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S1. Obtaining Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from 

BIOME4.  

BIOME4 (Kaplan et al., 2003) is a coupled biogeography and biogeochemistry with which we can 

simulate the equilibrium distribution of biomes from latitude, atmospheric CO2 concentration, mean monthly 

precipitation, temperature, and cloud cover. On of the outputs provided by the model is monthly leaf area index 

(LAI), which we can convert to Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) using Beer-

Lamberth law:   

fAPAR = 1 – exp (–k. LAI)       (2) 

where k ≈ 0..5, a constant extinction coefficient (Saitoh et al., 2012). 

fAPAR simulated from BIOME4 under modern-day conditions (2010-2015 seasonal climatology; Cucchi et al., 

2020) overestimated fAPAR compared to observed fAPAR from NASA/GIMMS fAPAR 3g from the same 

period. As such, we rescaled the simulated BIOME fAPAR for each experiment such that:  

𝑓𝐴𝑃𝐴𝑅𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑓𝐴𝑃𝐴𝑅𝑒𝑥𝑝
𝑓𝐴𝑃𝐴𝑅𝑜𝑏𝑠

𝑓𝐴𝑃𝐴𝑅𝑠𝑖𝑚
)      (3), 

𝑤ℎ𝑒𝑟𝑒 𝑓𝐴𝑃𝐴𝑅𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 is the monthly rescaled fAPAR for that experiment, 𝑓𝐴𝑃𝐴𝑅𝑒𝑥𝑝 is the original fAPAR 

output from BIOME4 for that experiment and 
𝑓𝐴𝑃𝐴𝑅𝑜𝑏𝑠

𝑓𝐴𝑃𝐴𝑅𝑠𝑖𝑚
 is a constant scaling factor, determined for each biome, 

where 𝑓𝐴𝑃𝐴𝑅𝑜𝑏𝑠 is the monthly NASA/GIMMS fAPAR 3g median value for that biome, and 𝑓𝐴𝑃𝐴𝑅𝑠𝑖𝑚 is the 

monthly fAPAR median value simulated by BIOME4 for that biome. This method provided a rescaled fAPAR 

for the modern day that was correlated at 0.63 with the observational data, compared to 0.13 for the original 

BIOME4 fAPAR output for the same period, a reasonable estimation of fAPAR for each of the experiments.  

S2. Human sensitivity experiments for modern and LGM conditions   

 

Since we were interested in isolating out the effect of different climate and CO2 scenarios in driving 

global pattern of burnt area (BA), fire size (FS) and fire intensity (FI), it was essential to ensure no confounding 

effects were introduced through the presence of predictors related to human activity.  

Setting human predictors to zero under modern conditions had no effect on FI but a strong effect on BA and FS, 

leading to large increases when human activity was “off” (see Table S.2.1). However, increase in BA and FS at 

the modern was driven by road density and to a lesser extent cropland, not human population. This was expected 

as the original GLM models are not very sensitive to human population alone (Haas et al., 2022). The limited 

impact of population density in driving global fire regimes in the GLM models is in line with research showing 

the importance of anthropogenic landscape fragmentation when modelling how humans influence fire regimes, as 

opposed to focusing solely on the effect of human population (e.g. Bistinas et al., 2014, Knorr et al 2014, 2016; 

Kelley et al., 2019; Harrison et al., 2021). 

 

 Table S.2.1. Sensitivity of GLM models to human activity using both observations and BIOME4 derived 

vegetation and GPP. 
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 Although there are global reconstructions of human population density for the Holocene (e.g. HYDE, 

KK10), these are poorly constrained before the past 2-3 thousand years, as is shown by the marked differences 

between existing global maps. Uncertainty is even greater regarding population densities at the LGM. As such, 

we did not deem it feasible to run a global sensitivity analysis to assess the sensitivity of LGM fire regimes to 

human activity. However, we did run three regional analysis (Europe, Africa and Australia) at the LGM with 

human population (LGM climate/LGM CO2 popd) and without (LGM climate/LGM CO2) and compared the 

amplitude of change between these two experiments with the amplitude of change between the realistic LGM 

experiment (LGM climate/LGM CO2) and the realistic modern experiment (MOD climate/MOD CO2). This 

allowed us to assess whether setting human population densities to zero had a significant impact on the LGM and 

whether it had the potential to influence the global trends between the LGM and the MOD experiments. For the 

European experiment, we used the gridded data produced by Tallavaara et al., (2015). For the African and 

Australian experiments, we used the estimated population densities from Gautney and Holliday (2015) for areas 

that were considered habitable and set the population density to zero in areas considered uninhabitable. We 

considered an area uninhabitable when it was a modelled as desert or barren by BIOME4 (Kaplan et al., 2003) or 

was at an altitude above 3000 m, following the methodology by Gautney and Holliday (2015). We compared our 

total and habitable areas to the estimates of Gautney and Holliday (2015). Although there were some differences, 

they were reasonably similar (see Table 1; Figure 1).  

 

Table S.2.2. Habitable land area and population estimates for Africa and Australia 

 

Inputs for land cover and P Model GPP 

(Cucchi et al., 2020) 

ESA CCI 

Landcover 
NASA/GIMS 

fAPAR 3g 

BIOME4 

(Kaplan et al., 

2003) 

Global estimates from the 
literature 

Burnt area (millions km2) 

Human activity on 4.42 4.25 [1.87 – 4.6] (Humber et al., 
2019) 

Human activity off 7.41 11.27  

% change 40.35 62.29  

Fire size (km2) 

Human activity on 3.36 3.61 4.4 (Andela et al., 2019) 
(does not 

include wildfires smaller than 

0.21 km2) 
Human activity off 5.34 6.25  

% change 37.08 42.24  

Fire intensity (W.km-1) 

Human activity on 40.00 31.41  

Human activity off 39.20 31.17  

% change − 2.04 − 0.77  
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 Africa Australia 

 Total land 

area (km2) 

Habitable 

(km2) 

% 

Habitable 

Number of 

people 

Total land 

area (km2) 

Habitable 

(km2) 

% 

Habitable 

Number of 

people 

AWIESM1 34,028,261 20,982,697 62% 2,566,184 9,456,315 6,051,339 64% 30,257 

MPI-ESM1.2 34,071,392 21,553,863 63% 2,636,037 9,456,315 7,048,721 75% 32,995 

CESM1.2 34,322,097 22,199,317 65% 2,714,976 9,421,515 6,599,033 70% 32,995 

Gautney and 

Holliday 

(2015) 

30,493,900 12,846,597 42% 1,571,139 11,021,024 9,418,730 85% 47,093 

 

 

Figure S.2.1. Maps of deserted areas at the LGM (shown in red) (a) showing the extent of the Sahara and 

Arabian Deserts according to Gautney and Holliday (2015), (b) showing the Great Victorian Desert, the 

Simpson Desert, and the Great and Little Sandy Deserts according to Gautney and Holliday (2015), (c) showing 

the extent of desert and barren simulated by BIOME4 for Africa and (d) showing the extent of desert and barren 

areas simulated by BIOME4 for Australia 

 

Although some hunter-gatherer communities foraged for plants at the LGM (Liu et al., 2013), there is large 

uncertainty surrounding the extent of this practice at a global scale. Additionally, cropland in the GLMs is 

understood as a large-scale landscape feature, significant at least a ~ 55km resolution at the equator. It is 

reasonable to assume that hunter-gatherer communities at the LGM did not cultivate crops on this scale. Roads 

and crop cover were therefore set to zero under all LGM experiments, including the experiment with human 

population estimates.  
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We observed very slight differences between the regional LGM experiments when human population 

densities were included and when they were not (less than 5% change for BA, FS and FI). These differences were 

much smaller than the differences between the LGM experiment and the MOD experiment (see Table 2).  

 

Table S2.3. Regional BA, FS and FI estimates for MOD climate/MOD CO2, LGM climate/LGM CO2 and LGM 

climate/LGM CO2 popd 

 

 AWI-ESM1 MPI-ESM1.2 CESM1.2 

 Europe Africa Australia Europe Africa Australia Europe Africa Australia 

Burnt area (km2) 

MOD 

climate/MOD 

CO2, 

101,041 6,568,740 1,491,914 99,222 6,439,953 1,441,669 97,967 6,323,321 1,490,743 

LGM 

climate/LGM CO2 

20,124 3,099,159 2,108,874 22,494 1,410,410 1,135,466 10,409 

 

1,534,357 886,142 

LGM 

climate/LGM CO2 

popd 

20,210 3,114,700 2,113,961 22,603 1,417,576 1,138,501 10,500 1,542,090 890,406 

% change between 

MOD and LGM 

− 80 − 53 41 − 77 − 78 − 21 − 89 − 76 − 41 

% change between 

LGM and LGM 

popd 

0.43 0.50 0.24 0.48 0.27 −  0.85 −  0.85 0.50 0.48 

Fire size (km2) 

MOD 

climate/MOD 

CO2, 

5.12 8.88 11.07 4.97 9.33 11.96 6.07 9.22 12.79 

LGM 

climate/LGM CO2 

6.51 9.05 12.93 5.97 7.98 11.87 7.32 7.52 13.72 

LGM 

climate/LGM CO2 

popd 

5.51 9.05 12.93 5.97 7.98 11.87 7.51 7.52 13.72 

% change between 

MOD and LGM 

27 2 17 20 14 0.75 21 − 18  7 

% change between 

LGM and LGM 

popd 

0 0 0 0 0 0 0 0 0 

Fire intensity (W.km -1) 
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MOD 

climate/MOD 

CO2, 

29.97 16.65 20.80 30.43 16.48 20.09 27.19 16.74 19.63 

LGM 

climate/LGM CO2 

37.66 17.90 18.14 37.16 20.56 21.81 41.39 23.68 29.89 

LGM 

climate/LGM CO2 

popd 

37.62 17.81 18.05 37.13 20.46 21.71 44.61 23.53 29.75 

% change between 

MOD and LGM 

26 8 − 9 22 25 9 52 41 52 

% change between 

LGM and LGM 

popd 

− 0.1 − 0.5 − 4.5 − 0.1 − 0.5 − 0.5 − 0.5 − 0.6 − 0.5 
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Figure S.2.2. Percentage change of BA, FS and FI when including population estimates at the LGM for Europe  

 

 

Figure S.2.3. Percentage change of BA, FS and FI between the realistic LGM experiment (LGM climate/LGM 

CO2) and the realistic modern experiment (MOD climate/MOD CO2) for Europe 
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Figure S.2.4. Percentage change of BA, FS and FI when including population estimates at the LGM for Africa 

 

Figure S.2.5. Percentage change of BA, FS and FI between the realistic LGM experiment (LGM climate/LGM 

CO2) and the realistic modern experiment (MOD climate/MOD CO2) for Africa 
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Figure S.2.6. Percentage change of BA, FS and FI when including population estimates at the LGM for Australia  

 

Figure S.2.7. Percentage change of BA, FS and FI between the realistic LGM experiment (LGM climate/LGM 

CO2) and the realistic modern experiment (MOD climate/MOD CO2) for Australia 
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The results of these sensitivity analysis, combined with the large uncertainty associated with human 

population numbers at the LGM, justify our approach of setting human predictors to zero. In doing so, we are not 

stating that the effect of human impact was negligible; rather that due to large uncertainties around human activity 

at the LGM, the most transparent approach is to run all the experiments in a counterfactual “human-less” world, 

both in the modern and the LGM to focus on the effects of climate and CO2. The aim of this approach was to 

eliminate any confounding effect associated with human activity to concentrate on the effects of LGM climate 

and CO2 on global fire regimes. Under modern conditions, human activity has been shown to have a negative 

effect on biomass burning (e.g Pechony and Shindell, 2010; Bowman et al., 2020;  Marlon et al., 2008; Wang et 

al., 2010) with this suppression effect most likely driven by population growth and land-use change leading to 

increased landscape fragmentation which can suppress fire spread (e.g. Knorr et al., 2014; Andela et al., 2016; 

Harrison et al., 2021). By setting our human predictors to zero we also account for this suppression effect at the 

modern. Whilst we could have chosen to include human predictors, since doing so does did not affect overall 

trends and introduced large uncertainty, we decided against it and believe this approach to be appropriate. 

S3. Obtaining burnt area mask for fire size and fire intensity experiments  

In this analysis, we were interested in how the global pattern of burnt area (BA), fire size (FS) and fire 

intensity (FI) change under different climate and CO2 scenarios. Both the GLM models for FS and FI return values 

of estimated FS and FI assuming a fire occurs since the models were fitted to observed data for FS and FI. When 

no fire occurred, there was no data for either FS or FI. As such, these models cannot determine themselves if an 

ignition occurred.  

To study changes in FS and FI, it is necessary to apply an ignition threshold, which we obtained from 

the BA model. The burnt area (BA) generalized linear model (GLM) provides a robust reconstruction of BA under 

the model training conditions with a 0.8 correlation between the observational data and the fitted values(Haas et 

al., 2022). There are no systematic biases evident from plotting the residuals of the model but there is a 

compression of the range of reconstructed values, leading to apparent over- (under-) prediction at the low (high) 

extremes. This is to be expected, as the observational values reflect what really happened over the study period. 

Whilst some exceptionally large/intense wildfires occurred, many grid-cells also had no fire activity whilst the 

fitted values represent the probability of burning in each grid-cell, regardless of what happened during the study 

period. We obtained the ignition threshold value by studying the distribution of reconstructed BA values under 

the original model training period (2010-2015) when the observed BA value is 0, representing 26% of the grid-

cells (a total of 14,816 data points and associated fitted values). We then took the median value of these fitted 

values as a threshold for ignition.  
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Figure S3.1. Histograms showing the distribution of the fitted values by the GLM BA model when observed 

BA values are 0 in the 2010-2015 climatology for (a) the whole range and (b) the range up to the 95th percentile. 

The red line shows the median value, and the black lines show the 10th and 90th percentile values. 

 

 10th percentile 50th percentile 90th percentile 

Fitted BA 0.0001 0.0011 0.0084 

 

Table S3.1. Statistics for the fitted BA distribution when observed BA is 0 for the 2010-2015 climatology. 

 

Figure S.3.2. Maps of BA ignition mask (where no burning is assumed to occur) under modern-day conditions 

(2010-2015 climatology) showing in red (a) where the observational BA values are 0 and (b) where the fitted 

BA values are equal or lower to 0.0011. 
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S4. Mapped results from the 12 experiments for all three LGM scenarios. 

 

 

 

Figure S4.1. Changes in burnt area (BA), fire size (FS) and fire intensity (FI) using modern day climate (MOD) 

or Last Glacial Maximum (LGM) climate from the MPI-ESM1.2 simulation with either modern (395 ppm) or 

LGM (185 ppm) CO2. 
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Figure S4.2. Changes in burnt area (BA), fire size (FS) and fire intensity (FI) using modern day climate (MOD) 

or Last Glacial Maximum (LGM) climate from the AWIESM1 simulation with either modern (395 ppm) or 

LGM (185 ppm) CO2. 
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Figure S4.3. Changes in burnt area (BA), fire size (FS) and fire intensity (FI) using modern day climate (MOD) 

or Last Glacial Maximum (LGM) climate CESM1.2 simulation with either modern (395 ppm) or LGM (185 

ppm) CO2. 
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Figure S4.4. Map showing which model variable was responsible for some of the most important grid-cell 

changes between the realistic modern-day climate (MOD) 395 ppm experiment and the realistic Last Glacial 

Maximum (LGM) 185 ppm scenarios for BA, FS and FI for (a) the AWIESM1 LGM scenario, (b) the MPI-

ESM1.2 LGM scenario and (c) the CESM1.2 LGM scenarios. Faded colors represent that the effect was a 

negative one, leading to a decrease in the wildfire property at the LGM whilst full colors represent an increase in 

the wildfire property at the LGM. 

 

 



15 
 

 

Figure S4.5. Map showing which model variable was responsible for some of the most important grid-cell 

changes between the MOD 395 ppm and LGM 395 ppm experiment (LGM climate/MOD CO2) for BA, FS and 

FI for (a) the AWIESM1 LGM scenario, (b) the MPI-ESM1.2 LGM scenario and (c) the CESM1.2 LGM 

scenarios. Faded colors represent that the effect was a negative one, leading to a decrease in the wildfire 

property at the LGM whilst full colors represent an increase in the wildfire property at the LGM.  
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Figure S4.6. Boxplots showing relative importance of each predictor (GPP; gross primary production, 

GPP.s.; GPP seasonality, tree; tree cover, shrub; shrub cover, grass; grass cover, DD; dry days, DD.s.; dry days 

seasonality, VPD; vapour pressure deficit, DTR; diurnal temperature range, wind; wind speed) in driving the 

anomaly between the MOD 395 ppm and LGM 395 ppm experiment.  For each grid cell common to both 

experiments (on modern-day continental shelves and masking the LGM ice sheets), the predictor which cause 

the largest change in the anomaly between the two experiments when it was excluded from the GLM model was 

retained, it is the change in anomaly that is shown here. This was taken as an indicator of relative importance of 

that predictor in driving the observed change for (a) the AWIESM1 LGM scenario, (b) the MPI-ESM-1.2 LGM 

scenario and (c) the CESM1.2 LGM scenario. A positive anomaly represents the variable driving an increase in 

BA, FS or FI at the LGM and a negative anomaly represents the variable driving a decrease in BA, FS or FI at 

the LGM.  
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Figure S4.7. Map showing which model variable was responsible for some of the most important grid-cell 

changes between the realistic MOD 395 ppm and MOD 185 ppm experiment (MOD climate/LGM CO2) for BA, 

FS and FI for (a) the AWIESM1 LGM scenario, (b) the MPI-ESM1.2 LGM scenario and (c) the CESM1.2 

LGM scenarios. Faded colors represent that the effect was a negative one, leading to a decrease in the wildfire 

property at the LGM whilst full colors represent an increase in the wildfire property at the LGM.  
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Figure S4.8. Boxplots showing relative importance of each predictor (GPP; gross primary production, 

GPP.s.; GPP seasonality, tree; tree cover, shrub; shrub cover, grass; grass cover, DD; dry days, DD.s.; dry days 

seasonality, VPD; vapour pressure deficit, DTR; diurnal temperature range, wind; wind speed) in driving the 

anomaly between the MOD 395 ppm and MOD 185 ppm experiment.  For each grid cell common to both 

experiments (on modern-day continental shelves and masking the LGM ice sheets), the predictor which cause 

the largest change in the anomaly between the two experiments when it was excluded from the GLM model was 

retained, it is the change in anomaly that is shown here. This was taken as an indicator of relative importance of 

that predictor in driving the observed change for (a) the AWIESM1 LGM scenario, (b) the MPI-ESM-1.2 LGM 

scenario and (c) the CESM1.2 LGM scenario. A positive anomaly represents the variable driving an increase in 

BA, FS or FI at the LGM and a negative anomaly represents the variable driving a decrease in BA, FS or FI at 

the LGM.  

 

S5. Comparison of experiments with the Reading Paleofire Database (RPD) 

 

BA experiments   MPI_ESM1.2 AWIESM1 CESM1.2 LGM 

Scenario 

RPD 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

Negative RPD anomalies  

Number of records 35 20 21 13 17 21 10 20 20 17 

Successful identification 

(percentage)  57 60 37 49 60 29 57 57 49 

Positive RPD anomalies 
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Number of records 16 3 0 8 6 0 5 0 0 3 

Successful identification 

(percentage)  19 0 50 38 0 31 0 0 19 

Total RPD anomalies  

Number of records 51 23 21 21 23 21 15 20 20 20 

Successful identification 

(percentage)  45 41 41 45 41 29 39 39 39 

 

Table S5.1. Comparison of sign in BA anomalies (between the MOD climate/MOD CO2 experiment and other 

three experiments respectively) at the location of each RDP (Harrison et al., 2022) charcoal-based 

reconstructions record. A positive anomaly represents increased biomass burning, and a negative anomaly 

represents decrease biomass burning. A successful identification means that the sign of the experiment anomaly 

and the sign of the RPD charcoal-based reconstructions are the same. 

 

FS experiments  MPI_ESM1.2 AWIESM1 CESM1.2 LGM 

Scenario 

RPD 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

Negative RPD anomalies  

Number records showing 

reduced burning 35 10 15 7 11 9 8 10 14 11 

Successful identification 

(percentage)  29 43 20 31 26 23 29 40 31 

Positive RPD anomalies 

Number records showing 

increased burning 16 6 2 7 8 8 9 4 2 4 

Successful identification 

(percentage)  38 13 44 50 50 56 25 13 25 

Total RPD anomalies  

Total number of records 51 16 17 14 19 17 17 14 16 15 

Successful identification 

(percentage)  31 33 27 37 33 33 27 31 29 

 

Table S5.2. Comparison of sign in FS anomalies (between the MOD climate/MOD CO2 experiment and other 

three experiments respectively) at the location of each RDP (Harrison et al., 2022) charcoal-based 

reconstructions record. A positive anomaly represents increased biomass burning, and a negative anomaly 

represents decrease biomass burning. A successful identification means that the sign of the experiment anomaly 

and the sign of the RPD charcoal-based reconstructions are the same. 

 

FI experiments  MPI_ESM1.2 AWIESM1 CESM1.2 LGM 
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Scenario 

RPD 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

LGM 

190 

MOD 

190 

LGM 

395 

Negative RPD anomalies  

Number records showing 

reduced burning 35 5 7 9 7 7 11 3 5 4 

Successful identification 

(percentage)  14 20 26 20 20 31 9 14 11 

Positive RPD anomalies 

Number records showing 

increased burning 16 10 12 7 10 12 8 9 11 8 

Successful identification 

(percentage)  63 75 44 63 75 50 56 69 50 

Total RPD anomalies  

Total number of records 51 15 19 16 17 19 19 12 16 12 

Successful identification 

(percentage)  30 37 31 33 37 37 24 31 24 

 

Table S5.3. Comparison of sign in FI anomalies (between the MOD climate/MOD CO2 experiment and other 

three experiments respectively) at the location of each RDP (Harrison et al., 2022) charcoal-based 

reconstructions record. A positive anomaly represents increased biomass burning, and a negative anomaly 

represents decrease biomass burning. A successful identification means that the sign of the experiment anomaly 

and the sign of the RPD charcoal-based reconstructions are the same. 

 

 

 

Figure S5.1 Comparison of anomalies between the experiment outputs from the MPI-ESM1.2 LGM scenario 

with the Reading Paleofire Database (RPD) for (a) the relatistic BA LGM experiment (b) the BA LGM 
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climate/MOD CO2 sensitivity experiment and (c) the BA MOD climate/LGM CO2 sensitivity experiment (d) the 

relatistic FS LGM experiment (e) the FS LGM climate/MOD CO2 sensitivity experiment and (f) the FS MOD, 

(g) the relatistic FI LGM experiment (h) the FI LGM climate/MOD CO2 sensitivity experiment and (i) the FI 

MOD climate/LGM CO2 sensitivity experiment climate/LGM CO2 sensitivity experiment. The modeled positive 

LGM-MOD anomalies are shown in red  and LGM-MOD negative anomalies in blue. Dotted red (positive 

anomaly) and blue (negative anomaly) points show the location of the RPD records for the LGM. The LGM ice 

sheets are shown in dark blue.  

 

 

 

 

Figure S5.2 Comparison of anomalies between the experiment outputs from the AWIESM1 LGM scenario with 

the Reading Paleofire Database (RPD) for (a) the relatistic BA LGM experiment (b) the BA LGM climate/MOD 

CO2 sensitivity experiment and (c) the BA MOD climate/LGM CO2 sensitivity experiment (d) the relatistic FS 

LGM experiment (e) the FS LGM climate/MOD CO2 sensitivity experiment and (f) the FS MOD, (g) the 

relatistic FI LGM experiment (h) the FI LGM climate/MOD CO2 sensitivity experiment and (i) the FI MOD 

climate/LGM CO2 sensitivity experiment climate/LGM CO2 sensitivity experiment. The modeled positive 

LGM-MOD anomalies are shown in red  and LGM-MOD negative anomalies in blue. Dotted red (positive 

anomaly) and blue (negative anomaly) points show the location of the RPD records for the LGM. The LGM ice 

sheets are shown in dark blue.  
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Figure S5.3 Comparison of anomalies between the experiment outputs from the CESM1.2 LGM scenario with 

the Reading Paleofire Database (RPD) for (a) the relatistic BA LGM experiment (b) the BA LGM climate/MOD 

CO2 sensitivity experiment and (c) the BA MOD climate/LGM CO2 sensitivity experiment (d) the relatistic FS 

LGM experiment (e) the FS LGM climate/MOD CO2 sensitivity experiment and (f) the FS MOD, (g) the 

relatistic FI LGM experiment (h) the FI LGM climate/MOD CO2 sensitivity experiment and (i) the FI MOD 

climate/LGM CO2 sensitivity experiment climate/LGM CO2 sensitivity experiment. The modeled positive 

LGM-MOD anomalies are shown in red  and LGM-MOD negative anomalies in blue. Dotted red (positive 

anomaly) and blue (negative anomaly) points show the location of the RPD records for the LGM. The LGM ice 

sheets are shown in dark blue.  
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