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Abstract. Earth’s drylands are home to more than two bil-
lion people, provide key ecosystem services, and exert a large
influence on the trends and variability in Earth’s carbon cy-
cle. However, modeling dryland carbon and water fluxes with
remote sensing suffers from unique challenges not typically
encountered in mesic systems, particularly in capturing soil
moisture stress. Here, we develop and evaluate an approach
for the joint modeling of dryland gross primary production
(GPP), net ecosystem exchange (NEE), and evapotranspira-
tion (ET) in the western United States (US) using a suite of
AmeriFlux eddy covariance sites spanning major functional
types and aridity regimes. We use artificial neural networks
(ANNs) to predict dryland ecosystem fluxes by fusing opti-
cal vegetation indices, multitemporal thermal observations,
and microwave soil moisture and temperature retrievals from
the Soil Moisture Active Passive (SMAP) sensor. Our new
dryland ANN (DrylANNd) carbon and water flux model ex-
plains more than 70 % of monthly variance in GPP and ET,
improving upon existing MODIS GPP and ET estimates at
most dryland eddy covariance sites. DrylANNd predictions
of NEE were considerably worse than its predictions of GPP
and ET likely because soil and plant respiratory processes
are largely invisible to satellite sensors. Optical vegetation in-
dices, particularly the normalized difference vegetation index
(NDVI) and near-infrared reflectance of vegetation (NIRv),
were generally the most important variables contributing to
model skill. However, daytime and nighttime land surface
temperatures and SMAP soil moisture and soil temperature

also contributed to model skill, with SMAP especially im-
proving model predictions of shrubland, grassland, and sa-
vanna fluxes and land surface temperatures improving pre-
dictions in evergreen needleleaf forests. Our results show that
a combination of optical vegetation indices and thermal in-
frared and microwave observations can substantially improve
estimates of carbon and water fluxes in drylands, potentially
providing the means to better monitor vegetation function
and ecosystem services in these important regions that are
undergoing rapid hydroclimatic change.

1 Introduction

Earth’s drylands are critically important to society yet excep-
tionally vulnerable to climate change. Drylands are home to
more than two billion people and make up more than 40 %
of Earth’s land surface (Reynolds et al., 2007). Primary pro-
duction of dryland vegetation supports many rare and en-
demic species, as well as extensive rangelands and croplands
(Bestelmeyer et al., 2015). Dryland ecosystems are also im-
portant regulators of global trends and interannual variabil-
ity in Earth’s carbon cycle (Humphrey et al., 2018; Ahlström
et al., 2015; Poulter et al., 2014) due to both their large spatial
extent and high climate sensitivity (Biederman et al., 2016;
Zhang et al., 2022). Hotter and atmospherically drier con-
ditions associated with anthropogenic climate change will
likely increase water limitation (Cayan et al., 2010; Cook
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et al., 2015; Williams et al., 2020; Ault, 2020; Cook et al.,
2020), possibly leading to the expansion and degradation of
drylands (Huang et al., 2016, 2017). There is therefore a
pressing need for satellite-based monitoring of dryland car-
bon and water cycling at large scales.

While many remote sensing techniques were originally de-
veloped and tested in drylands (e.g., Huete, 1988; Huete and
Jackson, 1987; Rouse et al., 1974), satellite-based modeling
of dryland carbon and water fluxes has been a long-standing
challenge. For example, early validation studies of the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) sci-
ence products noted tendencies to overestimate mean dry-
land productivity (Heinsch et al., 2006; Turner et al., 2005,
2006a, b) and to miss important features of the seasonal cycle
(Heinsch et al., 2006; Turner et al., 2006b). Recent work has
also shown that both satellite models (Biederman et al., 2017;
Stocker et al., 2019) and process-based models (MacBean
et al., 2021) dramatically underestimate the interannual vari-
ability in dryland carbon and water fluxes while also fre-
quently failing to capture the “flashy” and multi-modal sea-
sonal dynamics of dryland carbon cycling (Barnes et al.,
2021). For instance, the widely used MODIS gross primary
production (GPP) and evapotranspiration (ET) products sub-
stantially underestimate the variability in carbon and water
fluxes of the western US, capturing only ∼ 30 % of interan-
nual variability (Biederman et al., 2017).

Several issues make drylands uniquely difficult to moni-
tor and model with remote sensing (Smith et al., 2019). First,
ecosystem carbon and water exchange are more tightly cou-
pled to soil moisture in drylands than in wetter, more mesic
systems where moisture tends to be more plentiful (Novick
et al., 2016; Stocker et al., 2018), but most existing satellite-
based models do not explicitly represent soil moisture stress
(Song et al., 2013). Instead, light-use efficiency models often
represent moisture stress using vapor pressure deficit (Run-
ning et al., 2004; Zhang et al., 2016). While vapor pressure
deficit is well suited as a water stress indicator for mesic re-
gions, it often does not fully capture water stress in drylands,
where soil moisture plays a particularly important role in
regulating surface conductance and carbon and water fluxes
(Novick et al., 2016; Stocker et al., 2018; Dannenberg et al.,
2022a). Soil moisture therefore needs to be incorporated into
satellite-based carbon and water models to represent tem-
poral variability in dryland water limitation (Stocker et al.,
2018, 2019; Smith et al., 2019).

Second, dryland plants have physiological responses to
water limitation (and precipitation variability more gener-
ally) that are not necessarily captured by standard remote
sensing approaches. Many dryland plants have drought adap-
tations that allow them to remain green even while being
functionally inactive under extreme moisture stress (Yan
et al., 2019; Smith et al., 2019), making it difficult to re-
solve temporal variation in dryland plant function. There-
fore, plant physiological responses to periods of moisture
stress are not necessarily reflected in optical vegetation in-

dices (VIs) (Yan et al., 2019; Wang et al., 2022; Smith et al.,
2018). The normalized difference vegetation index (NDVI)
is the most widely used vegetation index, but it sometimes
fails to capture temporal dynamics of carbon and water fluxes
in drylands (Yan et al., 2019; Smith et al., 2019; Wang
et al., 2022). While other optical vegetation indices over-
come some of the weaknesses of NDVI, combining differ-
ent types of remotely sensed observations – such as those
from microwave, thermal, and visible wavelengths – can cap-
ture complementary information about plant and ecosystem
stress that is unattainable from optical VIs alone (Smith et al.,
2019; Stavros et al., 2017; Guan et al., 2017). Land surface
temperature (LST) from thermal imaging, for example, is an
important determinant of carbon and water fluxes because,
among other reasons, both photosynthesis and respiration in-
volve temperature-dependent enzymatic reactions (Farquhar
et al., 1980; Atkin and Tjoelker, 2003) and because it is
a key indicator of latent heat flux, which cools leaves and
land surfaces (Bateni and Entekhabi, 2012). The integration
of multi-source satellite remote sensing could therefore im-
prove the representation of plant physiological responses to
periodic moisture stress in drylands as compared with optical
VIs alone.

Third, drylands tend to be more spatially heterogeneous
than many other ecosystems, consisting of complex mixtures
of vegetation structural, morphological, functional, and phys-
iological characteristics that vary over relatively short dis-
tances. These mixtures of vegetation types within moderate-
to coarse-resolution imagery can contribute to significant er-
ror in GPP estimates (Turner et al., 2002; Heinsch et al.,
2006). Many large-scale remote-sensing-based carbon and
water models assume a single vegetation type for each coarse
pixel rather than representing the land surface as a continuous
mixture of different cover types. In the open canopies typi-
cal of dryland ecosystems, optical VIs are also particularly
sensitive to soil background reflectance and the presence of
senesced vegetation or standing litter (Huete and Jackson,
1987). High spatial heterogeneity in dryland vegetation, in
combination with complex terrain in some areas, leads to di-
verse ecosystem seasonalities. Drylands in the western US
often have one or more annual growing seasons occurring in
spring and/or summer (Biederman et al., 2017; Dannenberg
et al., 2020), and the timing, length, and productivity of those
growing seasons can vary substantially from year to year in
response to ocean–atmosphere teleconnections (Dannenberg
et al., 2015, 2021). Moreover, carbon and water fluxes in dry-
lands depend on intermittent and highly variable “pulses” of
precipitation that are less seasonally and spatially uniform
than limiting resources (e.g., temperature and light) in more
mesic or temperate ecosystems (Huxman et al., 2004; Roby
et al., 2020). This combination of high spatial and tempo-
ral heterogeneity in dryland ecosystem structure and function
leads to highly “unique” patterns in carbon and water fluxes,
meaning that models perform poorly when used to predict
fluxes at sites on which they are not trained (Haughton et al.,
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2018), yet the flux tower networks typically used to train
remote-sensing-based models have notably low representa-
tion of dryland sites relative to their global prevalence (Smith
et al., 2019). The spatial and temporal heterogeneity of limit-
ing resource availability, the “uniqueness” of dryland fluxes
to their specific location (i.e., low predictive power of models
for sites on which they were not trained), and the relatively
sparse dryland observation networks combine to increase un-
certainty in carbon and water cycling estimates from models
primarily calibrated for other regions.

With new sensors, new vegetation indices, and expanded
global ground networks, many of these issues are now at least
partly addressable. Recent research has focused on using dif-
ferent combinations of remote sensing data, including the in-
tegration of soil moisture (Stocker et al., 2019; Jones et al.,
2017) and multispectral (Barnes et al., 2021) and thermal
infrared (Sims et al., 2008; Anderson et al., 2012) observa-
tions in models ranging in complexity from purely empirical
to semi-empirical or process-based. For example, dryland-
specific GPP estimates based on machine learning of mete-
orological reanalysis data and optical remote sensing obser-
vations outperform globally trained models at capturing sea-
sonal to interannual variability in dryland GPP (Barnes et al.,
2021). New satellite microwave missions also allow more di-
rect sensing of soil moisture than previously available (Song
et al., 2013; Jones et al., 2017; Smith et al., 2019), which
could address one of the biggest contributors to model error
in dryland ecosystems: the tight coupling between plant ac-
tivity and soil moisture that is not well-captured by vapor
pressure deficit (Novick et al., 2016; Stocker et al., 2018;
Heinsch et al., 2006) or remotely sensed greenness (Yan
et al., 2019).

Here, we aim to improve the estimation of dryland GPP,
net ecosystem exchange (NEE), and evapotranspiration us-
ing an extensive network of eddy covariance observations
and multi-source satellite remote sensing. We specifically de-
velop and test an approach for the data-driven prediction of
a full suite of carbon and water fluxes that are specifically
adapted for drylands using a machine learning fusion of mul-
tispectral, thermal, and microwave remote sensing. We use an
ensemble of artificial neural networks (ANNs) to jointly pre-
dict the key ecosystem carbon and water fluxes – GPP, NEE,
and ET – at monthly, 0.05◦ resolution using a combination
of optical VIs from MODIS, daytime and nighttime MODIS
LST, soil moisture and soil temperature from the Soil Mois-
ture Active Passive (SMAP) sensor, and subpixel fractional
land cover. We develop and test the dryland ANN model
(hereafter called “DrylANNd”) using flux observations from
28 AmeriFlux eddy covariance towers in arid to subhumid
regions of the western United States (US). We evaluate the
ability of the model to capture monthly variability (Sect. 3.1),
spatial patterns (Sect. 3.1), seasonality (Sect. 3.2), and inter-
annual variability (Sect. 3.3) of GPP, NEE, and ET; compare
the model estimates to existing MODIS GPP and ET prod-
ucts (Sects. 3.1–3.3); and assess which remotely sensed vari-

ables are most important for improving GPP, NEE, and ET
estimates in drylands (Sect. 3.4). Our data-driven model will
provide new and improved estimates of the variability in and
hydroclimatic drivers of carbon and water fluxes across the
western US, with the potential to inform and develop future
global-scale carbon and water flux estimates.

2 Materials and methods

2.1 Study area and eddy covariance data

We developed and tested DrylANNd across 28 AmeriFlux
eddy covariance sites (Fig. 1; Table S1 in the Supple-
ment), each overlapping the SMAP record (2015–present)
by at least 1 full year and consisting predominantly of nat-
ural vegetation. Based on the 1981–2010 TerraClimate an-
nual precipitation (P ) and potential evapotranspiration (PET)
normals (Abatzoglou et al., 2018), most sites are semi-
arid (0.2≤P/PET < 0.5; N = 16), with several others clas-
sified as arid (0.03≤P/PET < 0.2; N = 6) and subhu-
mid (0.5≤P/PET≤ 0.75; N = 5). One site (Valles Caldera
Mixed Conifer; US-Vcm) is slightly wetter than subhu-
mid (P/PET= 0.85) due to its relatively high elevation
(> 3000 m), but we include it here because it is part of the
six-site New Mexico Elevation Gradient network (Anderson-
Teixeira et al., 2011) and is frequently used in US dry-
land flux research (e.g., Biederman et al., 2017, 2016). The
sites span a large latitudinal gradient (31.74 to 46.69◦ N)
and include 6 evergreen needleleaf forest (ENF), 7 grassland
(GRS), 10 shrubland (SHB), and 5 savanna (SAV) sites.

We used a spike detection method to filter out sudden but
temporary changes in half-hourly NEE, which can arise ei-
ther from biophysical effects (e.g., sudden changes in turbu-
lence) or from instrument error (Papale et al., 2006). Using
REddyProc (Wutzler et al., 2018, 2020) in the R statistical
computing environment (R Core Team, 2021), we then ex-
cluded half-hourly NEE observations that occurred during
periods of low turbulence based on a seasonal friction ve-
locity (U∗) filter, defined empirically based on the U∗ dis-
tribution within each site and season using the moving point
method (Wutzler et al., 2018; Papale et al., 2006), and we
gap-filled the missing data using a lookup table based on air
temperature, shortwave radiation, and vapor pressure deficit
(Papale et al., 2006). We also gap-filled latent heat flux esti-
mates using the same method and converted latent heat flux
to ET (in mm). We partitioned the half-hourly NEE into its
component parts (GPP and ecosystem respiration) using the
nighttime partitioning method (Papale et al., 2006; Reich-
stein et al., 2005), summed the half-hourly GPP, NEE, and
ET to total daily fluxes, and calculated mean daily fluxes for
each calendar month.
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Figure 1. (a) Map of the geographic domain, aridity, and eddy covariance sites. Adjacent sites were slightly offset to improve visibility.
(b) Climatic locations of the eddy covariance sites by mean annual precipitation (P ) and potential evapotranspiration (PET). Grayscale
background shows the P and PET distribution of all dryland grid cells shown in (a), while the colored points show the distribution of
the AmeriFlux sites in aridity space. (Note that some sites are not visible in b because their climates are essentially identical to adjacent
sites, and their points therefore perfectly overlap.) Aridity classes were defined based on the ratio of mean annual precipitation to potential
evapotranspiration (over 1981–2010) from the ∼ 4 km TerraClimate dataset (Abatzoglou et al., 2018): subhumid (0.5≤P/PET≤ 0.75),
semiarid (0.2≤P/PET < 0.5), arid (0.03≤P/PET < 0.2), and hyperarid (P/PET < 0.03). Sites are color coded by vegetation type (shown
in the pie chart in b): evergreen needleleaf forest (ENF), grassland (GRS), shrubland (SHB), and savanna (SAV). Site details can be found in
Table S1.

Table 1. AmeriFlux (response) and remote sensing (predictor) variables used in the DrylANNd carbon and water flux model.

Product (site/region) Variable Units Resolution (site/region)

AmeriFlux Gross primary production (GPP) gCm−2 d−1 –
Net ecosystem exchange (NEE) gCm−2 d−1 –
Evapotranspiration mmd−1 –

Optical VIs from MODIS NBAR NDVI – 500 m/0.05◦

(MCD43A4/MCD43C4) EVI – 500 m/0.05◦

NIRv – 500 m/0.05◦

kNDVI – 500 m/0.05◦

LSWI (1240 nm) – 500 m/0.05◦

LSWI (1640 nm) – 500 m/0.05◦

LSWI (2130 nm) – 500 m/0.05◦

LST from MODIS Terra Day LST (∼ 10:30) K 1 km/0.05◦

(MOD11A1/MOD11C1) Night LST (∼ 22:30) K 1 km/0.05◦

LST from MODIS Aqua Day LST (∼ 14:30) K 1 km/0.05◦

(MYD11A1/MYD11C1) Night LST (∼ 02:30) K 1 km/0.05◦

SMAP soil moisture and temperature Rootzone soil moisture % 9 kma

(SMAP L4SM) Surface soil moisture % 9 kma

Soil temperature K 9 kma

Rangeland Analysis V3 fractional cover Annual grasses and forbs % 30 mb

Perennial grasses and forbs % 30 mb

Tree % 30 mb

Shrub % 30 mb

Bare ground % 30 mb

Litter % 30 mb

a Resampled to 0.05◦ using nearest neighbor for regional scale. b Averaged within 500 m buffer for site-level calibration and within 0.05◦ grid for regional scaling.
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2.2 Remote sensing data

For each site, we obtained daily 500 m multispectral surface
reflectance from the MODIS Nadir Bidirectional Reflectance
Distribution Function (BRDF)-Adjusted surface Reflectance
(NBAR) product (MCD43A4) (Schaaf et al., 2002), exclud-
ing observations for which only fill values were provided
(i.e., where a BRDF inversion could not be achieved) or
where reflectance was below zero. For regional-scale pre-
diction, we used the 0.05◦ MODIS Climate Modeling Grid
(CMG) version of the NBAR product (MCD43C4). From
the seven-band surface reflectance, we calculated seven daily
VIs (Table 1): NDVI (Rouse et al., 1974; Tucker, 1979), en-
hanced vegetation index (EVI) (Huete et al., 2002), near-
infrared reflectance of vegetation (NIRv) (Badgley et al.,
2017), kernel NDVI (kNDVI) (Camps-Valls et al., 2021), and
three versions of the land surface water index (LSWI) (Gao,
1996; Xiao et al., 2004), each based on a different shortwave
infrared band (centered at 1240, 1640, and 2130 nm). EVI,
which includes soil and atmospheric adjustment factors, is
generally more robust to soil background reflectance than
NDVI (Huete et al., 1994, 2002). The relatively new NIRv
and kNDVI have not yet been widely tested, but NIRv has
shown strong performance for predicting seasonal variability
in dryland GPP (Wang et al., 2022). LSWI is related to the
water content of the land surface due to the strong absorption
of shortwave infrared by water (Ceccato et al., 2001; Gao,
1996; Xiao et al., 2004).

We also obtained 1 km resolution LST estimates for
each site from thermal infrared observations on board both
MODIS Terra (MOD11A1) and Aqua (MYD11A1) (Wan,
2014), derived via a view-angle-dependent split window al-
gorithm (Wan and Dozier, 1996). Each product provides one
nighttime and one daytime observation per day (Table 1),
with equatorial crossing times at approximately 10:30 and
22:30 (Terra) and 02:30 and 14:30 (Aqua). For regional pre-
diction, we used the corresponding 0.05◦ resolution CMG
product (MOD11C1/MYD11C1). Importantly for dryland
ecosystems, the accuracy of the MOD11/MYD11 collection-
6 LST retrievals over bare soil is considerably improved
compared to previous versions due to the inclusion of sep-
arate daytime and nighttime coefficients and an emissivity
adjustment model (Wan, 2014).

To capture soil moisture and soil temperature, we used
daily (00:00 UTC retrieval) 9 km resolution surface (0–
5 cm depth) and rootzone (0–100 cm) soil moisture and soil
temperature estimates from the SMAP Level 4 Soil Mois-
ture (L4SM) “analysis update” product (Reichle et al., 2019)
(Table 1). SMAP L4SM assimilates satellite-observed L-
band (1.41 GHz) microwave brightness temperature (sensi-
tive to moisture in the upper layers of the soil and vegetation)
into a hydrological model forced with instrumental precipita-
tion observations (Reichle et al., 2019). While soil moisture
(rather than soil temperature) is more directly related to the
L-band microwave signal and is the primary retrieval objec-

tive for L4SM (Reichle et al., 2017), we also chose to use soil
temperature estimates due to the strong dependence of soil
respiration (and thus NEE) on soil temperature (Curiel Yuste
et al., 2007) and its use in other SMAP-based carbon models
(Jones et al., 2017). For site-level calibration and evaluation,
we retrieved soil moisture and temperature from the grid cell
nearest to each tower. We note, however, that unlike MODIS
resolutions (500 or 1000 m), the 9 km SMAP resolution is
much coarser than the typical ∼ 1 km2 (or smaller) eddy co-
variance footprint (Chu et al., 2021), so the SMAP soil mois-
ture and temperature estimates used here represent a larger
area-integrated average that may not be perfectly representa-
tive of conditions inside the flux footprint. For regional anal-
yses, we resampled the SMAP L4SM products to match the
0.05◦MODIS CMG resolution using the nearest neighbor. In
2019, SMAP went into “Safe Mode” from 19 June through
23 July (Reichle et al., 2022), during which the L4SM model
could not assimilate microwave brightness temperature, and
model estimates would have come solely from the hydro-
logical model forced with meteorological observations. Be-
cause this only affects two partial months, we chose to retain
soil moisture and temperature estimates during this period,
though this may result in slightly higher error or bias in our
monthly DrylANNd carbon and water flux estimates for June
and July 2019.

Since the relationships between vegetation indices and
ecosystem function can vary among different vegetation
types (Wang et al., 2022), we used the 2020 fractional cover
of annual and perennial grasses and forbs, trees, shrubs, litter,
and bare ground from Rangeland Analysis version 3 (Jones
et al., 2018; Allred et al., 2021) as static predictors. Range-
land Analysis fractional cover fuses Landsat and MODIS
surface reflectance at∼ 30 m resolution. For site-level model
development, we averaged the fractional covers for all pix-
els within a 500 m buffer around each eddy covariance tower.
For regional analysis, we reprojected and resampled the 30 m
fractional cover to 0.0005◦ (∼ 50 m) resolution and then av-
eraged the fractional cover of the 10 000 pixels falling within
each 0.05◦ pixel of the MODIS CMG grid.

From the daily MODIS and SMAP observations, we de-
veloped monthly composites of each variable. For the opti-
cal vegetation “greenness” indices (NDVI, kNDVI, EVI, and
NIRv), we used maximum value compositing (Holben, 1986)
of the valid daily observations within each month, consistent
with theoretical and observational evidence that sources of
noise in remotely sensed imagery (e.g., clouds, snow, and at-
mospheric effects) tend to reduce, not increase, the apparent
greenness of the land surface (Viovy et al., 1992; Huete et al.,
2002). For LST, LSWI, and SMAP, we averaged the daily
observations within each month. In all cases, we only used
monthly composites for which at least 25 % of daily obser-
vations were valid within the composite window (i.e., at least
8 d of valid observations within a given month).
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Figure 2. Artificial neural network (ANN) architecture conceptual diagram (Olden et al., 2008). Each “neuron” in a given layer represents a
weighted combination of the neurons in the previous layer. All remotely sensed predictor variables in the input layer are also listed in Table 1.

2.3 Model framework and initialization

We used feed-forward artificial neural networks (ANNs;
Fig. 2) to jointly predict monthly GPP, NEE, and ET. ANNs
are effective at finding underlying relationships within mul-
tidimensional and multi-source datasets, including nonlin-
ear relationships and interactions among predictor variables
(Olden et al., 2008). They are particularly useful for estimat-
ing biophysical parameters because they support nonlinear-
ity, adaptivity to changes in the environment, and decision
confidence (Mas and Flores, 2008; Jensen et al., 2009). Syn-
thetic “neurons,” in which each neuron is a mathematical
function, connect the neural network’s input and output lay-
ers, often through “hidden” layers of intermediary functions.
Importantly, ANNs are appropriate for multi-output regres-
sion problems, where a single model simultaneously pro-
duces predictions of multiple variables (e.g., Atkinson and
Tatnall, 1997). Because the multi-neuron output layer of the
neural network allows joint prediction of response variables,
the ANN framework therefore implicitly preserves some bio-
physical connections between GPP and NEE, where GPP is
the carbon input into the ecosystem, and between GPP and
ET, which are coupled via plant stomata.

The DrylANNd model consists of an ensemble of ANNs,
each with one input layer of 20 “neurons” (i.e., seven opti-
cal VIs, LST observations from four different times per day,
three SMAP variables, and six static fractional cover classes),

two hidden layers, and one output layer with three neurons
(GPP, NEE, and ET). The sizes of the two hidden layers (L1
and L2) were determined based on the number of neurons in
the input (N) and output (m) layers (Huang, 2003):

L1 =
√

(m+ 2)N + 2
√

N/(m+ 2)= 14, (1)

L2 =m
√

N/(m+ 2)= 6. (2)

Each ANN in the ensemble (Sect. 2.4 below) was initi-
ated with randomly assigned weights and biases based on
the Nguyen–Widrow method (Nguyen and Widrow, 1990)
and with different random subsets of observations for model
training (75 %) and validation (25 %), with the precise num-
ber of data points used for each individual ANN vary-
ing slightly depending on the length of the withheld site’s
data record. We trained the ANNs using the Levenberg–
Marquardt algorithm, which performed faster than and at
least as well as other training algorithms in early tests.

2.4 Model calibration, evaluation, and prediction

Our DrylANNd model consists of an ensemble of 560 in-
dividual ANNs, in which each ANN in the ensemble was
trained with a different combination of sites (always with-
holding data from one site to use for independent evalua-
tion) and initialized with different weights and biases that
connect one layer to the next. Specifically, we withheld each
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AmeriFlux site from model development for 20 of the en-
semble members (28 sites× 20 models per site= 560 total
models), training the ANNs for those ensemble members us-
ing the remaining 27 sites. We then predicted GPP, NEE, and
ET for the withheld site using each of the 20 ensemble mem-
bers, with the ensemble mean used as the best estimate of
GPP, NEE, and ET. This ensures that model skill is assessed
based on observations from a site that was new to the model,
thus providing a representative measure of the model’s ability
to extrapolate to locations on which it was not trained. Using
the full ensemble of 560 ANNs, we predicted monthly GPP,
NEE, and ET using the 0.05◦ resolution remotely sensed data
for all western US drylands from April 2015 (the first full
month of SMAP data) through December 2020. We used the
ensemble mean at each pixel as an estimate of GPP, NEE,
and ET, with the 10th–90th percentiles used as estimates of
uncertainty.

We evaluated model skill based on the coefficient of de-
termination (R2) and mean absolute error (MAE) between
model predictions and observations at each site, using only
model predictions generated from the ensemble members
from which that site was withheld from training. In addi-
tion to evaluating skill at monthly resolution, we also as-
sessed DrylANNd’s ability to capture both the mean season-
ality (i.e., the mean monthly fluxes during the 2015–2020
period) and the (inter-)annual variability at the 16 Ameri-
Flux sites that were operational over the full SMAP period
(2015–2020). We assessed the ability of the model to capture
the mean seasonal cycle using both the R2 and the standard
deviation ratio (SDR), i.e., the ratio of the standard devia-
tions of the modeled mean seasonal cycle and the observed
mean seasonal cycle (Smerdon et al., 2011), where SDR < 1
indicates that the model underestimated the seasonality, and
SDR > 1 indicates that the model overestimated the season-
ality. To assess the ability of the model to capture (inter-
)annual variability, we calculated total annual fluxes (i.e., the
mean daily flux multiplied by the number of days) in each
of the 6 study-period years during the April–October warm
season, with interannual variability defined by comparing the
ability of the DrylANNd model to capture variance in flux
anomalies (i.e., the departure of each year’s flux from that
site’s study-period mean flux) across all sites. We specifi-
cally examined annual warm season rather than calendar year
fluxes because (1) SMAP began operation on 31 March 2015,
so there is not a continuous record of January–March fluxes
over the full 2015–2020 period, and (2) many high-elevation
and/or high-latitude sites have extensive missing data dur-
ing the cold season due to snow cover. As a benchmark for
model skill, we also compared DrylANNd predictions to the
MODIS GPP (MOD17A2HGF; Running et al., 2004) and ET
(MOD16A2GF; Mu et al., 2007, 2011) products.

The “black box” nature of many machine learning meth-
ods (including ANNs) typically makes it challenging to ex-
amine the effect of any given input variable on model pre-
dictions. Here, we examined the importance of the MODIS

and SMAP predictor variables for model skill in two ways.
First, using the same leave-one-site-out calibration and eval-
uation procedure described above, we ran models based on
each of the three classes of variables (MODIS VIs, MODIS
LST, and SMAP soil moisture and temperature) individually
and in all possible combinations and compared the predic-
tive ability (R2) of each model to the combined model with
all three classes of variables together. Second, we tested the
leverage of each time-varying predictor variable by repeat-
edly (100 times) randomly permuting each variable (thus
destroying its information content) and re-running model
predictions, similar to established perturbation and stepwise
methods for uncovering the most critical variables in ANNs
(Gevrey et al., 2003). The synthetic, noise-only permutations
of each variable were drawn from a normal distribution with
the same mean and variance as observed for that variable at
that site. We calculated both the mean percent increase in
MAE and the change in R2 when each variable was replaced
with noise-only permutations, thus estimating its leverage on
model skill.

3 Results

3.1 Overall performance

At the monthly scale, the DrylANNd model explained more
than 70 % of the combined spatial and temporal variation
in GPP (Fig. 3a) and ET (Fig. 3e) for sites withheld from
model training but only about 35 % of the variation in NEE
(Fig. 3c). For GPP, the model performed best at shrub-
land sites (R2

∼ 0.8), followed by savanna and grassland
sites (R2

∼ 0.7) and evergreen needleleaf sites (R2
∼ 0.6)

(Fig. 3b). However, while the model performed worst on av-
erage at evergreen needleleaf sites, where optical VIs strug-
gle to capture seasonal dynamics in GPP (Wang et al.,
2022), these sites also saw the greatest improvement over
MODIS GPP estimates (R2

∼ 0.6 vs. R2
∼ 0.25) (Fig. 3b).

DrylANNd outperformed MODIS GPP estimates at 19 sites,
while MODIS outperformed DrylANNd at seven sites (with
nearly identical performance at two sites). Overall, how-
ever, DrylANNd showed improvement over MODIS for all
four vegetation types (Fig. 3b). Model skill was consider-
ably worse for NEE (Fig. 3c and d), with the best perfor-
mance at shrubland sites (R2

∼ 0.7), followed by grasslands
(R2
∼ 0.4), then savannas (R2

∼ 0.3), and evergreen needle-
leaf forests (R2

∼ 0.1) (Fig. 3d). The DrylANNd model par-
ticularly excelled at capturing variation in ET (Fig. 3e and f),
especially in shrublands (R2 > 0.8), with R2 > 0.6 on aver-
age across all vegetation types (Fig. 3f). Site-level R2 varied
from ∼ 0.4–0.9, which represents an improvement (in many
cases substantial) over MODIS ET estimates at 23 out of 26
sites and for all four vegetation types (Fig. 3f).

DrylANNd also effectively captured spatial variation in
warm-season carbon and water fluxes across western US dry-
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Figure 3. Overall performance of DrylANNd GPP (a, b), NEE (c, d), and ET (e, f) estimates at monthly timescale. Scatterplots show com-
parison of monthly tower observations to cross-validated model estimates aggregated across all 28 eddy covariance sites (Table S1). Bar
plots show the R2 between monthly tower observations and cross-validated model estimates for each site individually and aggregated by
vegetation type (Fig. 1). Gray “+” signs (b and f) show the MODIS product skill for each site and vegetation type.

lands (Fig. 4). The model simulates realistic spatial gradi-
ents of GPP (Fig. 4a), NEE (Fig. 4c), and ET (Fig. 4e), with
the highest productivity and ET in the subhumid east and in
high-elevation “sky islands,” where cooler temperatures and
more abundant precipitation provide a more favorable envi-
ronment than the surrounding desert lowlands. Across the 16
AmeriFlux sites that completely overlap the SMAP observa-
tional period, DrylANNd captured 75 %–80 % of the spatial
variation in warm-season GPP and ET (Fig. 4b and f, respec-
tively) with minimal bias (i.e., with predictions all falling
along the 1 : 1 line). For NEE, the model captured ∼ 50 %
of the spatial variation but with a negative bias indicating an
overestimation of the carbon sink across the region, particu-
larly for evergreen needleleaf forest sites (Fig. 4d).

3.2 Seasonality

At the 16 AmeriFlux sites that cover the full SMAP period
(2015–2020), DrylANNd effectively captured the mean sea-
sonality (i.e., mean monthly fluxes) of both GPP and ET
across most sites, with R2

≥ 0.8 at all but two sites for both
GPP (Fig. 5) and ET (Fig. 6). This represents an improve-
ment over MODIS GPP seasonality at 12 of 16 sites and
MODIS ET at 13 of 16 sites. Likewise, DrylANNd effec-
tively represented the seasonality of GPP and ET, with SDR
closer to 1 at 10 of 16 sites for GPP (Fig. 5) and 15 of 16
sites for ET (Fig. 6). However, even though DrylANNd’s ET
estimates come considerably closer to representing the sea-
sonality of ET, they still underestimate the magnitude of ET
seasonality (SDR < 1) at all but two sites (US-Mpj and US-
Ses; Fig. 6), suggesting that the disproportionately important
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Figure 4. Spatial patterns and spatial validation of mean warm-season (April–October) GPP (a, b), NEE (c, d), and ET (e, f) predicted by
DrylANNd during 2015–2020. Maps show the regional DrylANNd predictions, with the black outline indicating the region classified as
dryland (P/PET≤ 0.75). Scatterplots show mean (± 1 standard deviation) warm-season fluxes predicted by DrylANNd and measured by
eddy covariance at the 16 AmeriFlux sites that had complete records from 2015–2020, with points colored by vegetation type. For purposes
of calculating annual means and standard errors, missing monthly data were filled with a spline interpolation.

“hot moments” of dryland water fluxes that occur during in-
termittent pulses of rainfall are still not completely captured
by the model. Likewise, DrylANNd often misses the bimodal
spring–summer growing seasons at many of the North Amer-
ican monsoon-influenced sites (Figs. 5, 6 and S1, S2 in the
Supplement). For example, DrylANNd correctly estimated

the magnitude of monsoon-driven summer GPP and ET but
underestimated the spring GPP and ET at the Santa Rita
Grassland (US-SRG) site in southeastern Arizona (Figs. 5,
6, S1, and S2), and it missed the mid-summer suppression of
GPP at the two Valles Caldera sites (US-Vcp and US-Vcm)
in New Mexico (Figs. 5 and S1).
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Figure 5. Mean (± 1 standard deviation) seasonality of eddy covariance GPP (black), DrylANNd GPP (red), and MODIS GPP (gray) at
the 16 sites with complete flux records. Monthly means and standard deviations for all three datasets were estimated using all available
observations during the period 2015–2020. Standard deviation ratio (SDR) < 1 indicates that the model underestimated the magnitude of
seasonal variability, and SDR > 1 indicates that the model overestimated the magnitude of seasonal variability.

While the seasonality of NEE was mostly well captured by
DrylANNd (R2

≥ 0.6 at most sites; Fig. S3), it tended to sys-
tematically underestimate NEE (i.e., overestimate the magni-
tude of the carbon sink) at several sites (Fig. S4), particularly
the three forest sites (US-Me6, US-Vcm, and US-Vcp), with
a smaller number of sites where NEE was slightly overes-
timated. In the most extreme case (US-Vcp), the mean bias
in NEE exceeded −1 gCm−2 d−1, with biases approaching
or exceeding−2 g C m−2 d−1 during the June–September pe-
riod when measured NEE at the site was near zero.

3.3 (Inter-)annual variability

DrylANNd captured roughly 70 % of the variability in an-
nual warm-season GPP (Fig. 7a) and 66 % of the variability
in warm-season ET (Fig. 7c) with MAEs of ∼ 100 gCm−2

for GPP and ∼ 50 mm for ET, a considerable improvement

over the MODIS GPP and ET estimates. However, much of
this skill is likely attributable to the strong performance at
estimating spatial (rather than temporal) variation across the
study sites (Fig. 4 and Sect. 3.1); like many remote sens-
ing estimates of GPP and ET (Smith et al., 2019; Bieder-
man et al., 2017; Stocker et al., 2019), DrylANNd struggled
to capture the interannual variability (i.e., deviations from
site mean) in carbon and water fluxes. DrylANNd only cap-
tured 31 % of the interannual variability in GPP (Fig. 7b),
similar to that of MODIS GPP (R2

= 0.33) though with a
slope slightly (but not significantly) closer to 1. Like MODIS,
DrylANNd also underestimated the magnitude of interannual
variability in ET, with a slightly lower R2 than MODIS but a
slope slightly closer to 1 (Fig. 7d).
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Figure 6. Mean (± 1 standard deviation) seasonality of eddy covariance ET (black), DrylANNd ET (red), and MODIS ET (gray) at the 16
sites with complete flux records. Monthly means and standard deviations for all three datasets were estimated using all available observa-
tions during the period 2015–2020. Standard deviation ratio (SDR) < 1 indicates that the model underestimated the magnitude of seasonal
variability, and SDR > 1 indicates that the model overestimated the magnitude of seasonal variability.

3.4 Variable importance

For all three response variables (GPP, NEE, and ET), models
that included all three subsets of predictor variables (opti-
cal VIs, LST, and SMAP) performed best overall (Fig. 8a–
c), though a combination of optical vegetation indices with
SMAP soil moisture and temperature performed nearly as
well for both GPP (Fig. 8a) and ET (Fig. 8c). Models based
on VIs and/or LST performed worse than SMAP-based mod-
els but still achieved overall R2 of ∼ 0.4 for GPP and ∼ 0.5
for ET (compared to R2

∼ 0.7 for the models that included
all predictor variables). The same was generally true for the
models’ ability to capture within-site temporal variability
(i.e., anomalies relative to monthly site means; Fig. 8d–f).
For both GPP (Fig. 8d) and ET (Fig. 8f), the model based on
all predictor variables performed best for capturing temporal
variability, followed closely by the VI+SMAP model.

Compared to models based solely on optical VIs, the addi-
tion of SMAP soil moisture and temperature generally made
the largest difference for model performance in grasslands
and shrublands, while including LST estimates from MODIS
thermal infrared made the largest difference for model per-
formance in evergreen needleleaf forests (Fig. 8). In shrub-
lands, the R2 of VI+SMAP GPP (Fig. 8a) and ET (Fig. 8c)
increased by more than 0.1 compared to the VI-only models,
and it increased by more than 0.2 for NEE (Fig. 8b). In grass-
lands, the difference between the VI-only and VI+SMAP
models was even larger, with R2 increasing by more than 0.2
for all three flux variables (Fig. 8a–c). Generally, the addition
of thermal data, however, offered little (if any) gains in model
performance over either the VI-only or VI+SMAP models
for either grassland or shrubland sites (Fig. 8a–c), though
it did improve representation of flux anomalies at grassland
sites compared to VI-only models (Fig. 8d–f). Conversely,
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Figure 7. Annual and interannual variability in warm season (April–October) (a, b) GPP and (c, d) ET. The orange and gray lines in (a)
and (c) show the linear relationship between estimated and observed GPP and ET for each individual site during the 6-year training and
evaluation period, while lines in (b) and (d) show the linear relationship between estimated and observed GPP and ET anomalies across all
sites. For purposes of calculating annual values and anomalies, missing monthly data were filled with a spline interpolation.

across evergreen needleleaf forest sites, the VI+SMAP mod-
els performed slightly worse than the VI-only models for pre-
dicting monthly fluxes (Fig. 8a–c), suggesting that models
trained on other evergreen needleleaf sites were overfit to the
SMAP data and were less skillful at extrapolating to an “un-
seen” site than a model based solely on optical VIs. However,
including SMAP soil moisture and temperature did slightly
improve the ability of the models to predict monthly flux
anomalies at evergreen needleleaf forests (Fig. 8d–f). Includ-
ing thermal data, on the other hand, improved predictions of
both monthly fluxes and monthly flux anomalies in evergreen
needleleaf forests compared to VI-only models. For savanna
sites, both LST and SMAP soil moisture and temperature im-
proved predictions of monthly fluxes compared to VI-only
models (Fig. 8a–c), though SMAP was far more important
for predicting flux anomalies (Fig. 8d–f).

While the LST-only models performed the worst overall
(Fig. 8), the models based on all variables assigned high
leverage to LST for all three response variables, wherein a

random permutation of LST led to large increases in MAE
and decreases in R2 (Fig. 9). For GPP, the four diurnal LST
observations (particularly daytime Terra LST), along with
NDVI and NIRv, tended to have the highest “leverage” on
model skill (Fig. 9a and b). There was little variation in
leverage among the predictor variables for NEE (Fig. 9c
and d), with random permutations generally leading to rel-
atively low and site-specific changes in both MAE and R2.
Nighttime LST observations had the greatest leverage over
the MAE of NEE predictions (Fig. 9c), while NDVI–NIRv
and all four daily LST observations had the most leverage
over predictive R2 (Fig. 9d). For ET, a combination of all
three classes of variables (vegetation indices, LST, and soil
moisture and temperature) contributed positively to model
skill, with NDVI–NIRv, daytime and nighttime Terra LST,
and SMAP surface soil moisture generally holding the high-
est leverage over model skill (Fig. 9e and f).
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Figure 8. Coefficient of determination (R2) for models based on different combinations of predictor variables: optical VIs, MODIS LST, and
SMAP soil moisture and temperature. Gray bars show overall model R2 (across all sites), while colored dots show model R2 across all sites
of a given vegetation type. (a–c) DrylANNd model performance for predicting observed monthly fluxes across all 28 eddy covariance sites.
(d–f) DrylANNd model performance for predicting monthly flux anomalies relative to monthly site means across the 16 eddy covariance
sites that cover the full study period (2015–2020). For purposes of calculating monthly site means, missing monthly data were filled with a
spline interpolation after which mean fluxes were calculated for each month during the 2015–2020 study period.

4 Discussion

4.1 Model skill, strengths, and shortcomings

Here, we developed and evaluated a data-driven, machine-
learning-based approach for estimating monthly carbon
(GPP, NEE) and water (ET) fluxes in US drylands using
multi-source satellite remote sensing. Our DrylANNd model
incorporated information from the optical, thermal, and mi-
crowave domains, including newer optical VIs that have
shown promise in drylands (i.e., NIRv; Wang et al., 2022),
daily land surface temperature observations from multiple
times per day, and estimates of surface and rootzone soil
moisture and soil temperature. DrylANNd performed par-
ticularly well at monthly and seasonal (i.e., mean monthly)
timescales, representing a considerable improvement over
MODIS GPP and ET estimates across most eddy covariance
sites and all vegetation types (Fig. 3).

DrylANNd particularly excelled at capturing monthly
(Fig. 3e and f), seasonal (Fig. 6), and spatial (Fig. 4e and f)
variation in ET. Given the importance of ET for linking the
carbon, water, and energy cycles (Fisher et al., 2017), accu-
rate ET estimates are critical for understanding and monitor-
ing global ecosystem functions, especially in drylands where
remote sensing of ET is particularly challenging (Smith et al.,
2019; Fisher et al., 2017). By contrast, NEE proved more
challenging to estimate than either GPP or ET (Figs. 3c, d
and 4c, d) likely because many processes involved in ecosys-
tem respiration cannot be easily represented with satellite
data. While heterotrophic and autotrophic respiration rates
are strongly dependent on temperature (Atkin and Tjoelker,
2003) and soil moisture (Moyano et al., 2013), which can
be captured by MODIS LST and SMAP soil moisture and
temperature, they also depend on microbial community com-
position, substrate availability, and root biomass that are not
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Figure 9. Site-level (filled circles, colored by vegetation type) and median (vertical black line) change in MAE (1MAE) and R2 (1R2)
for DrylANNd model predictions of (a, b) GPP, (c, d) NEE, and (e, f) ET when the information content of each variable is destroyed via
random permutation. For each site, 100 random permutations of each variable were performed (each with the same mean and variance as
the original variable), model predictions were generated with a randomly selected ANN (whose site was excluded from model calibration)
from the ensemble for each noise-only permutation, and predictions with the noise-only simulation were compared to those with the original
variable.

visible to satellite sensors. DrylANNd performed moderately
well at capturing the seasonality of (Fig. S3) and spatial vari-
ation in (Fig. 4c and d) NEE but tended to systematically
overestimate the magnitude of net carbon uptake in US dry-
lands (Figs. 4d and S3), particularly in evergreen needleleaf
forests. Many dryland sites have a net carbon balance near
zero and can flip between being sources of and sinks for CO2

in any given year (Biederman et al., 2018; Scott et al., 2009,
2010, 2015), so even small errors or biases in NEE estimates
can have large effects on dryland carbon budgeting and mon-
itoring.

While DrylANNd captured monthly, seasonal (i.e., mean
monthly), and spatial variation in GPP and ET with fidelity,
it struggled to predict interannual variability (Fig. 7). This
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is a common issue for satellite-based models applied in dry-
land ecosystems (Biederman et al., 2017; Smith et al., 2019;
Stocker et al., 2019; Barnes et al., 2021) partly due to the
prevalence of “hot moments” (i.e., short periods of high bio-
geochemical activity) that are disproportionately important
to time-averaged carbon and water fluxes in drylands (Kan-
nenberg et al., 2020). While DrylANNd has relatively little
systematic bias at capturing low extremes in monthly GPP
(Fig. 3a) and ET (Fig. 3e), it tended to underestimate the
high extremes. DrylANNd’s monthly resolution may smooth
the intensity of these short but impactful “hot moments,”
leading to the systematic underestimation of monthly high
extremes which also propagates to longer timescales, with
DrylANNd clearly underestimating the high extremes in in-
terannual variability in warm season GPP (Fig. 7a) and ET
(Fig. 7c). Improving estimates of interannual variability in
dryland systems may therefore require models that operate
at finer temporal resolutions (e.g., daily) to adequately repre-
sent short, intense periods of pulse-driven dryland vegetation
activity.

Despite the challenges in capturing interannual variability,
the ANN machine learning approach used here has several
key benefits. First, because it is a data-driven model based
solely on remote sensing products with short latencies, Dry-
lANNd would be relatively easy to operationalize at a large
scale and in near real time. Second, the ensemble approach
allows for intuitive estimates of uncertainty, which are crit-
ical for many applications (e.g., ecological forecasting) but
which are rarely provided (Dietze et al., 2018). Finally, neu-
ral networks allow joint modeling of multiple response vari-
ables, providing the means both to efficiently generate mul-
tiple indicators of ecosystem activity and to partially pre-
serve the physical connections between GPP and NEE and
between GPP and ET, which is relatively rare for remote-
sensing-based models. The MODIS and SMAP carbon prod-
ucts, for example, provide joint estimates of GPP and net pri-
mary production (Running et al., 2004) and GPP and NEE
(Jones et al., 2017), respectively, but neither provides esti-
mates of ET that are coupled to GPP. Zhang et al. (2016), on
the other hand, provide coupled estimates of GPP and ET us-
ing static, biome-specific water-use efficiencies, but this ap-
proach does not provide estimates of downstream plant or
ecosystem carbon balances, nor does the model allow for the
dynamic changes in water-use efficiency that can occur in
response to pulses of rainfall or variation in vapor pressure
deficit (Roby et al., 2020).

4.2 Benefits of multi-source remote sensing

Previous work has highlighted the potential for combining
multiple remote sensing proxies to improve the representa-
tion of vegetation dynamics (Stavros et al., 2017; Smith et al.,
2019), and our results support this conclusion and provide
further guidance on which remotely sensed variables con-
tribute most to model improvement in drylands. All three

classes of remote sensing variables (optical, thermal, and mi-
crowave) contributed positively to model skill (Figs. 8 and 9).
In particular, the inclusion of SMAP soil moisture and tem-
perature resulted in large gains in model skill (Fig. 8), with
the VI+SMAP models performing substantially better than
the VI-only models, especially for GPP (Fig. 8a), for which
the monthly R2 improved from ∼ 0.4 to nearly 0.7 when
adding SMAP variables as predictors. This is consistent with
site-level research showing the importance of soil moisture
for dryland carbon and water fluxes (Novick et al., 2016;
Stocker et al., 2018). The inclusion of soil moisture and soil
temperature was particularly important for predicting carbon
and water fluxes in grassland, shrubland, and savanna sys-
tems.

While the LST-only models usually performed worst of
all model subsets, and the monthly VI+LST models barely
outperformed the VI-only models (Fig. 8a–c), the inclusion
of LST was particularly useful for improving predictions of
monthly anomalies (i.e., deviations from the mean monthly
flux of a given site) of all three flux variables, with R2 in-
creasing by ∼ 0.1 when adding LST to the VI-only mod-
els (Fig. 8d–f). When LST was included in the models, it
also had very high leverage over model skill (Fig. 9), in-
dicating that it provided unique information not captured
by other remote sensing sources. Among the different veg-
etation types, LST was particularly important for evergreen
needleleaf forests (Fig. 8), where optical VIs struggle to cap-
ture both spatial and temporal dynamics of GPP (Wang et al.,
2022) and where growing seasons are more likely to be lim-
ited by low temperatures than in warmer and drier grasslands,
shrublands, and savannas. Daytime LST was particularly im-
portant for predicting GPP and ET, possibly indicating that
it is an effective indicator of moisture stress (Javadian et al.,
2022; Still et al., 2021), while nighttime LST was particularly
important for predicting NEE, consistent with previous work
showing the importance of nighttime temperature for respira-
tion and overall carbon balance (Anderegg et al., 2015). LST
also has the benefit of a much longer operational record and
much finer spatial resolution than SMAP, so models based on
a combination of VIs and LST could allow longer records of
dryland responses to hydroclimatic variability and change.

Somewhat surprisingly, NDVI held higher leverage over
model predictions than most other predictor variables (Fig. 9)
despite previous research documenting significant flaws in
its ability to track dryland GPP (Wang et al., 2022; Yan
et al., 2019). The relatively new NIRv index also held very
high leverage, consistent with recent work showing that it
is particularly effective at tracking GPP variation in low-
productivity, sparsely vegetated grasslands and shrublands
(Wang et al., 2022). EVI, on the other hand, was assigned
very low leverage across nearly all sites and all fluxes de-
spite generally being regarded as an improvement over NDVI
in drylands due to the inclusion of a soil background ad-
justment factor (Smith et al., 2019). This could plausibly re-
sult from EVI containing similar information as other optical
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vegetation indices and thus being assigned less weight in the
models. Wang et al. (2022), for example, found that the soil-
adjusted vegetation index (SAVI), on which EVI was partly
based (Huete et al., 1994, 1997, 2002), performed very simi-
larly to but slightly worse than NIRv for tracking seasonality
of and spatial variability in dryland GPP.

4.3 DrylANNd applications and priorities for future
dryland model development

Given the challenges of mitigating and adapting to a chang-
ing climate, high-quality remotely sensed carbon and wa-
ter flux estimates are needed for large-scale monitoring of
changes in global ecosystem functions and ecosystem ser-
vices, especially in dryland regions that are warming more
rapidly than many other regions (Huang et al., 2017). Ecosys-
tem production estimates provide the means to monitor and
forecast rangeland and cropland productivity (e.g., Hartman
et al., 2020) and to track changes in the terrestrial carbon
cycle (Xiao et al., 2019). Evapotranspiration estimates are
needed for monitoring drought and plant water use and water
stress (Fisher et al., 2017), which in turn affect both fire risk
(Rao et al., 2022) and mortality risk (McDowell et al., 2022).

Our DrylANNd approach has significant potential to pro-
vide these capabilities in the western US. Despite its short
calibration and validation period, DrylANNd’s training data
encompass much of the climate variability experienced by
the western US, including both anomalously wet and dry
years that may serve as analogues when running the model
forward in time as new MODIS and SMAP data are re-
leased. However, it is possible that the historically atypical
“megadrought” conditions (Williams et al., 2020, 2022; Dan-
nenberg et al., 2022a) under which the model was trained
may impose limitations on the model’s predictive capabil-
ity. Some of the model’s limitations in capturing interan-
nual variability could perhaps be ameliorated by incorporat-
ing additional remote sensing data that capture other aspects
of dryland ecosystem functions. Solar-induced fluorescence,
for example, effectively tracks vegetation activity in drylands
(Smith et al., 2018; Wang et al., 2022), particularly in dry
evergreen needleleaf forests where reflectance-based optical
VIs tend to perform poorly (Magney et al., 2019; Wang et al.,
2022). However, satellite-based solar-induced chlorophyll
fluorescence (SIF) estimates suffer from coarse spatial and
temporal resolutions (e.g., GOME-2; Joiner et al., 2013), dis-
continuous spatial coverage (e.g., OCO-2 and OCO-3; Sun
et al., 2018), or an even shorter period of record than SMAP
(e.g., TROPOMI; Köhler et al., 2018). Fusions of satellite
SIF data with MODIS surface reflectance (e.g., Zhang et al.,
2018) overcome some of these limitations but would likely
inherit many of the same flaws as reflectance-based optical
VIs since they are based on the same surface reflectance
data. As SIF temporal and spatial resolution improves, it
will likely become increasingly useful for dryland carbon
and water modeling. Gravimetric estimates of total terres-

trial water storage (Andersen et al., 2005; Humphrey et al.,
2018) could also improve the representation of deeper mois-
ture, which can be an essential water source for deep-rooted
trees in semiarid systems (Rempe and Dietrich, 2018; Mc-
Cormick et al., 2021). However, like the longer-term SIF
measurements, estimates of total water storage are limited to
very coarse (0.5◦) spatial resolution and monthly frequency,
which would preclude use in higher-frequency estimates of
carbon and water fluxes.

Applying the DrylANNd approach at a global scale would
require expanding the eddy covariance training sites beyond
those used here, which are limited solely to western US
AmeriFlux sites. Drylands are generally defined as regions
where annual precipitation is insufficient to meet evaporative
demand (e.g., P/PET < 0.75), but climates falling within
that general definition can have very diverse seasonalities,
temperatures, and precipitation regimes (e.g., Fig. 1b). A
purely empirical, data-driven model (like DrylANNd) would
likely struggle to extrapolate to regions beyond those on
which it was trained, especially because dryland carbon and
water fluxes tend to be more “unique” to their specific region
compared to more mesic systems (Haughton et al., 2018). In
addition to improving and expanding the input data, a global-
scale version of the DrylANNd approach would therefore
benefit from expanding the training network to include dry-
land eddy covariance sites from other global flux networks
(e.g., OzFlux, AsiaFlux, and the various European flux net-
works).

5 Conclusions

Here, we developed and evaluated a machine learning ap-
proach (DrylANNd) for the joint modeling of key carbon
and water fluxes (GPP, NEE, and ET) specifically for dry-
lands of the western US using a combination of satellite op-
tical vegetation indices, multitemporal thermal infrared, and
microwave-based soil moisture and soil temperature. Long-
standing challenges in current multispectral satellite-based
estimation of dryland carbon and water fluxes are the result
of several interacting issues, including poor representation
of soil moisture stress, decoupling between “greenness” and
plant physiology, high soil background reflectance in open
canopies, and limited representation of dryland calibration
and validation sites available for model training and testing.
Our approach partially addresses these limitations of previ-
ous satellite carbon and water flux estimates in drylands.

– Soil moisture is explicitly included in the model rather
than relying on the covariance between vapor pressure
deficit and soil moisture or water-sensitive vegetation
indices as proxies of moisture stress.

– The model includes new vegetation indices (e.g., NIRv)
that show promise in capturing dryland seasonality
(Wang et al., 2022), along with satellite thermal and
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microwave observations representing temperature and
moisture stress impacts on ecosystem fluxes.

– The model is trained specifically for dryland ecosystems
based on an extensive network of 28 eddy covariance
sites spanning a large latitudinal and arid-to-subhumid
gradient in the western US.

We found that this approach effectively captures monthly,
seasonal, and spatial variation in GPP and, especially, ET
through both space and time, though it still underestimates
the magnitude of interannual variability in carbon and water
fluxes. DrylANNd was less effective at capturing NEE than
GPP or ET likely because respiratory processes are largely
invisible to satellite sensors, with the magnitude of dryland
carbon sinks overestimated particularly at evergreen needle-
leaf sites. Compared to models based solely on optical vege-
tation indices, the inclusion of SMAP soil moisture and tem-
perature was crucial for improving estimates of both the mag-
nitudes and temporal variabilities in all three fluxes, espe-
cially in dry grasslands and shrublands of the western US.
On the other hand, the addition of multitemporal thermal ob-
servations improved flux estimates in evergreen needleleaf
forests, where optical vegetation indices have traditionally
struggled to capture GPP dynamics. Drylands play important
roles both in the global carbon cycle (Poulter et al., 2014;
Ahlström et al., 2015) and in ecosystem services supporting a
large human population (Reynolds et al., 2007; Bestelmeyer
et al., 2015), and DrylANNd significantly improves our abil-
ity to quantify carbon and water fluxes in these ecosystems.

Code and data availability. The code for all modeling and analysis
is available at https://github.com/mpdannenberg/drylANNd (Dan-
nenberg, 2023), and 0.05◦ monthly DrylANNd GPP, NEE, and
ET estimates for the western US are archived and publicly available
as NetCDF files distributed under a creative commons license at
Iowa Research Online (https://doi.org/10.25820/data.006185, Dan-
nenberg et al., 2022b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-20-383-2023-supplement.
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