
Biogeosciences, 20, 3873–3894, 2023
https://doi.org/10.5194/bg-20-3873-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
eview

s
and

synthesesReviews and syntheses: Iron – a driver of nitrogen
bioavailability in soils?
Imane Slimani1,2, Xia Zhu-Barker3, Patricia Lazicki4, and William Horwath1

1Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
2AgroBioSciences Program, Mohammed VI Polytechnic University, Hay Moulay Rachid, Ben Guerir 43150, Morocco
3Department of Soil Science, University of Wisconsin-Madison, 1525 Observatory Drive, Madison, WI 53706-1299, USA
4Department of Biosystems Engineering and Soil science, University of Tennessee Knoxville, Tennessee 37996, USA

Correspondence: Imane Slimani (islimani@ucdavis.edu)

Received: 20 September 2022 – Discussion started: 21 September 2022
Revised: 18 June 2023 – Accepted: 18 July 2023 – Published: 26 September 2023

Abstract. An adequate supply of bioavailable nitrogen (N)
is critical to soil microbial communities and plants. Over
the last decades, research efforts have rarely considered the
importance of reactive iron (Fe) minerals in the processes
that produce or consume bioavailable N in soils compared
to other factors such as soil texture, pH, and organic matter
(OM). However, Fe is involved in both enzymatic and non-
enzymatic reactions that influence the N cycle. More broadly,
reactive Fe minerals restrict soil organic matter (SOM) cy-
cling through sorption processes but also promote SOM de-
composition and denitrification in anoxic conditions. By syn-
thesizing available research, we show that Fe plays diverse
roles in N bioavailability. Fe affects N bioavailability directly
by acting as a sorbent, catalyst, and electron transfer agent
or indirectly by promoting certain soil features, such as ag-
gregate formation and stability, which affect N turnover pro-
cesses. These roles can lead to different outcomes in terms
of N bioavailability, depending on environmental conditions
such as soil redox shifts during wet–dry cycles. We provide
examples of Fe–N interactions and discuss the possible un-
derlying mechanisms, which can be abiotic or microbially
meditated. We also discuss how Fe participates in three com-
plex phenomena that influence N bioavailability: priming, the
Birch effect, and freeze–thaw cycles. Furthermore, we high-
light how Fe–N bioavailability interactions are influenced by
global change and identify methodological constraints that
hinder the development of a mechanistic understanding of
Fe in terms of controlling N bioavailability and highlight the
areas of needed research.

1 Introduction

Nitrogen (N) bioavailability is a critical limiting factor for
terrestrial ecosystem productivity (Vitousek and Howarth,
1991). The largest pool of N in these ecosystems is found
in soils which contain 133–140 Pg of total N globally within
the first top 100 cm of soil (Batjes, 1996). A clear description
of the factors controlling N bioavailability in soils is needed
to design agricultural practices that meet crop demand and
mitigate N loss to the environment. A large range of litera-
ture exists regarding the effects of soil texture, organic matter
(OM), mineral N inputs, pH, moisture, and microbial com-
munities on N mineralization. However, emerging theories
on soil organic matter (SOM) dynamics are increasingly em-
phasizing the role of soil mineralogy (Cotrufo et al., 2013;
Lehmann and Kleber, 2015; Blankinship et al., 2018; Daly
et al., 2021; Whalen et al., 2022). While these reviews have
largely focused on carbon (C) cycling, the role of minerals
is rarely considered in N cycling (Jilling et al., 2018). Since
C and N cycles are interconnected in soils (Gärdenäs et al.,
2011; Feng et al., 2019), they should be regulated by the
same factors, including mineralogy type (Wade et al., 2018).
Increasing evidence shows that Fe specifically represents a
major control over N biological transformations, including
mineralization (Wade et al., 2018), nitrification (X. Huang
et al., 2016; Han et al., 2018), and denitrification (Wang et al.,
2016; Zhu et al., 2014), as well as their abiotic analogous re-
actions, such as chemo-denitrification (Burger and Venterea,
2011) and Fe-mediated hydroxylamine (NH2OH) oxidation
to nitrous oxide (N2O) (Bremner et al., 1980). These reac-
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tions and others (Fig. 1) are likely to operate ubiquitously
in soils due to the close proximity between Fe minerals and
SOM since most of the latter is contained in association with
the former (Wagai and Mayer, 2007; Lalonde et al., 2012).

The characteristic properties of individual Fe minerals and
N compounds and how these properties are influenced by the
soil environment likely drive the aforementioned reactions
as well. First, Fe exists in a variety of polymorphs (Navrot-
sky et al., 2008) and is a redox-sensitive element that cycles
between Fe(II) and Fe(III) states, as controlled by soil Eh
and pH. While Fe(III) promotes N stabilization within min-
eral associations, Fe(III) mobilization, when it is reduced
to Fe(II), can release N into solution. Fe reactivity is also
driven by the amount and sign of surface charge, surface to-
pography, particle size, crystallinity (Petridis et al., 2014; Li
et al., 2015a), and the presence and type of organic mat-
ter (OM) coverage (Kaiser and Zech, 2000a; Kleber et al.,
2007; Boland et al., 2014; Henneberry et al., 2016; Daugh-
erty et al., 2017; Gao et al., 2018; Poggenburg et al., 2018).
Second to this, soil N exists predominantly in organic forms
(ON), mostly as proteins and peptides and, to a lesser extent,
as amino-sugars and nucleic acids (Schulten and Schnitzer,
1997; Kögel-Knabner, 2006; Knicker, 2011). Proteins are in-
trinsically reactive towards soil minerals due to a number of
properties, including hydrophobicity, surface charge distribu-
tion, surface area, number and type of functional groups, con-
formation, and size (Lützow et al., 2006). N from these com-
pounds is generally not directly bioavailable due to molec-
ular size constraints on microbial cell uptake (Schimel and
Bennett, 2004). Depolymerization reactions, carried out by
the activity of extracellular enzymes, such as peptidases,
transform these polymers into soluble, low-molecular-weight
organic monomers (e.g., short oligopeptides, amino acids).
Recent research shows that the size of amino acids avail-
able for mineralization is controlled by peptidase activity but
more so by protein availability, both of which are affected by
the interactions with Fe minerals. Therefore, Fe may drive
gross amino acid production in soils (Noll et al., 2019).

Therefore, the impact of Fe on N cycling can be signifi-
cant; thus, our aim here is to review the role of Fe in control-
ling N bioavailability. To do so, we categorize the processes
by which Fe affects OM dynamics into four different cat-
egories or roles (Fig. 2). In the sorbent role, OM interacts
with Fe(III) through adsorption, co-precipitation, or surface
coatings (Eusterhues et al., 2005; Wagai and Mayer, 2007;
Lalonde et al., 2012). These associations increase OM stor-
age by decreasing its availability to extracellular enzymes
and decomposition processes (Lalonde et al., 2012). In fact,
the content of Fe minerals is a major predictor of soil sorptive
capacity (Mayes et al., 2012). In the structural role, Fe min-
erals participate in the formation of soil aggregates (X. W.
Zhang et al., 2016) and increase soil structural stability (Bar-
ral et al., 1998; Xue et al., 2019). Aggregates can increase
OM stability and retention in soils by protecting it from the
decomposer community and their enzymes (Van Veen and

Kuikman, 1990; Kleber et al., 2021). Moreover, Fe(III) can
facilitate the formation of large polymers of OM that promote
its stability. Thirdly, Fe’s electron transfer role depends on
its oxidation state. Fe(III) serves as a sink of electrons, while
Fe(II) functions as a source of electrons. During anoxic peri-
ods, dissimilatory Fe(III) reduction can be coupled with the
oxidation of OM, which accounts for a significant amount
of C loss under anoxic conditions (Roden and Wetzel, 1996;
Dubinsky et al., 2010). This process can release previously
adsorbed or coprecipitated C, thereby increasing its suscepti-
bility to degradation. Finally, Fe has a catalysis role, whereby
Fe acts as a catalyst for the production of reactive oxygen
species (ROSs) that are potent oxidants of OM. This hap-
pens through Fenton reactions that are prevalent in various
soils such as cultivated soils (Hall and Silver, 2013; Chen
et al., 2020), arctic soils (Trusiak et al., 2018) and desert soils
(Hall et al., 2012; Georgiou et al., 2015). These reactions
are an overlooked but potentially important pathway for OM
transformation in soils and sediments and N bioavailability
(Lipson et al., 2010; Wang et al., 2017; Trusiak et al., 2018;
Merino et al., 2020; Kleber et al., 2021).

While these roles of Fe in controlling C cycling have been
studied extensively, their effects on N bioavailability are not
well explored. This review seeks to underpin these suggested
relationships and provide mechanistic descriptions of how Fe
controls N bioavailability in soils. Moreover, we detail how
Fe participates in three complex phenomena that influence
N bioavailability: priming, the Birch effect, and freeze–thaw
cycles. Finally, we explore how Fe–N bioavailability inter-
actions are influenced by global change. This information is
needed to construct reliable models with improved predic-
tive power of N cycling in terrestrial ecosystems (Wade et al.,
2018) and will offer new possibilities for land management.

2 Roles of Fe in controlling N bioavailability

2.1 Sorbent role

This section aims to elucidate how Fe as a sorbent interacts
with both inorganic N (ammonium – NH+4 , nitrate – NO−3 )
and ON and how these interactions modulate N bioavailabil-
ity. The opposite process of sorption, known as desorption,
can affect N bioavailability since sorbed N can be released
back into the soil solution. By comprehending the dynamics
of both the sorption and desorption of N onto and from Fe
minerals, we can gain more insights into mechanisms affect-
ing its bioavailability in soils.

2.1.1 ON bioavailability

Soil microbes rely heavily on their ability to access ON and
the effectiveness of their extracellular enzymes in breaking
it down into assimilable forms. Fe minerals can modulate
N bioavailability by controlling both ON accessibility and
extracellular-enzyme activity through sorption. Nevertheless,
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Figure 1. Schematic representation depicting the different stages of the N cycle in which Fe plays a role. Adapted from Zhu-Barker et al.
(2015).

Figure 2. Roles of Fe in N bioavailability.

the outcomes in terms of N bioavailability are variable and
depend on several factors, including soil conditions; the in-
terplay between ON, extracellular enzymes, and Fe mineral
surfaces; and the potential for desorption to occur. Here, we
discuss these intricate interactions which can result in dis-
tinct patterns of N bioavailability across soils.

Does extracellular-enzyme sorption to Fe oxides affect
their participation in N mineralization?

Soil microbes produce various types of extracellular en-
zymes, including substrate-specific enzymes (e.g., proteases
and aminopeptidases) and non-specific oxidative enzymes

(e.g., laccase and peroxidase), to acquire N (Caldwell, 2005;
Sinsabaugh et al., 2009; Hassan et al., 2013). While the latter
enzymes are typically associated with C cycling, their im-
portance for N mineralization has also been demonstrated
(Zhu et al., 2014; Kieloaho et al., 2016). Many of these
enzymes become adsorbed to Fe minerals when released
in soil. The effect of such immobilization on enzyme ac-
tivities and consequent N bioavailability remains uncertain
due to conflicting reports in the literature. Numerous studies
have documented a decrease in enzyme activity combined
with increased persistence in soil and resistance to proteoly-
sis (Sarkar and Burns, 1984; Gianfreda et al., 1995; Bayan
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and Eivazi, 1999; Rani et al., 2000; Tietjen and Wetzel,
2003; Kelleher et al., 2004; Yan et al., 2010; Schimel et al.,
2017; Li et al., 2020), while others have reported oppos-
ing effects (Quiquampoix and Ratcliffe, 1992; Quiquampoix
et al., 1995; Servagent-Noinville et al., 2000). For instance,
Fe adsorption reduced the activity of urease (Gianfreda et al.,
1995; Bayan and Eivazi, 1999; Li et al., 2020) but increased
the activity of N-acetyl-glucosaminidase (NAG) (Allison,
2006; Olagoke et al., 2020). These contradicting effects can
have multiple explanations. First, enzyme-active sites can be-
come occluded upon adsorption, limiting the diffusion of ON
towards the binding sites and lower ON decomposition. Site
occlusion can be caused by conformational changes in the
enzyme structure (Datta et al., 2017), Fe-induced aggrega-
tion (Olagoke et al., 2020), or unfavorable attachment orien-
tation on mineral surfaces (Baron et al., 1999; Yang et al.,
2019). Second, Fe oxides can inhibit the activity of extra-
cellular enzymes by constraining ON availability. Along a
chronosequence of 120 kyr, Turner et al. (2014) found that Fe
oxides inhibited the activities of urease and proteases more
strongly than aminopeptidases, possibly due to the prefer-
ential adsorption of urea and proteins over peptides (Turner
et al., 2014). Third, enzyme activity may be influenced by
soil mineral content, as observed by (Olagoke et al., 2020).
In mineral-poor soils, enzymes may have higher and more
persistent activity due to limited adsorption sites, potentially
leading to improved microbial C and N use efficiencies by
allowing microbes to invest in biomass production instead
of enzyme production. Finally, a new mechanism was pro-
posed by Chacon et al. (2019) where Fe minerals, specifi-
cally goethite, can induce abiotic protein fragmentation with
subsequent loss of activity (Chacon et al., 2019), but further
investigation is needed to determine its occurrence in soil
and its implications for enzyme activity and N bioavailabil-
ity. Beyond sorption, the reduced metals that are prevalent
in waterlogged soil have been found to exert an inhibitory
or stimulating effect on enzyme activity. Specifically, Fe(II)
stimulated the activity of oxidative enzymes (Van Bodegom
et al., 2005; Sinsabaugh, 2010) but strongly inhibited that of
urease (Gotoh and Patrick, 1974; Tabatabai, 1977; Pulford
and Tabatabai, 1988; Gu et al., 2019). Amidase activity, on
the other hand, appeared to be unaffected by waterlogging
(Pulford and Tabatabai, 1988). In light of the current state
of knowledge, there is a need for more research to compre-
hend how the intricate relationships between Fe minerals and
enzymes regulate N bioavailability in soils.

Does the sorption of ON to Fe oxides affect their
bioavailability?

Many studies have demonstrated that poorly crystalline Fe
minerals, such as ferrihydrite, control the sorption of ON in
soils (Kaiser and Zech, 2000b; Dümig et al., 2012; Keiluweit
et al., 2012; Dippold et al., 2014). Indeed, Fe minerals in-
teract with a wide range of N-containing moieties via ad-

sorption or co-precipitation processes. The latter process is
particularly important in organic N stabilization as it incor-
porates N into the pool of mineral-associated OM (MAOM)
(Leinweber and Schulten, 2000; Keiluweit et al., 2012;
Swenson et al., 2015; Heckman et al., 2018; Zhao et al.,
2020). During these processes, Fe can form strong chemi-
cal bonds with N-containing moieties; for instance, goethite
forms a stronger bond with the SOM functional group am-
monia (NH+3 ) than with carboxylate, phosphate, or methyl
groups (Newcomb et al., 2017). The bond strength between
N and mineral surfaces varies considerably across differ-
ent environments due to differences in binding mechanisms,
mineral and N properties, soil properties such as pH and ion
strength, and the presence of antecedent SOM on mineral
surfaces (Lützow et al., 2006). However, protein may adsorb
irreversibly to mineral surfaces over a wide range of solution
pH levels and resist desorption (Hlady and Buijs, 1996; Yu
et al., 2013); desorption is perceived to be a necessary step
for extracellular enzymes to proceed with N mineralization.
Similarly, nucleic acid molecules persist for a long time on
clay minerals (Yu et al., 2013) and are shielded from degra-
dation.

Advances in spectroscopic techniques have generated new
conceptual models of organo-mineral associations, such as
the zonal structure model of organo-mineral associations,
which postulates that organic compounds self-organize on
mineral particle surfaces (Kleber et al., 2007). In this model,
amphiphilic SOM compounds with N-bearing and oxidized
functional groups directly interact with mineral surfaces to
form the contact zone, whereas hydrophobic groups face
outwards, creating a region of high hydrophobicity, the hy-
drophobic zone. Additional organic molecules attach to this
zone, forming an outer layer termed the kinetic zone. Multi-
ple recent observations support this model, including (1) the
preferential enrichment of N-containing moieties on Fe min-
eral surfaces (Kopittke et al., 2018; Possinger et al., 2020);
(2) the preferential adsorption of N compounds over other or-
ganic compound classes on Fe mineral surfaces (Gao et al.,
2017); and (3) the partial sorption of some organic com-
pounds, including amino acids, to Fe minerals (Amelung
et al., 2002; Dippold et al., 2014). This model has implica-
tions for N bioavailability because, in contrast to the con-
tact zone, the weakly sorbed N in the kinetic zone likely ex-
changes with soil solution and is more available. Recent re-
search on the chemical composition of C and N at the organo-
organic and organo-mineral interfaces of the model found
that alkyl C and less N occurred at the former, whereas ox-
idized C and more N occurred at the latter (Possinger et al.,
2020). The authors of this study hypothesized that the pro-
cesses stabilizing C and N at these interfaces are different,
considering that the association between SOM rich in O/N-
alkyl C and Fe oxides explained the stabilization of O/N-
alkyl C in soils (Schöning et al., 2005). In addition to pro-
tecting a fraction of bioavailable N, Vogel et al. (2014, 2015)
found that sorption can retard the movement of N in soils,
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thereby increasing N retention by decreasing its accessibility
to degradation mechanisms. More insight is needed to ad-
vance the understanding of ON bioavailability from organo-
mineral associations.

Desorption of ON from Fe minerals

The desorption of ON from Fe-organic associations occurs
due to several destabilization mechanisms, including surface
displacement by competitive sorption, oxidative and reduc-
tive dissolution of Fe minerals (Kleber et al., 2015), and lo-
cal disequilibrium in soil chemistry. Once released, ON may
become accessible to microbial degradation or diffuse into
microbial cells. The following is a discussion of the differ-
ent destabilization mechanisms of Fe-organic associations in
soils and factors influencing them:

a. ON desorption by oxidation and reductive dissolution
of Fe minerals

The oxidation and the reduction of Fe minerals in re-
sponse to variations in soil pH and redox conditions
can significantly compromise the stability of Fe–organo
associations and release Fe and OM into the soil so-
lution as a consequence. In fact, Fe reduction can de-
crease mineral sorption capacity and release Fe ions,
which can lower soil pH, and promote the solubi-
lization of Fe–mineral associations. However, the ex-
tent of OM mobilized remains unpredictable due to
knowledge gaps related to mechanisms of mineral re-
sistance to reduction and their controlling factors in
soils. For instance, short-range-order (SRO) Fe oxides
can resist both chemical and microbial reduction due
to co-precipitation of Fe with SRO aluminosilicates
or physical protection within microaggregates (Hen-
neberry et al., 2012; Shimizu et al., 2013; Eusterhues
et al., 2014; Filimonova et al., 2016; Suda and Makino,
2016; Coward et al., 2018; Tamrat et al., 2019). Con-
versely, Fe oxidation can also solubilize Fe–organo as-
sociations by decreasing pH or generating hydroxyl rad-
icals through Fenton chemistry, which oxidize OM abi-
otically. In addition to these effects, redox alterations
to mineral properties can also affect OM cycling. For
instance, the transformation of amorphous Fe minerals
to more crystalline forms can promote long-term OM
stabilization and decrease its turnover rates (Hall et al.,
2018) since crystalline forms are more resistant to re-
duction. Chen et al. (2020) also found that crystalline
forms were not associated with C release from Fe asso-
ciations (Chen et al., 2020).

b. N desorption by local disequilibrium in soil chemistry

OM in soils can be desorbed from mineral surfaces due
to the establishment of local disequilibrium conditions.
Such conditions result from depletion of dissolved or-
ganic matter (DOM) in the soil solution due to micro-
bial uptake, for example, promoting the release of OM

from MAOM until DOM concentrations in the soil so-
lution are in equilibrium with sorbed OM. This process
is likely affected by the strength of bonds between N
and Fe minerals; in fact, interaction forces vary con-
siderably: strong interactions are favored by polyvalent
cation bridges and ligand exchange, whereas weak in-
teractions occur by hydrogen bonds or van der Waals
forces (Kleber et al., 2015). While the relationship be-
tween particular binding mechanisms and N desorption
from minerals has not yet been established in real soil
conditions, multiple studies in model systems demon-
strated that OM bound by ligand exchange was more
resistant to desorption than other mechanisms (Wang
and Lee, 1993; Gu et al., 1994, 1995; Mikutta et al.,
2007). Therefore, it is likely to be less affected by the
dynamic-equilibria principle, and less N will be made
available (Kleber et al., 2015).

c. N desorption by surface displacement via competitive
sorption

ON associated with Fe can be displaced by the input of
highly sorptive organic compounds. For instance, Scott
and Rothstein (2014) observed that weakly bound, N-
rich hydrophilic compounds were easily displaced by
stronger binding compounds (e.g., hydrophobic com-
pounds), leading to the downward migration of N to
subsurface and mineral horizons.

d. Is desorption of N from organo-mineral associations a
prerequisite to N mineralization?

As mentioned earlier, desorption of protein from min-
eral surfaces is often perceived to be the primary path-
way by which ON becomes accessible to microbial
degradation (Schimel and Bennett, 2004). However,
protein adsorption to Fe minerals is an irreversible pro-
cess (Rabe et al., 2011), which restricts proteolytic ac-
tivity. Recently, the direct proteolysis of protein at the
mineral surface was investigated, as ferrihydrite- and
goethite-adsorbed protein was found to be degraded
without prior desorption (Tian et al., 2020). Substrate–
enzyme complexes were formed directly at the surface
of minerals. Together with the zonal structure of organo-
mineral associations, this finding challenges the long-
standing assumption that Fe minerals impair protein
bioavailability through acting as a sorbent. The reader
is referred to Keiluweit and Kuyper (2020) for a more
expanded discussion of this mechanism (Keiluweit and
Kuyper, 2020).

2.1.2 Inorganic N bioavailability

Fe plays a crucial role in regulating inorganic N bioavailabil-
ity in soils, with Fe present in clay minerals being a promi-
nent example of this interconnection. In fact, Fe present in
clays accounts for 30 %–50 % of total Fe in soils and sedi-
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ments and can be located in both the octahedral and tetrahe-
dral sheets of 1 : 1 and 2 : 1 clay minerals or exist as a coat-
ing on their surfaces (Favre et al., 2006; Stucki, 2013). On
the one hand, the reduction of this Fe has been demonstrated
to enable the abiotic fixation of NH+4 (Zhang and Scherer,
2000; Deroo et al., 2021). This occurs through the increasing
negative charge and cation exchange capacity of clays (Pen-
tráková et al., 2013). In addition, the reductive dissolution of
coated Fe on clay minerals promotes NH+4 diffusion into or
out of clay interlayers (Zhang and Scherer, 2000). After de-
fixation, the fixed NH+4 pool can serve as a source of bioavail-
able N (Deroo et al., 2021). On the other hand, the oxidation
of clay’s Fe(II) can be involved in the processes that cause
the loss of bioavailable N. For instance, Zhao et al. (2013)
found that the oxidation of Fe(II) present in nontronite causes
the loss of NO−3 as dinitrogen (N2) (Zhao et al., 2013). The
potential importance of such processes in N bioavailability
should be considered, especially in highly weathered soils
with high clay content.

2.2 Structural role of Fe in controlling N bioavailability

This section explores the structural role of Fe in regulating
the availability of N. Two aspects are examined, namely the
influence of structural Fe in aggregates on N bioavailability
and the polymerization of ON induced by Fe.

2.2.1 Fe, soil aggregates, and N bioavailability

Fe oxides play a critical role in the formation and the stability
of microaggregate in soils, ultimately affecting N bioavail-
ability. These oxides serve as nuclei for microaggregate for-
mation and as a binding agent, forming bridges between them
(Barral et al., 1998; Pronk et al., 2012; Peng et al., 2015; Wei
et al., 2016). In fact, it was shown that the partial or complete
removal of mineral-forming components, for example due to
Fe reduction, can initiate aggregate turnover and destabiliza-
tion (Michalet, 1993; Cornell and Schwertmann, 2003). The
relative importance of Fe in aggregate stability depends on
several properties that are expected to affect N bioavailabil-
ity, such as Fe mineral and SOM content, mineral identity
and degree of crystallinity, and soil redox conditions. In par-
ticular, Fe promotes the formation and stability of aggregates
in soils with low OM and high Fe content (Barral et al., 1998;
Wu et al., 2016). Duiker et al. (2003) showed that poorly
crystalline Fe minerals are more important than crystalline
minerals for aggregate stabilization (Duiker et al., 2003).

Many studies suggest that Fe-mediated micro-aggregation
may slow down or suppress N mineralization and stabilize
OM. For example, Silva et al. (2015) reported that apply-
ing Fe-rich biosolids in a tropical-soil chronosequence in-
duced rapid formation of microaggregates and significantly
increased SOC (Silva et al., 2015). Similarly, Bugeja and
Castellano (2018) observed a positive correlation between
ammonium oxalate-extractable Fe (AmOx-F) and C and N in

microaggregates, indicating that Fe and microaggregate sta-
bilization are interconnected (Bugeja and Castellano, 2018).
Mendes et al. (1999) showed that readily mineralizable N
levels correlate positively with increased aggregate size in
soils (Mendes et al., 1999). In addition, numerous studies re-
ported the accumulation of N in microaggregates (Golchin
et al., 1994; Rodionov et al., 2001). For instance, Wagai
et al. (2020) observed joint accumulation of OM with a low
C : N ratio and pedogenic Fe and Al oxides in the meso-
density fractions (1.8–2.4 gcm−3) of five soil orders col-
lected from different climate zones. These observations are
explained by the fact that microaggregate N is relatively
more persistent than macroaggregate N because microaggre-
gate turnover is relatively slow and not available to micro-
bial degradation, which provides longer-term stabilization of
OM (Cambardella and Elliott, 1993; Six et al., 2002). We
also hypothesize that there is another pathway by which Fe-
promoted aggregation may decrease N mineralization based
on the information that aggregates of different sizes influence
microbial community composition, and therefore the activi-
ties of N mineralization enzymes, differently (Muruganan-
dam et al., 2009). Therefore, it will be useful to examine the
distribution and the activities of these enzymes among soil
aggregate size classes along a gradient of increasing Fe min-
eral content in soils.

2.2.2 Does Fe-induced ON polymerization increase the
recalcitrance of N?

Little is known about Fe (mineral)-induced OM polymeriza-
tion in soils. Some evidence exists that Fe oxides induce both
C and N polymerization of SOM (Piccolo et al., 2011; Li
et al., 2012; Johnson et al., 2015; Zou et al., 2020). In a
long-term organic-fertilization experiment, Yu et al. (2020)
proposed that the Fe-catalyzed formation of reactive oxy-
gen species (ROSs) allows C monomers to recombine into
large, recalcitrant C biopolymers through the formation of in-
tramolecular bonds. A similar process was observed by Pic-
colo et al. (2011). Similarly, hydrohematite, maghemite, lep-
idocrocite, and hematite can induce the oxidative polymer-
ization of hydroquinone, with rates depending on the type of
minerals (Huang, 1990). Synthetic ferrihydrite and goethite
were demonstrated to induce peptide bond formation be-
tween aspartate chains (Matrajt and Blanot, 2004), as well
as the abiotic formation of amino acids from simple organics
such as pyruvate and glyoxylate (Barge et al., 2019). The en-
vironmental conditions in these experiments were similar to
those occurring in natural systems, such as in Fe-containing
sediments (Barge et al., 2019). More studies of abiotic poly-
merization by minerals must be envisaged to understand its
relevance to N bioavailability in soils.
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Box 1. Fe-catalyzed Fenton reactions.

2.3 Catalytic role of Fe in controlling N bioavailability

Emerging research has revealed that ROSs derived from
Fe-catalyzed Fenton reactions (Box 1) are implicated in N
mineralization. These reactions may involve abiotic or cou-
pled biotic–abiotic processes causing N to mineralize, as
explained below. In desert soils, the reaction of light with
hematite generates ROSs, which can oxidize amino acids to
nitrous oxide (N2O) (Georgiou et al., 2015) and N oxide
gases (Hall et al., 2012). Compared to soils containing wa-
ter, desert soils accumulate photo-generated superoxides and
peroxidases via complexation of O

q−
2 with surface transition

metal oxides. When these soils are wetted, the accumulated
ROSs are subjected to dismutation and hydrolysis, leading to
the generation of HO q and subsequent OM oxidation. While
this mechanism is strictly abiotic, soil microorganisms in di-
verse ecosystems were found to use Fe-generated HO q to ac-
quire organic C and N (Diaz et al., 2013; Shah et al., 2016;
J. Zhang et al., 2016; Op De Beeck et al., 2018). For in-
stance, a boreal forest fungus (Paxillus involutus) may use
radical oxidation to stimulate N mineralization in various
ways (Op De Beeck et al., 2018): (1) to liberate NH+4 from
amine groups of proteins, peptides, and amino acids accord-
ing to mechanisms reviewed in Stadtman and Levine (2003),
(2) to facilitate the accessibility of protein N in SOM com-
plexes to proteolytic degradation, and (3) to enhance protein
vulnerability to proteolysis and increase the activity of pro-
teolytic enzymes (J. Zhang et al., 2016).

Despite their involvement in N liberation, ROSs may pro-
mote the formation of stable and protective Fe-associated
OM complexes. In a long-term fertilization experiment con-
ducted by Yu et al. (2020), Fe mobilized by Fenton reactions
formed new short-range-order (SRO) Fe minerals, which
promoted C and N storage. Moreover, ROSs generated from
catalytic reactions involving Fe can also cause enzyme oxi-
dation and subsequent loss of activity (Huang et al., 2013).

2.4 Electron transfer role of Fe in N bioavailability

Electron transfer to Fe(III) oxides, both biotically or abiot-
ically, is a critical step in many processes favoring the gain
or the loss of N from soils and sediments (Sahrawat, 2004;
Ding et al., 2014). The ability of Fe(III) minerals to ac-
cept electrons, or their reducibility, varies greatly with crys-
tallinity, particle size, solution pH, ambient Fe(II) concentra-
tion, the presence of adsorbates, and aggregation level (Ro-
den, 2004, 2006). Here, we explore relationships between
mineral reducibility and anaerobic NH+4 oxidation associated
with Fe reduction (Feammox) and anaerobic OM oxidation
to illustrate two examples of N processes that are involved
in bioavailable N production and loss. Starting with Feam-
mox, this process occurs mostly in acidic soils and has been
estimated to metabolize 7.8–61 kgNH+4 ha−1 yr−1 in paddy
soils, accounting for about 3.9 %–31 % of N fertilizer loss
(Ding et al., 2014). The terminal products of this process are
either N2, NO−2 , or NO−3 , with N2 as the dominant prod-
uct (Yang et al., 2012). Feammox rates are strongly posi-
tively correlated with the concentrations of microbially re-
ducible Fe(III) (Ding et al., 2014; Li et al., 2015b; Ding et al.,
2019, 2020). Moreover, Fe(III) enhances the activity, distri-
bution, and diversity of microbial communities involved in
Feammox (S. Huang et al., 2016; Ding et al., 2017). A se-
ries of incubation studies investigated the effects of differ-
ent Fe sources on Feammox, and the results demonstrated
that only ferrihydrite and goethite, not ferric chloride, lepi-
docrocite, hematite, or magnetite, served as electron accep-
tors for Feammox (Huang and Jaffé, 2015, 2018). These ob-
servations can be explained by a possible accumulation of
free Fe(II), which halted Feammox, or due to the limited
ability of Fe reducers in reducing certain minerals (Huang
et al., 2014). It is notable that chelates (Park et al., 2009) and
electron shuttles (Zhou et al., 2016) can facilitate electron
transfer to Fe(III) minerals (Fig. 3), which enhances their re-
duction rates and related N processes. For instance, the addi-
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Figure 3. Schematic representation of the effects of Fe-promoted aggregate formation and stability on N accessibility to microbial degrada-
tion.

tion of electron shuttles increased potential N loss by Feam-
mox by 17 %–340 % compared to no addition (Zhou et al.,
2016). Similarly to Feammox, NH+4 production rates in sub-
merged soils and sediments were found to be strongly cor-
related with reducible Fe(II) production rates (Sahrawat and
Narteh, 2001; Sahrawat, 2004).

The electron-donating capacity of Fe minerals is also in-
volved in N bioavailability. In fact, many Fe(II) species, in-
cluding soluble Fe(II)- and Fe(III)-bearing minerals such as
siderite and magnetite, can act as electron donors (Benz et al.,
1998; Chaudhuri et al., 2001) for NO−3 reduction coupled
with Fe oxidation, which promotes the loss of NO−3 as gases.
For denitrification, it was found that N2O emissions from
flooded soils with contrasting Fe(II) levels were regulated
by Fe(II) electron-donating capacity: the electrons donated
reached 16.2 % and 32.9 % in soils with low and high Fe(II)
content, respectively. Soil with high Fe(II) content emitted
less N2O and more N2, suggesting an improved denitrifica-
tion efficiency due to an electron flow which exceeded the
demand for N2O production (Wang et al., 2016).

3 Involvement of Fe in soil phenomena that affect N
bioavailability

This section is concerned with the role of Fe in the three phe-
nomena that affect N bioavailability in soils: priming, The
Birch effect, and freeze–thaw cycles. Priming occurs when
new input of labile C influences (positive or negative) the
decomposition of native SOM (Kuzyakov et al., 2000). The
Birch effect is a short-term pulse in C and N mineralization
caused by soil drying and rewetting. The freeze–thaw cycles
refer to the alternation between freezing and thawing tem-
peratures in a soil which can liberate decomposable OM and
accelerate soil respiration. We offer this perspective to facili-
tate understanding of the mechanisms by which Fe affects N
bioavailability through these three phenomena.

3.1 Priming

3.1.1 Fe-mediated priming in soils under oxidizing
conditions

Investigations of the patterns and drivers of priming across
both local and broad geographical scales indicate that SOM
stabilization mechanisms, including associations with Fe ox-
ides, regulate priming and explain most of its variation (Chen
et al., 2019; Jeewani et al., 2021). Positive priming, where
new inputs increase SOM mineralization, is negatively re-
lated to MAOM concentration due to Fe constraining mi-
crobial access of sorbed organics to microbial degradation
(Bruun et al., 2010; Porras et al., 2018). In the rhizosphere,
plant and microbial exudates can disrupt Fe-organic asso-
ciations by means of both chemical and biological mecha-
nisms. Chemical mechanisms include stripping Fe from as-
sociations through surface complexation, facilitating Fe re-
duction (Zinder et al., 1986; Keiluweit et al., 2015; Ding
et al., 2021) and displacing sorbed organics into the soil so-
lution (Zinder et al., 1986; Keiluweit et al., 2015; Ding et al.,
2021). Biological mechanisms stimulate the production of N-
acquiring enzymes as microbes are supplied with carbon and
energy (Jilling et al., 2018; Yuan et al., 2018; Jiang et al.,
2021; Jilling et al., 2021). Such mechanisms enhance pos-
itive priming by increasing the accessibility of C and N to
microbes and facilitating N mining. However, the suscepti-
bility of Fe-organic associations to these mechanisms varies;
for example, ferrihydrite associations are affected by both
chemical and biological processes, while goethite associa-
tions are more susceptible to chemical processes (Li et al.,
2021). Therefore, the ability of microbes and plant commu-
nities to trigger specific destabilization mechanisms of the
dominant mineral in their environment affects how much
N can be made available from mineral associations (Jilling
et al., 2018; Li et al., 2021).
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Beyond SOM stabilization, Fe oxides may regulate prim-
ing by altering microbial community composition and soil C
and N content (Heckman et al., 2009; Heckman et al., 2018),
potentially by restricting nutrient availability and changing
the structural properties of dissolved organic matter (DOM).
For instance, the application of goethite to soil limits P and
N bioavailability while increasing the aromatic content of
water-extractable organic matter (WEOM), which may lower
the ratio of fungi to bacteria (Heckman et al., 2012) and al-
ter C and N cycling as a consequence (Silva-Sánchez et al.,
2019; Wardle et al., 2004).

3.1.2 Fe-mediated priming in soils under reducing
conditions

Recently, Fe-mediated priming in soils under reducing con-
ditions has received growing interest. Dunham-Cheatham
et al. (2020) found that glucose application to a soil un-
der anoxic–oxic transition induced a novel type of prim-
ing by facilitating the reductive dissolution of Fe(III)–C as-
sociations under anoxic conditions followed by a dramatic
increase of OC mineralization when oxic conditions were
restored (Dunham-Cheatham et al., 2020). Li et al. (2021)
found that the roles of Fe in anaerobic OM mineralization
can be shifted by microbial biomass C (MBC). In soil with
low MBC, both ferrihydrite and goethite protected the added
acetate from decomposition through sorption processes. In
soil with high MBC, however, goethite acted as an electron
acceptor and increased acetate decomposition, whereas ferri-
hydrite predominantly adsorbed the added substrate. Priming
decreased in both low- and high-MBC soils but more so in
low-MBC soil (Li et al., 2021). Lecomte et al. (2018) demon-
strated that Fe(III)-reducing microorganisms have a compet-
itive advantage of colonizing plant roots in the rhizosphere
due to their capacity for providing Fe(II) for plant nutrition
in exchange for C-rich exudates and for performing denitri-
fication (Lecomte et al., 2018). These exudates are proba-
bly used as a C source in the denitrification process or to
destabilize Fe-organic associations and to release sorbed C
and N (Dunham-Cheatham et al., 2020). More research into
Fe-mediated priming in strictly anoxic soils, or at the oxic–
anoxic transition, is needed.

3.2 Birch effect

Although many studies have been done on N mineralization
and nitrification (Birch, 1958, 1959, 1960, 1964; Wilson and
Baldwin, 2008), the studies on the Birch effect have mainly
focused on C. The Birch effect for N was described as a rapid
increase in N mineralization rates as an air-dried soil is rewet-
ted. Soil moisture is accompanied by increased NO−3 pro-
duction. This pattern is likely explained by multiple interact-
ing mechanisms, including the dissolution of organo-mineral
bonds, which increases the accessibility of substrates to mi-
crobial degradation. In addition, the highly dynamic nature of

wet–dry cycles can trigger rapid electron transfer from and to
Fe oxides, known as the cryptic Fe cycle, which can affect N
bioavailability. During the wet period, Fe(III) oxides can be
used as an electron acceptor and can be reduced to Fe(II),
which can abiotically react with NO−3 to form NH+4 or with
nitrite (NO−2 ) to form N2O. This Fe(II) can be converted
back to Fe(III) oxides during the dry period, which may
sorb OM and protect it against further degradation or gen-
erate oxidative radicals through Fenton reactions that break
down organics, including N compounds. The cryptic Fe cy-
cle can also induce rapid redox-induced mineral transforma-
tions, such as the transformation of amorphous Fe oxides into
more crystalline forms, which decreases soil sorption capac-
ity and nutrient retention (Attygalla et al., 2016; Wilmoth
et al., 2018; Chen et al., 2020). Therefore, this cryptic Fe cy-
cle will have a varied effect on the role of Fe in controlling N
bioavailability over short spatiotemporal scales, which may
either increase or decrease bioavailable N. Further research
is needed to detangle these interactions.

3.3 Fe in the context of freeze–thaw cycles: the case of
permafrost-affected soils

Permafrost-affected soils store large amounts of OC and ON
as a result of SOM stabilization due to freezing of SOM and
cryoturbation. Along a permafrost soil chronosequence, Joss
et al. (2022) found a higher percentage of FeOM in cryotur-
bated horizons compared to in organic or mineral horizons
in soil. Cryoturbation also favors the accumulation of SOM
with a high C : N ratio at deeper soil depths (Treat et al.,
2016a), which may also be present as associations with Fe
minerals or in particulate organic matter. Upon thawing, this
tremendous amount of SOC and total N (TN) facilitates high
gross N turnover rates by heterotrophic processes. For in-
stance, Treat et al. (2016b) observed increased N availabil-
ity during long thaw seasons in tundra soils, whereas other
authors reported higher N2O emissions from increased deni-
trification (Cui et al., 2016; Yang et al., 2016, 2018). This is
partly because SOC and SOM, previously trapped in FeOM
associations, are released and exposed to microbial degrada-
tion (Harden et al., 2012; Gentsch et al., 2015; Mueller et al.,
2015; Patzner et al., 2020). In fact, Patzner et al. (2020) found
that, along a thaw gradient, the amount of dissolved organic
carbon (DOC) increased, as did the abundance of Fe(III)-
reducing bacteria which use Fe(III) as a terminal electron
acceptor and oxidize OM. The importance of these mech-
anisms in N destabilization likely depends on the extent to
which Fe dissolution contributes to soil OM persistence in
redox-dynamic permafrost (Patzner et al., 2020). More inves-
tigations of Fe control over N bioavailability in permafrost-
affected soils are needed, especially with the recent develop-
ment pointing out that mineral N cycling is as important as
ON cycling in the active layers of these soils (Ramm et al.,
2022).
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4 Impact of global change on Fe–N bioavailability
interactions

Anticipated future climate scenarios indicate substantial fluc-
tuations in precipitation and temperature patterns, accom-
panied by increasing levels of atmospheric CO2. These
changes, along with alterations in land use, have the poten-
tial to significantly impact Fe–N bioavailability interactions
in various ways, as detailed below.

4.1 Impact of variability in precipitation and
temperature

The extreme variation in precipitation can lead to an increase
in the occurrence of the Birch effect and a potential dis-
ruption of the dynamic of N availability in soils. Fe plays
multiple roles in this process; in drier soils, Fe can protect
ON from decomposition through the formation of stable Fe–
organic associations. However, the reaction of Fe with light
can induce Fenton reactions, leading to ON decomposition
(Georgiou et al., 2015). In wetter soil, the destabilization of
ON can increase as a result of fluctuations in redox con-
ditions, the potential occurrence of cryptic Fe cycling, and
modifications of mineral properties. In addition to precipita-
tion, climate change is causing temperature to rise sharply,
leading to extensive thawing of permafrost soils. As a conse-
quence, redox-meditated heterotrophic N turnover processes
and the destabilization of Fe–organic associations are ex-
pected to increase ON loss from these soils. Furthermore, ris-
ing temperatures will increase microbial metabolism, which
will subsequently destabilize SOM.

4.2 Impact of elevated atmospheric CO2

The effects of rising atmospheric CO2 concentration (eCO2)
levels on Fe–N bioavailability interactions are not well un-
derstood. Recent research showed that eCO2 stimulates root
and microbial respiration, which can decrease soil redox po-
tential, causing Fe reduction to proceed (Cheng et al., 2010).
The production of Fe(II), which increased by 64 % under
eCO2 treatment, caused substantial losses of NH+4 via Feam-
mox in a 15-year free-air CO2 enrichment (FACE) study in
rice paddy systems. Feammox was meditated by autotrophic
anaerobes that may use soil CO2 as a C source to couple
anaerobic ammonium oxidation and Fe reduction (C. Xu
et al., 2020). eCO2 can also increase the destabilization of
mineral-associated organic nitrogen (MAON) via priming as
eCO2 increases root biomass and associated exudate pro-
duction at deeper soil depths, enabling the liberation of a
large amount of deep soil N from these associations (Iversen,
2010). This increased turnover of N from MAOM would
probably be substantial under future eCO2.

4.3 Impact of land use change

Land use change involving the conversion to agriculture can
decrease soil organic N (SON) (García-Oliva et al., 2006).
We hypothesize that this decline in SON is influenced by the
effects of land use change on Fe cycling. For example, it was
observed that the crystallinity of Fe oxides increased when
forests were converted to agricultural fields in the southern
Piedmont, USA (Li and Richter, 2012). Additionally, Tan
et al. (2019) showed that land use change from fallow to
paddy soils promoted Fe reduction by decreasing soil pH
and increasing the electron-shuttling capacity of SOM (Tan
et al., 2019), which may accelerate N turnover through pro-
cesses such as Feammox. To conclude, global change affects
the roles of Fe in N bioavailability, which may in turn affect
the balance between Fe-meditated SON destabilization and
protection

5 Synthesis and outlook

Attempts at understanding controls and drivers of N bioavail-
ability, a fundamental soil ecosystem property, often omit the
role of Fe minerals. However, the tendency of proteins to as-
sociate strongly with minerals and the involvement of the lat-
ter in both enzymatic and non-enzymatic reactions that influ-
ence the N cycle have motivated this review, which specif-
ically focuses on Fe–N bioavailability interactions (Fig. 4).
Including Fe in current models of SOM is challenging be-
cause the mechanisms by which Fe controls N storage, sta-
bilization, bioavailability, and loss are complex and remain
incompletely understood. This is because the present knowl-
edge is, on the one hand, based on OM–mineral correlations,
which is a simplistic approach since correlations tend to be
specific for certain soil conditions and types (Wagai et al.,
2020; Kleber et al., 2021), and on the other hand, knowledge
is impeded by limitations in the analytical framework used
to explore these interactions. In this section, we highlight the
challenges and opportunities for future research.

5.1 Sorbent role of Fe in controlling N bioavailability

5.1.1 Organic nitrogen

The sorbent role of Fe in controlling N bioavailability is mul-
tifaceted. Sorption can protect ON from decomposition by
reducing the activity of enzymes and limiting the accessibil-
ity of ON to degradation mechanisms. However, a fraction
of sorbed ON is bioavailable (Bird et al., 2002; Kleber et al.,
2007) or can be made available by processes such as priming
or displacement by competitive organics. Thus, the concept
of sorptive stabilization of N substrates does not stand as a
conclusive explanation for ON persistence in soils and should
rather be revisited. In this context, sorption to Fe minerals
may impose spatial constraints on the accessibility of ON
substances to microbes as sorption can locate ON in physi-
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Figure 4. Electron shuttles enhance Fe reduction and NH+4 oxidation (Feammox) rates.

Figure 5. Fe affects N bioavailability in soils. This figure does not specify the soil conditions under which an Fe role may proceed.

cally isolated spaces such as micropores, microaggregates, or
microdomains of densely arranged clays, which slows down
its decomposition and decreases its bioavailability (Kleber
et al., 2021).

Research on Fe-meditated ON depolymerization has
mostly focused on proteins (Wanek et al., 2010; Noll et al.,
2019; Reuter et al., 2020) since proteins alone constitute
60 % or more of the N in plant and microbial cells (Fuchs,

1999) and are strongly sorbed to Fe surfaces. However,
not all soil- and mineral-associated N is protein. Rather,
N exists in a variety of chemical forms, including micro-
bial cell wall compounds. Using Fourier transform infrared
spectroscopy (FTIR) and isotope pool dilution (IPD), mul-
tiple studies have shown the importance of microbial cell
wall depolymerization in the delivery of soil N (Hu et al.,
2017, 2018, 2020). In addition, depolymerization of mem-
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brane lipids and nucleic acids is not yet characterized despite
the detection of their degradation products in soils (Warren,
2021). This leads to the following question: how important is
the chemical form of Fe-associated N in determining soil N
bioavailability? This is relevant since the molecular charac-
teristic of different N forms influences the type and strength
of bonding with minerals, which may affect N bioavail-
ability. For instance, Fe oxyhydroxides bind amino sugars
more strongly than proteins in boreal forests (Keiluweit and
Kuyper, 2020), likely allowing less mineralization from the
former compared to the latter compounds.

5.1.2 Inorganic nitrogen

Despite a small number of studies relating structural Fe in
clays and aggregates to N bioavailability, the dynamics of
these interactions and the relevant mechanisms remain elu-
sive. Several questions remain to be resolved, including the
following: are the original structure and physicochemical
characteristics of clay minerals restored upon reoxidation of
its structural Fe? If so, what are the implications for NH+4 re-
lease and fixation and other processes that influence the loss
and gain of bioavailable N?

5.2 Structural role of Fe in controlling N bioavailability

Research is needed to comprehend the implications of Fe’s
structural role in controlling N bioavailability and its po-
tential influence on soil dynamics and nutrient-cycling pro-
cesses. Specifically, it remains uncertain how significant the
loss of Fe through solubilization and reduction is to mi-
croaggregate instability and N bioavailability in soils. Fur-
thermore, the relevance and occurrence of Fe-induced carbon
ON polymerization in soils still require confirmation as ob-
servations of this phenomenon have thus far been limited to
laboratory settings.

5.3 The role of Fe as a catalyst in controlling N
bioavailability

Assessing the importance of Fe-meditated ROS generation in
N bioavailability is a formidable challenge. In fact, despite
being common in soils, ROSs have extremely short lifetimes
and are highly reactive towards other soil constituents such as
carbonates and bromide (Kleber et al., 2021), which compli-
cates their detection in soils. They are produced by both abi-
otic and biotic pathways, and the contribution of each path-
way to N bioavailability remains elusive. Additionally, rates
and mechanisms of ROS production from these two path-
ways are still not known. Such information is particularly im-
portant to understand N dynamics in environments conducive
to ROS formation, such as oxic or anoxic zones, environ-
ments with intense solar radiation, or in boreal forests where
fungi use ROS-based mechanisms to access Fe-sorbed N. In
contrast to their decomposition role, Yu et al. (2020) found an
important role of Fe-meditated ROS production in OM poly-

merization, which increases the recalcitrance of OM and its
resistance to degradation mechanisms (Yu et al., 2020). This
finding sheds light on other controls and pathways relevant
to N bioavailability. For example, under what conditions can
the role of Fe-mediated ROS generation in N bioavailability
be shifted from decomposition to protection? And how will
this evolve in a changing world where solar radiation is be-
coming more intense and where the frequencies of extreme
events (e.g., droughts, rain) is increasing?

5.4 Electron transfer role of Fe in controlling N
bioavailability

The capacity of Fe to act as an electron acceptor and donor
can affect bioavailable N loss from soils by processes such
as Feammox and denitrification. To further understand these
processes, more research is needed on cryptic Fe cycling and
on the controls over the oxidation–reduction dynamics of Fe
in soil since preservation of oxidized Fe promotes N sta-
bilization within mineral associations. For instance, the ef-
fects of added electron shuttles on the extent and the rate of
Fe(III) reduction and the associated loss of N via Feammox
have been investigated; however, the capacity of SOM and
organo-Fe associations to transfer electrons has received less
attention (Sposito, 2011; Z. Xu et al., 2020). The character-
ization and mapping of spatiotemporal redox heterogeneity
also deserves attention (Wilmoth, 2021).

5.5 A varied analytical approach is needed to
characterize Fe–N interactions

To understand the roles of Fe in controlling N bioavailabil-
ity, a varied analytical approach must be adopted to enable
a more holistic and multidimensional view of these interac-
tions considering all the possible outcomes of Fe reactions on
N as driven by the physicochemical and biological character-
istics of soil and management. This approach is essential to
provide realistic turnover rates of N and to decipher the un-
derlying mechanisms of Fe–N reactions in soil in contrast to
the findings of controlled laboratory experiments, which do
not represent soil in its complexity and heterogeneity. This
approach should also capture variations in the processes of
interest at multiple scales and within multiple time dimen-
sions. Here, we the present most common and powerful tech-
niques that can be combined in the framework of this varied
approach to understand Fe–N interactions. Note that an ex-
tensive list of techniques is out of the scope of this review.

5.5.1 Imaging techniques

Techniques such as synchrotron X-ray absorption spec-
troscopy (XAS) and synchrotron X-rays allow the identifica-
tion and the characterization of structural and chemical prop-
erties of minerals, as well as their oxidation states. They can
also be used to determine the speciation of SON and dis-
solved organic N (DON), as well as the structural character-
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istics of soil, such as pore size and pore connectivity. These
information could help, for example, to characterize the fine-
scale redox heterogeneity (Wilmoth, 2021) that affects Fe
cycling and its interconnection with N bioavailability. In ad-
dition, these techniques are used to observe and investigate
the 3D structure of organo-Fe minerals in soils. Kleber et al.
(2021) called for using them in studies of enzyme activity be-
cause they allow the investigation of the natural structure of
organo-mineral associations without alteration (Kleber et al.,
2021). However, while using advanced imaging techniques
reveals information at fine scales, upscaling such data is chal-
lenging (Wagai et al., 2020).

5.5.2 Microbial techniques

Microbial techniques provide information on the identity of
microbial taxa regulating the soil biogeochemical processes
in question. These include techniques such as metatranscrip-
tomics, which can be used to distinguish the biological from
the abiotic pathways used to direct redox reactions (Wilmoth,
2021), and metagenomics, which were used recently to ex-
plore coupled nutrient interactions, including coupled Fe–N
reactions (Ma et al., 2021).

5.5.3 Isotope techniques

Isotopes can be used to determine gross rates and the inves-
tigation of the pathways and mechanisms of the processes
in question. They can also be used to determine OM pools
with varying turnover rates. Stable isotope probing, which is
a high-resolution technique, can also be used to trace the mi-
crobial uptake of N as affected by Fe minerals, as well as its
fate in soil environments.

5.5.4 molecular-characterization techniques

Molecular-characterization techniques, which include FTIR,
allow the identification of different soil organic molecules
and the analysis of their bonding mode and strength with
minerals.

5.6 Concluding comment

As a final commentary on Fe–N bioavailability interactions,
we propose the following questions: how much N can be mo-
bilized by Fe-related mechanisms? What are the controls on
these interactions? And how important are certain mecha-
nisms relative to others in securing N bioavailability in the
context of global change? Do reactions observed in labora-
tory settings occur naturally in soils? We also urge the field
to develop new methods and techniques, such as those capa-
ble of detecting low concentrations of ROSs and their fate
in soil environments or the products of mineral-induced OM
polymerization.
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