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Abstract. Fire is the dominant disturbance agent in Alaskan
and Canadian boreal ecosystems and releases large amounts
of carbon into the atmosphere. Burned area and carbon emis-
sions have been increasing with climate change, which have
the potential to alter the carbon balance and shift the re-
gion from a historic sink to a source. It is therefore criti-
cally important to track the spatiotemporal changes in burned
area and fire carbon emissions over time. Here we developed
a new burned-area detection algorithm between 2001–2019
across Alaska and Canada at 500 m (meters) resolution that
utilizes finer-scale 30 m Landsat imagery to account for land
cover unsuitable for burning. This method strictly balances
omission and commission errors at 500 m to derive accurate
landscape- and regional-scale burned-area estimates. Using

this new burned-area product, we developed statistical mod-
els to predict burn depth and carbon combustion for the same
period within the NASA Arctic–Boreal Vulnerability Exper-
iment (ABoVE) core and extended domain. Statistical mod-
els were constrained using a database of field observations
across the domain and were related to a variety of response
variables including remotely sensed indicators of fire sever-
ity, fire weather indices, local climate, soils, and topographic
indicators. The burn depth and aboveground combustion
models performed best, with poorer performance for below-
ground combustion. We estimate 2.37× 106 ha (2.37 Mha)
burned annually between 2001–2019 over the ABoVE do-
main (2.87 Mha across all of Alaska and Canada), emitting
79.3± 27.96 Tg (±1 standard deviation) of carbon (C) per
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year, with a mean combustion rate of 3.13± 1.17 kg C m−2.
Mean combustion and burn depth displayed a general gra-
dient of higher severity in the northwestern portion of the
domain to lower severity in the south and east. We also
found larger-fire years and later-season burning were gen-
erally associated with greater mean combustion. Our esti-
mates are generally consistent with previous efforts to quan-
tify burned area, fire carbon emissions, and their drivers in
regions within boreal North America; however, we generally
estimate higher burned area and carbon emissions due to our
use of Landsat imagery, greater availability of field observa-
tions, and improvements in modeling. The burned area and
combustion datasets described here (the ABoVE Fire Emis-
sions Database, or ABoVE-FED) can be used for local- to
continental-scale applications of boreal fire science.

1 Introduction

Fire is the dominant disturbance agent in boreal forests
(Stocks et al., 2003) and places large controls on ecosys-
tem dynamics including vegetation composition and struc-
ture, nutrient cycling, permafrost, and carbon cycling (Bo-
nan and Shugart, 1989; Bond-Lamberty et al., 2007; Walker
et al., 2019). Fire frequency, intensity, and burned area have
been increasing in Alaskan and Canadian boreal forests over
the last several decades (Hanes et al., 2018; Kasischke et
al., 2010; Veraverbeke et al., 2017), and these trends are
expected to continue throughout the 21st century due to a
warmer and drier climate (Balshi et al., 2009; Boulanger et
al., 2018; Young et al., 2017). Changes to the fire regime have
been associated with more severe fires, which burn deeper
into the organic soil profile and may be related to large-fire
years and seasonal timing of burn (Turetsky et al., 2011), al-
though this has not been tested widely. Ultimately, changes
in the fire regime have the potential to transition at least some
North American boreal forests from a carbon sink to a source
(Dieleman et al., 2020; Li et al., 2017; Walker et al., 2019;
Wang et al., 2021). To better understand how changing boreal
fire regimes influence carbon dynamics, it is critical to accu-
rately map burned area and estimate resulting carbon emis-
sions over time.

Burned-area mapping in Alaska and Canada over long
time frames (> 20 years) has primarily been based on dig-
itized maps of fire observations (both by hand and in recent
decades using GPS, aerial imagery, and satellite remote sens-
ing) from the Alaska Large Fire Database (ALFD; Kasischke
et al., 2002), the Canadian National Fire Database (CNFD;
Amiro et al., 2001; Stocks et al., 2003), and more recently
the Canadian National Burned Area Composite (NBAC; Hall
et al., 2020). These databases are updated annually in Alaska
and Canada, yet substantial uncertainty remains, particularly
as the databases go further back in time, when aerial and
satellite imagery was less prevalent. Of particular importance

is the possibility of commission errors because the databases
do not typically account for unburned patches of vegeta-
tion and waterbodies within the fire perimeters, leading to
an overestimation of burned area (Skakun et al., 2021). At
the same time, the databases are more likely to omit fires due
to lost records or missed detections in earlier decades (Kasis-
chke et al., 2002; Stocks et al., 2003), leading to omissions.
Mapping fire perimeters in recent decades has improved with
the use of satellite remote sensing, particularly from 30 m
Landsat (Epp and Lanoville, 1996) and 500 m Moderate
Resolution Imaging Spectroradiometer (MODIS) imagery.
While MODIS imagery is at coarser resolution than Land-
sat, its multiple acquisitions per day are highly amenable to
burned-area mapping, although there are known omission er-
rors due to small (< 100 ha) burns as well as an overesti-
mation of burned area at the pixel level due to the relatively
coarse 500 m resolution, which misses some unburned vege-
tation patches and waterbodies (Giglio et al., 2018). Landsat
imagery can largely bypass these issues of spatial resolution
(Guindon et al., 2018; Walker et al., 2018), but the relatively
infrequent overpass times and typical cloudy environments
in the tundra and boreal biome result in data gaps, particu-
larly prior to the launch of Landsat 7 (1999) due to data relay
issues and limited tasking.

Traditionally, carbon emissions from wildfires have been
calculated as a function of burned area, fuel consumption,
and emission factors (French et al., 2011; Seiler and Crutzen,
1980). Carbon emissions in these models are based on ob-
served relationships between fuel consumption, fire weather,
and fuel type. Current models that are built with this frame-
work include the Wildland Fire Emissions Information Sys-
tem (WFEIS; French et al., 2011, 2014), the Fire Inven-
tory from the National Center for Atmospheric Research
(FINN; Wiedinmyer et al., 2011), and the Global Fire Emis-
sion Database (GFED; van der Werf et al., 2017). In addi-
tion to these regional and global products, there are several
model products that provide estimates in boreal ecosystems
of Alaska (French et al., 2002; Kasischke and Hoy, 2012; Tan
et al., 2007; Veraverbeke et al., 2015) and Canada (Amiro
et al., 2001; de Groot et al., 2007). Researchers have also
made improvements to process-based models’ representation
of fire occurrence and effects (Hantson et al., 2016; Rabin et
al., 2017; Zhao et al., 2021). These models can be used to ex-
plore causal relationships and have the benefit of estimating
how burn rates and carbon emissions may vary under differ-
ing future climate change scenarios.

In addition to simple empirical and process-based mod-
els of carbon combustion, several recent studies have im-
plemented statistical techniques to model combustion based
on field observations, satellite remote sensing imagery, and
other geospatial data (Dieleman et al., 2020; Rogers et al.,
2014; Veraverbeke et al., 2015, 2017; Walker et al., 2018).
These advances are possible due to the increasing volume
of field observations of combustion and have the advan-
tages of unraveling complex relationships between combus-
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tion observations and geospatial information to extrapolate
over space and time. Satellite imagery collected both pre-fire
and post-fire has been particularly useful for these techniques
(Hudak et al., 2007; Key and Benson, 2006). Specifically,
the differenced normalized burn ratio (dNBR) combines the
near-infrared and shortwave infrared bands obtained before
and after a fire, and the spectral information retained is
sensitive to reductions in vegetation and moisture content
post-fire. Due to these qualities dNBR correlates relatively
strongly with aboveground biomass loss, but there have been
conflicting findings on the strength of the relationship with
belowground fire severity, which is particularly important in
boreal ecosystems (Kasischke and Hoy, 2012; McGuire et al.,
2009). Additional environmental predictors have been com-
bined with dNBR to statistically model aboveground and be-
lowground combustion across Alaska and Canada, including
quantified uncertainties (Dieleman et al., 2020; Rogers et al.,
2014; Veraverbeke et al., 2015, 2017; Walker et al., 2018).
Veraverbeke et al. (2015) found topographic variables (ele-
vation, slope, northness), pre-fire vegetation cover (% tree
cover), and day of burning to be important predictors for both
aboveground and belowground combustion and more specif-
ically the combination of dNBR, day of burning, elevation,
and tree cover to be the most informative in Alaska. Walker
et al. (2018) considered 71 variables associated with topogra-
phy, permafrost condition, fire severity, fire weather, and soil
properties and found that dNBR, change in pre- and post-fire
tree cover, terrain ruggedness, topographic wetness, percent
black spruce, and percent sand were the most informative for
the 2014 Northwest Territories fires. Although these results
have been encouraging, extrapolations have been limited to
specific regions in Canada and Alaska and often to specific
fire years. It is likely that the inclusion of additional field
data across a more representative selection of field locations
in Alaska and Canada would improve model fits and allow
for extrapolation over a larger domain and longer time peri-
ods.

In this study we first derived a new 500 m burned-area
product for all of Alaska and Canada during 2001–2019.
Our approach builds on previous satellite-based burned-area
mapping efforts (Chen et al., 2020; Dieleman et al., 2020;
Loboda et al., 2018; van der Werf et al., 2017; Veraverbeke
et al., 2015; Walker et al., 2018) with 500 m MODIS data
but advances these by using 30 m Landsat imagery to both
improve accuracy and account for the presence of unburn-
able land cover. Using this burned-area product, along with
a new comprehensive database of combustion observations
in Alaska and central/western Canada (Walker et al., 2020a),
we used machine learning to estimate burn depth and fire car-
bon emissions across the Arctic–Boreal Vulnerability Exper-
iment (ABoVE) domain. We compare our product to a suite
of previous efforts and use it to test previously hypothesized
relationships between fire severity, annual burned area, and
seasonal timing of burning.

Figure 1. Study domain. Locations of combustion observations
(red), the burned-area product domain (light gray), and the com-
bustion and burned-depth product domain (dark gray).

2 Methods

2.1 Study area

The spatial domain of this study includes all of Alaska and
Canada for our burned-area product and the ABoVE core
and extended domain (hereafter the “ABoVE domain”; Lo-
boda et al., 2019) for our combustion and burn depth prod-
uct (Fig. 1). The combustion and burn depth products were
not derived beyond the ABoVE domain due to a lack of
field observations in eastern Canada. The temporal domain
for all products is 2001–2019. Our study area includes all
natural boreal and arctic vegetation within the ABoVE do-
main, including boreal forests, boreal wetlands, grasslands,
tundra, and tundra wetlands. To determine these locations
we derived a vegetation mask using the 2005 Land Cover
of North America product (250 m; CCRS, 2013; Pouliot and
Latifovic, 2013; Pouliot et al., 2014), MODIS land cover type
with International Geosphere–Biosphere Programme (IGBP)
classification (Collection 6, year 2005, 500 m; Friedl and
Sulla-Menashe, 2019), the Circumpolar Arctic Vegetation
Map (CAVM; Raynolds et al., 2019), and long-term cli-
mate (1970–2000, ∼ 1 km; Fick and Hijmans, 2017), all re-
gridded to 500 m resolution on the MODIS sinusoidal pro-
jection (Fig. S1 in the Supplement). Boreal vegetation was
distinguished from temperate using a mean annual tempera-
ture threshold of 3 ◦C, as recommended in Wolfe (1979) and
implemented in Rogers et al. (2015). Pixels were designated
as urban, crop, crop/natural vegetation mosaic, or water if
they were represented as such in either the Land Cover of
North America or MODIS land cover products. Pixels were
designated as tundra if they were within the CAVM domain.
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2.2 Field data

Field measurements of burn depth and combustion were de-
rived from numerous data sources across different research
groups that represent a major synthesis effort sponsored by
the NASA ABoVE program (Boby et al., 2010; Dieleman
et al., 2020; de Groot et al., 2009; Hoy et al., 2016; Rogers
et al., 2014; Turetsky et al., 2011; Veraverbeke et al., 2015;
Walker et al., 2018). Detailed descriptions of data collection
methods can be found in the contributing publications. All
field site information was standardized and aggregated into
a single publicly available database (Walker et al., 2020a),
which has been used to assess patterns and drivers of ecosys-
tem structure and combustion across ecoregions (Walker et
al., 2020b, c). Although the field database only includes mea-
surements from boreal ecosystems, our combustion and burn
depth predictions include both boreal and tundra ecosystems.
Of all the pixels for which we predicted combustion and burn
depth, only 0.78 % are in tundra landscapes.

2.3 Burned-area mapping

The ABoVE Fire Emissions Database (ABoVE-FED)
burned-area product is derived from a dNBR thresholding ap-
proach, which has previously been successfully employed for
burned-area mapping in the region (Rogers et al., 2014; Ve-
raverbeke et al., 2015; Walker et al., 2018). Our primary ap-
proach was to use Landsat imagery to separate burned from
unburned pixels at 30 m. However, because Landsat imagery
was not available for all regions and time periods, we used
MODIS imagery to map burned pixels when necessary and
upscaled our Landsat-based product to 500 m MODIS res-
olution. More specifically we used pre- and post-fire near-
infrared (NIR) and shortwave infrared (SWIR) bands from
Aqua (MYD09GA Collection 6; Vermote and Wolfe, 2015a),
Terra (MOD09GA Collection 6; Vermote and Wolfe, 2015b),
and Landsat 5–8, calculating dNBR as the difference in pre-
fire normalized burn ratio (NBR) and post-fire NBR, where
NBR is near-infrared minus shortwave infrared divided by
near-infrared plus shortwave infrared.

This approach had the added advantage of accuracy;
whereas a Landsat dNBR threshold tends to be surpassed at
the site level in a diffuse manner across the landscape, due
to stochastic site-level disturbances such as tree mortality,
herbivory, flooding, or small-scale dieback, it is much less
common for these small-scale disturbances to influence the
majority of a 500 m pixel. We also minimized mapping non-
fire disturbances by following the approach of Veraverbeke
et al. (2015) and applying our dNBR approach to (1) mapped
fire polygons from the ALFD and CNFD (93 % of total
burned pixels; hereafter collectively referred to as the Na-
tional Large Fire Databases, NLFD) and (2) MODIS active-
fire acquisitions (MOD14A1 Collection 6 and MYD14A1
Collection 6; Giglio et al., 2018) outside these polygons (7 %
of total burned pixels). In each case we applied a 1 km buffer

(Veraverbeke et al., 2015) to capture burned pixels immedi-
ately outside these areas. Finally, our approach is motivated
by a desire to balance commission and omission errors at
both the 30 and 500 m scales, thereby providing an unbiased
estimate of total burned area.

To map 30 m burned pixels, we first extracted dNBR at
both burned and unburned control sites in our aggregated
field database using available cloud-free Landsat 5, 7, and
8 Tier 1 surface reflectance images in Google Earth Engine
(Gorelick et al., 2017). Landsat 5 and 7 were atmospherically
corrected using the Landsat Ecosystem Disturbance Adap-
tive Processing System (LEDPAS; Schmidt et al., 2013),
while Landsat 8 was atmospherically corrected using Land
Surface Reflectance Code (LaSRC; Vermote et al., 2016).
Pre- and post-fire normalized burn ratio (NBR) was calcu-
lated as the mean of all available Landsat observations be-
tween July and August. Pre-fire values were extracted 1 year
before a given fire, and post-fire values were extracted 1 year
after a fire. We then selected a 30 m Landsat dNBR threshold
that most effectively separated burned and unburned control
sites. Because there are many fewer unburned control sites
in the Walker et al. (2020a) combustion database, we derived
additional control sites by extracting dNBR at burned sites
2 years before a given fire, which had the advantage of con-
trolling for any site-level spectral differences between burned
and control sites represented in the database. This process
generated a dNBR threshold of 0.084, which minimized 30 m
site-level commission and omission errors to 6.6 % (Fig. S2).

We then created a mask at 30 m to account for unburn-
able land cover (i.e., non-vegetated pixels). This was created
using two sources: the Joint Research Center’s yearly wa-
ter history product (Pekel et al., 2016) and the 2010 land
cover product of the North American Land Change Moni-
toring System (NALCM) at 30 m resolution (Latifovic et al.,
2012). The first product allowed us to capture transient water
pixels in our time series, while the NALCM land cover prod-
uct classified each pixel into 19 different land cover classes,
from which we masked out non-vegetated pixels, including
ice, water, barren land, and cropland. These two sources were
combined into separate masks for each year between 2001–
2019. Because areas that burned in 2010 were often classified
as barren lands in the 2010 NALCM product, we considered
barren lands to be vegetated in our mask for the year 2010.

Using the vegetation mask and the dNBR threshold, we
created a binary burned/unburned 30 m Landsat product and
upscaled this to the native MODIS 500 m resolution and pro-
jection. To determine whether or not a given 500 m pixel was
classified as burned or unburned, we calculated the percent-
age of 30 m vegetated pixels that burned within its footprint.
If more than 50 % of the 30 m vegetated pixels within the
larger 500 m pixel burned (i.e., were tripped by the dNBR
threshold), the entire pixel was assigned as burned, and the
burned fraction was calculated as the percent of the burnable
land cover (vegetation) in the 500 m pixel. Note we did not
use the percent of burned 30 m pixels to determine burn frac-
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tion within a given 500 m pixel, primarily because of limi-
tations imposed by frequently missing Landsat imagery (de-
tailed below).

We used this approach whenever 500 m pixels contained
100 % coverage by Landsat imagery at 30 m. When, how-
ever, there was less than 100 % Landsat coverage, we needed
to determine if it was more accurate to classify 500 m pixels
using Landsat (with partial coverage) or MODIS Collection 6
imagery (Vermote and Wolfe, 2015a, b). To do so, we ana-
lyzed all MODIS pixels with complete Landsat coverage and
masked out increasing numbers of Landsat pixel strips within
the larger MODIS footprint (using increments of 5 %). After
each removal of Landsat pixels, we compared the accuracy of
the resulting burned/unburned classification using (i) Landsat
imagery with partial coverage and (ii) MODIS imagery. This
procedure suggested that using MODIS dNBR was more ac-
curate than Landsat when less than 85 % of a 500 m MODIS
pixel was covered by Landsat imagery. We therefore used
Landsat to classify burned pixels when at least 85 % of a
500 m pixel was covered by Landsat imagery and otherwise
used MODIS. Burned pixels were assigned a quality flag of
0 when there was complete Landsat coverage; a quality flag
of 1 when Landsat coverage was less than 100 % but greater
than 85 %; and a quality flag of 2 when Landsat coverage
was less than 85 %, and therefore MODIS imagery was used
to classify burn status. Overall, 81 % of total burned pixels
were derived using Landsat (66 % from full coverage and
15 % from partial coverage), although particular regions (no-
tably Alaska and Newfoundland and Labrador) tend to rely
more on MODIS due to more limited availability of Landsat
imagery (Fig. S3).

We developed a correction factor for MODIS-based dNBR
to account for differences between Landsat and MODIS NIR
and SWIR spectra, as well as the influence of vegetation
fraction on 500 m dNBR signals. To do so, we calculated
pre- and post-fire NIR and SWIR bands from MODIS and
Landsat (resampled to 500 m) for a 50 % random sample of
burned pixels. We then differenced the Landsat 500 m re-
sampled bands from the 500 m MODIS bands and regressed
them onto vegetation fraction to obtain a correction factor.
The regression yielded an R2 of 0.74 and an equation of
y = 0.94x+0.01, which was applied to all pixels where burn
status was classified by MODIS. We then calculated a new
dNBR threshold to classify pixels at 500 m in an unbiased
manner. To do so, we determined the MODIS dNBR thresh-
old that evenly split omissions and commissions based on
pixels mapped with complete Landsat coverage. This thresh-
old was determined to be 0.0725, resulting in an omission/-
commission error of 14.2 % at 500 m when using MODIS.

One issue with a burned-area mapping approach such as
ours that utilizes post-fire imagery 1 year after a fire is that
it is difficult to determine the year(s) of burn where over-
lapping burns occurred in successive years. To address these
cases, we created a seasonal MODIS-based product follow-
ing the methodology of Giglio et al. (2018). The dNBR for

each day between 15 January and 15 December was calcu-
lated using the 30 preceding days as pre-fire NBR and the
30 d after as post-fire NBR. Any pixels with fewer than 10
valid observations in either window were masked out. We
used a similar thresholding approach to that described above
for mapping burned pixels with MODIS, resulting in a sea-
sonal dNBR threshold of 0.23. Any pixel mapped using the
MODIS seasonal approach was assigned a quality flag of 3.

In addition to determining fire locations, fire year, and
the burned fraction, we also determined the day of burning
for each pixel. When possible, day of burn was taken di-
rectly from the thermal-anomaly active-fire detections from
MOD14A1 Collection 6 and MYD14A1 Collection 6 (Giglio
et al., 2018) active-fire products. Where an active fire was
registered, day of burn was assigned by taking the earliest
active-fire acquisition during the year. When an active fire
was not registered for a given burned pixel, we utilized a
multi-tiered approach to assign day of burn. When possi-
ble, we used a kriging technique to interpolate day of burn
using the active-fire detections within each fire polygon in
the NLFD following Veraverbeke et al. (2015). To implement
this, we required fire polygons to contain at least five active-
fire acquisitions within their boundaries and have some level
of temporal variation (i.e., not all active-fire acquisitions on
the same day). When this was not the case, day of burn was
assigned using the closest active-fire pixel. Finally, when
no active-fire acquisitions were associated with a given fire
polygon, we used our MODIS-based seasonal mapping ap-
proach to determine day of burn by locating the day of max-
imal dNBR within a given year. For fires that were detected
by MODIS thermal anomalies but were not contained in the
NLFD (7 % of all burned area), we created our own polygons
around the burned pixels (by converting pixels to vectors and
buffering them) and used the same method to assign day of
burn. Quality flags for our burn day product represent this
tiered approach, with a flag of 0 for pixels with direct active-
fire hits, a flag of 1 for pixels whose day of burn was deter-
mined by interpolation, and a flag of 2 for pixels whose day
of burn was determined using the MODIS seasonal burned-
area product. A simplified flowchart of burned-area process-
ing methods is shown in Fig. S4.

We compared ABoVE-FED burned area to several other
products including the NLFD, NBAC, MCD64A1 Collec-
tion 5, MCD64A1 Collection 6, the Alaska Fire Emissions
Database version 2 (AKFED; Veraverbeke et al., 2017),
GFED4s (van der Werf et al., 2017), a 500 m model by
van Wees et al. (2022), and the Fire Model Intercomparison
Project (FireMIP; Hantson et al., 2016; Rabin et al., 2017;
Table S1 in the Supplement). NBAC is a Canada-only prod-
uct and is related to the CNFD but improves upon it by in-
corporating multi-sensor remote sensing imagery (including
Landsat) to account for waterbodies and unburned vegetation
patches. FireMIP includes simulations performed by coupled
fire–vegetation models forced with a standardized set of in-
put data. We also visually compared our product and oth-
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ers to high-resolution imagery of fires from the WorldView-
2 (1.84 m) satellite, available through DigitalGlobe, Inc.,
a Maxar company under the NextView license agreement
through the National Geospatial Intelligence Agency (Neigh
et al., 2013).

2.4 Combustion and burn depth models

We built and applied statistical models of aboveground com-
bustion, belowground combustion, and burn depth to every
mapped burned pixel in the ABoVE domain based on field
observations across Alaska and western Canada (Walker et
al., 2020a). Because not all field sites included estimates
of both aboveground and belowground combustion, we cre-
ated two separate combustion models, one utilizing all avail-
able aboveground combustion measurements (n= 515) and
one utilizing all available belowground combustion measure-
ments (n= 769). Our burn depth model utilized the same
field sites as belowground combustion. Further discussion of
models implemented can be found in the Supplement.

2.4.1 Predictor variables

Combustion and burn depth measurements from Walker et
al. (2020a) were related to a variety of spatial predictors in-
cluding remotely sensed indicators of fire severity, topogra-
phy, soils, climate, and fire weather. We initially acquired 75
covariates associated with environmental conditions such as
long-term climate, fire weather, topography, vegetation type,
soil type, remotely sensed vegetation indices (e.g., normal-
ized difference vegetation index, NDVI; Tucker, 1979), and
permafrost condition (Table S2).

2.4.2 Climate variables

Long-term climate was acquired from ClimateNA (CNA;
Wang et al., 2016; Table S2), which provides point estimates
of mean climate from 1981–2010 based on the Climate Re-
search Unit (CRU; Mitchell and Jones, 2005). ClimateNA
uses finer-resolution PRISM (Daly et al., 2002, 2008) and
ANUSPLIN (Hutchinson, 1989) climate normals to down-
scale coarse-resolution monthly climate data to a 4× 4 km
grid, followed by bilinear interpolation and a locally derived
elevation adjustment to estimate point data. CNA variables
were represented as both annual and summer means (June–
August) and were included to capture the influence of long-
term climate on vegetation, fuel loads, and fuel moisture,
which drive combustion (Walker et al., 2020b).

2.4.3 Fire weather indices

Fire weather indices (FWIs) represent the meteorology at
the timing of fire occurrence and have been associated with
fire behavior and carbon emissions due to their influence on
fuel moisture and fire spread (e.g., Di Giuseppe et al., 2018;
French et al., 2011; Ivanova et al., 2011; Veraverbeke et

al., 2017). We acquired FWIs from the Global Fire Weather
Emissions Database (GFWED v2.0; Field et al., 2015) at
0.5◦× 0.66◦ resolution. FWI information was extracted for
the day of burn for all fires in the field database. Since FWI
data were not available for all burned pixels in our fire prod-
uct due to missing data in the shoulder seasons, we devel-
oped two versions of our aboveground combustion, below-
ground combustion, and burn depth models: a primary model
that included FWIs in training and a secondary one that did
not. Mapped pixels from the primary model were assigned a
quality flag of 0, and pixels from the secondary model were
assigned a flag of 1. Of the 2 123 730 pixels that burned be-
tween 2001–2019, 4.4 % did not have FWI data available and
necessitated the use of these secondary models.

2.4.4 Environmental variables

We acquired a variety of environmental covariates related
to soils, topography, vegetation type, and permafrost occur-
rence (Table S2). Soil properties were taken from SoilGrids
at 250 m resolution (Hengl et al., 2017), including percent
clay (0–2 µm), silt (2–50 µm), sand (50–2000 µm), coarse
material (> 2000 µm), bulk density (g cm−3), soil organic
carbon stock (t ha−1), and soil water pH. We integrated all
variables across the top 30 cm of the soil profile.

Topographic variables, including elevation (m), aspect (◦),
and slope (◦), were derived from a 10 m digital elevation
model (DEM) of the ABoVE domain, which, in turn, was
derived from a higher-resolution Arctic DEM (Porter et al.,
2018) and gap-filled with additional DEM datasets (Burns
et al., 2023). This 10 m DEM was resampled to 500 m, and
then aspect and slope were both calculated as the local gra-
dient of the four connected neighbors of each pixel. After re-
sampling to 500 m we also calculated a topographic wetness
index (TWI) for each pixel that represents soil drainage pat-
terns based on the slope and upslope area draining through a
particular point (Beven and Kirkby, 1979).

Vegetation type was represented by the percent cover over
seven broad classes, including black spruce (Picea mariana),
white spruce (Picea glauca), jack pine (Pinus banksiana),
deciduous broadleaf species, other conifers, grasslands, and
non-vegetated areas (Beaudoin et al., 2014; Ottmar et al.,
2007). We use pre-fire tree cover (Sexton et al., 2013) from
either 2000, 2005, 2010, or 2015, depending on fire year.

Lastly, we acquired a permafrost zonation and a surface
roughness index, which is a measure of terrain complexity
(Gruber, 2012).

2.4.5 Remotely sensed variables

We derived numerous remotely sensed vegetation indices
from Landsat, including the NDVI, the normalized difference
infrared index (NDII; Hardisky et al., 1983), dNBR (Key and
Benson, 2006), the relative difference normalized burn ratio
(RdNBR; Miller and Thode, 2007), the relativized burn ratio
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(RBR; Parks et al., 2014), tasseled cap greenness, wetness
and brightness (Kauth and Thomas, 1976), and pre-fire tree
cover (Sexton et al., 2013). NDVI, NDII, and tasseled cap
indices were acquired as a mean composite between 15 May
and 15 June in the post-fire years, while dNBR, RdNBR, and
RBR were based on mean composites between 1 June and
31 August for both the pre- and post-fire years.

For model training all remotely sensed variables were ex-
tracted from Landsat 5–8 Tier 1 surface reflectance at 30 m
with clouds, cloud shadows, and snow masked out using the
C Function of Mask algorithm (CFMask; Foga et al., 2017).
We applied corrections due to spectral differences between
Landsat 8 and 7 using a regression technique (Roy et al.,
2016). Although our model was trained with Landsat im-
agery at 30 m, we predicted combustion and burn depth at
500 m across the domain using MODIS imagery. All MODIS
variables were extracted in Google Earth Engine at ideal
MODIS quality flags (bit flag of 0). We then implemented
a correction factor to account for sensor and spatial-scaling
issues in model predictions (Sect. 2.4.7).

2.4.6 Feature selection and model comparisons

We reduced our initial 75 covariates to an optimal number
using recursive feature elimination (Guyon et al., 2002). Re-
cursive feature elimination iteratively removes variables un-
til a desired number remains, which in this case is defined by
the number of covariates necessary to achieve the minimum
root mean square error (RMSE). Recursive feature elimina-
tion achieves this by fitting a secondary machine learning
model that can rank features by importance and discards the
least important ones at each iteration. We used a random for-
est (Breiman, 2001) as the measure of importance and re-
peated our recursive feature elimination three times across
a 5-fold cross-validation to determine the optimal subset of
covariates (Table S2). For the primary aboveground combus-
tion, belowground combustion, and burn depth models, the
optimal number of variables was 15, 45, and 40 (Fig. S5), re-
spectively, and for the secondary models the optimal number
of variables was 15, 64, and 48. While it is possible a similar
RMSE could have been achieved with reduced model com-
plexity (reduced number of variables), we chose to directly
use RMSE reduction as our threshold for feature selection.

We then tested a suite of statistical models across the se-
lected feature space to compare predictive power. For each
model, we searched for optimal model parameters using a
10-fold cross-validation repeated three times and a random
search grid of length 10 (i.e., for any given model parameter,
10 random numbers were selected per parameter and tested
for each parameter combination). After optimizing model pa-
rameters, we compared final model fits with a 10-fold cross-
validation repeated 100 times. After comparing the median
R2 for each model across these 1000 iterations, we selected
the best-performing model and chose it for the final model
implementation. All model training took place in R (R Core

Team, 2021). In all cases the best-performing model was a
ranger random forest, although there were differences in the
optimal parameters chosen (Table S3).

2.4.7 Spatial scaling

Our combustion and burn depth models were developed us-
ing site-level data (most plots utilized a 30× 30 m design)
and geospatial predictors at their native resolution, includ-
ing a variety of 30 m Landsat indices. However, our spa-
tial model was applied at 500 m to match the resolution of
our burned-area product, ultimately because missing imagery
prevented comprehensive burned-area mapping at 30 m. To
explore potential issues associated with implementing the
model at these different spatial scales, we randomly sam-
pled two hundred 500 m pixels from each year in 2004, 2006,
2012, 2014, and 2015 for a total of 1000 pixels. We then im-
plemented our combustion and burn depth models at both
30 and 500 m to assess biases and errors introduced by both
spatial and sensor differences. When models were assessed
at 30 m, all predictor variables were acquired at their na-
tive resolutions (Table S2); when models were assessed at
500 m, all variables were resampled to 500 m. Any variables
described in Sect. 2.4.5 that were derived from Landsat were
instead collected at 500 m from MODIS (using MOD09A1
Collection 6 and MYD09A1 Collection 6). We used MODIS-
provided quality flags to select pixels that were corrected at
ideal quality and masked out clouds and snow. All other vari-
ables were resampled to 500 m using bilinear interpolation
if the native resolution was > 500 m and using mean values
within pixel boundaries if the native resolution was < 500 m.
We then compared the predictions at 500 m resolution to the
mean across all the 30 m sub-pixels and built type 2 linear
regression models to correct for potential biases. The coef-
ficients from these models were then used to adjust the fi-
nal predictions for the combustion models across the full do-
main.

2.4.8 Combustion and burned-depth predictions and
quality flags

Predictor variables for all burn pixels across the domain were
collected in Google Earth Engine. Since the ideal MODIS
quality flag criteria (Sect. 2.4.5) left 0.31 % of the total
burned pixels missing, we collected predictors for these pix-
els with no MODIS quality flag applied and assigned our
own quality flag to distinguish these samples. We provide
four separate quality flags indicating whether our primary or
secondary models (no FWIs) were implemented and whether
MODIS quality flags were applied. Our four flags have the
following associations: flag 1 – primary model with MODIS
quality flag criteria (95.32 % of pixels), flag 2 – primary
model with no MODIS quality flag criteria (0.26 % of pix-
els), flag 3 – secondary model with MODIS quality flag cri-
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teria (4.37 % of pixels), flag 4 – secondary model with no
MODIS quality flag criteria (0.05 % of pixels).

2.4.9 Monte Carlo analysis

To derive a measure of prediction uncertainty, we imple-
mented a Monte Carlo analysis with 500 simulations that
incorporated uncertainty from both the field-measured com-
bustion and the random forest models. Our approach was
based on techniques implemented in Rogers et al. (2014), Ve-
raverbeke et al. (2015), Walker et al. (2018), and Dieleman
et al. (2020). To account for uncertainty in field estimates of
belowground combustion, we used the standard error in ob-
served site-level combustion when it was available. In total,
271 field sites recorded standard error: 22 in Alaska, 47 in
Saskatchewan, and 202 in the Northwest Territories. Stan-
dard error was estimated for both aboveground and below-
ground combustion in Alaska and Saskatchewan and only for
belowground in the Northwest Territories. For each Monte
Carlo simulation, we derived an adjustment factor by mul-
tiplying a site’s standard error by a random number from a
normal distribution with a standard deviation of 1 and cen-
tered around 0. This resulting number was then added to the
measured combustion.

Uncertainty in aboveground combustion in the Northwest
Territories was calculated by first creating a random bias for
the percent carbon content of trees (central estimate of 0.5),
which varied randomly within a normal distribution with 3 %
standard deviation systematically across all trees measured
for each Monte Carlo simulation (based on Rogers et al.,
2014). We similarly included a 20 % error in visual estimates
of tree consumption (Dieleman et al., 2020; French, 2004;
Walker et al., 2018), which also varied systematically across
all trees measured. Aboveground combustion in each simu-
lation was then altered using these adjustment terms (adding
the carbon fraction adjuster and multiplying the tree con-
sumption adjuster).

Since these procedures only accounted for uncertainty of
271 of the possible samples, uncertainty for the remaining
245 aboveground and 499 belowground samples was de-
rived using an alternate approach. To do so, we first lin-
early regressed the aboveground and belowground combus-
tion standard error derived from Monte Carlo simulations
against measured aboveground and belowground combus-
tion, respectively. The coefficients from these two separate
models were then used to predict the standard errors for all
remaining samples (Fig. S6).

In addition to uncertainty in field measurements, there is
also uncertainty in the random forest model used to predict
combustion across the ABoVE domain. To account for this,
we leveraged the fact that model residual errors tended to in-
crease in proportion to combustion level, similar to Rogers et
al. (2014) and Dieleman et al. (2020). To estimate this rela-
tionship, we split the original model predictions (from the 10-
fold cross-validation repeated 100 times) into 15 bins based

on quantiles of total combustion and then calculated the stan-
dard deviation of the residual error within each bin. We then
used a general additive model to smooth the standard devia-
tion of the residuals across the bins (Fig. S7). For each of the
500 Monte Carlo simulations using adjusted field estimates
of combustion (derived from procedures described above),
new random forest model predictions were assigned a stan-
dard error based on total combustion using the smoothed re-
lationship. These standard errors were then multiplied by a
random bias factor with a standard deviation of 1 centered
around 0, which was then added back into the combustion
predictions to derive a final uncertainty estimate for each pre-
dicted combustion pixel across the ABoVE domain.

We quantified uncertainty in our predictions in three ways:
(1) pixel-level uncertainty, (2) uncertainty in mean combus-
tion, and (3) uncertainty in total emissions for a given re-
gion of interest. In each case, uncertainties derived from the
Monte Carlo simulations were adjusted by the ratios of mean
combustion from the primary model to that of the Monte
Carlo simulations in order to account for different mean
combustion levels, and hence emissions, between the mod-
els (which were minor). (1) Pixel-level uncertainty was cal-
culated as the standard error in combustion for a given pixel
across the Monte Carlo simulations. (2) Uncertainty in mean
combustion for a given region was calculated as the standard
error in mean combustion across the 500 Monte Carlo sim-
ulations for that region. In this case note that mean com-
bustion was calculated by weighting pixels by their vege-
tated (burned) fractions. (3) Uncertainty in total emissions
for a given region of interest was calculated as the stan-
dard error in total emissions for that region across the 500
Monte Carlo simulations. A simplified flow chart of the
combustion/burned-depth modeling methodology is shown
in Fig. S8.

2.5 Relationships between belowground fire severity,
annual burned area, and timing of burn

Turetsky et al. (2011) discovered a positive relationship be-
tween burn depth, annual burned area, and timing of burn
(day of year) in black spruce forests and peatlands of interior
Alaska and also noted the influence of burn timing was more
important in small-fire years. To test if these relationships
held true with a larger field database in Alaska (n= 286 for
ABoVE-FED compared to n= 178 in Turetsky et al., 2011),
we performed a multiple regression of burn depth and below-
ground combustion using annual burned area and day of year
as predictor variables. We also tested how burn depth and be-
lowground combustion varied as a function of day of year
within both small- and large-fire years. To do so, we split
the field sites in Alaska into four quantiles based on annual
burned area and then regressed burn depth and belowground
combustion against day of year within each quantile. We also
conducted this analysis using a sample of 500 ABoVE-FED
pixels in Alaska instead of field observations and then re-
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peated both of these analyses using all available field obser-
vations and 500 random pixels within the broader ABoVE
domain. In each case, we sampled 500 pixels instead of us-
ing all available pixels to minimize the effect of large sample
sizes on p values.

3 Results

3.1 Burned area

Temporally there was high variability in burned area year
to year (Fig. 2a). Across the domain, ABoVE-FED reported
similar burned-area totals compared to the NLFD (average of
2.87 Mha yr−1 for ABoVE-FED compared to 2.90 Mha yr−1

for NLFD; Fig. 3), although there was variability in this
relationship (NLFD estimated larger annual burned area
in 11 years and smaller burned area in 8 years between
2001–2019). This was the net result of two contrasting pat-
terns: ABoVE-FED tended to report less burned area within
mapped polygons, due to unmapped unburned patches and
unburnable land cover (e.g., small waterbodies) in the gov-
ernment fire databases, but detected additional burned areas
associated with MODIS active-fire acquisitions well outside
mapped fire polygons (7 % of total burned area in ABoVE-
FED, 6 % of total emissions; Fig. S9). The state/territory with
the most burned area detected outside the mapped polygons
was British Columbia (31 % of the 7 % total burned area
mapped outside NLFD polygons; Fig. S9). Exploratory anal-
ysis revealed this was likely a result of commission errors
due to logging (i.e., logged areas tripping dNBR thresholds
in conjunction with small fires registered by MODIS active-
fire hits). Across the domain, the mean fire size coincident
with NLFD polygons was much larger (4954 ha) than the
mean fire size outside the polygons (166 ha). Because the
NBAC product accounts for more of these unburned patches
within polygons (Hall et al., 2020), it tended to report lower
total burned area compared to ABoVE-FED (Fig. S10).
ABoVE-FED burned area was higher than MCD64A1 (Col-
lection 5 and 6; Fig. 3) in all years, which is consistent
with known omissions in these global products for boreal
North America (Giglio et al., 2018; Randerson et al., 2012;
Fig. S11). These large-scale patterns were corroborated by
high-resolution imagery of particular fire events (Figs. 4,
S12–S19). ABoVE-FED identified more burned pixels than
MCD64A1 Collection 6 by being more sensitive to fire-
induced spectral changes but also accounted for unburnable
portions of the landscape (Fig. S20). GFED4s burned area
was slightly higher (Fig. S21; average of 2.38 Mha yr−1 dur-
ing 2001–2016) than both MODIS products (Fig. 3; aver-
age of 2.93 Mha yr−1 during 2001–2016), but lower than the
NLFD and ABoVE-FED (Fig. 3). The MCD64A1 Collec-
tion 5 and Collection 6 and GFED4s databases underesti-
mated burned area by 32 %, 23 %, and 18 % compared to
ABoVE-FED, respectively.

Figure 2. Temporal variability in ABoVE-FED burned area (a) and
emissions (b) from 2001–2019.

Figure 3. Comparison of ABoVE-FED burned area across Canada
and Alaska to MODIS MCD64A1 Collection 5 (C5), MCD64A1
Collection 6 (C6), and the Alaskan and Canadian National Fire
Databases (NFDB).

ABoVE-FED burned area was similar to AKFED where
it was available (Alaska, the Northwest Territories, and the
Yukon Territory; Fig. S22; average of 1.27 Mha yr−1 for
ABoVE-FED during 2001–2015 compared to 1.22 Mha yr−1

for AKFED). All models participating in FireMIP simulated
smaller burned area than ABoVE-FED, and with a very high
level of variability between models (1.34± 0.83 Mha yr−1

across Alaska and Canada during 2001–2012; Fig. S23a).
Burned area was highly variable interannually (Figs. S21,

S24), with the largest-fire years occurring in 2004 in Alaska
and the Yukon Territory; 2015 in Alaska, Saskatchewan, and
Alberta; 2014 in the Northwest Territories; and 2013 in Man-
itoba and Quebec. Across states, provinces, and territories,
total burned area was highest in Alaska, the Northwest Ter-
ritories, and Saskatchewan. A total of 54 Mha burned across
Alaska and Canada during all years, and 45 Mha burned in
the ABoVE domain, with an annual mean of 2.87 Mha yr−1

across Alaska and Canada and 2.37 Mha yr−1 in the ABoVE
domain.

Spatially ABoVE-FED estimated the most burned area
in Alaska, the Northwest Territories, and Saskatchewan
(Figs. 5a, S21, S24).
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Figure 4. Comparison of high-resolution imagery and burned-area
products for a fire in Manitoba in 2014 (a). Panels show WorldView-
2 imagery (fire shown in purple shades) (b), ABoVE-FED (c),
MODIS Collection 6 (d), MODIS Collection 5 (e), and the Cana-
dian National Fire Database (f).

3.2 Combustion and burn depth models

Our aboveground and belowground combustion models per-
formed well, although the aboveground model performed
significantly better across the suite of models examined
(Fig. 6a, b). A ranger random forest model (Wright and
Ziegler, 2017) performed best for aboveground and below-
ground combustion, with a median R2 of 0.46 and 0.25,
respectively, across the 10-fold cross-validation repeated
100 times. Our secondary models that did not include in-
formation on FWIs (Sect. 2.4.3) performed similarly to our
primary models, with R2 values for aboveground and below-
ground combustion of 0.45 and 0.24, respectively. Although
both the aboveground and belowground models performed
reasonably well at predicting lower and moderate combus-
tion values, which includes the majority of field observa-
tions, they both struggled to predict larger combustion values
(Fig. S25a, b). The burn depth model performed better than
both combustion models, with a median R2 of 0.53 using a
ranger random forest model (Fig. 6c).

There were notable differences in the feature importance
of the aboveground and belowground models (Fig. S26a, b).
The aboveground model was heavily influenced by its top
predictor, pre-fire tree cover, followed by metrics of relative
humidity, with other variables including remotely sensed fire
severity and vegetation moisture content having significant
but relatively low importance. In contrast, the belowground
model was influenced strongly by a number of soil, terrain,
climate, and tree cover variables. The most important fea-
tures for the burn depth model were similar to the below-
ground model, with soil properties, tree cover, and climate
being the most influential (Fig. S26c). Overall, the distribu-
tion of variables used in the training dataset and predicting
dataset were similar (Fig. S27), with the exception of slope.
Most field sites were located in relatively flat terrain, whereas
the combustion predictions included locations with steeper
terrain.

Spatial patterns of mean burn depth and combustion
tended to follow a gradient of higher burn depth and mean
combustion in the western part of the ABoVE domain
(Alaska, Yukon Territory, and Alberta) to lower mean com-
bustion in central–western Canada (Saskatchewan, North-
west Territories, and Manitoba) (Figs. 5c, d, S28). There was,
however, considerable fine-scale variability at 500 m within
these regions (Fig. 7), and spatial patterns were relatively
consistent with previous combustion mapping efforts.

Across the ABoVE domain, 1.51± 0.53 Pg C was
emitted over the 2001–2019 period, with a mean of
79.3± 27.96 Tg C yr−1. Mean combustion across all years
and regions was 3.13± 1.17 kg C m−2. Pixel-level uncer-
tainty (Fig. S29) tended to follow spatial patterns of mean
combustion (Fig. 5c) and was relatively consistent across
years (Fig. S30), with a mean value of 2.86 kg C m−2. Sea-
sonally, the majority of burned area occurred during June,
July, and August (Fig. 8), although there were substantial re-
gional differences, with some regions recording a large frac-
tion of burned area outside this window (e.g., May fires in Al-
berta). In general, monthly patterns in emissions (Fig. S31)
followed patterns in burned area. Overall, combustion tended
to be highest in summer compared to spring and fall fires,
although this pattern was most pronounced in the Yukon
Territory, Northwest Territories, Saskatchewan, and Alaska
(Fig. S32).

Estimates of total carbon emissions in ABoVE-FED
were similar to AKFED (Fig. S22, Table S4), with the
notable exception of 2014 in the Northwest Territories:
AKFED estimated 164 Tg C, and ABoVE-FED estimated
89.7 Tg C. This was primarily a result of differences in
mean modeled combustion in the Northwest Territories 2014
fires, with AKFED exhibiting its highest mean combus-
tion in 2014 (Fig. S21; 4.81 kg C m−2 in AKFED compared
to 2.89 kg C m−2 in ABoVE-FED). In general, ABoVE-
FED estimated slightly higher mean combustion levels
than AKFED in Alaska (3.34 kg C m−2 in ABoVE-FED
and 3.03 kg C m−2 in AKFED), lower combustion in the
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Figure 5. Total burned area (a), total carbon emissions (b), mean combustion (c), and mean burn depth (d) between 2001–2019 aggregated
to a 70 km grid. Note that burned area (a) covers all of Alaska and Canada, whereas all other metrics cover the ABoVE extended domain.

Figure 6. Comparison of the spread and median R2 values across
a 10-fold cross-validation repeated 100 times for our aboveground
combustion (a), belowground combustion (b), and burn depth (c)
models. Models compared include a ranger random forest (ranger),
a quantile random forest (quantile), radial support vector machines
(svmradial), polynomial support vector machines (svmpoly), linear
support vector machines (svmlinear), ridge regression (ridge), and
lasso regression (lasso).

Figure 7. Comparison of Alaskan fires in 2004 (a) for ABoVE-
FED (b) and AKFED (c), the Northwest Territories fires in
2014 (d) for ABoVE-FED (e) and Walker et al. (2018) (f), and the
Saskatchewan fires in 2015 (g) for ABoVE-FED (h) and Dieleman
et al. (2020) (i). Basemap sources: Esri, ©OpenStreetMap Contrib-
utors, HERE, Garmin, USGS, EPA, NPS, NRCran.

https://doi.org/10.5194/bg-20-2785-2023 Biogeosciences, 20, 2785–2804, 2023



2796 S. Potter et al.: Burned-area and carbon emissions across northwestern boreal North America

Figure 8. Monthly burned area across states and Canadian
provinces and territories between 2001–2019. January, February,
November, and December have been omitted due to low fire oc-
currence (less than 2 % of total burned area between 2001–2019).

Northwest Territories (3.29 kg C m−2 in ABoVE-FED and
3.44 kg C−2 in AKFED), and substantially higher com-
bustion in the Yukon Territory (3.71 kg C m−2 in ABoVE-
FED and 2.26 kg C m−2 in AKFED) (Fig. S22, Table S4).
ABoVE-FED carbon emissions were relatively similar to
Walker et al. (2018) for the 2014 Northwest Territories fires
and to Dieleman et al. (2020) for the 2015 Saskatchewan fires
(Fig. 7, Table S4). Total carbon emissions from ABoVE-FED
were substantially higher than GFED4s (Fig. S33), with the
largest differences occurring in Alaska. This was primarily
a function of higher mean combustion values in ABoVE-
FED compared to GFED4s (Fig. S34). Between 2001–2016,
ABoVE-FED estimated 80 Tg C yr−1 total emissions with
a mean combustion value of 3.39 kg C m−2, and GFED4s
estimated 51 Tg C yr−1 total emissions with a mean com-
bustion value of 2.30 kg C m−2 (Table S4). However, more
recently a 500 m model by van Wees et al. (2022) was
completed, and both emissions and combustion match more
closely to ABoVE-FED. Between 2002–2019 this 500 m
product estimates 73 Tg C yr−1 total emissions (Fig. S33)
with a mean combustion value of 3.38 kg C m−2 (Fig. S34).
Meanwhile, between 2002–2019 ABoVE-FED estimates
83 Tg C yr−1 total emissions with a mean combustion value
of 3.16 kg C m−2. Compared to GFED4s these larger emis-
sion and combustion estimates in the 500 m product are
largely due to increased estimates of belowground combus-
tion, as the van Wees et al. (2022) model is informed by the
same field measurements used in ABoVE-FED.

Differences in combustion and carbon emissions were
very large between ABoVE-FED and fire–vegetation
models participating in FireMIP (Fig. S23b). ABoVE-
FED estimated much higher emissions than FireMIP
(70.1 Tg C yr−1 for ABoVE-FED during 2001–2012 com-
pared to 4.0 Tg C yr−1 for FireMIP). This is likely because
models in FireMIP mostly combust aboveground vegetation,
whereas combustion from belowground sources (primarily
soil organic matter) comprises 90 % of total carbon emissions

in ABoVE-FED (Fig. S35) and 88 % in the field plots from
Walker et al. (2020a). ABoVE-FED mean aboveground com-
bustion (7.84 Tg C yr−1 during 2001–2012) was much more
similar to FireMIP’s 4.0 Tg C yr−1.

We found multiple lines of evidence that belowground fire
severity (burn depth and belowground combustion) is posi-
tively related to annual burned area and seasonal day of burn
(Tables S5, S6). In general, mean annual burned area had a
stronger relationship with fire severity than did burn day of
year using multiple linear regression. However, within quan-
tiles of annual burned area (i.e., small- vs. large-fire years),
day of year was strongly related to fire severity (particularly
belowground combustion), and the slope of this relationship
was generally larger in small-fire years (Table S6). When
assessed using domain-wide mean severity from mapped
ABoVE-FED pixels, we found no significant relationship of
burn depth with burned area or combustion (Fig. S36).

There were also no significant (p value≤ 0.10) trends in
burned area, combustion, or emissions across the 2001–2019
time series (Figs. 2a, b, S37).

4 Discussion

4.1 Burned area

Our approach to mapping burned area across boreal North
America has several advantages compared to past ap-
proaches. Although our burned-area product is at 500 m reso-
lution, the majority of pixels (81 %) were mapped using 30 m
Landsat imagery. Using finer-scale 30 m imagery allowed us
to directly calibrate dNBR thresholds to site-level informa-
tion and account for unburnable fractions of 500 m pixels. We
also calibrated these dNBR thresholds for both 30 m Land-
sat and 500 m MODIS imagery to most effectively balance
omissions and commissions. This allowed us to provide an
unbiased estimate of burned area, which is a critical variable
for understanding the impacts of fire on arctic–boreal ecosys-
tems and climate.

In theory, ABoVE-FED burned area would be expected
to be higher than other available products because of its
increased sensitivity to fire-induced spectral changes (com-
pared to, for example, global MODIS burned-area products,
via our focus on splitting omissions and commissions) and
our accounting for active-fire acquisitions outside mapped
fire polygons by the Alaskan and Canadian government
agencies. Alternatively, ABoVE-FED accounts for sub-pixel
heterogeneity of burnable land surfaces, which would other-
wise result in lower burned-area estimates compared to exist-
ing products. The net result is that ABoVE-FED burned area
tends to be higher than other products, but not exclusively.

We suggest future research efforts focused on burned-area
mapping in arctic–boreal environments could be conducted
at resolutions finer than 500 m. Doing so will allow for im-
proved understanding of fire spread and behavior patterns

Biogeosciences, 20, 2785–2804, 2023 https://doi.org/10.5194/bg-20-2785-2023



S. Potter et al.: Burned-area and carbon emissions across northwestern boreal North America 2797

and interactions between fire behavior and vegetation/land
cover type. Finer-scale mapping should also allow for more
accurate assessments of burned area by accounting for the
presence of unburned patches of vegetation and waterbodies,
thereby facilitating increased understanding of the drivers of
fire spread and effects on ecosystem processes (Hall et al.,
2020). Fires have typically been mapped at landscape scales
using 500 m MODIS imagery because of the frequent re-
visit times (multiple acquisitions per day). With a resolution
of 30 m, Landsat imagery has been less commonly used for
mapping burned area at landscape scales because the revisit
time (16 d) is much longer and because data coverage can be
highly variable regionally and spatially depending on avail-
able downlink stations and cloud cover (Hilker et al., 2009;
Ju and Masek, 2016; Fig. S3), but this revisit frequency is
improving with two Landsat satellites (Landsat 8 and 9) and
two Sentinel satellites (2a and 2b) in orbit, which provide
much more frequent overpasses (2–3 d when combined).

Similar to ABoVE-FED, approaches for mapping burned
area using satellite imagery have typically relied on im-
age differencing of vegetation indices, particularly dNBR
(French et al., 2015). This requires pre- and post-fire image
pairs and thus compounds issues related to image availabil-
ity at fine scales (30 m; Chen et al., 2021). Future burned-
area mapping at landscape scales could potentially be im-
proved by using machine learning. More specifically, deep
learning approaches have been shown to be highly effective
at mapping wildfires across different landscapes and vege-
tation types (Jain et al., 2020; Knopp et al., 2020). Convo-
lutional neural networks, which use a spatial moving win-
dow and therefore account for the spatial characteristics of
fire scars (Jain et al., 2020), are particularly promising. Fi-
nally, developing burned-area products in near real time, as
opposed to active-fire-based assessments of hot pixel counts,
would help scientists, fire managers, and society contextual-
ize and potentially mitigate rapidly progressing fire seasons
as they evolve.

4.2 Combustion and burn depth models

Similar to previous studies (e.g., Veraverbeke et al., 2015),
our aboveground combustion model performed substantially
better than our belowground model. This is due primar-
ily to the challenge of estimating belowground carbon con-
sumption using remote-sensing-based observations, which
are more sensitive to aboveground properties. For example,
the ABoVE-FED aboveground combustion model was heav-
ily influenced by remotely sensed properties such as pre-fire
tree cover, fire severity (represented by dNBR), and vege-
tation wetness (represented by NDII), whereas the below-
ground model was strongly influenced by soil metrics, to-
pography, and solar radiation (Fig. S26). This occurred de-
spite our model utilizing considerably more field observa-
tions (n= 515 for aboveground combustion and 769 for be-
lowground) than past efforts in boreal North America (e.g.,

Dieleman et al., 2020: n= 47; Veraverbeke et al., 2015:
n= 126; Walker et al., 2018: n= 211), suggesting an in-
herently limited capacity to model belowground combustion
using these techniques. Previous analysis of the field obser-
vations we used showed site-level drainage is the dominant
driver of combustion in the ABoVE domain, due in part to
the large contribution towards total combustion from below-
ground carbon stocks (Walker et al., 2018, 2020b). We there-
fore suggest prioritizing the use of geospatial products that
adequately capture drainage, and thereby its impact on be-
lowground carbon stocks and vulnerability to combustion,
for improving future estimates of carbon emissions from fire
disturbance across boreal North America.

Despite these limitations, our model performance is sim-
ilar to past efforts. For example, Veraverbeke et al. (2015)
reported an aboveground combustion model fit of R2

= 0.53
and a belowground fit of R2

= 0.29 for Alaska. Walker et
al. (2018) implemented a 10-fold cross-validation approach
and reported a model fit of R2

= 0.26 for total (aboveground
and belowground) combustion in the Northwest Territories,
Canada. Comparatively, we report a median R2 of 0.46 and
0.25 for ABoVE-FED aboveground and belowground com-
bustion models, respectively. However, model performance
was substantially higher in Dieleman et al. (2020), who re-
ported a cross-validated R2 of 0.73 for total combustion in
Saskatchewan. This is likely due to the higher relative con-
tribution from aboveground combustion in the younger and
more productive boreal forests of southern Canada, com-
bined with high-quality provincial spatial datasets such as
logging history (Dieleman et al., 2020). In all these cases,
spatial patterns from ABoVE-FED are generally consistent
with previous efforts (Fig. 7), lending confidence to assess-
ments of drivers and spatiotemporal patterns of combustion.

Somewhat surprisingly, our models of burn depth per-
formed better than both aboveground and belowground com-
bustion models (cross-validated R2

= 0.53), which is con-
siderably better than the R2 model fit of 0.40 reported for the
burn depth model in Veraverbeke et al. (2015). This suggests
substantial uncertainty in translating burn depth to carbon
emissions in these boreal forests, which underscores the need
for improved spatial layers of soil properties such as bulk
density (Houle et al., 2017) and carbon fraction. The field
and laboratory techniques used to calculate carbon emissions
from burn depth also contain uncertainty, which is not always
quantified. These errors are likely compounded when aggre-
gating data across field campaigns, ecozones, and research
groups, such as we did here. Nevertheless, burn depth is a
critical fire severity property in its own right, with applica-
tions ranging from understanding the changing boreal carbon
cycle (Walker et al., 2019) to post-fire succession and vegeta-
tion patterns (Baltzer et al., 2021; Johnstone et al., 2010). Our
results suggest geospatial statistical modeling is well suited
for capturing and extrapolating depth of burn in organic soils,
at least within the ABoVE domain.
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Finally, we assessed the influence of spatial and sensor
differences when building the combustion and burn depth
models at 30 m but predicting them at 500 m. Overall, bi-
ases introduced by model nonlinearities, sub-grid hetero-
geneity, and vegetation fractions were found to be negligi-
ble (slope= 0.98 for aboveground and 0.97 for belowground
combustion when regressing 500 m against aggregated 30 m
predictions). This suggests that approaches to map fire car-
bon emissions at large scales using 500 m MODIS imagery
are not fundamentally biased because of spatial scale.

The machine learning models we employed allow insights
into the drivers of both aboveground and belowground com-
bustion. Partial dependence plots indicated that aboveground
combustion tended to increase when tree cover and dNBR
increased and when relative humidity and vegetation water
content (NDII) decreased (Fig. S38). These patterns are con-
sistent with understanding of fire behavior and aboveground
consumption dynamics, which are generally driven by above-
ground fuels and climate conditions that facilitate fuel drying
and fire spread (Beck et al., 2011; Rogers et al., 2014; Walker
et al., 2020b). Alternatively, belowground combustion in-
creased with higher silt (and lower sand) content, higher tree
cover, and lower relative humidity (Fig. S39). At moderate
slopes (less than 20 %), at which the majority of field obser-
vations were located, belowground combustion was higher
in flatter landscapes. These relationships are consistent with
current understanding about the drivers of soil organic mat-
ter accumulation and vulnerability to combustion (Walker
et al., 2018, 2020b; Scholten et al., 2021). Drivers of burn
depth were similar to those for belowground combustion,
with the exception of higher burn depth occurring in areas
with lower extreme maximum temperatures and tasseled cap
greenness (Fig. S40). The former is likely related to deeper
burn depths occurring in the northern portions of the ABoVE
domain (Fig. 5d), where long-term maximum temperatures
are generally lower. Tasseled cap greenness was assessed af-
ter a given fire and can therefore be considered to be a metric
of fire severity (low greenness= high severity).

Total emissions from ABoVE-FED are relatively con-
sistent with past efforts, including AKFED and GFED4s,
but with some important differences. Total emissions and
mean combustion (Fig. S22) in Alaska were similar between
ABoVE-FED and AKFED, which is expected given the sim-
ilar field observations from Alaska used to develop these
models. However, although AKFED was extended to the
Yukon and Northwest Territories (Veraverbeke et al., 2017),
it did not incorporate field observations from these regions.
By utilizing 797 field plots across these provinces (albeit
heavily dominated by the Northwest Territories), our results
suggest AKFED tended to underestimate combustion in the
Yukon and overestimate combustion in the Northwest Terri-
tories, especially during the large-fire year of 2014. ABoVE-
FED also includes many more predictor variables than AK-
FED and is based on a different statistical model. We did not
find large variations in mean combustion from year to year

(Fig. 2), which is likely related to both the tendency of the
random forest models to regress to the mean (Fig. S25) and
relatively consistent observed mean combustion across large
regions of the ABoVE domain (Walker et al., 2020a, c).

GFED4s is a widely used data source for global and re-
gional burned area and fire emissions. Our results suggest
GFED4s underestimates combustion across the ABoVE do-
main by roughly 1/3 (32 %; Fig. S34; mean of 3.39 kg C m−2

in ABoVE-FED compared to 2.30 kg C m−2 in GFED4s),
leading to 36 % lower total emissions compared to ABoVE-
FED (Fig. S33). This is consistent with previous regional
studies noting a consistent underestimation for GFED4s
emissions in Alaska (Veraverbeke et al., 2015) and the North-
west Territories (Walker et al., 2018). This result has im-
portant implications for quantifying and understanding the
role of arctic–boreal fires in the global carbon cycle and cli-
mate. Regional- to continental-scale upscaling efforts such
as ABoVE-FED, including the underlying field observation
database (Walker et al., 2020a), can help inform further ver-
sions of global fire models and thereby improve our quantifi-
cation and understanding of the role of wildfire in the global
carbon cycle.

In contrast to AKFED and GFED4s, fire carbon emissions
in FireMIP were an order of magnitude lower (94 %) than
ABoVE-FED (Fig. S23b). This is likely due to the fact that
most models in FireMIP only combust aboveground vegeta-
tion, whereas combustion of belowground soil organic mat-
ter constitutes the majority of emissions in boreal Alaska
and Canada. This underscores the importance of develop-
ing algorithms that accumulate and burn soil organic matter
within global fire models, which is important for both direct
fire emissions and post-fire permafrost thaw and degradation
(Genet et al., 2013; Jafarov et al., 2013; Natali et al., 2021;
Treharne et al., 2022).

ABoVE-FED confirms the high interannual variability in
fire carbon emissions in the ABoVE domain, including the
large-fire years of 2004 in Alaska and the Yukon Territory,
2005 in Alaska, 2010 in Saskatchewan, 2014 in the North-
west Territories, and 2015 in Alaska and Saskatchewan. We
also found general agreement with previous work (Turet-
sky et al., 2011) that large-fire years and later-season fires
facilitate deeper burning and higher belowground carbon
emissions, including the phenomenon that burn timing has
a stronger influence on severity in small-fire years (i.e., ex-
treme fire years result in high severity regardless of timing).
However, these relationships varied depending on region and
analysis technique and were often confounded by site-level
factors and fire weather at the time of burn. Overall, however,
this underscores the influence that climate change (warming,
drying, and longer fire seasons) has on boreal fire severity.

Consistent with previous studies (Rogers et al., 2014; Ve-
raverbeke et al., 2015; Walker et al., 2018; Dieleman et
al., 2020), ABoVE-FED includes high uncertainty in com-
bustion at the pixel level (2.86 kg C m−2). Much of this
uncertainty likely arises from difficulty in predicting large
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combustion values, particularly from belowground sources
(Fig. S25b). This suggests ABoVE-FED is underpredicting
emissions coming from the most severe fire events between
2001–2019. We attempted to correct for this bias in a number
of ways, including testing a variety of models (Fig. 6), tuning
model parameters, assigning higher weights to the highest
combustion values, and applying the synthetic minority over-
sampling technique (SMOTE; Chawla et al., 2002) to syn-
thetically create more samples with higher combustion val-
ues. Ultimately, none of these approaches were able to cor-
rect for the low bias at high combustion levels without sac-
rificing performance for low combustion values. More field
observations of high combustion combined with improved
predictor variables (particularly drainage) may improve fu-
ture model performance. Also consistent with previous stud-
ies, these pixel-level uncertainties were dampened through
spatial averaging, such that domain-wide mean combustion
had comparatively lower uncertainty (3.13± 1.17 kg C m−2).

5 Conclusions

Here we used 30 m Landsat and 500 m MODIS imagery
to map burned area across Alaska and Canada and map
fire carbon emissions across the ABoVE domain over a 19-
year period between 2001–2019. We utilized a recent field
database of combustion observations across the ABoVE do-
main (Walker et al., 2020a), which represents the largest
of its kind for any biome on Earth. We found burned area
and total emissions are highly variable by year, averaging
2.37 Mha of burned area and 79.26± 28.65 Tg C emitted per
year across the ABoVE domain (2.87 Mha of burned area
across all of Alaska and Canada), with a mean combustion
level of 3.13± 1.20 kg C m−2. When compared to previous
products we report more burned area than GFED4s and the
MODIS MC64A1 Collection 5 and 6 products. We report
similar carbon emissions to AKFED, but more emissions
than both GFED4s and FireMIP. ABoVE-FED can be used to
understand patterns of fire behavior and effects across central
and western boreal North America and to continue monitor-
ing intensifying fire regimes in boreal forests.
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