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Abstract. Minerals are the fundamental record of abiotic
processes over time, while biominerals are one of the most
common records of life due to their easy preservation and
abundance. However, distinguishing between biominerals
and abiotic minerals is challenging due to the superimposi-
tion and repetition of geologic processes and the interference
of ubiquitous and diverse life on Earth’s surface and crust.
Mineral dubiofossils, being potential outcomes of both abi-
otic and biotic environments, emerge as valuable entities that
can contribute significantly to the understanding of this issue,
facilitating the testing and refinement of biogenicity criteria.
The aim of this contribution is to decipher the origin and his-
tory of branched mineralized structures that were previously
considered mineral dubiofossils from the Pennsylvanian of
the Parana Basin, Brazil. While this material has different
forms and refers to biological aspects, it is challenging to
associate it with any known fossil group due to the overlap-
ping geological processes occurring in a transitional deposit
of Rio do Sul Formation (Itararé Group of the Parana Basin),
particularly in close proximity to a sill from the Serra Geral
Group (Lower Cretaceous), which has undergone thermal ef-
fects. Given the absence of attributes essential for support-
ing the initial hypotheses proposing the material as a poten-
tial set of sponge spicules or a result of contact metamor-
phism in Pennsylvanian turbidites, the objects are now inves-
tigated as mineral dubiofossils. To address this challenge, we
have developed a descriptive protocol for dubiofossils, build-
ing upon prior research in the field. This protocol evaluates
the following aspects: (1) morphology, texture, and struc-
ture; (2) relationship with the matrix; (3) composition; and

(4) context. This is done by assessing indigeneity and syn-
genicity and comparing the specimens with abiotic and biotic
products. Applying this protocol to our samples revealed a
wide range of morphologies with internal organization, pre-
dominantly composed of calcite with impurities such as iron,
magnesium, aluminum, and oxygen. The inferred indigeneity
suggests the presence of these minerals concurrently with or
prior to the intrusion of the sill. Extensive comparisons were
made between the studied samples and a broad spectrum of
abiotic minerals, as well as controlled, induced, and influ-
enced biominerals from similar contexts. These comparative
analyses encompassed sponge spicules; sea urchin and algae
skeletons; minerals induced or influenced by fungi, bacteria,
and microbial mats; and inorganic pre- and synsedimentary—
eodiagenetic minerals like evaporites, springs, and other pre-
cipitates, and mesodiagenetic—metamorphic crystals. Despite
this comprehensive analysis, no hypothesis emerged as sig-
nificantly more likely than others. The comparative analy-
sis did allow us to exclude the possibility of the samples
being controlled biominerals due to their patternless diver-
sity of morphologies, as well as purely thermometamorphic
in origin due to their branched elongated forms. The occur-
rence of these structures suggests a complex history: a syn-
depositional or eodiagenetic origin of some carbonate or sul-
fate (gypsum, ikaite, dolomite, calcite, aragonite, siderite),
potentially associated with the presence of microbial mats,
which may have served as templates for mineralization and
mediated mineral growth. Mesodiagenesis could have further
modified the occurrence through processes such as mineral
stabilization, agglutination, aging, and growth. However, the
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primary agent responsible for the formation of the dubio-
fossil was the Cretaceous intrusion, which dissolved and re-
placed the initial minerals, resulting in the precipitation of
calcite. Throughout these steps, a combination of physical—
chemical and biological reactions, influenced by intrinsic
matrix characteristics, organic matter content, and distance
from the intrusive body, may have contributed to the height-
ened morphological complexity observed, thus corroborat-
ing the origin of the material becomes even more challeng-
ing. Consequently, both the hypotheses pertaining to the for-
mation of biotic and abiotic sulfates and carbonates remain
plausible explanations, hence sustaining the classification of
the material as a dubiofossil. This material illustrates how
dubiofossils can be a result of a complex history and over-
lapping geological processes. It also highlights the difficulty
in differentiating biominerals from abiotic minerals due to
the scarcity of biogenicity arguments.

1 Introduction

Biogenicity refers to the signatures exclusively generated
and/or transformed by past or present organisms. Comprising
signs of morphology (structure, distribution, texture) and/or
chemistry (composition and trace indicator) that diagnose
life, these signatures can be created from the growth or decay
of (once) living organisms and cannot be produced by purely
abiotic processes (Slater, 2009; McLoughlin, 2011). The is-
sue lies in the ability to discriminate the origins of different
components within complex mixtures given the range of spa-
tial scales, diversity of life forms, and succession of geologic
processes (Schiffbauer et al., 2007; Botta et al., 2008; Neveu
et al., 2018; Rouillard et al., 2021).

Acquiring substantial evidence to establish biogenicity is
crucial not only for determining the biological origin (Neveu
et al., 2018; Callefo et al., 2019a; Rouillard et al., 2021) spe-
cially to understand the intricate biosphere—lithosphere inter-
face (McMahon and Ivarsson, 2019). Life forms inhabit all
environments on the planet’s surface, including extreme en-
vironmental conditions (Fig. 1; Merino et al., 2019; McMa-
hon and Ivarsson, 2019, and references therein). Thus, in ad-
dition to the conventional perspective that organisms are de-
limited and conditioned to the environment, there is grow-
ing evidence of the significant influence of life on natural
processes and events (Knoll, 2013; Davies et al., 2020). As
a result, it has become increasingly challenging to recog-
nize large-scale physical and chemical cycles on Earth that
are unaffected by biosphere activity (Gargaud et al., 2015).
Furthermore, accurately measuring the impact of organisms,
which are ubiquitous, on erosion, sedimentation, diagenesis,
and mineralization has also become a complex task (Fig. 1;
Briggs, 2003; Dupraz et al., 2004; Gargaud et al., 2015;
Knoll, 2013; Bower et al., 2015; Briggs and McMahon, 2016;
McMahon and Ivarsson, 2019; Davies et al., 2020).
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These biological and geological processes are part of the
natural cycles of the Earth system and therefore tend to re-
peat and overlap on multiple scales (Zhang et al., 2017). A
dynamic scenario of physical, chemical, and biological reac-
tions occurs throughout the Earth’s crust and surface, defin-
ing the geological record (Milliken, 1978; Worden and Bur-
ley, 2009; Zhang et al., 2017). Consequently, any geologi-
cal object, whether abiotic or biotic, must be understood in
terms of its formation and original conditions, as well as
the subsequent processes that contribute to its maintenance,
modification, or destruction. Due to the complex interplay
of these processes and the ongoing changes throughout ge-
ological history, it becomes essential to discern specific life
signatures (Schiffbauer et al., 2007; Knoll, 2013; McLough-
lin and Grosch, 2015; Neveu et al., 2018; McMahon et al.,
2021; Rouillard et al., 2021).

Dubiofossils, fossil-like structures formerly related to life
with an ambiguous origin (Hofmanm, 1972), play a crucial
role in enhancing biosignatures. Through testing and refine-
ment, the biological nature of a dubiofossil can be estab-
lished, leading to its classification as a genuine fossil; alter-
natively, if its origin is determined to be the result of abi-
otic processes, it is categorized as a pseudofossil (Hofmann,
1972; Monroe and Dietrich, 1990; McMahon et al., 2021).
Once the biological origin is confirmed, these dubiofossils
can be regarded as potential biosignatures or contain distinc-
tive characteristics indicative of past life (McMahon et al.,
2021). To verify the origin of dubiofossils, it is necessary
to apply biogenicity criteria (Buick, 1990; McLoughlin and
Grosch, 2015; Davies et al., 2016; Neveu et al., 2018; McMa-
hon et al., 2021; Rouillard et al., 2021).

As an area of science that has received significant attention
and prominence in recent years (see Rouillard et al., 2021),
biogenicity criteria are arguments proposed to defend or re-
fute the biotic origin of a given object. As they depend on the
type of material studied, generally they can be grouped into
four classes: (1) morphology, structure, and texture; (2) re-
lationship with the matrix or inserted medium; (3) composi-
tion (including bioindicators); and (4) context (environment
and age) and comparison with other similar biotic and/or abi-
otic objects (Buick, 1990; Garcia Ruiz et al., 2002; Brasier
et al., 2002, 2004; Schopf et al., 2002; Westall, 2008; Nof-
fke, 2009, 2021; Slater, 2009; Wacey, 2009, 2010; Brasier
and Wacey, 2012; Schopf and Kudryavtsev, 2012; McLough-
lin and Grosch, 2015; Callefo et al., 2019a; Gomes et al.,
2019; Neveu et al., 2018; Maldanis et al., 2020; McMahon
et al., 2021; Rouillard et al., 2021). To refute the contam-
ination hypothesis, it is important to verify the indigeneity
and syngenicity of a proposed fossil (Rouillard et al., 2021).
Additionally, comparing these materials with abiotic and bi-
otic objects is essential for refining and defining their origins
(Rouillard et al., 2021).

Minerals can be either biotic or abiotic, and they constitute
the fundamental record of abiotic processes and one of the
main records of life activity over time. Due to the ubiquity
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Figure 1. Representative cross-section of Earth’s crust showing the diversity of inhabited extreme environments, besides the common bio-
sphere, and the contribution of abiotic and biotic minerals in the sedimentary cycle from pre- and syn-deposition, eodiagenesis, mesodia-
genesis, and telodiagenesis. Induced and/or influenced biominerals may be present in the diagenesis cycle, including mesodiagenesis (not
attested). 3D geological model adapted from Dupraz et al. (2009), McMahon and Ivarsson (2019), and Merino et al. (2019); all the environ-

ment images (circles) were created using the Al Bing Image Creator.

of life forms in geological processes (from superficial pro-
cesses to meso- and telodiagenesis; Fig. 1) and the existence
of biomimetic inorganic minerals (Weiner and Dove, 2003;
Weiner, 2008; Dupraz et al., 2009; Bindeschedler et al., 2014;
Bower et al., 2015; Tisato et al., 2015; Muscente et al., 2017;
McMahon and Ivarsson, 2019; Merino et al., 2019; Davies et
al., 2020; Eymard et al., 2020; Suchy et al., 2021) arguments
are lacking to differentiate purely abiotic minerals from con-
trolled, induced, and influenced biominerals (Dupraz et al.,
2009). Essentially, controlled biominerals are minerals that
are directly produced and regulated by living organisms that
exercise a high level of control over their formation and com-
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position. Induced biominerals are indirectly formed by living
organisms; these play an active role in triggering or influenc-
ing their formation, producing certain organic compounds or
creating specific environmental conditions, often as an indi-
rect result of the metabolic action. In influenced biominer-
als, there is a passive role in mineral formation or modifica-
tion caused by the presence of living or dead organisms (see
Dupraz et al., 2009, for a broader review); by exclusion abi-
otic minerals are the result of physical-chemical reactions
without any biological interference. In practice, it is chal-
lenging to differentiate each of these products in the geolog-
ical record due to the lack of diagnostic characteristics, such

Biogeosciences, 20, 3943-3979, 2023



3946 J. P. Saldanha et al.: Deciphering the origin of dubiofossils from the Pennsylvanian of the Parana Basin

as specific shapes or crystallographic properties and com-
positional signatures that resist modifications over time (see
Weiner and Dove, 2003; Dupraz et al., 2009). To improve the
biogenicity evidence for crystals it is essential to investigate
mineral dubiofossils.

Recent investigations have focused on stick-shaped du-
biofossils and alleged biominerals, leading to the develop-
ment of some biogenicity criteria (Cailleau et al., 2009; Bind-
schedler et al., 2014; Tisato et al., 2015; Baucon et al., 2020;
Green, 2022). However, due to the wide range of biominer-
als and biomimetic minerals (Dupraz et al., 2009), it is es-
sential to examine more mineral dubiofossils and propose
both biotic and abiotic evidence to strengthen these crite-
ria. In this context, we present an example of a mineral du-
biofossil from the Pennsylvanian age in Brazil. This mate-
rial was previously proposed to be sponge spicules from the
Parana Basin (Mouro and Saldanha, 2021). Since some for-
mats resemble spicules, the distribution of structures could
delimit circular and ellipsoidal features such as flattened bod-
ies; moreover, close to the outcrop, an earlier stratigraphic
unit of similar context contains well-preserved fossil sponges
in abundance (see Mouro and Saldanha, 2021). However, the
diversity of formats and the absence of spicular nets pre-
vented the classification of this material as Porifera. On the
other hand, the diversity of formats demonstrates dissimilar-
ities with diagenetic—-metamorphic products in a preliminary
comparison, so it remains a mineral dubiofossil.

The purpose of this study is to explore the origins of the
multiple mineralized, elongated, and ramified dubiofossils in
question. These elongated tubes will be examined across the
four classes of biogenicity criteria, (1 to 4) explained above.
Through additional analysis, we will diagnose the indigene-
ity and syngenicity of the material and compare it to both abi-
otic and biotic minerals in order to better understand its ori-
gins. We endeavor to unravel the intricate history of unique
mineral occurrence, which has been shaped by the overlap-
ping effects of abiotic and biotic geologic processes. Through
our efforts, we aim to shed some light on the interplay be-
tween biotic and abiotic minerals. Ultimately, we propose
this descriptive protocol that can facilitate investigations into
dubiofossils.

Geological settings

Parand Basin is an intracratonic Paleozoic—Mesozoic basin
covering an area of about 1.5 million kmz, extending across
southern Brazil, Paraguay, Argentina, and Uruguay (Fig. 2;
Milani et al., 2007). The Rio Ivai, Parana, and Gondwana I
Supersequences (Milani et al., 2007) register the Paleozoic
transgressive-regressive cycles with evolution linked to the
stabilization of West Gondwana, the active Andean margin,
and the activity of the paleo-ocean Panthalassa, as well as the
Supersequences Gondwana II and III deposited during the
Mesozoic, whose continental sediments are associated with
extensional events and volcanic rocks linked to the fragmen-
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tation of the supercontinent Gondwana (Milani et al., 2007).
Most of the basin’s units belong to the Gondwana I Super-
sequence, a record of the transgressive-regressive cycle at
the end of the Paleozoic—Triassic caused by the establish-
ment of the greatest Phanerozoic ice age and its transgres-
sive and climatic response (Milani et al., 2007). The Itararé
Group records the effects of this glaciation (Valdez Buso et
al., 2019).

The Itararé Group records the glaciogenic deposits of
the Late Paleozoic Ice Age (LPIA — Isbell et al., 2003)
as glacioterrestrial, glaciomarine, and deglaciation succes-
sions of tillites, diamictites, sandstones, ritmites, and shales
that lasted about 16 Myr from the Bashkirian to the Gzhe-
lian (Daemon and Quadros, 1970; Schneider et al., 1974;
Franca and Potter, 1988; Souza, 2006; Cagliari et al., 2016,
Valdez Buso et al., 2019, 2020). The Itararé Group (Fig. 2c)
is classified using field data by Schneider et al. (1974) in the
Campo do Tenente, Mafra, and Rio do Sul formations and by
Franca and Potter (1988), with subsurface data, in the Lagoa
Azul, Campo Mourdo, and Taciba formations. These units
are similar in lithology and time, except for the Lontras mem-
ber, which is the base of the Rio do Sul Formation and the top
of the Campo Mourdo Formation, respectively. As the mate-
rial was collected in the outcrop, we prefer to use the first
classification by Schneider et al. (1974).

In the study region (Fig. 2b), the Rio do Sul Formation
crops out as sparse sandstones and a great abundance of
diamictites and rhythmites, interpreted by Vesely and As-
sine (2006) as a distinct pattern of deglaciation, in which
the turbidity currents of melting had a less important role
than rain and resedimentation. The detailed outcrop descrip-
tion with sedimentary structures and biotic elements is pre-
sented in Sect. 3.1.4. Therefore, the regional interpretation
corresponds to distal marine turbidites associated with delta
systems caused by the deglaciation final phase, correspond-
ing to the upper part of the Itararé Group (Salamuni et al.,
1966; Schneider et al., 1974; Canuto et al., 2001; Wein-
schiitz and Castro, 2006; Puigdomenech et al., 2014; Aquino
et al., 2016; Schemiko et al., 2019; Vesely et al., 2021). The
Parand Basin Paleozoic section is cut by sills and dikes of
the Serra Geral Group that fed the Large Igneous Province
Parana—Entendeka flows around 130 Ma (Zalan et al., 1985;
de Almeida, 1987; Nardy et al., 2002; Frank et al., 2009).

2 Material and methods

Samples were collected at the Bemara quarry in the city of
Itaidpolis (Santa Catarina, southern Brazil), approximately
12km from the BR-116 Highway (km 29) at geographical
coordinates 26°17'44.5” S, 49°51’49.9” W (Fig. 2a and b).
The Rio do Sul Formation, the topmost unit of the Itararé
Group in the Parand Basin, crops out at this quarry. Approx-
imately 250 siltstone and claystone slabs of different sizes
with the structures have been described and are kept in the
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municipality of Itaiépolis, and other paleontological sites in the region, including those similar to the Bemara Claudemir Retz and José Guel-
becke locations, the geological units of study, Mafra Fm., Rio do Sul Fm. (Itararé Group), and other sequences of the Parani Basin; the
Campaleo outcrop is the fossil site with multiple sponge bodies — see Mouro and Saldanha (2021), modified from Silva (2020). (¢) Temporal
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fossil collection of the Laboratério de Paleontologia of the
Universidade Federal de Santa Catarina (LABPaleo—~UFSC)
under the numbers UFSCLP 395418, 877-971, and 993—
1029, totaling 153 samples; the other 100 samples are not in-
cluded in the collection to avoid redundancy. UFSCLP num-
bers 1023a-b and 1024-1029 have petrographic slides stored
in the same collection under the number of the respective
hand sample.

To guarantee a complete survey of the biotic and abiotic
characteristics of the material in question, fulfilling the four
attribute classes, the 250 hand samples were described and
selected for more specific analyses as described below. To
approach the (1) morphology, structure, and texture as well
as the (2) relationship with the matrix, we used macroscopic
description, petrographic microscopy, and X-ray computed
microtomography. To describe (3) composition, in addition
to the aforementioned techniques, we applied scanning elec-
tron microscopy, with energy-dispersive spectrometry, X-ray
diffraction, and Raman spectroscopy. To discuss the (4) con-
text (paleoenvironment and biotic elements) as well as (5) in-
digeneity and syngenicity, we used field-collected data, in-
cluding some ichnofossils, which were also collected and ob-
served under a stereomicroscope in the laboratory.

2.1 Macroscopic description and petrographic
microscopy

The specimens were characterized in an Olympus SZ51

stereomicroscope and measured by an analogical caliper and
through photos using Corel Draw software. The morpholo-
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gies were described, and length, width, and relative angles
of the branches were measured. Additional statistical anal-
yses, such as the mean, median, and histograms, were per-
formed using Excel tools. Eight thin sections, one perpendic-
ular (sample UFSCLP 1023a) and seven others concordant to
the bedding plane (samples UFSC LP 1023b, 1024-1029),
were characterized in a Zeiss petrographic microscope at the
Laboratério de Geoquimica of the Universidade Federal de
Santa Catarina (LABGeoq—UFSC) and a Zeiss Stemi 305
at Universidade do Vale do Rio dos Sinos (UNISINOS) us-
ing 2.5, 10, and 25 x objective lenses.

2.2 X-ray computed microtomography (micro-CT)

One sample (not storage in the collection) was analyzed for
three-dimensional structure and architecture using a Zeis-
s/XRadia Versa-500 microtomograph at the Laboratério de
Meios Porosos e Propriedades Termofisicas of the Universi-
dade Federal de Santa Catarina (LMPT-UFSC). This equip-
ment operates with a 30 to 160kV energy range, with power
up to 10 W and 0.7 um maximum spatial resolution, resulting
in optical magnification of 3.982500 and pixel size 4.519758.
Analysis was treated in FIJI open software (https://imagej.
net/software/fiji/, last access: 17 August 2022) using simple
processing, including adjusting brightness, contrast, and in-
tensity, as well as stacking 2D slices and the volume viewer
tool.

Biogeosciences, 20, 3943-3979, 2023
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2.3 Scanning electron microscopy (SEM) and
energy-dispersive spectrometry (EDS)

Three hand samples (UFSCLP 1024, 1026, 1029) and one
thin section (UFSCLP 1026) were selected for SEM-EDS
analysis at the Instituto Tecnoldgico de Paleoceanografia e
Mudancgas Climdticas (ITT OCEANEON-UNISINOS) us-
ing an EVO/MAL1S5 Zeiss scanning electron microscope.
They were metalized with 46 nm of gold. Tension ranged be-
tween 15 and 20 kV with five interactions.

2.4 X-ray diffraction (XRD)

For the mineralogical XRD analysis, one siltstone slab (not
stored in the collection), containing at the same level a por-
tion with distributed elongated material and the other only
with matrix, was prepared through mechanical scraping of
surfaces containing matrix and needles as well as only ma-
trix. Two rock powder samples (one with the dubiofossil un-
der study) were dried in an oven at 40 °C for 2 h, recovered,
mounted in sample holders by the back-loading method,
and taken to the diffractometer. XRD was performed at ITT
OCEANEON-UNISINOS using an Empyrea PANanalytical,
with reflection—transmission and a spinner set at two revolu-
tions per second; this included a goniometric range from 2 to
75° (20), with a step of 0.01 for 330s, a Cu tube (CuKa),
and 40kV and 40 mA.

2.5 Raman spectroscopy (RS)

One thin section (UFSCLP 1023b) was analyzed for miner-
alogical characterization using a micro-Raman Renishaw at
the Laboratdrio de Astrobiologia of the Universidade de Sao
Paulo (AstroLab—USP) using 5 x and 50 x lenses, a laser
at 785 nm, and potency between 5 % and 10 %, with at least
30 acquisitions, capturing spectra of the first-order (150 to
1350 cm™1) and second-order (1250 to 2250 cm™1) ranges.
The obtained 16 first-order and 11 second-order point signs
(stacked spectra), as well as two compositional mappings,
were treated on WiRE 4.4 and OrigingPro8.

3 Results and discussion
3.1 Description
3.1.1 Morphology, structure, and texture

The structures vary in size, shape, and packing, although
there is a general needle-like shape of whitish material
(Fig. 3). Size varies strongly between 0.04 and 16 mm in
length and between 0.01 and 1.5 mm in thickness, with con-
stant thickness within each needle. The packing can be loose
or dispersed (Fig. 3), distributed freely concordantly in the
matrix layer as a random texture, continuously covering the
sample as a 2D pavement (Fig. 3a and b), or ending with
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increased packing in straight or curved contours (Fig. 3c
and d). The needles appear as 3D tubules, flattened tubules,
molds, and impressions, mainly straight, but some are curved
and sinuous (Fig. 3e-i). Some 3D forms have a dark tubule
inside the white layer (Fig. 3f), while others have a fainter
white outer layer (Fig. 3g). In micro-CT, the needle is dis-
tinct from the matrix as a denser tube with a less dense central
tube (Fig. 6), with true ramification and circular cross-section
(Fig. 6f and g). The most common structures are small un-
branched needles (Fig. 3d) and the second are elongated rods
with multiple random short branches (Fig. 3f); there are also
radial forms and little dots (Fig. 3e). Usually, one morpho-
type dominates each fine-grained slab, related to the matrix
composition. Due to the range of shapes, we propose four
informal classes (Fig. 4 and Table 1): (a) unramified rods in
light gray siltstone, (b) ramified elongated forms in black to
dark gray siltstone, (c) large radial forms in black mudstone,
and (d) unramified needles with some ramified tubules and
dots in dark to light gray siltstone. Of the nearly 250 samples,
by visual estimation, approximately 40 % belong to class A,
35 % to class B, 15 % to class C, and 10 % to class D.

Class A (Fig. 4a and b) presents a random texture of
straight small rods, with a length of 0.04 to 10 mm (mean
2.5 mm, standard deviation 1.9, Table 1), most of them with
a 3D shape with well-defined limits in yellowish white ma-
terial that can have a secondary pale white cover (Fig. 4b).
Both ends are better preserved and gradually taper to the tip
(some can have a spindle shape); the central area can have a
dark axis or be completely faded. The black interior tubule is
also recognized when the needles are broken longitudinally,
presenting a circular transversal section. Longer than class A,
the class B ramified elongate structures (Fig. 4c and d) can
be straight or sinuous. In class B, length varies from 0.05 to
14 mm (mean 3 mm, SD 2.1; Table 1) and is variable between
the main axis and the branches. The 3D structures are dark
gray (Fig. 4c), occasionally showing a faded white margin,
while the 2D structures are white well-defined impressions
(Fig. 3h). Most structures have many primary short ramifi-
cations that do not show a periodicity of spacing, a trend of
direction, or a regular angle with the main axis (ranging from
25 to 90° concerning the axis). Most of the branches depart
from the main axis, but there are often branches emerging to
both sides, crossing the feature (Fig. 4d). Secondarily, there
are needles that ramify at only one end, separating into three
or four points, and others with four tips forming irregular
crosses. Rarely, there are sinuous structures with long pri-
mary branches and short secondary branches, also in aleatory
directions.

Classes C and D are rarer. Class C seems linked to the
darker matrix, presenting dispersed radial structures as im-
pressions or flattened rods (Fig. 4e and f). The well-defined
branches are of white material with straight walls (Iength 3 to
16 mm, mean 4.1, SD 3; Table 1), and the angles with the
apparent central line have no pattern or periodicity (varying
from 11 to 86°). The thickness and length of the branches
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Figure 3. General distribution and morphology of dubiofossils: (a) 2D pavement of concordantly loose acicula; (b) dispersed ramified
needles; (¢) increased packing of needles in straight contours; (d) increased packing of needles in yellow curved contours; (e) non-ramified
acicula and radial forms; (f) elongated ramified 3D needles, with a dark central axis; (g) flattened needles, with a dark central axis and fainter
external layers; (h) 2D white lateral ramified needles; (i) mold of the slightly curved needles. Examples of branches are indicated by yellow
arrows.
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Figure 4. Informal classes of dubiofossil forms related to the matrix: (a) general view of class A, with loosely packed unramified acicula;
(b) close-up view of class A showing yellowish—white needles with tapered tips and fainter regions; (c) general view of class B with laterally
ramified needles; (d) example of class B ramified acicula — branches depart from and cross the main axis; (e) general view of class C —
radially ramified dubiofossil; (f) detail of class C radially ramified structures, with tapered tips, external fainter layer, and internal dark layer;
(g) general view of class D, with small needles and dots, each dominating one side of the slab; (h) close-up view of class D non-ramified
needles and “dots”, with small radially ramified forms. Examples of branches are indicated by yellow arrows.

are variable, and the tips, when present, gradually taper to-
wards the end. Moreover, in the direction of the center, they
also seem to taper (Fig. 4f). Class D (Fig. 4g and h) is com-
posed of unbranched or less branched rods associated with
dot structures that appear to be small radial features (0.013 to
1 mm); ramification angles vary from 9 to 86° (Table 1). Typ-
ically, one of these structures dominates one side of the plate,
showing a transition of shape dominance (Fig. 4g). The nee-
dles are in 3D and 2D white material with different degrees

Biogeosciences, 20, 3943-3979, 2023

of alteration, similar to class A, with lengths of 1 to 10 mm.
In general, classes B, C, and D present greater variation in
size, as well as greater diversity in format than class A.
Despite the limited stratigraphic control of the collections,
the grouping of classes based on different colors and matrix
compositions suggests that the morphologies are not consis-
tently present at the same stratigraphic level. It is possible
that these forms may occur at various levels with similar
compositions. For instance, class A may or may not be found
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Table 1. Informal classes of dubiofossil morphology related to the associated matrix, mode of occurrence, length, and branching angles.

Class  Morphology Associated  Mode of preservation Length (mm) Main axis
matrix angles
A Non-ramified Light gray 3D white tubes with dark core 0.04 to 10 -
straight siltstone faded border present or not, molds, (mean 2.5, SD 1.9)
and 2D impressions
B Laterally ramified = Black to 3D black tubes and white tubes, 0.05to 14 25 to 90°
dark gray faded border present or not, (mean 3, SD 2.1)
siltstone 2D white impressions
C Radially ramified =~ Black White 2D impressions or 3D 3to 16 11 to 86°
mudstone flattened tubules (mean 4.1, SD 3)
D Less branched Dark to 2D impressions, molds, and Acicula: 1 to 10 9 to 86°
needles associated  light gray 3D white tubes with dark core Dots: 0.013 to 1
with dots siltstone faded border present or not

in the lighter siltstone layers, while class C may or may not
be present in the darker claystone layers. Additionally, it is
important to note that there is a possibility of variation within
classes occurring at the same stratigraphic level, particularly
in the case of class D. This class exhibits a transition from
small needles, similar to the morphotypes of class A, to dots.

Despite the different external shapes found in a hand sam-
ple, common elements were described in a petrographic thin
section that allow inferring that they are the same product
(Fig. 5). The needles have a distinct crystallinity from the
matrix, generally with well-defined edges, euhedral to subhe-
dral shape, low relief, and nanocrystalline texture. The nee-
dles do not show color, twinning, or cleavage (Fig. 5a—c). It
may have a black opaque central axis in the elongation di-
rection and, less commonly, an opaque brownish outer edge
(Fig. 5a—c). Incomplete extinction is oblique with a mot-
tled, undulating appearance in larger needles. Birefringence
is variable depending on needle size, usually low first order,
but second order is present in larger features (Fig. 5c, d, g,
and h). In general, the needles are organized in layers and
may have a central axis that is always opaque, a surrounding
layer of greater crystallinity (up to microcrystalline) and high
birefringence, and a second layer of first-order birefringence;
other layers may also occur externally as brown linings or a
faded edge that appears as an irregular gray texture (never
extinct).

The order and number of these layers are different between
classes. Class A has only the opaque interior and the first-
order layer (Fig. 5a and c). Class B has a more extinct inte-
rior, with two layers of distinct birefringence (second order
and first order; Fig. 5b), sometimes delimited by the opaque
lining; lateral branches present a generally extinct central
region or the opaque axis (Fig. 5d). Class C presents two
opaque axes (different from the others) delimiting an internal
portion of second order (Fig. Se and f), and class D presents,
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in radial forms, a less centralized axis and a predominance of
second-order nanocrystalline material (Fig. 5Sg and h).

In general, the needles show irregular layers in the di-
rection of the central axis of microporous texture interca-
lated with smooth or microgranular texture (Fig. 5c), some-
times aligned subspherical blocks (Fig. 5f). The texture and
the crystallographic and birefringence variations between the
needles make mineral inference difficult. Certainly, the lin-
ing is an iron oxide—hydroxide film present in the matrix and
that surrounds the needles. The interior, with the most extin-
guished region or the entirely opaque axis, seems to be linked
to impurities inside the needle. Mottled extinction refers to a
possible clay or phyllosilicate (white mica?); however, bire-
fringence resembles a possible carbonate (calcite?) — see the
composition discussion in Sect 3.1.3.

3.1.2 Relationship with the matrix

The needles are embedded in the matrix composed of an
agglomerate of circular—subcircular transparent forms and
brown opaque cement, in petrography. The subspherical
shape is demonstrated in the vertical thin section and micro-
CT (Figs. 5i-1 and 6f-i). Some look to be joined and aligned
in groups of two to six spheres, forming ellipses and straight
to sinuous lines with a globose limit (Ilength up to 0.5 mm).
Each circle has a low birefringence and is never extinct
(Fig. 5c and d), with the diameter ranging from 0.04 to
0.1 mm. Some show a central black point or are polyhedric
with subhedral faces delimited by brown lines. The nee-
dles are inserted in the lamina, are always horizontal, as
demonstrated by micro-CT (Fig. 6g—i), and never cross or
disarray the matrix spheres; both are covered by cement
(darker, amorphous gray tone in micro-CT; Fig. 6a—e). De-
spite similar microstructures (central or wall), dubiofossils
are distinguished from matrix spheres by size, degree of
crystallinity, density differences, and higher birefringence;
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Figure 5. Petrographic thin sections: (a) class A needles (arrow) distributed with the spheres inside the matrix — left: natural light, right:
polarized light, acicula in higher birefringence. (b) Class B ramified needle with the spheres inside the matrix — left: natural light, right:
polarized light, dubiofossil in higher birefringence, arrow pointed to a dark main axis in a branch. (¢) Close view of class A needles with
a main dark axis, white layer, brown layer, and a second white layer — left: natural light, right: polarized light, dubiofossil in higher bire-
fringence, arrow pointed to a matrix sphere. (d) Close view of a class B needle — left: natural light, right: polarized light, arrow pointed
to the microcrystalline texture with higher birefringence (corresponding to the white layer), with nanocrystalline externally. (e) Close view
of class C radially ramified mold — polarized light. (e) Close view of class C — internal composition partially preserved with second-order
birefringence, polarized light. (g, g) Close view of a needle and radially ramified structures of class D — polarized light. (i-1) Microfabric
of the matrix in vertical thin section — well-laminated, undulated, and disrupted lamina (arrows) related to sinusoidal and laminated leveling
microstructures. (i—k) Natural light. (j-I) Polarized light.
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there is greater morphological complexity, more layers, and
branching (Figs. 5 and 6d).

3.1.3 Composition

The composition corroborates the difference between the
elongated structures and the matrix. The matrix EDS shows
an expected composition for siliciclastic muds and silts of O,
Mg, Al, Si, K, and Fe (Fig. 7e), while the needles exhibit
a complex element distribution following the pattern of tex-
ture described above (Fig. 7d and e). The main dark axis has
O, Mg, Al, and Fe composition. The first layer (crystalline
white—yellowish white) is dominated only by calcium and
depleted in other elements. The second layer seems similar
to the main axis, presenting a brown or dark appearance in
which O, Mg, Al, and Fe occur. Another external layer of ir-
regular gray texture, not always present, has O, Na, Al, Si,
and K composition. C, Mn, and S appear weakly dispersed
throughout the material, while Ti and sometimes S are con-
centrated in spots in the matrix and needles (Fig. 7f). Al-
though Mg, Al, Si, K, and Fe cover the whole matrix, some-
times Mg and Fe appear concentrated in the matrix spheres,
and Al and Si seem less concentrated in the same areas
(Fig. 7e).

Between classes (A, B, and C), there was no difference
in elemental composition, which varies, in addition to the
external shape and crystallinity described above, in cover-
age and the compositional sequence. As class A is composed
of smaller needles, it had a smaller coverage of Ca and Fe
layers, with central axes (Mg, Al, K, and Fe) better defined.
Class B is organized similarly with relatively greater cover-
age of Ca. Class C appears a little more distinct with less
calcium coverage, as well as a wider central axis of O, Mg,
Al, and Fe with a higher iron concentration towards the edges
before the calcium wall.

The mineralogical composition agrees with the EDS el-
emental data. The brown amorphous material in the matrix
can be assigned to hematite (as measured by Raman spec-
troscopy, peaks 400, 510, and 640 cm~ !, and XRD:; Fig. 7a
and g) and possibly magnetite (captured by XRD; Table 2),
and organic matter is not encountered in RS or XRD. The
spheres are probably clay minerals and micas, as measured
by RS (Fig. 7a, peaks of 200, 260, 470, and 700 cm_l) and
corroborated by XRD (undefined clay minerals 14 and 7 A).
The XRD also indicated the presence of quartz, biotite, and
albite. As in the EDS, the needles have a different compo-
sition, and the RS peaks at 1060 and 1420cm™! were in-
terpreted as possible disordered carbonate minerals due to
deviation and formation of additional peaks, which makes it
hard to characterize the material (Fig. 7a). Calcite inferred
by XRD is present only in the powder sample that contained
the needles (Fig. 7g and Table 2).

Therefore, by the distribution of the elements in the nee-
dles, as corroborated by RS and EDS, it is possible to infer a
calcite composition with impurities in the central area and a
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Table 2. XRD powder results with and without needles.

Matrix with needles ~ Only matrix

Quartz Quartz

Calcite

Muscovite Muscovite

Albite Albite

Magnetite Magnetite

Clay mineral 14 A Clay mineral 14 A
Clay mineral 7 A Clay mineral 7 A

purer calcitic to the surrounding layer, whose main dark axis
concentrates O, Al, Mg, and Fe with the whiter layers con-
centrating calcium. The external brown layers of O, Al, Mg,
and Fe are considered clayey cement in the matrix, and the
outermost layers are interpreted as a posterior alteration of
the material from clays rich in Na and K.

3.1.4 Context, paleoenvironment, and associated biotic
elements

The outcrop exhibits 14 m of centimetric heterolithic layers,
measuring 0.2 to 4 cm (Fig. 8a), defined by tabular normally
graded siltstones, rhythmically alternated with black mud-
stones, which are usually massive or present sub-millimetric
lamination. There is a thinning-upward tendency with the
predominance of sand layers at the base and mud layers at
the top (Fig. 8a). Very fine to fine-grained sandstone layers
with ripples are rare. Erosive structures such as sole marks,
tool marks, flute casts, bounce, grooves, flames, and pseudo-
nodules are frequent (Fig. 8c—f). Few dispersed granule clasts
disturb the mudstone laminations, while erosive bases occur
in sandstones.

Horizontal trace fossils and microbially induced sedimen-
tary structures (MISSs) are distributed throughout the sec-
tion, present in different silty and muddy layers, and became
rare towards the top (Fig. 8a). Both fossil elements are widely
investigated in other outcrops of the Itararé Group (Balistieri
et al., 2002, 2003, 2021; Buatois et al., 2006; Gandini et al.,
2007; Netto et al., 2009, 2021; Lima et al., 2015, 2017; Noll
and Netto, 2018; Callefo et al., 2019b; De Barros et al., 2021)
and help to understand the depositional environment.

As systematic ichnology is not one of our aims, here we
present a brief description and identification of ichnotax-
ons. Simple shallow burrows of Helminthoidichnites tenuis
and Treptichnus pollardi are very common in the Bemara
outcrop, as well as others in the Itararé Group (see Bal-
istieri et al., 2021). The first, H. tenuis, appears in con-
cave hyporelief on muddy and silty facies (some associ-
ated with the rods, Fig. 9e), with a curved to meandering
shape and many crosses between specimens, identified as
non-specialized grazing traces, produced by arthropod lar-
vae or a worm-like animal in non-marine settings. The for-
mer, T. pollardi, appears as concave or convex epirelief of
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Figure 6. Micro-CT results for a needle (lighter gray structure), matrix (darker gray), and matrix spheres (gray circles): (a) general view
of a non-ramified needle — yellow arrow points to matrix sphere; (b) close view showing the internal structure (slight density differences
inside the tube, yellow arrow); (c¢) view of ramified structure; (d) close view of the ramified tubule — middle tubule less dense (yellow arrow).
(e) Matrix view with multiple matrix spheres (one indicated by the yellow arrow). (f-h) Cross-section demonstrating the true ramification
and insertion in the matrix. (a—e) 2D micro-CT slices. (f-i) 3D volume viewer composition showing (f, g) horizontal and (g, i) vertical.

straight to curvilinear segments joined by small round pits,
interpreted as a feeding trace probably produced by worm-
like animals also in subaqueous non-marine conditions. In
addition, there are slightly curved to straight shallow bilobed
intrastratal structures, ornamented by fine striations arranged
obliquely to the median groove, preserved by convex hypore-
lief, diagnosed as Cruziana problematica and Cruziana isp.,
interpreted as a product of arthropod locomotion into the sub-
strate (Fig. 9b and f). Epistratal structures were recognized:
there are sinuous and straight trails of Diplopodichnus bi-
Sformis, composed of two parallel grooves separated by a me-
dian ridge, which may or may not be ornamented with po-
dial imprints, preserved as concave epirelief, possibly pro-
duced by millipedes on a soft-ground substrate (Fig. 9a);
straight to strongly curved trackways consist of two paral-
lel rows of podal impressions, without series, preserved as
convex epirelief, recognized as Diplichnites gouldi also pro-
duced by millipedes on a stiff-ground substrate (Fig. 9a), as
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well as arthropod resting impressions like Gluckstadella isp.
This suite can be interpreted as Mermia—Scoyenia ichnofa-
cies, with the palimpsest already diagnosed in other Itararé
localities (Netto et al., 2009; Balistieri et al., 2021).

MISSs are widely distributed in the Bemara quarry
(Fig. 8a). Principally flattened unidirectional ripples with
slightly sinuous parallel ridges (wavelength: 5 to 30 mm) oc-
cur in several muddy and silty layers throughout the outcrop,
including those associated with the needles (Figs. 8i and 9d
and h), presenting laminated leveling structures, the most
common feature related to the microbial mat at the study
area. The dubiofossils are distributed following the morphol-
ogy of the ripples or are concentrated in the trough forming
parallel clusters (Fig. 9h). Wrinkle structures are irregular
parallel to subparallel crests or very sinuous ridges (Fig. 9¢)
that form a wrinkled pavement of claystone layers, typi-
cally non-transparent wrinkles. In addition, there are clusters
of wrinkle types Arumberia (delicate subparallel lines) and
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Figure 7. Paleometric results: (a) Raman spectra of the thin section — matrix show by blue, consistent with hematite peaks (~ 400, 510, 640,
and 1300 cm™! ); spheres shown by black, with possible clay mineral composition (~ 200, 260, 470, and 700 cm™! ); needle shown by red,
related to carbonate peaks (~ 1060 and 1420 cm_l). (b, ¢) Density differences between the matrix (dark gray), spheres (gray), and needles
(light gray). (d—f) SEM-EDS results: (d0 secondary electron image of part of the needle in a hand sample, with different textures of the
matrix, margin, and center of the needle. (e) Backscatter electron image and EDS composition of a ramified needle in thin section; C, K,
Na, Si, Al, Mg, Ca, Fe, and O detected in different distributions. (f) EDS results of dispersed S and points of Ti in the matrix (other sample
measured). (g) Graphical signs of XRD powder analysis, showing a matrix without (upper) and with (lower) acicula; the difference in the
peaks of calcite present in the needles (blue arrows) is shown.
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Serra Geral Sill

|| Serra Geral sill

Rio do Sul Formation
— Mudstone
— Siltstone

Sandstone

‘9\ Dubiofossils
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Figure 8. Geological setting and sample features of the Bemara quarry. (a) Bemara quarry — a section of 14 m of heteroliths enclosed by the
sill of the Serra Geral Group, followed by a schematic section of the lithological distribution and presence of ichnofossils, microbially induced
sedimentary structures (MISSs), and the dubiofossil under study;. (b) Occurrence section of the dubiofossils in the Rio do Sul Formation,
close to the contact with the sill (dashed line); they are present in some layers but not all strata. (¢) Pseudo-nodules on the mudstone slab,
seen in plain view. (d) Flames and syn-depositional folds (arrow). (e) Flute cast and syn-depositional charge structures (arrow), cross-
sectional view. (f) Sand layer with silt—clay load structures (arrow), cross-sectional view. (g) Irregular contact between the Paleozoic section
and Cretaceous sill, fractured zone (arrows). (h) Horizontal quartz vein covering the silt layer with the needles. (i) Horizontal quartz vein
partially covering flattened ripples with acicula. (j) Vertical quartz vein cutting the siltstone and mudstone layers. (k) Detail of the vertical
quartz vein presenting the euhedral quartz crystals and brown cement.
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Figure 9. Associated biotic elements: (a, b, e, f) ichnofossils, (c, d, g, h) wrinkle structures, and microbial mat elements. (i-1) Small disks
in the mudstones: (a) Diplichnites gouldi and Diplopodichnus biformis; (b) Cruziana problematica. (¢) Wrinkle structures and (d) flattened
unidirectional ripples with needles. (e) Helminthoidichnites tenuis (arrows). (f) Cruziana isp. at the center and Cruziana problematica at
the top with the needles. (g) multi-directed ripple marks with needles (arrow). (h) Flattened ripples with needles aligned in parallel clusters.
(i) Counted slab with many cones. (j) Aligned disks. (k) Cone with a flower form, vitreous luster, and a micro-wrinkle (arrow) on one side.
(1) Detail of the disk with a flat top.
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elephant skin (fine corrugations). Some levels also present
multi-directed ripple marks (Fig. 9g).

The microfabric seen in the vertical thin section corrob-
orates the macroscopic structures related to microbial mats
(Fig. 5i-1). Despite not having layers composed of sand,
hampering the visualization of oriented grains, the alternat-
ing laminar layers of silt and clay present a characteris-
tic microfabric, undulated and disruptive features related to
sinoidal and laminated leveling microstructures (Fig. 5i-1).
In addition, the microfabric contains mat-layer-bound small
grains (spheres, clays detected in XRD and RS) and possi-
bly heavy minerals (opaque minerals and hematite detected
in RS; Fig. 7a). The gradual alternation of dark and light lay-
ers may be related to micro-sequences, defined by Noffke et
al. (1997) and Noffke (2010) and presented for other Itararé
locality by Noll and Netto (2018) and Callefo et al. (2019b).

Some black argillaceous levels have clusters of small ra-
dial cones (1-4 mm in height and diameter ranging from 2 to
23 mm, with the mean of the largest and smallest diameter
at 15.1 and 8.3 mm, respectively) with a straight top of cir-
cular to subangular shape (maximum of 3 mm), whose sides
are formed by radial lines or elevations (Fig. 9i-1). A vit-
reous luster distinguishes them from the matrix with lobed
edges that resemble a flower. In a slab measuring 1200 cm?,
157 objects were counted; most are aligned and elongated
in one direction, sometimes with two or three disks joined
(Fig. 9j), and normally one of the faces orthogonal to this
alignment presents a micro-wrinkle (Fig. 9k). In the vertical
section, a central tube is not observable, and the same mas-
sive texture occurs inside and outside the disks, likely related
to gas dome products of microbial metabolism (see Noffke,
2010, and Inglez et al., 2021).

All the features described favor the interpretation of ex-
tensive microbial mats throughout the Bemara outcrop, sug-
gesting the presence of epibenthic communities, and possi-
bly endobenthic, in a transitional lower supratidal to upper
intertidal environment (see Noffke, 2010, 2018, and refer-
ences therein). The association between microbial mats and
trace fossils is common in the rhythmic deposits of the Itararé
Group (see Lima et al., 2015, 2017; Noll and Netto, 2018,
and Callefo et al., 2019b) and reveals the colonization of the
bottom of shallow water bodies by microbial mats and an-
imals. The mats favored preservation and served as a food
substrate for undermat miners (H. tenuis and T. pollardi) and
overmat grazers (myriapods traces of D. biformis and Gluck-
stadella isp.) (see Lima et al., 2015).

The stratigraphic data corroborate the regional interpreta-
tion of large turbiditic systems related to melt discharge. The
dominance of clayey and silty layers and deformations fa-
vors the interpretation of distal turbidites (regional interpre-
tation by Weinschiitz and Castro, 2006; Aquino et al., 2016;
Schemiko et al., 2019; Vesely et al., 2021). On the other
hand, the extensive MISS and Mermia—Scoyenia ichnofacies
are interpreted as shallow freshwater lakes in near-marginal
marine settings that are tidally influenced (lower supratidal)
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and intensively colonized by microbial mats and trace fossil
producers. These environments quickly dried up or reduced
the water column, evidenced by the dominance of myriapods
(other locations interpreted by Balistieri et al., 2002, 2003,
2021; Netto et al., 2009; Lima et al., 2015; Noll and Netto,
2018, and Callefo et al., 2019b). Both interpretations are pos-
tulated for other outcrops of the Itararé Group, and further
work must be carried out to resolve the issue. As a more de-
tailed description of the outcrop was not carried out and the
paleoenvironmental interpretation is not the main objective
of this work, both interpretations were considered in the dis-
cussion. Even so, the distribution of sand layers and the num-
ber of ichnofossils decreasing towards the top may signify a
shallowing pattern in any of the interpretations.

The outcrop is closed at the top by a diabase sill with irreg-
ular contact (approximately 5 m; Fig. 8a, b and g), related to
the Lower Cretaceous intrusions of Serra Geral Group (Silva,
2020), in which the last 3cm of the sedimentary package
close to the contact has a much higher hardness than the rest
of the unit. The dubiofossils were collected in the last ~ 2 m
of the top of the outcrop, close to this diabase sill (Fig. 8).
These problematic structures found in some, but not all, silt—
mud layers, dispersed as abundant concordant macrotextures
and clusters, are sometimes associated with trace fossils and
MISS as described above. The systematic collection showed
an increase in dubiofossil layers towards the top, with the
highest abundance between 50 and 20 cm below the sill con-
tact.

The sill facilitates the correlation of the Bemara out-
crop with two other very close ones, Claudemir Rertz and
José Guelbecke (Fig. 2b), which have the same Paleozoic
succession (sedimentary structures and biotic elements) and
the same occurrence of dubiofossils close to contact. In the
José Guelbecke outcrop, approximately 600 m from the study
point, Silva (2020) identified a halo of thermal effect, mea-
sured in palynomorphs from the sill contact up to 2.5 m be-
low, and a zone of intense thermal influence > 50 cm (gray
phytoclasts). In the Bemara outcrop, a similar thermal effect
can be interpreted by an increase in the hardness of the Rio
do Sul Formation laminae as it approaches contact.

Furthermore, the study area is cut by several vertical and
subvertical fractures, some of them filled with whitish crys-
tals that are linked to the placement of the Cretaceous intru-
sive rock (Fig. 8g—k). This filling is different from dubiofos-
sils because, in addition to cutting the sedimentary layers,
it has a prismatic euhedral habit of regular size, transparent
vitreous luster, and high crystallinity (Fig. 8j and k); quartz
crystals possibly filled in the fractures (see Hartmann et al.,
2012; Teixeira et al., 2018; De Vargas et al., 2022). The same
crystallization rarely occurs in slides following the layering
plane and covering the sedimentary structures and the dubio-
fossils (Fig. 8h and i), which makes it easier to distinguish
the needles from this filling.

The geological history of this outcrop is complex, result-
ing from a range of processes including synsedimentary—
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eodiagenetic processes, mesodiagenetic lithification, and
thermal alteration during and after the intrusion of the sill.
As a result, the origin of the dubiofossil may be linked to
one or more of these processes or their superimposition. Fur-
ther investigation of similar products is therefore necessary
to shed light on the potential origins of this dubiofossil.

3.2 Indigeneity and syngenicity

Indigeneity and syngenicity are two concepts used to estab-
lish the origin and temporal history of materials. Indigene-
ity refers to the origin of the material and aims to eliminate
the possibility of recent or procedural contamination. Syn-
genicity, on the other hand, seeks to establish synchronism
between the material and its matrix or inserted medium, pro-
viding evidence of its temporal history (Buick, 1990; Wacey,
2009; McLoughlin and Grosch, 2015; Rouillard et al., 2021).
In the case of the material under study, the brown cement
coating over the dubiofossils and on the matrix suggests indi-
geneity, ruling out procedural contamination (Fig. 5). Addi-
tionally, the presence of needles predating the alteration and
hematitic coat, which may have resulted from posterior ce-
mentation (Al-Agha et al., 1995), supports this hypothesis.
The cement is also found in parts of the filled fractures, and
the crystallized layer covering the dubiofossils strongly sug-
gests that the needles are older than the fill and the intrusive
rock (Fig. 8h—-k). Therefore, the needles likely predate or are
synchronous with the placement of the intrusive rock.

The dubiofossils always inserted in the clay or silt sheets
indicate indigeneity, not growing later over the layers (Figs. 5
and 6). The fact that the elongated minerals do not cut the
laminations and cross or disarrange the spheres may be an ar-
gument for a previous origin or during deposition—diagenesis
(syngenicity). However, it does not rule out the possibility of
later growth taking advantage of the horizontal weakness of
the sediment laminations and regions without spheres (e.g.,
Makovicky et al., 2006). Or it may indicate the concomitant
metamorphic growth of spheres and needles (Fig. 5). There-
fore, the dubiofossil can be considered indigenous, but its
syngenicity remains open.

3.3 Comparison with similar objects

The origin of the dubiofossils is suggested by the observed
distribution of the needles only close to the contact and
prior to the filled veins linked to the intrusion. Formation
through the thermal effect is chemically plausible since ions
and acids are produced by thermal degradation of organic
matter (microbial C found in the matrix) and by magma
degassing capable of crystallizing these carbonates (Saxby
and Stephenson, 1987; Aarnes et al., 2010; Agirrezabala et
al., 2014; Liu et al., 2016). Nevertheless, the morphology
of the needles is different from products of contact meta-
morphism in mudstones: (1) usually these carbonates are ce-
ments or pore fillers, occupying the available space and gen-
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erally amorphous—subhedral and unbranched (e.g., Finkel-
man et al., 1998; Huntington et al., 2011; Fig. 10c and s);
(2) they occur as fractures breaking the sedimentary layers,
forming irregular, sharp to serrated branches, which are fea-
tures missing from needles (e.g., Golab et al., 2007; Hunting-
ton et al., 2011); (3) dendrites, as a branched radial growth
structure from a point, usually have more than one order of
branches (see Jones, 2017). As the origin by contact meta-
morphism seems implausible, the dubiofossils may be earlier
and have been modified by the thermal effect, resulting in
the calcitic composition found. In this way, the needles were
compared with several abiotic and biotic objects from similar
contexts, regardless of composition, to assess the most likely
origin. Controlled minerals from sponge spicules, skeletons
of sea urchins and algae, minerals induced and/or influenced
by fungi and bacteria, inorganic pre- and synsedimentary—
eodiagenetic minerals such as evaporites, springs, and other
precipitation and mesodiagenetic crystals were surveyed,
looking for resemblances to the needles (Fig. 10).

Most objects observed had similarities to the elements of
dubiofossils described in Sect. 3.1, including their external
form, internal structures, texture, and composition. The ran-
dom distribution, packing, and branching seen in the objects
are similar to algae and fungi, as well as evaporitic, tufa-
ceous, and diagenetic minerals. The internal features, such as
variations in crystallinity and a dark central axis, may resem-
ble internal structures of algal skeletons and sponge spicules
or features of induction and/or influence of algae, bacteria,
or fungi; nevertheless, they may also be diagnostic textures
produced by diagenetic processes.

The wide range of morphologies observed among the nee-
dles made it difficult to immediately associate them with
any of the compared products. Each morphotype or shape
class could be associated with a specific object, but when
compared to another class, the association appeared less
likely. For example, radial forms of class C with tapered
ends (Fig. 4e and f) strongly resemble “chrysanthemum
stones” (eodiagenetic mineralization of celestine or calcite;
see Makovicky et al., 2006; Fig. 10d), while when com-
pared with the other classes they are very distinct. However,
the morphological complexity does not necessarily indicate
a higher probability of biogenic origins (McLoughlin and
Grosch, 2015), since complex and diverse forms are com-
mon in depositional minerals such as calcite and gypsum (see
Maiklem et al., 1969; Garber et al., 1987; Aleali et al., 2013;
Schultz et al., 2022; Fig. 10h), as well as diagenetic minerals
(e.g., diagenetic calcites; Maliva, 1989; Ren and Jones, 2021;
Fig. 10p and t).

The internal organization in layers as well as the textural
and compositional variations found in the needles do not re-
fer to specific mineral products. However, the features de-
scribed here resemble layered structures, central features,
and other textures produced by bacteria and fungi, which
during their formation and growth generate zoned minerals
and cell, hyphae, or EPS allocation sites within the biomin-
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@ Controled biomineral 7 Induced biomineral @ influenced biomineral Q Abviotic mineral

Figure 10. Comparison examples: (a) carbonate (CaCO3) influenced by bacteria (Kraus et al., 2018); (b) carbonatic rizolith (influenced
substitution) (Loope, 1988); (c) calcite (light gray spheres) produced by thermometamorphism in mudstone (dark gray) (Finkelman et al.,
1998); (d) chrysanthemum stone (diagenetic radial celestine — SrSOy); (e) carbonate precipitation over specific regions of the algae (induced
crystallization) (Apolinarska et al., 2011); (f) silicious sponge spicules (skeleton) (Miiller et al., 2006); (g) ice cast (Voigt et al., 2021);
(h) evaporitic gypsum (CaSOy - 2H,0) (Garber et al., 1987); (i) tube-like forms of induced calcite in a microbial mat (Vasconcelos et al.,
2006); (j) ramified and ornamented calcium oxalate produced by fungi (induced mineralization) (Bindschedler et al., 2016); (k) vertical sec-
tion of a modern microbial mat with a filamentous network inducing calcite crystallization (Arp et al., 2010); (1) diverse habits of glendonite
(ikaite pseudomorph CaCO3 - 6H,O, cold-water precipitation) (Schultz et al., 2022); (m) close view of siliceous sponge spicule, internal
detail (skeleton) (Miiller et al., 2006); (n) carbonate algae (skeleton), internal detail (Wolf, 1965); (o) thin section of evaporitic elongated
gypsum (Aref and Mannaa, 2021); (p diagenetic calcite (CaCO3), internal structures (Maliva, 1989); (q) volcanic glass fracture containing
banded palagonite (P), microbially deposited (influenced) (McLoughlin et al., 2009); (r) tufa crystal with micritic central filament, with
supposed biotic origin (influenced) (Della Porta, 2015); (s) siderite (FeCO3) nodule from a thermal-affected mudstone (Golab et al., 2007);
(t) diagenetic calcite, internal details (Maliva, 1989); (u) Dasycladales (algae) in wackestone, original skeleton and mold (Granier, 2012);
(v) glauberine (CaNay (S 04)2), evaporitic with inclusions of faecal pellets (influence not proved) (Salvany et al., 2007); (w) zoned glauber-
ine, evaporitic precipitation in the substrate—water interface (Salvany et al., 2007); (x) coralline red algae growing on leaves of seagrass
(skeleton) (Beavington-Penney et al., 2004); (y) evaporitic sparse anhydrite (CaSOy4) crystals in mudstones, concentrically zoned (Aleali et
al., 2013); (z) diagenetic siderite presenting internal impurities (Wang et al., 2021).
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eral (e.g., Golubic et al., 2000; Arp et al., 2010; Della Porta,
2015; Bindschedler et al., 2016). On the other hand, these
features also resemble zonations, inclusions, and areas of
impurities generated during diagenetic mineral growth (e.g.,
Maliva, 1989).

Comparing the matrix relationships of dubiofossils and
other products can be problematic due to morphological vari-
ability. Flat, 2D topologies and impressions that accompany
lamination may resemble diagenetic minerals (e.g., Maliva,
1989; Makovicky et al., 2006), while 3D features such as
tubular or flattened shapes that do not cut through layers may
resemble pre- and syn-depositional objects, such as evap-
oritic minerals, tufaceous minerals, and biominerals (e.g.,
Bagbel, 2004; Vasconcelos et al., 2006). Additionally, min-
eralized structures that do not cut through layers can also oc-
cur as a result of diagenetic growth (e.g., Makovicky et al.,
2006).

The comparison revealed a low likelihood that the dubio-
fossil is a controlled biomineral. Skeletal biominerals typ-
ically exhibit greater regularity in size, shape, and branch-
ing due to their specific physiological origins (Dupraz et al.,
2009). For instance, despite similarities to sponge diactinal
spicules (such as tapered ends, outer layers, and a dark cen-
tral feature thought to be axial filament, as seen in Uriz et al.,
2003; Weaver and Morse, 2003; Miiller et al., 2006; Fig. 10f
and m), the dubiofossil’s irregular branches in angle (rang-
ing from 8 to 90° with the main axis) and length, as well as
the morphological variations between classes, make this hy-
pothesis less likely. Therefore, the absence of a controlled an-
gular pattern or branching spacing and the wide variation in
shapes preclude classification as a skeletal biomineral from
sources such as sponge, sea urchin, coral, and coralline al-
gae (Fig. 10a, n, u, and x; e.g., Wolf, 1965; Hooper and
Van Soest, 2002; Beavington-Penney et al., 2004; Sethmann
and Whorheide, 2008; Leonov and Fedonkin, 2009; Granier,
2012; Grgasovic, 2022).

Regarding the composition, minerals (abiotic and biotic)
with similar composition capable of posterior calcitic re-
placement were surveyed: carbonates and sulfates. Some of
these minerals were excluded from the comparison because
they did not have an origin compatible with the context ob-
served for the acicula, such as aragonite, magnesite, gay-
lussite, ankerite, and kutnohorite (Lippmann, 1973; Alhad-
dad and Ahmed, 2022; Xu et al., 2019; Reijmer, 2021).
The rest can be deposited abiotically as evaporites, bioti-
cally by bacteria, or by diagenetic crystallization. Most may
have elongated habits like needles, but only calcite, dolomite,
ikaite, gaylussite, and gypsum commonly have the diversity
of habits of a dubiofossil: radial, laterally branched, and elon-
gated. The specific patterns of size, shape, and distribution of
these needles have not been found in the literature for these
minerals (e.g., Warren, 2000, 2010; Baabel, 2004; Schultz
et al., 2022). Therefore, the shape may be the result of fur-
ther thermal modification of the material, and therefore va-
terite, aragonite, siderite, dawsonite, and gypsum—anhydrite
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also remain as putative original materials. As the comparison
did not result in a more likely hypothesis, the proposals will
be further evaluated in the next section.

3.4 Evaluating proposals

How should we proceed when comparison with objects from
the literature does not significantly reduce the number of pos-
sibilities for the dubiofossil? Although controlled biomineral
hypotheses have been eliminated, the descriptive and visual
comparison of the dubiofossil did not yield a conclusive re-
sult. Therefore, a detailed discussion is necessary to deter-
mine its proposed origin. The lack of comparative parallels
suggests that the complex environmental conditions in which
it was formed — a transitional environment with strong cli-
matic influences, such as variations in temperature, water
volume, salinity, and mixing of saline and continental wa-
ters, in addition to a significant interface with extensive mi-
crobial mats — played a crucial role in shaping the final com-
position and morphology of the material. The dubiofossil
underwent common diagenesis during the Itararé strata for-
mation and subsequently experienced thermal effects result-
ing from the Cretaceous intrusion. Accordingly, dubiofossils
seem to be the result of this complex history due to the fol-
lowing. (1) The large population morphology range prevents
the identification of the material as a product that is only de-
positional or diagenetic or only metamorphic or biotic, me-
diated by microbial mats. (2) A distribution restricted to this
contact does not occur far from it in the previous layers of the
Rio do Sul Formation, which disfavors the explanation of a
purely depositional product, whether abiotic or biotic. (3) A
relatively wide geographic distribution occurs in the three
outcrops, always closer to the sill contact, but is not found
in other Cretaceous thermal aureoles within the Parand Basin
(see Santos et al., 2009; Hartmann et al., 2012; Teixeira et al.,
2018; De Vargas et al., 2022), which precludes characteriza-
tion as an artifact of purely contact metamorphism. Thus, the
dubiofossil may have been formed through the combination
of a syn-depositional or diagenetic process with a thermal
effect.

3.4.1 Syn-depositional or diagenetic product

Based on the hypothesis of a subsequent thermal alteration
that modified and replaced the needles, the original condi-
tions of the material are evaluated, whether syn-depositional
or diagenetic, induced and/or influenced biominerals, or abi-
otic minerals. To test the needles as a pre-thermal mineral,
the minerals selected in Sect. 3.3 are evaluated.

Ice casts — freezing minerals. Certain characteristics of du-
biofossils suggest that they could be interpreted as ice molds
or ice casts. These elongated features are formed when wa-
ter freezes within silt-dominated mudstones and fine-grained
sandstones in fluvio-lacustrine, marginal marine, or aeolian
environments (Dionne, 1985; Pfeifer et al., 2021; Voigt et al.,
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2021), making their occurrence plausible in a periglacial set-
ting. Moreover, these features are often randomly distributed
within the bedding plane without disrupting the layers, as
epistratal ice typically grows horizontally (Voigt et al., 2021).
The various shapes observed in these elongated features re-
semble the different ways in which ice forms under varying
temperature conditions, including needle-shaped, branched
forms, stubby rods, fanned needles, rosette, and stellate struc-
tures (Mason et al., 1963; Pfeifer et al., 2021; Voigt et al.,
2021). Additionally, the predominance of a specific morpho-
type within each slab corresponds to the monotypic pattern
observed in ice molds (Voigt et al., 2021). The branching
features are explained by cycles of freezing and thawing of
water-saturated mud events, possibly occurring on a daily ba-
sis, which result in branches forming at acute angles without
crossing the principal elongation (Voigt et al., 2021). Par-
ticular aspects of dubiofossils, such as crossing branches,
distinct from ice casts, can be attributed to diagenetic or
thermal modifications. Although similar features have been
found in the fossil record, such as those reported by Ban-
del and Shinaq (2003) and Retallack (2021) in the Precam-
brian as well as Pfeifer et al. (2021) and Voigt et al. (2021)
in the Permian, linked to the LPIA, the corroboration of this
hypothesis is hindered by the fact that these structures are
typically preserved as epirelief or hyporelief molds formed
through the melting of ice crystals and subsequent sedimen-
tary deposition within the resulting cavities (Fig. 10g; Voigt
et al., 2021). It is challenging to explain the syn- or post-
depositional preservation of other materials, such as calcite,
within these spaces.

Gypsum — evaporitic mineral. The interpretation of nee-
dles as evaporitic gypsum (and anhydrite as gypsum that
lost water) is supported by shape and context. Elongated and
radiated morphologies are common for non-agglomerated
crystals, as are tapered points (Baabel 2004; Warren, 2016).
Furthermore, the size fits the definition of selenite (gyp-
sum > 2 mm in length), which evidences subaqueous evap-
oritic deposition (Bagbel, 2004). In this way, the proximity
to the sea could contribute the necessary salinity, the semi-
arid to arid conditions would favor evaporation, and climate
control such as cycles of melting and freshwater input would
generate temperature changes, brine mixing, or brine freez-
ing and freeze-drying that together would culminate in the
crystallization of the needles (Bagbel, 2004; Warren, 2010).
The low to no salinity inferred by the trace fossils (see Netto
et al., 2009) does not interfere with the presence of these
evaporites, as only saturation in calcium sulfate is required;
in addition, more saline moments and intense stratification
could be seasonally or daily controlled in a monomictic to
polymictic lake (see Baagbel, 2004; Ayllén-Quevedo et al.,
2007). The presence of needles in the top section of the
quarry is indicative of these specific conditions of higher
salinity inferred by the reduction of trace fossils, contrary
to the base of the quarry with more trace fossils and shal-
lower conditions, more conducive to dissolution by the in-
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put and interference of fresh water (Baabel, 2004). Microbial
mats, common in evaporitic systems (Trichet et al., 2001;
Bontognali et al., 2010; Warren, 2010, 2016; Perillo et al.,
2019), would favor the preservation of the needles on and
within mats, as the gas domes indicate low substrate perme-
ability, allowing the concentration of ions for precipitation
(e.g., Paso Seco, in Argentina, Perillo et al., 2019). Thus,
evaporitic gypsum precipitation is plausible in this context:
as required by the Usiglio precipitation sequence, the depo-
sition of carbonates comes before sulfates (see Bagbel, 2004;
Warren, 2010). In addition, these earlier carbonates may have
replaced the gypsum needles through the Cretaceous thermal
effect.

Other evaporitic minerals. Other sulfates, such as
thenardite, mirabilite, bloedite, loeweite, and glauberite, also
exhibit a needle-like morphology in similar geological con-
texts (Warren, 1996, 2016; Hamdi-Aissa et al., 2004; Beni-
son and Bowen, 2013). The Bemara environment, due to
its local temperature conditions, may have provided favor-
able settings for the formation of these sulfate needles. Mod-
ern evaporites demonstrate that the nocturnal temperature
reduction during winter, reaching close to 0 °C, creates the
necessary thermodynamic equilibrium for the crystallization
of mirabilite and other evaporitic minerals (Hamdi-Aissa
et al., 2004; Espinosa-Marzal and Scherer, 2010; Jassim
and Al-Badri, 2019). It is worth noting that glauberite has
also been found in the Karoo basin, in a similar context of
LPIA deglacial sequences, although it occurs in concretions
(McLachlan and Anderson, 1973). These less common sul-
fates require a high concentration of specific cations for de-
position (Hamdi-Aissa et al., 2004; Warren, 2016) and follow
the Usiglio precipitation sequence, necessitating prior car-
bonate precipitation before their crystallization (see Bagbel,
2004; Warren, 2010). Consequently, the hypothesis of dubio-
fossils as evaporitic products becomes less plausible.

Ikaite — depositional-eodiagenetic mineral. Composition,
multiple external branching forms, and internal features may
denote origin as ikaite. Although the specific conditions for
the formation of this mineral are still little known, they occur
as surface precipitated minerals (e.g., Oehlerich et al., 2013)
or eodiagenetic minerals (Lu et al., 2012; Zhou et al., 2015)
in multiple cold-water environments (continental to abyssal;
see Rogov et al., 2021, and Schultz et al., 2022, for a re-
view). These crystals are extremely unstable, quickly dis-
solving or changing to glendonite (a variety of calcite that
replaces ikaite; Huggett et al., 2005; Schultz et al., 2022).
The multiple shapes of the needles match the morphologies
of this unstable mineral (Schultz et al., 2022). The central
internal features rich in iron and magnesium (e.g., Schubert
et al., 1997) may be nuclei of magnesium ions that would
guarantee mineral stability (Purgstaller et al., 2017; Stock-
mann et al., 2018), and the concentric layers may be marks
of the transformation of ikaite into glendonite (proposed by
Vickers et al., 2018). This mineralization can occur in the sul-
fate reduction zone or in the sulfate—methane transition, well
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established by microbial mats, whose high pH and organic
content also favor the maintenance of ikaite, promote glen-
donite replacement, and prevent dissolution (see Lu et al.,
2012; Zhou et al., 2015; Trampe et al., 2016). The mat can
also contribute to a rise in the phosphorous content related
to the ikaite stability, like hyper-eutrophy in Manito Lake,
Canada (Last et al., 2013); calcium phosphate was reported
by Callefo et al. (2019b) in a similar Itararé outcrop linked
to MISS. Furthermore, the occurrence of needles on some of
the top laminae of the outcrop section could be caused by cli-
mate or environmental control, such as colder seasonal mo-
ments of the lake or specific depth conditions (see Oehlerich
et al., 2013, and Schultz et al., 2022).

Dolomite — syn-depositional or eodiagenetic precipitation.
The context interpreted for the needles fits into some of the
various subenvironments and conditions in which dolomite
can form and, together with the texture of the dubiofos-
sils, makes this interpretation plausible. Cloudy-centered and
clear-rimmed crystals are common textures in dolomites, de-
noting the replacement of high Mg-calcite by dolomite and
the increase in order and size during diagenesis, since these
minerals tend to age and/or evolve throughout burial history
(Sibley et al., 1994; Warren, 2000; Ayllén-Quevedo et al.,
2007). As syn-depositional dolomites in evaporitic environ-
ments (similar to gypsum discussed above), marine and la-
custrine types tend to form laminae or surface strata (War-
ren, 2000; Trichet et al., 2001; Bagbel 2004), with the pat-
tern of distribution and packing of needles having greater re-
semblance to eodiagenetic products such as interstitial, intra-
pore, or intramat mineralization (Warren, 2000). The eodia-
genetic needles can be mixing zone dolomite or hemipelagic
organogenic products (see Warren, 2000). The transitional
conditions interpreted for the outcrop allow the mixing of
phreatic pore water close to saturation in calcite with fresh
water that leads to a state of undersaturation (Warren, 2000),
with the mineral growing as void fillings in the mixing zone
(Ward and Halley, 1985). The other plausible explanation is
the origin of the needles related to the subsurface degradation
of layers rich in organic matter and the increase in alkalin-
ity in the zones of sulfate reduction or methanogenesis, well
developed at the outcrop and diagnosed by the gas domes
of the mats, which would favor mineralization (Roberts et
al., 2004; Wright and Wacey, 2004, 2005). Several authors
point to the reduction of sulfate by bacteria as essential and
link most occurrences of eodiagenetic dolomite to the pres-
ence and mediation of microbial mats (Roberts et al., 2004;
Wright and Wacey, 2004; Vasconcelos et al., 2006; Bontog-
nali et al., 2010). Thus, the interaction of the MISS with the
needles reinforces this hypothesis, since the mats are prepon-
derant for crystallization, acting as nucleation centers (Vas-
concelos et al., 1995).

Calcite — abiotic mineral. The needles can be made of cal-
cite, as it fits into the various subenvironments as well as
depositional and diagenetic contexts presented in the previ-
ous hypotheses as marginal evaporites, diagenetic products,
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or the result of biotic interaction with the environment and
can generate unconventional and/or multiple forms of cal-
cites (e.g., Wright and Barnett, 2015; Payandi-Rolland et al.,
2019). In chemical and evaporitic deposits, shrub-like, den-
dritic, stellate, and spheroidal forms are abiotically precipi-
tated (Wright and Barnett, 2015; Kraus et al., 2018; Farias et
al., 2019), controlled, or modified by the presence of Mg”,
which can, for example, promote growth parallel to the crys-
talline ¢ axis (Zhu et al., 2006). Thus, the presence of this el-
ement in the water, in the conditions of a restricted or saline
lake, can be the justification for the unusual precipitation of
the needles, maintaining the centers rich in magnesium. Most
diagenetic calcites are amorphous and fill the pores of the
sediment like cement, originating from the concentration of
Ca?* in the interstitial space. However, there are occurrences
of euhedral and distinct forms, with the presence of relicts
and growth in layers (Cardoso et al., 2022; Sommer et al.,
2022); thus, the needles may have formed during diagene-
sis, with the dark center as a relict, impurities that favored its
growth, and the final shape modified by metamorphism.
Calcite — biomineral. Many authors emphasize the impor-
tance of sulfate bacteria, cyanobacteria, microbial mats, and
EPS in syn-depositional and eodiagenetic calcite crystalliza-
tion (Kropp et al., 1996, 1997; Bosak and Newman, 2005;
Baumgartner et al., 2006; Vasconcelos et al., 2006; Dupraz
et al., 2009; Arp et al., 2010, among others). In this sense,
the formation of needles may be related to the organic con-
tent of the mats in three degrees of relevance. The first results
from the presence of the mat with EPS only as a nucleation
center, providing carboxyl groups for the initial binding of
Ca”* ions from water and subsequent abiotic growth of cal-
cite (Turner and Jones, 2005; Baumgartner et al., 2006). In
the second degree, in addition to serving as a nucleus, the
degradation of bacteria and EPS (CO?~ degassing) may have
influenced mineral growth by establishing a favorable mi-
croenvironment (pH, [Ca?t], alkalinity, temperature). More-
over, the distribution of EPS on the mat can serve as a crys-
tallization template, which partially explains the arrangement
of needles in the matrix (Kropp et al., 1996, 1997; Turner
and Jones, 2005; Spadaforda et al., 2010; Arp et al., 2010;
Payandi-Rolland et al., 2019). In the third degree, in addition
to serving as a nucleation center, the metabolism of bacteria,
whether sulfate reducers or cyanobacteria, may have induced
the crystallization of the needles (Kropp et al., 1997; Bosak
and Newman, 2005; Baumgartner et al., 2006; Vasconcelos
et al., 2006; Spadaforda et al., 2010). Kropp et al. (1997) ex-
emplified this EPS control on carbonates in temperate-water
intertidal siliciclastic sediments. Microorganisms can control
calcification by secreting inhibitors and influencing binding
of Ca>* and Mg?* ions (Braissant et al., 2003; Bosak and
Newman, 2005; Arp et al., 2010). The bacterial metabolism
and EPS degradation promote the precipitation of ovoid car-
bonates, and the continued degradation favors the aggrega-
tion and formation of larger ovoid crystals (e.g., Spadaforda
et al., 2010; Payandi-Rolland et al., 2019). The variety of
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stick morphologies, also recognized in induced and/or in-
fluenced biominerals of current biofilms, can be explained
by the transformation from one form to another over time,
changes in EPS chemistry during crystallization, or modifi-
cations in the degree of supersaturation of carbonates (Turner
and Jones, 2005; Spadaforda et al., 2010; Arp et al., 2010;
Liang et al., 2013; Payandi-Rolland et al., 2019). In addition,
the shape may be an exotic deviation produced by unique
physicochemical conditions such as the calcite dendrites re-
ported by Turner and Jones (2005), which would have under-
gone further thermal modification.

Aragonite — biotic and abiotic mineral. Aragonite is com-
monly found in mollusk shells and nacre and as a high-
pressure metamorphic mineral (Lippmann, 1973; Ramakr-
ishna et al., 2017; Toffolo, 2021). While it is typically
metastable compared to calcite, there are other occurrences
where it is found. Needle-shaped aragonite, normally rang-
ing from 5 to 100 um, can be secreted by algae or deposited
in various environments such as caves, hot springs, shallow
seas, and lakes (Lowenstam and Epstein, 1957; Lippmann,
1973; Frisia et al., 2002; Jones, 2017; Ramakrishna et al.,
2017). The factors contributing to the precipitation of arag-
onite needles instead of calcite are the influence of tempera-
ture, usually above 25 °C (Lipmann, 1973; Jones, 2017; Ra-
makrishna et al., 2017), a high concentration of Mg* or a
high Mg/Ca ratio (Kitano and Hood, 1962; Hu et al., 2009;
Jones, 2017; Ramakrishna et al., 2017), and environments
with high CO, degassing rates (Frisia et al., 2002; Sanchez-
Moral et al., 2003; Jones, 2017). In the case of dubiofossils at
Bemara, the larger needle size cannot be attributed to higher
temperatures, as the paleoenvironmental conditions do not
support this explanation. However, the presence of a central
axis rich in Mg in the needles may indicate remnants of the
high concentration necessary for aragonite deposition, in ad-
dition to the possible high rate of degassing due to the media-
tion and/or degradation of the mats (see Sanchez-Moral et al.,
2003). Despite the fact that aragonite can easily be replaced
by calcite, the large needle size, exceeding what is commonly
reported in the literature, poses challenges in classifying the
material as acicular aragonite.

Other carbonate minerals. The needles can be other car-
bonate minerals, which have less diversity of habits and mor-
phologies and are generally presented in relatively smaller
spheres than the needles. Despite that, the final form of the
needles can be caused by metamorphism. Although vaterite
is a very rare mineral, found mainly as a controlled biomin-
eral of mollusk shells, the needles can be a rare deposi-
tional occurrence associated with bacteria usually forming
microspheres (high NH3; and high pH are required to pro-
mote the carbonate supersaturation, easily achieved in the
mat). Once naturally precipitated, it has low stability and a
tendency toward recrystallization; the morphology is easily
modified (Lippmann, 1973; Rodriguez-Navarro et al., 2007).
Dawsonite is a common authigenic mineral that can have an
acicular shape, more elongated than classes A and B; usu-
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ally it forms in the eodiagenesis of continental alkaline saline
environments, when pore water is concentrated in Al, or in
mesodiagenetic CO; storage environments (Eugster, 1980;
Hellevang et al., 2013; Xia et al., 2022). However, Al was
detected inside and outside the dubiofossils. The needles can
be siderite growing during eodiagenesis as cement in pore
water by the decomposition of organic matter, with methano-
genesis produced in highly reducing anoxic non-sulfidic en-
vironments, whether lake, lagoon, or marine (Miicke, 2006;
Vuillemin et al., 2019; Lin et al., 2020); that fits the Bemara
interpretation. Several authors emphasize the mediation of
sulfate-reducing bacteria in the process, and others point to
the presence of Mg that helps in the reaction (Sapota et al.,
2006; Lin et al., 2020).

Oxalate minerals. Oxalates such as whewellite, weddel-
lite, and glushinskite, known as organic minerals, occur
mainly as biominerals in plants, fungi, and algae as well as in
diagenetic and hydrothermal occurrences (Baran, 2014; Hof-
mann and Bernasconi, 1998). The hydrothermal origin of the
needles is completely discarded, as they do not present fea-
tures that cut the layers like veins and that should be found
as late-stage hydrothermal products in the form of whewellite
(Baran, 2014; Hofmann and Bernasconi, 1998) after crystal-
lization of calcite, inversely to what is found in the Bemara
outcrop. The shapes and crystallinity also argue against the
diagenetic origin of the needles; although the occurrence of
diagenetic whewellite is generally a result of low migration
in rocks rich in organic matter, the products are druses, vugs,
and fissures within septarian concretions, normally larger
than 1cm (see Hofmann and Bernasconi, 1998, for a re-
view). The needles cannot be skeletal parts of the plants
and algae due to their generally elongated format, regular
or in small globules (Franceschi and Horner, 1980; Hofmann
and Bernasconi, 1998; Francheschi and Nakata, 2005; Baran,
2014), or in the rare occurrences of oxalate crosses included
in algae (Pueschel, 2001), which are much smaller than Be-
mara needles. However, the origin of dubiofossils as prod-
ucts of mineralization induced and/or influenced by fungi or
lichens is still plausible, mainly the result of the microenvi-
ronmental modification of the substrate by the action of hy-
phae, which leads to the mineralization of whewellite, wed-
dellite (Gadd, 2007; Gadd et al., 2012, 2014; Baran, 2014),
or glushinskite for some lichens (Wilson et al., 1980; Baran,
2014). These minerals have varied forms: some branched or
ornamented with lateral spines (Whitney, 1989; Dutton and
Evans, 1996), similar to dubiofossils. Fungi have a fossil
record since the Proterozoic (e.g., Retallack, 2022) and are
important degraders of rock and sediments on the surface
(Chen et al., 2000; Gadd, 2007; Gadd et al., 2012, 2014).
In addition, oxalates are easily modified to calcite under in-
creasing temperature (Baran, 2014). One of the points that
argues against this origin is that the needle features are not
penetrative in the subsurface (generally subvertical to verti-
cal, Friedmann et al., 1987; Chen et al., 2000; Gadd et al.,
2014; Retallack, 2022) and do not present an expansive dis-
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tribution from one or more centers, which would be the start-
ing point of mycorrhizae, hyphae, or lichens (see Gadd et al.,
2014).

Evaluating the proposals within the complex context of
the needles and considering the analyzed composition as
a probable thermal modification, it is possible, based on
the descriptive criteria (Sect. 3.1), to determine the nee-
dles’ chances of being each of these proposed minerals. Al-
though plausible, sulfates need prior precipitation of carbon-
ates (Bagbel, 2004), which leads to the following question:
how did the carbonate precipitate to favor the growth of these
needles? For dawsonite, alkalinity conditions are not proven.
For vaterite specific conditions of high pH, NH3, and super-
saturation (see Rodriguez-Navarro et al., 2007) are required,
which are also not proven but more possible because of the
presence of bacteria. For ice casts, the features should be
molds without containing any mineral fillers other than the
matrix. For fungi or lichen oxalates, it is challenging to ex-
plain the purely horizontal forms. The other proposals remain
with equal weight, as all of them show multiple forms, with
similar textures and internal features. The compositional de-
tails and the distribution of elements contribute to keeping
the proposals valid. The presence of Mg and Fe mainly in-
side the structures can be the centers of nucleation of the ma-
terial. For ikaite and siderite, magnesium may have favored
its stability (Purgstaller et al., 2017; Lin et al., 2020), and for
calcite it could contribute to the generation of unusual ex-
ternal forms (see Zhu et al., 2006). For dolomite, it may be
the trace of the original ions that, when replaced by Ca in
metamorphism, were separated into the inside. Fe can still
be a strong indication of the existence of organic matter, as
a filamentous structure or EPS, which, due to the following
mesodiagenetic, metamorphic, and epigenetic reactions, was
replaced and/or complexed by this element (see Roden et al.,
2010; Kunoh et al., 2016; Lepot et al., 2017), favoring the
hypotheses linked to microbial mats.

3.4.2 Thermal effect

The effect of the intrusion on the sedimentary package is ev-
idenced by the greater hardness in contact and the presence
of multiple fractures and veins, in addition to the thermal ef-
fect indirectly diagnosed by altered palymorphs (Silva, 2020)
in an aureole with gradual reduction of thermo-alteration up
to 2.5m below the contact, which agrees with the model
proposed by Aarnes et al. (2010) of aureole thickness of
up to 200 % of the thickness of their respective sills, in
this case ~ 50 % (see Silva, 2020). Two more features may
be evidence of this metamorphism: (1) the matrix spheres
described as clays may be metamorphic mineral such as
chlorite, which explains the interior impurity features and
rounded to straight outer walls as a result of thermal growth
(see Brammall, 1915; Weaver, 1984; Pitra and De Waal,
2001). As the spheres are never cut by the needles, it is possi-
ble that there was a later or concomitant development; (2) the

https://doi.org/10.5194/bg-20-3943-2023

3965

needles themselves with impurity and zoning features as well
as final calcite composition may be due to metamorphism.

Several authors highlight the presence of carbonates in
shales and coals only close to the contact of sills and dikes,
generated by the thermal alteration of organic matter (Saxby
and Stephenson, 1987; Meyers and Simoneit, 1999; San-
tos et al., 2009; Agirrezabala et al., 2014; Liu et al., 2016,
and references therein). This reaction, by mineral dehydra-
tion as well as organic matter decarbonization and decom-
position, produces inorganic and organic acids such as CO,
CO,, CHy, HCO3~, and water, and the intrusion adds al-
kali cations (Fe>*, Mg?>*t, and Ca’*t), which together can
circulate the sedimentary package by hydrothermal convec-
tion (Finkelman et al., 1998; Agirrezabala et al., 2014; Liu et
al., 2016). This highly acidic environment can cause the dis-
solution of pre-existing carbonates and the precipitation of
new ones (generally cementing the pores) by decreasing hy-
drothermal flow, overpressure buildup, and ion concentration
(Zekri et al., 2009; Liu et al., 2016). The conditions presented
above support the presence of needles only in this thermal au-
reole but do not justify their morphological diversity, pattern
of distribution between layers, and packing.

Compositional differences in carbonates have been found
to be linked to their proximity to intrusive bodies, with vary-
ing percentages of calcite, ankerite, dolomite, and siderite
observed along the aureole, resulting from differences in
Fe and Mg contents (Kisch and Taylor, 1966). These vari-
ations are influenced by the chemistry of the intrusive body,
its distance from the dike or sill, and diagenesis specific to
each thermal event (Finkelman et al., 1998). Furthermore,
the petrophysical and chemical properties of the sedimen-
tary package can also affect the circulation of fluids and
the precipitation of carbonates, with mudstones contributing
to overpressure buildup due to their very low permeability
(Brace, 1980; Gerdes et al., 1998; Aarnes et al., 2012; Agir-
rezabala et al., 2014). As a result, the variation in the needles
can be partially explained by the heterogeneity and differ-
ences in saturation, diffusion, and viscosity between mud-
stones and siltstones, as well as their distance from the con-
tact (see Brace, 1980; Douglas and Beveridge, 1998; Mason
et al., 2010; Sanchez-Navas et al., 2012).

3.5 Deciphering the complex history

Based on the proposed physicochemical conditions, it is pos-
sible to partially reconstruct the complex history of the nee-
dles. This history resulted from overlapping processes and
the evolution of depositional, eodiagenetic, mesodiagenetic,
and metamorphic environments. The following discussion
aims to link the various features of the needles to these stages
of the geological cycle (Fig. 11).

The carbonates discussed above, including ikaite,
dolomite, calcite, and siderite, are more likely associated
with microbial mats, whether syn-depositional or diagenetic
(Fig. 11a). The occurrence of needles with mats suggests

Biogeosciences, 20, 3943-3979, 2023



3966 J. P. Saldanha et al.: Deciphering the origin of dubiofossils from the Pennsylvanian of the Parana Basin

Syndeposition
Eodiagenesis

nucleation

agglutination

b | Mesodiagenesis

stabilization

AW Microbial mat

Water bubble Water body

~  Organic filament o~ Diagenetic reaction
Grass o Metamorphic reaction
» Process ' Weathering reaction

= Calcite

EI Telodiagenesis

reprecipitation

replacement

dissolution

— Mudstone k’\ Interstitial water
— Siltstone \/\ Meteoric water
Sandstone ' Intrusive lava

Original mineral* Thermal aureole

* = gypsum, other sulphate, ikaite, dolomite,
calcite, aragonite, siderite or other carbonate

Figure 11. History of the formation of dubiofossils. (a) Syn-depositional or eodiagenesis associated with microbial mats; upper part — model
deposition on the mat in life, lower part — authigenesis in eodiagenesis by mat degradation. (b) Mesodiagenesis and mineralization modifi-
cations. (¢) Thermal effect, dissolution, modification, and replacement of the initial minerals by calcite and precipitation. (d) Telodiagenesis
process of oxidation and cementation by hematite in recent exposure. (1-4) Examples of the result of interpreted processes; yellow arrows
point to crystal alignment on the “filament” in 1 and cemented interior in 4. In each phase processes like nucleation, agglutination, stabiliza-
tion, growth, dissolution, reprecipitation, replacement, cementation, and weathering have acted to produce and modify the dubiofossils.

an unlikely abiotic origin. The distribution of crystals may
have been morphologically controlled by the EPS or the
bacteria, serving as nucleation centers (Arp et al., 2010;
Payandi-Rolland et al., 2019). However, it is unlikely that the
EPS withstood later diagenetic and thermal modifications
(see Turner and Jones, 2005), resulting in the transformation
of the dark central axes into iron and magnesium. The
rare occurrence of a dark central axis lining mineralized
circles may indicate the original mineralization (see no. 1 in
Fig. 11).

The form of needles may be linked to branched mineral
habits, which are common in ikaite and less frequent in
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dolomite and calcite, as well as to the mineral evolution over
time due to deposition and diagenesis processes that tend to
modify or age them (see Warren, 2000; Payandi-Rolland et
al., 2019; Schultz et al., 2022). Growth may have occurred
abiotically after nucleation, driven by the physicochemical
conditions of the microenvironment (see Turner and Jones,
2005), which are specific to each mineral, as discussed in
Sect. 3.4. Alternatively, the metabolism or degradation of the
microbial mat may have induced or influenced the transfor-
mation of these crystals, causing the ovoids to unite into elon-
gated structures and resulting in elongated or branched crys-
tals with central axes (see Spadaforda et al., 2010).
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The evolution of these minerals may have been mediated
by the eodiagenetic alteration of the mat, as evidenced by
the gas domes, and the degradation of the organic content,
which established methanogenetic or sulfate-reducing con-
ditions and contributed to morphological transformations.
Changes in the chemistry of EPS or modifications in the de-
gree of carbonate supersaturation may have also played a role
(Fig. 11a; Warren, 2000; Wright and Wacey, 2004; Turner
and Jones, 2005; Zhou et al., 2015; Payandi-Rolland et al.,
2019).

Crystallization commonly occurs around filaments or EPS
in laboratory and modern environments, where it tends to
grow vertically alongside biofilms (Pratt, 2001; Vasconce-
los et al., 2006; Arp et al., 2010). However, in some cases,
purely horizontal occurrences may be the result of water loss
from clays and subsequent diagenetic flattening. Other mod-
ifications may have taken place during diagenesis, such as
the complete replacement of ikaite by glendonite or crystal-
lographic changes in dolomite and calcite (Fig. 11b).

Contact metamorphism is believed to be the primary
modifying agent responsible for the observed phenomena
(Fig. 11c). The thermal effect of the intrusion likely con-
tributed to the simultaneous growth of matrix spheres and
needles. This thermal alteration may have also caused the
acidification and significant degradation of organic matter,
which could have dissolved previous carbonate minerals and
recrystallized and precipitated calcite (as described by Liu et
al., 2016), replacing the original calcite, dolomite, siderite,
or ikaite—glendonite. As a result of this process, impurity
separation features may have formed, creating a dark center
and Ca-rich external layers, which may or may not retain the
central axis structure. Additionally, recrystallization and pre-
cipitation may have facilitated the union of aligned smaller
needles to form larger needles, with branches composed of
other mineralized tubes that were fused to the axis, resulting
in the morphologies of class B (see no. 4 in Fig. 11). The
irregularity in branching angles can be attributed to the ran-
dom distribution of EPS or filaments that served as nuclei
within the matrix. Thermal-alteration-induced precipitation
may have generated radial morphologies of classes C and D
(see no. 3 in Fig. 11), starting from a core, such as an old EPS
and/or cell or a pre-existing mineralized structure.

The observed variations in morphologies between
classes A, B, C, and D linked to the color of the matrix
appear to be related to initial sedimentological differences
(variations in the amounts of mud and silt between lay-
ers), the amount of organic matter and original crystals, and
specific physicochemical conditions during thermometamor-
phism and contact distance (Brace, 1980; Finkelman et al.,
1998). For example, class C, occurring in darker mud layers,
seems to have lower permeability, resulting in larger radial
shapes (see no. 3 in Figs. 11 and 12). Conversely, the smaller
needles of class A (Fig. 12), linked to the light gray matrix,
appear to be less influenced by reprecipitation and possibly
retain an appearance closer to the original with a central “fil-
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ament” and without the growth of long needles, possibly due
to greater relative permeability or smaller amounts of organic
matter to be degraded at that level (see no. 2 in Fig. 11).
Class B may have sufficient organic matter and permeability
to reprecipitate, grow, and unify the crystals into elongated
branched forms (Fig. 12). Class D appears to have higher
permeability, keeping the crystals as separate rods, with less
permeable regions or organic cores allowing for the growth
of radial dots (Fig. 12).

During the final intrusion process, both vertical and hori-
zontal fractures were filled with quartz, likely as a result of
hydrothermalism, as observed in other sedimentary sections
of the Parand Basin with the intrusive suite of the Paranid—
Entendeka LIP (e.g., Hartmann et al., 2012; Teixeira et al.,
2018). Finally, the posterior exposure of the outcrop resulted
in hematite oxidation and cementation in the matrix spaces,
covering the spheres and needles and replacing the organic
filaments inside the needles (Fig. 11d).

Therefore, the diversity of morphologies and internal
structures seems to be a result of the complex history and
inherent properties of the matrix (Fig. 12). In the syn-
depositional-eodiagenetic stage, initial mineral nucleation
and agglutination may have occurred abiotically. However,
due to the association with MISS, biologically mediated
processes seem more likely, and permeability and sediment
composition may have determined differences in ion distri-
bution, microenvironment formation, and the distribution of
filamentous structures (Fig. 12). In the next phase, mesodi-
agenesis, stabilization, mineral growth, and rock compres-
sion may have occurred. There is a lack of evidence of biotic
activity, but the different petrophysical properties between
siltstones and mudstones may have favored greater or lesser
grouping of minerals between layers. During metamorphism,
several processes occurred such as growth, dissolution, re-
placement by calcite, and reprecipitation (Fig. 12), whose in-
tensities may have been determined by the characteristics of
the matrix. Other later modifications in telodiagenesis may
have occurred, such as cementation and weathering. In all
stages, biotic or abiotic processes may have occurred due to
the ubiquity of life on Earth; this is a likely hypothesis, but
there are no sufficient arguments to rule out others (Fig. 12).

Remaining questions

Does the composition found indicate that the original com-
position was not calcite? Despite the fact that, according to
the data, calcite is the main material present, the distribu-
tion of elements found by EDS suggests that regions of high
calcium concentration are mainly found around the needles,
with iron and magnesium located in the center and the ma-
trix. This raises questions about whether Fe and Mg should
have covered a smaller area if they were only impurities in
the original calcite. One possibility is that the concentration
of these elements indicates the presence of another mineral,
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Figure 12. Model of differences between morphological classes (A-D) generated by variations in matrix properties in each of the stages of
the complex history of mineralization. Associated matrix: class A — light gray siltstone; class B — black to dark gray siltstone; class C — black
mudstone; class D — dark to light gray siltstone. Different intensities of the processes occurred, determining the morphologies and increasing
the final morphological complexity. At each stage, the most likely process is indicated: biotic or abiotic, without being able to rule out the

other hypotheses.

either original or substituted during metamorphism, such as
ankerite, siderite, dolomite, or high Mg-calcite.

If these morphologies are mineralized by microbial mats,
why are features with a certain similarity not found at the
base of the outcrop? For this, three possible explanations are
suggested. One is that environmental factors, such as depth
or circulation, may have restricted deposition to only the top
of the Bemara section. Another possibility is that some dia-
genetic or posterior process consumed the mineral from the
needles far from the thermal aureole, as metamorphism may
have conditioned greater resistance to weathering. The third
option is that mineralization was entirely promoted by the
thermal effect, with the intrusion contributing ions and de-
grading the organic matter necessary for calcite crystalliza-
tion. The needles may have used the filamentous structure of
fossilized EPS as a template for growth in different forms,
which would justify their absence away from contact.

Although the hypothesis discussed above considers the
possibility of biofilms and the needles being involved in the
mineralization process, it is still unclear whether the abi-
otic hypothesis is completely refuted. Two hypotheses can
be tested: one is that the needles are depositional-diagenetic
abiotic calcite, which, due to specific geochemical conditions
(such as the influence of Mg?* ions on growth; see Zhu et
al., 2006), could result in the exotic forms found. The sec-
ond is that the rods are purely metamorphic abiotic calcite,
since internal features of opaque axis in the center, compo-
sitional changes, crystallinity, and zonation can also be pro-
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duced by metamorphism (Pitra and De Waal, 2001; Mason
and Liu, 2018). The varied shapes and distribution are ex-
plained by physicochemical conditions of the substrate and
intrusion (Brace, 1980; Finkelman et al., 1998; Agirrezabala
etal., 2014).

Considering the current proposal of the ubiquity of life
across the Earth’s crust (see Merino et al., 2019; MacMahon
and Ivarsson, 2019), is it possible that both early mineral-
ization (syn-depositional or diagenetic) and thermal modifi-
cation are mediated by bacteria? Although few studies have
been conducted on this topic (Bengtson et al., 2017; Ivars-
son et al., 2020, 2021), the heat of the intrusion, the pres-
ence of organic material, and the chemical reactions involved
could create favorable conditions for the establishment of a
deep biosphere that would help increase the diversity and
complexity of needle morphologies. However, the lack of
information prevents testing this hypothesis, so it is unclear
whether the occurrence is mostly biotic.

3.6 Biogenity criteria for biominerals and biomimetic
minerals

The needles described in this study demonstrate the lack
of conclusive evidence for the biogenicity of biominerals
and inorganic minerals. Despite a thorough description and
comparison, there were not enough convincing arguments to
discard any hypothesis, although an origin as a controlled
biomineral seems less likely. The size, shape, structure, tex-
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ture, and arrangement with the matrix observed in the needles
are not necessarily diagnostic of abiotic or biotic products.
These characteristics can be present in natural materials re-
gardless of their origin, which is consistent with the views
of several authors who have emphasized the challenges of
using these features as biogenicity criteria (Garcia Ruiz et
al., 2002; Weiner and Dove, 2003; McLoughlin and Grosch,
2015; McMahon et al., 2021; Rouillard et al., 2021; McMa-
hon and Cosmidis, 2022). This highlights the importance of
further investigation of both biominerals and biomimetic in-
organic minerals (Dupraz et al., 2009).

The irregular spacing and periodicity of branches ob-
served in the needles are not typical of controlled biominer-
als but are rather common in induced, influenced, and abiotic
biominerals (e.g., Shearman et al., 1989; Bindschedler et al.,
2014). The composition of calcite, a mineral produced by
various abiotic and biotic processes (Maliva, 1989; Weiner
and Dove, 2003; Davies and Smith, 2006; Baabel, 2007; Sal-
vany et al., 2007; Benzerara and Menguy, 2009; Warren,
2016; Benzerara et al., 2019), is a result of complex histo-
ries and thermal transformations, making it challenging to
eliminate any hypothesis. Furthermore, the biotic origin of
the needles is supported by their co-occurrence with micro-
bial mats, a feature that is associated in the literature with the
crystallization of several minerals, whether induced or influ-
enced. However, in transitional environments, abiotic crystal-
lizations are also common (see Warren, 2000; Baabel, 2004;
Noftke, 2010).

The high variability in morphology and taphonomic char-
acteristics has often been used as evidence of biogenicity for
microfossil-like and biomineral-like objects (Whitney, 1989;
Buick, 1990; Verrecchia and Verrecchia, 1994; Douglas and
Beveridge, 1998; Weiner and Dove, 2003; Dodd et al., 2017).
However, as demonstrated by the needles, this variability can
also be the result of a complex history involving overlapping
processes, physicochemical and microenvironmental varia-
tions, and other factors, making it a less conclusive criterion
for mineral biogenicity.

Although the descriptive survey and comparison provide
strong evidence for a biogenic origin of the needles, it is
still not possible to completely rule out an abiotic hypoth-
esis. Therefore, the needles exemplify the challenges of in-
vestigating biominerals and highlight the need to consider
the complex history, superimposed processes, and ubiquity
of life in the investigation of biomineral-like objects.

4 Conclusion

We have proposed a descriptive protocol for dubiofossils,
building upon previous research in the field. Our protocol
comprises four classes of attributes: morphology, structure,
and texture; relationship with the matrix; composition; and
context. By thoroughly examining these attributes, we can
gather valuable insights that aid in determining the indige-
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nous and syngenetic nature of dubiofossils, as well as com-
paring them to similar biotic and abiotic objects. Itararé’s du-
biofossils are products of nature, exhibiting a wide range of
morphologies that distinguish them from any known miner-
als. The absence of a consistent pattern in their diverse forms
helps dismiss hypotheses suggesting controlled biomineral-
ization. However, it remains uncertain whether the material
could have originated as an abiotic mineral or as an induced
or influenced biomineral. The complexity of their geologi-
cal history and the multitude of contributing factors have re-
sulted in this distinctiveness. Consequently, we propose that
dubiofossils are likely the outcome of a combination of pro-
cesses and a complex geological history.

1. Environment. A Pennsylvanian transitional setting was
established, characterized by a shallow lake close to the
sea and the reception of continental deglaciation fluxes,
in conjunction with semi-arid conditions that can re-
duce the water column and extensive microbial mats
at the bottom. This environment provides many possi-
bilities for the presence of original minerals, such as
evaporitic sulfate, depositional-eodiagenetic ikaite and
dolomite, abiotic calcite, biofilm-mediated calcite, and
eodiagenetic aragonite, vaterite, dawsonite, or siderite.
Although the co-occurrence with MISS reinforces the
likelihood of biotic origin, the possibility of an abiotic
origin cannot be completely ruled out.

2. First precipitation. Regardless of the type of mineral,
the deposition occurred on or within the mats (under-
water or eodiagenetic conditions) in which the EPS and
bacterial filamentous structures would serve as nucle-
ation centers and in which initial spheres would be de-
posited by influence or induction of bacteria.

3. Diagenesis. The various eodiagenetic and mesodiage-
netic chemical reactions, including mat degradation,
would serve to modify and age the crystals, aggregat-
ing spheres in rods or growing ramifications.

4. Intrusion and thermal alteration. The intrusion of a Cre-
taceous sill from the Serra Geral Group has caused sig-
nificant changes in the sedimentary package in con-
tact. The heat generated by the intrusion led to the oc-
currence of new reactions, high degradation of organic
matter, dissolution, reprecipitation, and replacement of
original minerals by calcite. These thermometamorphic
processes have resulted in considerable variability in
forms, primarily due to physicochemical differences in
the matrix.

5. Posterior processes. Quartz filling of fractures and veins
at the end of intrusion (Cretaceous) and cementation—
hematite replacement in the matrix occurred through
telodiagenetic exposure.

At each stage, variations in the environmental and physical—-
chemical characteristics of the substrate play a significant
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role in shaping the resulting products. Factors such as wa-
ter content, organic matter, mineral composition, and spe-
cific properties of silt and clay layers contribute to the unique
conditions for reactions that form and modify the needle-like
structures. As a result, distinct processes occur with vary-
ing intensities in each silty and muddy layer within this con-
tact section of the turbidites and the sill. These processes
include nucleation and agglutination reactions during syn-
deposition—eodiagenesis, agglutination, aging, stabilization,
and mineral growth in mesodiagenesis, dissolution, repre-
cipitation, replacement, and growth during contact metamor-
phism, as well as cementation, weathering, and subsequent
processes. It is through the interplay of these processes that
the diverse forms of dubiofossils emerge.

The precise definition of the original material remains a
subject of debate for two primary reasons. Firstly, the mor-
phological diversity observed can be attributed to a succes-
sion of processes that have occurred throughout the complex
history of the specimen. This has resulted in the presence
of diagnostic forms that support a particular hypothesis, as
well as other forms that do not refute it. Secondly, the final
composition has been influenced by thermometamorphic al-
teration, which has led to the replacement and modification
of the original composition of the recovered calcite needles.
This alteration has obscured the initial mineralogy, making
it challenging to determine conclusively. As a result, the hy-
potheses of both biotic and abiotic sulfates and carbonates
remain plausible explanations, and the material remains as a
dubiofossil.

The needles described in this study serve as an example
of how complex forms, wide-ranging morphology, organized
textures, and composition can be the result of a complex his-
tory for dubiofossils. Therefore, these attributes should be
carefully investigated and used with caution as evidence of
biogenicity for biomineral-like objects. It is important to note
that exotic forms can be present in both abiotic and biotic
products of nature, emphasizing the need for thorough anal-
ysis and evaluation.
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