., 2012). Separation of LAI from PAI
can be achieved by removing or masking branches and stems
from hemispherical images (e.g. Sea et al., 2011; Woodgate
et al., 2016), but it is not reliable when leaves are occluded
by woody components (Hardwick et al., 2015). An alterna-
tive approach is to take separate DHP measurements in both
leaf on and leaf off conditions and derive empirical wood-to-
plant ratios (WAI / PAI, α) (Leblanc and Chen, 2001), but this
is not always practical, for example in evergreen forests. The
difficulty of separation means that studies often omit correct-
ing for the effect of WAI on optical PAI measurements alto-
gether (Woodgate et al., 2016), but since woody components
in the forest canopy can account for more than 30 % of PAI
(Ma et al., 2016) this can introduce overestimation. Further,
although DHP estimates of LAI or PAI are valuable both for
ecosystem monitoring and developing satellite LAI products
(Hardwick et al., 2015; Pfeifer et al., 2012), they are limited
to sampling only at a neighbourhood or plot level (Weiss et
al., 2004) and cannot be used to measure individual tree LAI
except for open grown trees (Béland et al., 2014).

The ratio of wood to total plant area, α, is known to be
dynamic, changing in response to abiotic and biotic condi-
tions. For example, the Huber value (sapwood-to-leaf-area
ratio, a related measure to α) may vary according to water
availability (Carter and White, 2009). Leaf area may there-
fore be indicative of the drought tolerance level of a tree,
with more drought-tolerant species displaying a lower leaf
area, reducing the hydraulic conductance of the whole tree
and therefore increasing its drought tolerance (Niinemets and
Valladares, 2006). α has been hypothesised to increase with
the size of a tree in response to the increased hydraulic de-
mand associated with greater hydraulic resistance of tall trees
(Magnani et al., 2000) and higher transpiration rates of larger
LAI (Battaglia et al., 1998; Phillips et al., 2003). Stand den-
sity may also impact α (Long and Smith, 1988; Whitehead,
1978), as increased stand level water use scales linearly with
LAI (Battaglia et al., 1998; Specht and Specht, 1989), reduc-
ing water availability to individual trees competing for the
same resources (Jump et al., 2017). Large-scale quantifica-
tion of α or Huber value, however, is difficult as studies usu-
ally rely on a small number of destructively sampled trees
(e.g. Carter and White, 2009; Magnani et al., 2000), litter-

Figure 1. Visual representation of the four methods for PAI and
WAI estimation used in this study: (a) a binarised digital hemispher-
ical photograph (DHP), (b) TLS raw single-scan point cloud, for
the lidar pulse method (Jupp et al., 2008). Image shows a top-down
view of raw point cloud, and greyscale represents low (grey) and
high (black) Z values, (c) TLS 2D intensity image for the 2D inten-
sity image method (Zheng et al., 2013), (d) voxelised co-registered
whole-plot point cloud for the voxel-based method (Hosoi and
Omasa, 2006), showing a representative schematic of cube vox-
els with edge length of 1 m, voxelised using the R package VoxR
(Lecigne et al., 2018). Solid black voxels are classified as contain-
ing vegetation (filled), and voxels outlined with grey lines are voxels
classified as empty.

fall traps (e.g. Phillips et al., 2003) or masking hemispher-
ical images (e.g. Sea et al., 2011; Woodgate et al., 2016).
These approaches are only applicable on a small to medium
scale, and in the case of image masking, cannot differentiate
between individuals. Variation in α, for example by species
and or stand structure, is therefore largely unknown.

1.1 TLS methods for calculating PAI, LAI and WAI

Terrestrial laser scanning (TLS) generates high-resolution
3D measurements of whole forests and individual trees (Burt
et al., 2019; Disney, 2018), leading to the development of
completely new monitoring approaches to understand the
structure and function of ecosystems (Lines et al., 2022). Un-
like traditional passive sensors, TLS can estimate PAI, WAI,
and LAI for both whole plots and individual tree point clouds
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(Calders et al., 2018) and is unaffected by illumination condi-
tions. This has led to the development of several methods for
processing TLS data to extract the key metrics PAI, WAI and
LAI (e.g. Hosoi and Omasa, 2006; Jupp et al., 2008; Zheng
et al., 2013). However, intercomparison studies of algorithms
and processing approaches to derive the same metrics from
different TLS methods are lacking. TLS methods for extract-
ing PAI, LAI and WAI can be broadly categorised into two
types: (1) lidar return counting, using single-scan data (e.g.
the lidar pulse method; Jupp et al., 2008, and 2D intensity
image method; Zheng et al., 2013), and (2) point cloud vox-
elisation, usually using co-registered scans (e.g. the voxel-
based method; Hosoi and Omasa, 2006).

The lidar pulse method (Jupp et al., 2008; Fig. 1b) esti-
mates gap fraction (Pgap) using single-scan data, as a func-
tion of the total number of outgoing lidar pulses from the
sensor and the number of pulses that are intercepted by the
canopy. This method, which eliminates illumination impacts
associated with the use of DHP (Calders et al., 2014), has
been implemented in the Python module PyLidar (https:
//www.pylidar.org, last access: 11 July 2023) and the R
package rTLS (Guzman, et al., 2021). Using the lidar pulse
method, Calders et al. (2018) compared PAI estimates from
two ground-based passive sensors (LiCOR LAI-2000 and
DHP) with TLS data collected with a RIEGL VZ-400 TLS in
a deciduous woodland and found the two passive sensors un-
derestimated PAI values compared to TLS, with differences
dependent on DHP processing and leaf on/off conditions.

The 2D intensity image method (Zheng et al., 2013;
Fig. 1c) also uses raw single-scan TLS point clouds but, un-
like the lidar pulse method, converts lidar returns into 2D
panoramas where pixel values represent return intensity. PAI
is estimated by classifying pixels as sky or vegetation, based
on their intensity value, to estimate Pgap, and then applying
Beer–Lambert’s law. Like the lidar pulse method, this ap-
proach has been shown to generate higher PAI estimates than
DHP (Calders et al., 2018; Woodgate et al., 2015; Grotti et
al., 2020), with differences attributed to the greater pixel res-
olution and viewing distance of TLS resolving more small
canopy details (Grotti et al., 2020).

The voxel-based method (Fig. 1d) estimates PAI by seg-
menting a point cloud into voxels and either simulating radia-
tive transfer within each cube (Béland et al., 2014; Kamoske
et al., 2019) or classifying voxels as either containing vege-
tation or not and dividing vegetation voxels by the total num-
ber of voxels (Hosoi and Omasa, 2006; Itakura and Hosoi,
2019; Li et al., 2017). Crucially, this method may be applied
to multiple co-registered scan point clouds and so can be used
to calculate PAI for both whole plots and individual, seg-
mented TLS trees. However, PAI estimates derived using the
voxel method are highly dependent on voxel size (Calders
et al., 2020). Using a radiative transfer approach, Béland
et al. (2014) demonstrated that voxel size is dependent on
canopy clumping, radiative transfer model assumptions and
occlusion effects, making a single, fixed choice of voxel size

for all ecosystem types, scanners or datasets impossible. To
test various approaches to selecting voxel size using a voxel
classification approach, Li et al. (2016) matched voxel size
to point cloud resolution, individual tree leaf size, and min-
imum beam distance and tested against destructive samples,
finding that voxel size matched to point cloud resolution
had the closest PAI values to destructive samples. The li-
dar pulse method and 2D intensity image method both use
single-scan data. However, to generate robust estimates of
canopy properties that avoid errors from occlusion effects,
multiple co-registered scans taken from different locations
are likely needed (Wilkes et al., 2017). Further, both these
methods require raw unfiltered data to accurately measure
the ratio of pulses emitted from the scanner and number of
pulses that are intercepted by vegetation. This means “noisy”
points caused by backscattered pulses (Wilkes et al., 2017)
are included in analyses, potentially leading to higher PAI
estimates. However, the lidar pulse and 2D intensity image
methods may introduce fewer estimation errors compared to
DHP, which is influenced by differences in sky illumination
conditions and camera exposure (Weiss et al., 2004).

1.2 Scope and aims

The aims of this study are twofold: the first aim is to compare
three TLS methods for estimating PAI with traditional DHP.
The second aim of this study is to use TLS to understand
drivers of individual tree α variation.

In this study we use a dataset of 528 co-located DHP and
high-resolution TLS scans from 33 forest plots to compare
DHP-derived PAI (PAIDHP) with estimates from three meth-
ods to estimate PAI from TLS data (PAITLS): the lidar pulse
method, the 2D intensity image method, and the voxel-based
method (Fig. 1). We use a dataset collected from a network
of pine–oak forest plots in Spain (Owen et al., 2021) and
ask (1) are the three TLS methods able to reproduce PAIDHP
estimates at single-scan and whole-plot level? (2) Does α,
calculated from the voxel-based method on individual tree
point clouds, vary with species and tolerance to drought?
And (3) does α scale with height and stand density?

2 Methods

2.1 Study site

We collected TLS and DHP data from 29 plots in Alto Tajo
Natural Park (40◦41′N, 02◦03′W; FunDIV – functional di-
versity plots; see Baeten et al., 2013, for a detailed descrip-
tion of the plots) and four plots in Cuéllar (41◦23′ N 4◦21′W)
in June–July 2018 (see Owen et al., 2021, for full details)
(Fig. A1 in Appendix A). Plots contained two oak (Quercus)
species and three pine (Pinus) species: semi-deciduous Q.
faginea and evergreen Q. ilex and P. nigra, P. pinaster and P.
sylvestris. P. sylvestris is the least drought-tolerant species,
followed by P. nigra, Q. faginea and Q. ilex; shade tolerance
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follows the same ranking (Niinemets and Valladares, 2006;
Owen et al., 2021). Although not quantitatively ranked, P.
pinaster has been shown to be very drought tolerant, appear-
ing in drier areas than the other species (Madrigal-González
et al., 2017). The area is characterised by a Mediterranean
climate (altitudinal range 840–1400 m a.s.l.) (Jucker et al.,
2014; Madrigal-González et al., 2017). In addition to the five
main canopy tree species, plots contained an understorey of
Juniperus thurifera and Buxus sempervirens (Kuusk et al.,
2018).

2.2 Field protocol

In each of the 33 plots of size 30× 30 m, we collected TLS
scans on a 10 m grid, making 16 scan locations following
Wilkes et al. (2017) to minimise occlusion effects associated
with insufficient scans. We used a Leica HDS6200 TLS set to
super high resolution (3.1× 3.1 mm resolution at 10 m with a
beam divergence of ≤ 5 mm at 50 m; scan time 6 m 44 s; see
Owen et al., 2021). At each of the 528 scan locations and fol-
lowing the protocol in Pfeifer et al. (2012), we captured co-
located DHP images with three exposure settings (automatic
and ± one stop exposure compensation), levelling a Canon
EOS 6D full frame DSLR sensor with a Sigma EX DG F3.5
fisheye lens, mounted on a Vanguard Alta Pro 263AT tripod.

2.3 Calculation of single-scan and whole-plot PAI using
DHP data

For each of the red–green–blue (RGB) DHP images we ex-
tracted the blue band for image thresholding, as this best
represents sky–vegetation contrast (Pfeifer et al., 2012). For
each plot, we picked the exposure setting that best repre-
sented sky–vegetation difference based on pixel brightness
histograms of four sample locations indicative of the plot.
We carried out automatic image thresholding using the Ri-
dler and Calvard method (1978), to create a binary image of
sky and vegetation, avoiding subjective user pixel classifica-
tion (Jonckheere et al., 2005). We calculated PAI from the
binary image, limiting the field of view to a 5◦ band centred
on the hinge angle of 57.5◦ (55–60◦). The hinge angle has
a path length through the canopy twice the canopy height,
so the band around it is an area of significant spatial aver-
aging taken as representative of canopy structure of the area
(Calders et al., 2018; Jupp et al., 2008). From the binarised
hinge angle band we calculated Pgap as the number of sky
pixels divided by the total number of pixels and PAI using an
inverse Beer–Lambert law equation (Monsi and Saeki, 1953).
We calculated whole-plot PAI as the arithmetic mean of the
16 plot scan location PAI estimates. As this value does not
correct for canopy clumping, it is better described as effec-
tive PAI, rather than true PAI (Woodgate et al., 2015). How-
ever, as the TLS and DHP methods we apply here account
for canopy clumping differently, we compared effective val-
ues and here on refer to effective PAI as PAI (Calders et al.,

2018). DHP images used in this study are freely available
(see Flynn et al., 2023).

2.4 Calculation of single-scan and whole-plot PAI from
TLS data

To calculate PAI using the lidar pulse method (Jupp et al.,
2008), we calculated Pgap for a single scan (Fig. 1b) by sum-
ming all returned laser pulses and dividing by the number
of total outgoing pulses, following Lovell et al. (2011; see
Eq. 7 in that study), and then estimated PAI following Jupp
et al. (2008; see Eq. 18 in that study), setting the sensor range
to 5◦ around the hinge angle as before (55–60◦). Single-scan
PAI was taken as the cumulative sum of PAI values esti-
mated by vertically dividing the hinge region into 0.25 m in-
tervals (Calders et al., 2014). We implemented the lidar pulse
method using the open-source R (R Core Team, 2022) pack-
age rTLS (Guzmán et al., 2021).

To calculate PAI using the 2D intensity image method
(Zheng et al., 2013), we converted 3D TLS point cloud data
from all 528 scan locations into polar coordinates, scaled in-
tensity values to cover the full 0–255 range (Fig. 1c) and ras-
terised into a 2D intensity image using the open-source R
package raster (Hijmans, 2022). We cut the 2D intensity im-
age to a 5◦ band around the hinge angle (55–60◦) and classi-
fied sky and vegetation pixels in each image using the Ridler
and Calvard method (1978). We calculated Pgap as the num-
ber of pixels classified as sky divided by the total number
of pixels and derived PAI with an inverse Beer–Lambert law
equation (Monsi and Saeki, 1953).

Following the same approach as applied to our DHP data,
we calculated whole-plot PAI for the lidar pulse and 2D in-
tensity image methods as the arithmetic mean of the 16 plot
scan location PAI estimates.

To calculate PAI using the voxel-based method, we fol-
lowed a voxel classification approach (Hosoi and Omasa,
2006), downsampling the point cloud to 0.05 m to aid com-
putation time and matching the voxel size to the resolution
of the point cloud, following Li et al. (2016), who showed
that matching the voxel size to the point cloud point-to-point
minimum distance (resolution) increases accuracy as small
canopy gaps are not included in voxels classified as vegeta-
tion. We chose to use a voxel classification approach (rather
than a radiative-transfer-based one) as this method is widely
applicable to a range of TLS systems and levels of process-
ing, as well as providing explicit guidance on voxel size se-
lection, which is known to impact derived PAI estimates (Li
et al., 2016). We re-combined individually segmented trees,
filtered for noise using a height-dependent statistical filter
(see Owen et al., 2021) back into whole-plot point clouds
and voxelised them using the open-source R package VoxR
(Lecigne et al., 2018), with a full grid covering the minimum
to maximum xyz ranges of the plot. We classified any voxel
containing> 0 points as vegetation (“filled”) and empty vox-
els as gaps. We then split the voxelised point cloud vertically
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into slices one voxel high. Within each slice, the contact fre-
quency is calculated as the fraction of filled to total number
of voxels. We then multiplied the contact frequency by a cor-
rection factor for leaf inclination, set at 1.1 (Li et al., 2017),
and whole-plot PAI was calculated as the sum of all slices’
contact frequencies.

2.5 Calculation of individual tree PAI, WAI and α

using the voxel-based method

As the only method using multiple co-registered scans, the
voxel-based method is the only method compared in this
study capable of deriving PAI, WAI and LAI of segmented
individual tree point clouds. We estimated PAI and WAI for
2472 individual trees segmented from co-registered point
clouds following a similar method to the whole-plot point
cloud. We used individual tree point clouds downsampled to
0.05 m, to aid computation time, and segmented using the
automated tree segmentation program treeseg (Burt et al.,
2019), implemented in C++, by Owen et al. (2021) for that
study. Individual segmented tree data used in this study are
freely available (see Owen et al., 2022).

To estimate PAI, WAI and α for each tree, we used in-
dividual tree point clouds wood–leaf separated by Owen et
al. (2021) using the open-source Python library TLSepara-
tion (Vicari et al., 2019) and then used the separated wood
point clouds to calculate WAI. TLSeparation assigns points
as either leaf or wood, iteratively looking at a predetermined
number of nearest neighbours (k-NN). The k-NN of each it-
eration is directly dependent on point cloud density, since
high-density point clouds will require higher a k-NN (Vicari
et al., 2019). The utility package in TLSeparation was used
to automatically detect the optimum k-NN for each tree point
cloud.

To voxelise individual tree complete (Fig. 2a) and wood
only (Fig. 2b) point clouds, we used a modified approach
based on Lecigne et al. (2018), voxelising within the pro-
jected crown area of the whole tree point cloud (Fig. 2c) to
calculate PAI. In the same way as for PAI, we calculated WAI
using the separated wood point cloud within the projected
crown area of the whole tree (Fig. 2d; using the whole crown
and not just the wood point cloud) and derived α for each
tree as WAI/PAI, allowing a comparison with existing litera-
ture estimating α for a range of ecosystems (Sea et al., 2011;
Woodgate et al., 2016).

2.6 Statistical analyses

We tested the relationships between PAITLS and PAIDHP esti-
mates using standardised major axis (SMA) using the open-
source R (R Core Team, 2022) package smatr (Warton et
al., 2012). SMA is an approach to estimating a line of best
fit where we are not able to predict one variable from an-
other (Warton et al., 2006); we chose SMA because we do
not have a “true” validation dataset, so we avoid assuming

Figure 2. Visualisation of the workflow for applying the voxel-
based method to estimate individual tree PAI, WAI and α. (a) Indi-
vidual tree point cloud; (b) separated leaf off (wood) individual tree
point cloud; (c) voxelised individual tree point cloud; (d) voxelised
wood cloud. Coloured voxels (green represents leaf and brown rep-
resents wood) are filled voxels, and grey lines are empty voxels.
Empty voxels occupy the space within the projected crown area of
the tree. Image shows schematic of point cloud voxelised with cube
voxels with edge length of 0.5 m. Panels (a) and (b) show wood and
leaf separation of an example P. sylvestris, carried out using TLSep-
aration (Vicari et al., 2019). Point cloud voxelisation was carried
out using modified functions from R package VoxR (Lecigne et al.,
2018). Note that our method used voxel sizes at the resolution of
the cloud (0.05 m), but here we present an image with larger voxels
to ease visual interpretation.
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either DHP or any of the TLS methods produce the most
accurate results. For each TLS method, we assessed the re-
lationship with DHP using the coefficient of determination
and RMSE. We chose to compare PAI values rather than
WAI or LAI as to do so would mean an additional correction
for non-photosynthetic elements, which each method does
in different ways, therefore introducing further sources of
uncertainty and limiting our ability to fairly compare pro-
cessing approaches. To further understand observed drivers
of variance in PAI, we tested the relationship between PAI
and whole-plot crown area index, CAI, a proxy measure of
stand density and local competition (Caspersen et al., 2011;
Coomes et al., 2012). We calculated CAI as the sum of TLS-
derived projected crown area, divided by the plot area (Owen
et al., 2021).

To test whether α differs by species, we used linear mixed
models (LMMs) in the R package lme4 (Bates et al., 2015).
We included an intercept only random plot effect to account
for local effects on α:

αi, sj = ϕs +Plotj . (1)

Here, αi is α of an individual of species s, in plot j , and ϕs
is the parameter to be fit. To test the effect of stand structure
and tree height on α, we fit relationships separately for each
species, again including a random plot effect:

αi, sj = ϕs + bsHi + csCAIj +Plotsj. (2)

Here Hi is the height of the tree, and CAIj is the crown area
index for the plot, with other parameters as before.

For each species’ model (Eq. 2), we calculated the intra-
class correlation coefficient (ICC). The ICC, similar to co-
efficient of determination, quantifies the amount of variance
explained by the random effect in a linear mixed model (Nak-
agawa et al., 2017).

3 Results

3.1 Comparison of plant area index estimated by DHP
and single-scan TLS

Of the two single-scan TLS methods tested (lidar pulse
method and 2D intensity image method), we found that
the relationship between PAI estimated using the lidar
pulse method and PAIDHP had a higher R2 than the 2D
intensity image method (SMA; lidar pulse method R2

=

0.50, slope= 0.73, p < 0.001, RMSE= 0.14 and 2D in-
tensity image method R2

= 0.22, slope= 0.38, p < 0.001,
RMSE= 0.39, respectively, Fig. 3a). At larger PAI values,
both TLS methods underestimated PAI relative to DHP
(Fig. 3b). We found statistically significant negative cor-
relations between residuals and DHP for both methods
(SMA; 2D intensity image method residuals R2

= 0.85,
slope=−0.88, p < 0.01; lidar pulse method residuals R2

=

0.47, slope=−0.70, p < 0.01; Fig. 3b). The 2D inten-
sity image method showed larger underestimation at higher
PAIDHP values, suggesting this method may saturate sooner
for higher PAI values than either DHP or the lidar pulse
method (Fig. 3b).

3.2 Comparison of whole-plot plant area index
estimated using TLS and DHP and the effect of
plot structure on PAI

We found statistically significant correlations between
whole-plot PAITLS values and PAIDHP for all three TLS
methods (Fig. 4). As for single scans, the lidar pulse method
showed the closest agreement to PAIDHP, here compared
to both the voxel-based and 2D intensity image meth-
ods (SMA; lidar pulse method R2

= 0.66, slope= 0.82,
p < 0.01, RMSE= 0.14; voxel-based method R2

= 0.39,
slope= 2.76, p < 0.01, RMSE= 0.88; 2D intensity image
method R2

= 0.35, slope= 0.36, p < 0.01, RMSE= 0.39,
respectively; Fig. 4a). The 2D intensity image method and li-
dar pulse method consistently underestimated PAI compared
to DHP, whilst the voxel-based method underestimated in
plots with lower PAIDHP and overestimated in plots with
higher PAIDHP. The voxel-based method’s high PAI values
compared to other methods are likely due to its use of mul-
tiple co-registered scans reducing occlusion effects prevalent
in single-scan data.

To assess the effect of plot structure on variation in TLS-
derived PAI, we compared PAITLS estimates with TLS-
derived CAI (Fig. 4b). We found a significant positive re-
lationship between CAI and PAI estimated using each of the
lidar pulse method, the voxel-based method and DHP (SMA;
lidar pulse methodR2

= 0.79, slope= 1.69, p < 0.01; voxel-
based method R2

= 0.76, slope= 5.72, p < 0.01; 2D inten-
sity image method R2

= 0.15, slope= 0.76, p < 0.05; DHP
R2
= 0.46, slope= 2.07, p < 0.01, respectively; Fig. 4b),

where the 2D intensity image method shows signs of satu-
ration at medium CAI values (Fig. 4b).

3.3 Influence of species, tree height and CAI on α

To understand drivers of variance in α, we used individ-
ual tree PAI and WAI, calculated using the voxel-based
method to test the relationship between species and α and
the relationship between height/CAI and α. We found that
more drought-tolerant species generally had higher α values
than less drought-tolerant species (Table B1 in Appendix B;
Fig. 5); however, confidence intervals were wide and over-
lapping, suggesting that species is not a strong predictor of
variation in α. We found a statistically significant negative
effect of height (p < 0.001; Table B2; Fig. 6a) and positive
effect of CAI (p< 0.01–0.05; Table B2; Fig. 6b) on α for
all species apart from P. sylvestris. α decreased more rapidly
with height and increased less rapidly with CAI for oaks than
pines. Statistically significant ICC values were higher for P.
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Figure 3. Comparison of single-scan PAITLS and PAIDHP estimates, for all 528 scan locations (16 per plot). (a) The correlation between
DHP-derived PAI with PAI derived using the 2D intensity image method R2

= 0.22, slope= 0.38, p < 0.001, RMSE= 0.39 (circles), and
lidar pulse method R2

= 0.50, slope= 0.73, p < 0.001, RMSE= 0.14 (triangles). Dashed line in (a) represents 1 : 1 relationship. (b) The
difference between PAITLS and PAIDHP estimates for the 2D intensity image method and lidar pulse method. Dashed line in (b) represents
0. Solid lines show statistically significant relationships fitted using SMA (p < 0.01).

Figure 4. Comparison of plot level PAITLS vs. PAIDHP and CAI vs. PAI estimates for all 33 plots. (a) The correlation between DHP-
derived PAI and PAI derived using 2D intensity image R2

= 0.35, slope= 0.36, p < 0.01, RMSE= 0.39 (circle), lidar pulse R2
= 0.66,

slope= 0.82, p < 0.01, RMSE= 0.14 (triangle) and voxel-based R2
= 0.39, slope= 2.76, p < 0.01, RMSE= 0.88 (cross) methods. (b) The

correlation between TLS-derived CAI and PAI derived using DHP R2
= 0.46, slope= 2.07, p < 0.01 (square), 2D intensity image R2

=

0.15, slope= 0.76, p < 0.05 (circle) lidar pulse R2
= 0.79, slope = 1.69, p < 0.01 (triangle) and voxel-based R2

= 0.76, slope= 5.72,
p < 0.01 (cross) methods. Lines show statistically significant relationships fitted using SMA (p < 0.01). Dashed line in (a) represents 1 : 1
relationship.

nigra (ICC= 0.211; Table B2) than P. pinaster, Q. faginea
and Q. ilex (ICC= 0.036; 0.060; 0.070, respectively), show-
ing that more α variation is explained by the random plot
effect in P. nigra than the other species. P. pinaster has a
wider confidence interval (Fig. 5), possibly explained by its
lower sample size. To understand drivers of variance in WAI
we carried out additional analysis to test the relationship be-
tween WAI and species, height, CAI and PAI and presented
these results in Appendix C (Fig. C3; Tables C3, C4).

4 Discussion

4.1 Comparison of approaches to deriving PAI from
remote sensed data

We found substantial differences in PAI values estimated
from TLS and DHP and from different TLS processing meth-
ods (Figs. 3 and 4). Further, differences between TLS meth-
ods varied across plot structure, with the greatest differences
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Figure 5. Linear-mixed-model-derived α values (ϕ, Eq. 1) for all
2472 individual trees of species P. sylvestris, P. nigra, Q. faginea, Q.
ilex and P. pinaster. Error bars represent 95 % confidence intervals.
Species are listed left to right from low–high drought tolerance, with
the exception of P. pinaster, for which drought tolerance index has
not been calculated in the literature. Drought tolerance rankings are
taken from Niinemets and Valladares (2006).

between methods in plots with high CAI and therefore high
canopy density. Although previous studies have presented
TLS as an improvement over DHP due to its independence
of illumination and sky conditions during the data acquisi-
tion phase and ability to resolve fine-scale canopy elements
and gaps (Calders et al., 2018; Grotti et al., 2020; Zhu et
al., 2018), we have shown that there is large variability be-
tween TLS processing methods in Mediterranean forests.
Rigorous intercomparison of approaches, ideally using stan-
dard benchmarking TLS datasets, and destructive sampling,
would improve trust and reliability of TLS algorithms.

We found the lidar pulse method (Jupp et al., 2008) to have
the best agreement with DHP for both whole-plot and single-
scan PAI estimates. In contrast to previous studies comparing
PAITLS with PAIDHP (Calders et al., 2018; Grotti et al., 2020;
Woodgate et al., 2015), we found that the lidar pulse and
2D intensity image methods underestimated PAI compared
to DHP, except at very low PAI values (PAITLS< 0.5). Quan-
tification of PAI from DHP may introduce additional sources
of error; for example, its relatively lower resolution com-
pared to TLS could lead to mixed pixels that have a greater
chance of misclassification of sky as vegetation (Jonckheere
et al., 2004). This effect could be enhanced in a Mediter-
ranean forest as trees in drier climates tend to have smaller
leaves (Peppe et al., 2011), leading to more small canopy
gaps that TLS may resolve where DHP cannot. Further, al-
though we took steps to reduce the error introduced at DHP
data acquisition and processing steps, including using auto-
matic thresholding and collecting images with multiple expo-

sures, DHP processing requires both model and user assump-
tions that can impact results. For example, PAIDHP estimates
are highly sensitive to camera exposure; increasing one stop
of exposure can result in 3 %–28 % difference in PAI, and use
of automatic exposure can result in up to 70 % error (Zhang
et al., 2005).

We found the voxel-based method overestimated PAI val-
ues compared to the other methods at the whole-plot level.
This is likely due to the method’s use of co-registered
scans, rather than averaged single-scan PAI values, since co-
registered scans will reduce occlusion effects prevalent in
single-scan data that could to lead to an underestimation of
PAI (Wilkes et al., 2017). The voxel-based method is, how-
ever, sensitive to voxel size (Li et al., 2016), and larger vox-
els lead to larger PAI estimates as they are unable to capture
all of the intricate details of canopy structure; we chose a
voxel size of 0.05 m to match the minimum distance between
points in our downsampled dataset. However, the voxel-
based method is a memory-intensive approach to calculating
PAI, and smaller voxels have higher memory requirements.
We picked this data resolution, and therefore voxel size, to
balance the need to capture fine-scale canopy details against
memory requirements for running the method on many large
plot point clouds. Voxel size could have been chosen based
on estimates’ match to DHP, but this would assume (1) that
DHP estimates are most accurate and (2) that DHP data are
always available, limiting the wider applicability of our find-
ings. Understanding which method is over- or underestimat-
ing would require a destructively sampled dataset for valida-
tion, which was not possible for this study (or most ecosys-
tems). However, other studies using voxel approaches have
found that although these produce high LAI values for in-
dividual trees, these are underestimates compared with de-
structive samples (Li et al., 2016). Regardless, PAI and LAI
estimates using a voxel-based approach are highly dependent
on voxel size (Li et al., 2016), and future work should test the
influence of voxel size on PAI estimates, using destructive
samples in a range of environments.

The relationship between the lidar pulse method and TLS-
derived CAI had the highest R2, demonstrating that the
method is well suited to measuring PAI across the range of
plot CAI values used in this study. Although the 2D intensity
image method can tackle the significant challenges presented
by edge effects and partial beam interceptions, particularly
present in phase-shift systems (Grotti et al., 2020), our re-
sults suggest this method has a lower performance ability,
with saturation occurring sooner than all other methods in
dense forests (Figs. 3 and 4). The 2D intensity image method
uses the same raw single-scan data as the lidar pulse method,
so the better performance from the latter is likely due to the
method’s use of vertically resolved gap fraction; both the li-
dar pulse method and voxel-based method account for the
vertical structure of the canopy by summing vertical slices
through the canopy.
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Figure 6. Variation in α for each species: Pinus nigra, P. pinaster, Q. faginea and Q. ilex with (a) height and (b) plot CAI. Lines represent
statistically significant linear mixed models (Eq. 2; significance levels from p < 0.001 to p < 0.05). Ribbons represent 95 % confidence
intervals. The model for P. sylvestris was not statistically significant.

4.2 α variation between species and plot

We used the voxel-based method to investigate individual
tree α variation between species and across structure, as this
was the only approach we compared that could be applied
to single tree point clouds which are leaf–wood separated.
We found α values obtained were within the range of val-
ues obtained from destructive approaches (0.1–0.6, Gower et
al., 1997). The drought- and shade-intolerant P. nigra showed
stronger variability in α across plots (higher ICC value, Ta-
ble B2) than other species, suggesting its wood–leaf ratio
may be more sensitive to site factors. However, as the plots
measured in this study vary in both abiotic conditions (alti-
tude, aspect, slope, wetness) as well as species composition,
stem density and canopy cover, there may be other drivers of
variation in α values.

We found some evidence that species with higher drought
tolerance had higher α values (Fig. 5; Table B1); however,
confidence intervals were wide, suggesting a weak relation-
ship. There is evidence that trees that tolerate water-limited
environments have a lower leaf area (Battaglia et al., 1998;
Mencuccini and Grace, 1995), so higher α values may reflect
maintenance of homeostasis of leaf water use through ad-
justment of wood-to-leaf-area ratio (Carter and White, 2009;
Gazal et al., 2006). The potential for a tree to lose water is
mostly regulated through leaf traits including stomatal con-
ductance and leaf area, and both stand (Battaglia et al., 1998;
Specht and Specht, 1989) and individual tree (Mencuccini,
2003) water use have been found to scale linearly with LAI,
with drought often mitigated through leaf shedding (López
et al., 2021).

4.3 Tree stature and stand density drive α variation

Although species had a weak relationship with α, tree height
and plot CAI had a statistically significant relationship with
α (p < 0.001–p < 0.05) for all species, showing the impor-
tance of local stand structure on leaf and woody allocation.
We found that α scaled negatively with height for all species
apart from P. sylvestris, suggesting that in this environment,
taller trees generally have a lower proportion of wood to plant
area index than shorter ones. P. sylvestris, which is at the edge
of its geographical range and physiological limits (Castro-
Díez et al., 1997; Owen et al., 2021), showed no significant
relationship between height and α. We found that α scaled
positively with plot level CAI for all species apart from P.
sylvestris; that is, trees growing in denser plots have a higher
α. This supports theory that trees growing in dense forests
are competing for resources, reducing individual tree leaf
area (Jump et al., 2017). The negative relationships between
height and α and positive relationships between CAI and α
relationships in our model suggest that trees may initially in-
vest in vertical growth to reach the canopy level and once
there invest in lateral growth, with more leaf area, to increase
light capture. This supports theory that trees grow to outcom-
pete neighbouring individuals for light capture (Purves and
Pacala, 2008) and evidence that both lateral growth and LAI
are reduced beneath closed canopies (Beaudet and Messier,
1998; Canham, 1988).

Wood may be harder to accurately classify than leaves in
TLS data (Vicari et al., 2019), resulting in a higher occur-
rence of false positives in wood clouds, potentially leading
to an overestimation in WAI, and therefore underestimation
of α, especially in trees with small leaves which are preva-
lent in dry, Mediterranean environments (Peppe et al., 2011).
The problem of misclassification will increase in taller trees
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due to TLS beam divergence, occlusion and larger beam foot-
print at further distances (Vicari et al., 2019), suggesting that
WAI overestimation could be more pronounced in tall trees.
Although our dense scanning strategy (Owen et al., 2021)
was designed to mitigate some of these effects, these effects
mean our findings may underestimate the slope of the nega-
tive relationship between α and tree height. Conversely, the
increasing leaf-to-wood ratio could potentially be explained
by a greater number of empty voxels caused by occlusion
in large trees. However, we took significant steps to reduce
occlusion, employing a 10 m scanning strategy that was de-
veloped in a dense tropical forest (Wilkes et al., 2017).

4.4 Correcting for non-photosynthetic elements in LAI
estimates using TLS

The value of TLS data to estimate individual tree PAI, WAI
and subsequently α demonstrates their potential to correct
for non-photosynthetic components in ground-based remote
sensing measurements of LAI. Properly correcting for WAI
in LAI estimates is of global importance as small errors
in ground-based measurements propagate through to large-
scale satellite observations generating large errors in global
vegetation models (Calders et al., 2018). The work presented
here provides a foundation for future work combining multi-
source and multi-scale remote sensing datasets to correct
large-scale LAI products. Our results echo others in finding
that the prevalence of woody material in the tree canopy, and
therefore α is dynamic and varies by species as well as senes-
cence, crown health and, in the case of deciduous forests,
leaf phenology (Gower et al., 1999). The use of single α
value in a plot or region (Olivas et al., 2013; Woodgate et al.,
2016), invariant of species, size and forest structure, to con-
vert PAI to LAI is therefore problematic (Niu et al., 2021).
Our study demonstrates the importance of taking species mix
and structural variation into account when correcting for non-
photosynthetic material in ground-based LAI estimates.

5 Conclusions

We tested three methods for estimating PAI using terrestrial
laser scanning data and compared these against traditional
DHP measurements. We found large variation between PAI
values estimated from each TLS method and DHP, demon-
strating that care should be taken when deriving PAI from
ground-based remote sensing methods. Although the lidar
pulse method was found to have the best agreement with both
single-scan and whole-plot PAI values measured by DHP,
the voxel-based method allowed separate analysis of the key
metric used to correct for the effect of WAI in LAI measure-
ments, α, in individual trees. We recommend the lidar pulse
method as a fast and effective method for PAI estimation in-
dependent of illumination conditions. Whilst the voxel-based
method may be used to analyse individual tree α and deter-
mine ecological drivers of variation, work remains to deter-
mine the validity of these approaches, in particular correct
voxel size choice. We found that α varies by species, height
and stand density, showing the importance of accurately cor-
recting for WAI on the individual tree level and the utility of
TLS to do so.

The variation in our results for the different methods used
to derive PAI from TLS data shows that there is some way to
go before TLS-derived vegetation indices can be interpreted
as robust and reliable. Validation using destructive samples
and further intercomparison studies of methods are needed to
demonstrate the advantages of TLS, and use of benchmark-
ing datasets should be standard. DHP is a faster, cheaper and
more widely accessible method for PAI estimation, and while
TLS promises to alleviate potential bias in DHP estimates,
results are highly method dependent. Our results demonstrate
the challenges that stand in the way of large-scale adoption
of TLS for vegetation index monitoring.
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Appendix A

Figure A1. Map of plot locations within two field sites in central Spain (Cuéllar, b and Alto Tajo, c). Red points show plot locations on
high-resolution digital terrain models enhanced with hillshading shown in greyscale (taken from the Supplement of Owen et al., 2021).

Appendix B

Table B1. Species–α linear mixed model (Eq. 1) showing relationship between tree species and α for all 2472 individual trees. Species are
listed from low–high drought tolerance, with the exception of P. pinaster, for which drought tolerance index has not been calculated in the
literature.

Species a (Eq. 1) 95 % CI

P. sylvestris 0.144 0.131, 0.158
P. nigra 0.138 0.127, 0.149
Q. faginea 0.149 0.140, 0.157
Q. ilex 0.155 0.146, 0.166
P. pinaster 0.168 0.145, 0.192

95 % CI denotes the 95 % confidence intervals.

Table B2. Height–α linear mixed models for each species (Eq. 2) showing relationship between tree height and plot CAI and α for all 2472
individual trees. Species are listed from low–high estimated α.

Species b (Eq. 2) (95 % CI) c (Eq. 2) (95 % CI) ICC

P. sylvestris −0.002ns (−0.004, 0.000) 0.134ns (0.010 0.259) 0.151
P. nigra −0.005∗∗∗ (−0.006, −0.004) 0.164∗∗ (0.063, 0.263) 0.211
Q. faginea −0.008∗∗∗ (−0.010, −0.007) 0.058∗ (0.016, 0.101) 0.060
Q. ilex −0.015∗∗∗ (−0.020, −0.011) 0.113∗∗ (0.050, 0.179) 0.070
P. pinaster −0.006∗∗∗ (−0.008, −0.004) 0.317∗ (0.177, 0.453) 0.036

Significance codes: p < 0.001 ∗∗∗; p < 0.01 ∗∗; p < 0.05 ∗; not significant ns; 95 % CI denotes the 95 %
confidence intervals, and ICC is the intra-class correlation coefficient.
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Appendix C

WAI=mspecies (C1)
WAI=mheight+ b (C2)
WAI=mCAI+ b (C3)
WAI=mPAI+ b, (C4)

where WAI is the wood area index; species, height, CAI and
PAI are the tree species, tree height, crown area index of the
plot in which the tree is growing and tree plant area index
respectively, and m and b are parameters to be fit.

Figure C1. Linear-model-derived WAI values (m, Eq. C1) for all 2472 individual trees of species P. sylvestris, P. nigra, Q. faginea, Q. ilex
and P. pinaster. Error bars represent 95 % confidence intervals. Species are listed from low–high drought tolerance, with the exception of P.
pinaster, for which drought tolerance index has not been calculated in the literature. Between-species differences in WAI are likely primarily
driven by differences in average tree height.

Table C1. Linear model (Eq. C1) showing relationship between tree species and WAI for all 2471 individual trees.

Species m (Eq. C1) 95 % CI

P. nigra 0.57∗∗∗ 0.56, 0.59
P. pinaster 0.69∗∗∗ 0.66, 0.73
P. sylvestris 0.56ns 0.54, 0.59
Q. faginea 0.39∗∗∗ 0.37, 0.41
Q. ilex 0.37∗∗∗ 0.34, 0.39

Significance codes: p < 0.001 ∗∗∗; p < 0.01 ∗∗;
p < 0.05 ∗; not significant ns; 95 % CI denotes the
95 % confidence intervals.
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Table C2. Linear models (Eqs. C2, C3, C4) predicting WAI as a function of tree height, CAI (density) and PAI.

m (Eqs. C2, C3, C4) (95 % CI) b (Eqs. C2, C3, C4) (95 % CI) R2

Tree height 0.024∗∗∗ (0.023, 0.026) 0.27∗∗∗ (0.25, 0.28) 0.27
CAI 0.390∗∗∗ (0.336, 0.443) 0.29∗∗∗ (0.26, 0.31) 0.78
PAI 0.112∗∗∗ (0.106, 0.118) 0.12∗∗∗ (0.10, 0.14) 0.35

Significance codes: p < 0.001 ∗∗∗; p < 0.01 ∗∗; p < 0.05 ∗; not significant ns; 95 % CI denotes the 95 % confidence
intervals.

Code availability. See https://doi.org/10.5281/zenodo.8134269
(Flynn and Grieve, 2023) for all processing and modelling code.

Data availability. See Owen et al. (2022, https://doi.org/10.5281/
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