

Supplement of

Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum

Philipp Maurischat et al.

Correspondence to: Philipp Maurischat (philipp.maurischat@uni-oldenburg.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: Linear model (red) with confidence interval of 95% (green) for the in-line standard (NEqPIW

18 DOM (Green et al., 2015); n=38)

• Sample Point

Data Source: JAXA ALOS World 3D - 30m (AW3030) Coordinate System: WGS 84/ UTM zone 46N EPSG:3264 Landsat 5, 7, 8 imagrey courtesy of the U.S. Geological Survey

20

21 Figure S2: Individual IDs for the samples

- 22 Table S1: Multiple pairwise comparisons (Kruskal-Wallis H) with Bonferroni post-hoc correction for
- 23 the independent factor: Site. Significance level α = 0.05 (p value) are only reported when significant
- 24 within groups, *n.s.* = not significant. Degrees of freedom: 2. Significant differences of sites are given
- 25 for significant tests, letters (*a*,*b*) denote significant differences between groups.

Parameter	p value	Niyaqu	Qugaqie	Zhagu
N molecular count	n.s.			
S molecular count	0.005	а	b	a,b
P molecular count	n.s.			
Ai _{mod}	n.s.			
DBE	n.s.			
Total molecular count	n.s.			
AROR	n.s.			
AROP	n.s.			
HUSOR	0.000	а	b	а
HUSOP	0.000	а	b	a,b
USOR	0.020	а	b	a,b
USOP	0.007	а	а	b
USN	n.s.			
SAT	n.s.			
I _{DEG}	0.004	а	а	b
I _{TERR}	n.s.			
IoS	0.04	а	а	b
СНО	0.04	a,b	а	b
OC	n.s.			
HC	0.009	а	b	a, b

26

- 28
- 29 Table S2: Multiple pairwise comparisons (Kruskal-Wallis H) with Bonferroni post-hoc correction for
- 30 the independent factor: Sample categories. Significance level α = 0.05 (p value) are only reported
- 31 when significant within groups, *n.s.* = not significant. Degrees of freedom: 2. Significant differences of
- 32 sites are given for significant tests, letters (*a*,*b*) denote significant differences between groups.

Parameter	p value	Glacial effluent	Stream water	Brackish water
N molecular count	n.s.			
S molecular count	n.s.			
P molecular count	n.s.			
Ai _{mod}	n.s.			
DBE	n.s.			
Total molecular count	n.s.			
AROR	n.s.			
AROP	0.05	а	a,b	b
HUSOR	n.s.			
HUSOP	n.s.			
USOR	n.s.			
USOP	n.s.			
USN	n.s.			
SAT	n.s.			
I _{DEG}	n.s.			
I _{TERR}	n.s.			
loS	n.s.			
СНО	n.s.			
OC	n.s.			
HC	n.s.			

³³

- 34 Table S3: Loadings of the samples for the three NMDS dimensions. SCN = Niyaqu catchment, SCQ =
- 35 Qugaqie catchment, SCZ =Zhagu catchment.

Sample ID	NMDS 1	NMDS 2	NMDS 3
SCN_1_2	0,087685	-1,1772	0,346675
SCN_1_4	0,072454	-1,06426	0,291306
SCN_1_1	-0,11736	-0,622	0,06511
SCN_1_16	0,074152	-1,206	0,336504
SCN_1_17	0,059853	-1,17546	0,293232
SCN_1_18	0,054424	-1,16704	0,402607
SCN_1_19	-0,02776	-0,96675	0,213587
SCN_1_20	-0,03149	-1,06611	0,11981
SCN_1_3	-0,3843	-0,09443	-0,07249
SCN_1_22	-0,00024	-1,01415	0,179729
SCN_1_23	0,147413	-1,29735	0,56202
SCN_1_24	0,00635	-0,95761	0,152191
SCN_1_27	0,052577	-1,09517	0,232781
SCN_1_28a	0,344206	-0,21461	0,159075
SCN_1_28b	0,658598	-0,4567	0,205128
SCQ_2_1	0,122104	-1,2393	0,527872
SCQ_2_2	0,004387	-0,11855	-0,10717
SCQ_2_3	-0,01154	-0,4253	-0,0564
SCQ_2_5	0,157962	-0,98272	0,342997
SCQ_2_7	0,263631	-1,07548	0,495036

SCQ_2_10	0,235255	-0,96557	0,4106
SCQ_2_11	0,143729	-1,16501	0,428035
SCQ_2_12	0,15865	-1,09184	0,404203
SCN_1_5	0,011563	-0,36718	-0,08663
SCQ_2_14	-0,02347	-0,1637	-0,19761
SCQ_2_15	-0,02501	-0,24661	-0,1092
SCN_1_6	0,237413	-1,22035	1,052236
SCZ_3_2	0,031523	-0,38182	-0,08328
SCZ_3_5	-0,08282	-0,92493	0,022167
SCZ_3_6	-0,06704	-0,28087	-0,15221
SCQ_Zhadang_Ice	0,303771	-0,83211	0,430128
SCN_1_21	0,312109	-0,00836	0,147803
SCQ_2_4	-0,28489	-0,35436	-0,13942
SCQ_2_8	0,134136	-0,22386	0,011247
SCQ_2_9	0,152178	-0,37412	0,042017
SCQ_2_13	0,483425	-0,64943	0,133389
SCN_1_7	0,254065	-0,9631	1,056203
SCN_1_9	0,339653	-0,95607	1,101475
SCN_1_10	0,296664	-0,8365	0,993272
SCN_1_11	0,286045	-0,86696	0,971239
SCN_1_12	-0,23311	-0,79461	0,000412
SCN_1_13	-0,19292	-0,94946	0,060638
SCN_1_15	-0,15378	-1,00839	0,110429

37 Table S4: Scores of the internal variables for the two major NMDS dimensions.

Internal variable	NMDS 1	NMDS 2
ARO	-0. 84985682690839	0. 527013637164355
USAT	0. 854196719207775	0. 519949963837554
HUSAT	-0. 407913273347075	0.913020679627397
SAT	0.818688729963233	0. 574237549652745
IDEG	-0. 999240657827933	0. 0389629021455057
IOS	-0. 991295354085005	0. 131656830318386
ITERR	-0. 999524929030953	0.0308207113102116
Almod	-0. 994525776528508	-0. 104491529897732
Ν	0.0535023920603983	0. 998567721310786
Р	-0. 0509217017689782	0. 998702648584127
S	0. 483014615080082	0. 875612289554595

43 Table S5: Scores of the external variables for the two major NMDS dimensions

External variable	NMDS 1	NMDS 2
FDOM	-0. 783975814707886	-0. 620791367492418
DIC	0. 8054726857903	-0. 592632898551675
DOC	-0. 837542331836805	-0. 546372439258577

δ13C	-0. 781167390095403	-0. 624321638782076
Plant Cover	-0. 84121127196077	-0. 540706571003297
NO3	-0. 571521267093232	0. 820587253898174

45 Table S6: Goodness of fit (R^2) and p value of the internal variable vectors. Significant < α (0.05)

46 variables are marked bold.

Internal variable	R ²	p value	
ARO	0.919	0.001	
USAT	0.882	0.001	
HUSAT	0.932	0.001	
SAT	0.549	0.001	
IDEG	0.626	0.001	
IOS	0.052	0.31	
ITERR	0.349	0.001	
Almod	0.664	0.001	
Ν	0.887	0.001	
Р	0.554	0.001	
S	0.77	0.001	

47

- 48 Table S7: Goodness of fit (R^2) and p value of the external variable vectors. Significant < α (0.05)
- 49 variables are marked bold.

External variable	R ²	p value	
FDOM	0.197	0.019	
DIC	0.209	0.006	
DOC	0.116	0.089	
δ13C	0.016	0.7	
Plant Cover	0.051	0.345	
NO3	0.095	0.118	

50

- 51 Table S8: Extraction efficiency of SPE-DOC samples; SCN =Niyaqu, SCQ= Qugaqie, SCZ = Zhagu, SCL=
- 52 Lake Nam Co.

Sample ID	Extraction efficiency [%]
SCN_1_1	61.1
SCN _1_2	77.1
SCN_1_3	50.2
SCN_1_4	45.2
SCN_1_5	45.9
SCN_1_6	98.2
SCN_1_7	57.7
SCN_1_9	67.0
SCN_1_10	74.9
SCN_1_11	56.2
SCN_1_12	60.9
SCN_1_1	27.3
SCN_1_15	16.8
SCN_1_16	78.9
SCN_1_17	83.2
SCN_1_18	63.8
SCN_1_19	83.3
SCN_1_20	92.7

SCN_1_21	91.5
SCN_1_22	68.4
SCN_1_23	84.7
SCN_1_24	55.5
SCN_1_2	79.6
SCN_1_27	84.7
SCN_1_28a	>50%; initial DOC < 25 μ M L ⁻¹
SCN_1_28b	>50%; initial DOC < 25 μ M L ⁻¹
SCQ_2_1	46.8
SCQ_2_2	43.7
SCQ_2_3	52.8
SCQ_2_4	50.6
SCQ_2_5	45.5
SCQ_2_6	55.9
SCQ_2_7	37.7
SCQ_2_8	43.8
SCQ_2_9	52.5
SCQ_2_10	37.8
SCQ_2_11	54.7
SCQ_2_12	43.7
SCQ_2_13	84.1
SCQ_2_14	44.1
SCQ_2_15	67.5
SCQ_Zhadang_Ice	>50%; initial DOC < 25 μ M L ⁻¹
SCZ_3_1	34.1
SCZ_3_2	73.0
SCZ_3_5	50.1
SCZ_3_6	15.0
SCZ_3_10	91.3
SCL_SC2	41.0
IHSS Standard	60.6

54 Figure S3: Boxplots corresponding to Table 1 of the main text body. Sites with n<3 are expressed as 55 individual points.

57 Figure S4: Boxplots corresponding to Table 2 of the main text body. Endmembers and sample

58 categories with n<3 are expressed as individual points.