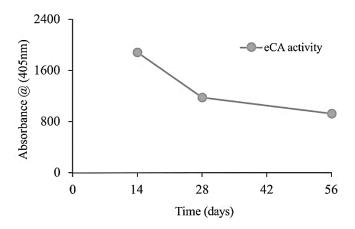


Supplement of

Properties of exopolymeric substances (EPSs) produced during cyanobacterial growth: potential role in whiting events


Marlisa Martinho de Brito et al.

Correspondence to: Marlisa Martinho de Brito (marlisa_de-brito@etu.u-bourgogne.fr)

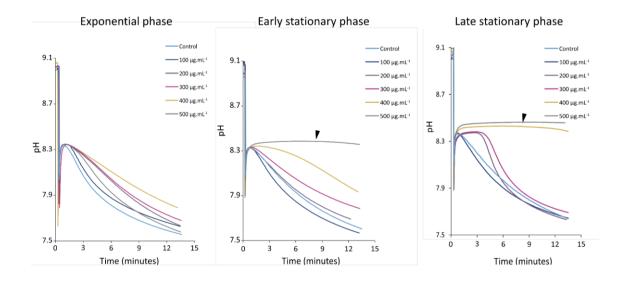

The copyright of individual parts of the supplement might differ from the article licence.

 Table S1. Attribution of main infrared absorption bands of EPS samples.

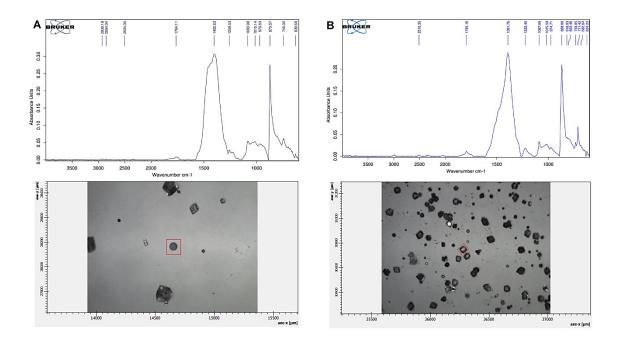

EPS (Exponential growth phase)	EPS (Early stationary phase)	EPS (Late stationary phase)	Band assignment
Wavenumber (cm ⁻¹)			
3342	/	3351	пОН
included in OH absorption band	3281	included in OH absorption band	Amide A (nN–H)
/	3077	/	Amide B (nN–H)
2927	2959, 2922, 2851	2938	пс-н
1730	/	1727	nc=o
1658	1648	1650	Amide I (nc=o)
1543	1542	1549	Amide II (nc-N)
1376	1448, 1401	1375	$d_{ extsf{C-H}}$
/	1305	/	Amide III (n _{C-N})
/	1242	1244	VS=O
1136	1127	/	ис-о-с
1043	1070	1038	пс-0
867	/	811	g C−H
582	/	1	d _{C-X}

Figure S1. Extracellular carbonic anhydrase (eCA) activity measured at days 14, 28 and 56 of *Synechococcus* PCC 7942 growth experiment.

Figure S2. Replication of the *in vitro* inhibition of calcium carbonate precipitation experiment by using EPS extracted during exponential (A), early (B) and late (C) stationary phases of Synechococcus growth experiment. A negative control (no EPS) and EPS extracts of concentrations of 10, 20, 30, 40, and 50 μg.mL⁻¹ were used in the CaCO₃ inhibition assay. The decrease of pH indicates precipitation and a plateau inhibition of carbonate mineral precipitation. A larger plateau (> 50 μg) indicates stronger inhibition of calcium carbonate precipitation (e.g., see black arrows in panel B-C).

Figure S3. FT-IR spectra of (A) vaterite and (B) calcite. The two calcium carbonate polymorphs precipitated in EPS solutions produced during two *Synechococcus* growth phases. Data shown EPS produced (A) during exponential growth phase a concentration of 3 μ g·mL⁻¹ and (B) during the late stationary phase with a concentration of 36 μ g·mL⁻¹.