

Supplement of

A modeling approach to investigate drivers, variability and uncertainties in O_2 fluxes and $O_2 : CO_2$ exchange ratios in a temperate forest

Yuan Yan et al.

Correspondence to: Yuan Yan (yuanyantwincities@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Abbreviation	Unit	Full name
ARQ	mol mol ⁻¹	apparent respiratory quotient
b	µmol m ⁻² s ⁻¹ **	intercept of Ball-Berry model after Collatz et al. (1991)
CO _{2 atm}	ppm	atmospheric CO ₂ mole fraction
c _p	J kg ⁻¹ K ⁻¹	specific heat capacity of air
DOY		day of year
Equ ₀₂	ppm	difference of O_2 mole fraction from 209750 ppm (derived as the intercept
		of the relationship between measured atmospheric O2 and CO2 mole
		fractions, see Table 1 in the main text)
ER	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio
ERA	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of gross assimilation
ER ^b _A	mol mol ⁻¹	a priori mean of ER _A
$\mathrm{ER}_{\mathrm{An}}$	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of net assimilation
ER_{conc}	mol mol ⁻¹	atmospheric O ₂ :CO ₂ mole fraction ratio
ER ^z _{conc}	mol mol ⁻¹	height dependent atmospheric O ₂ :CO ₂ mole fraction ratio
ER _{eco}	mol mol ⁻¹	ecosystem O ₂ :CO ₂ exchange ratio
ER ^z _{eco}	mol mol ⁻¹	height dependent ecosystem O ₂ :CO ₂ exchange ratio
ER _R	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of ecosystem respiration
ER ^b _R	mol mol ⁻¹	a priori mean of ER _R
ER _{rd}	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of leaf dark respiration
ER _{soil}	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of soil respiration
ER _{stem}	mol mol ⁻¹	O ₂ :CO ₂ exchange ratio of stem respiration
F _A	µmol m ⁻² s ⁻¹	gross assimilation CO2 flux (gross carboxylation minus photorespiration)
F ^b _A	µmol m ⁻² s ⁻¹	a priori mean of F _A
F _{CO2}	µmol m ⁻² s ⁻¹	net ecosystem CO ₂ flux
$F_{CO_2}^z$	µmol m ⁻² s ⁻¹	height dependent net ecosystem CO ₂ flux
F_{CO_2}	µmol m ⁻² s ⁻¹	net turbulent CO ₂ flux
f _{DBH}		fraction of stem diameter to the diameter at breast height

$\mathbf{f}_{\mathrm{LAI}}$		fraction of LAI per layer
F _{O2}	μ mol m ⁻² s ⁻¹	net ecosystem O ₂ flux
$F_{O_2}^z$	μ mol m ⁻² s ⁻¹	height dependent net ecosystem O2 flux
F_{O_2}	μ mol m ⁻² s ⁻¹	net turbulent O ₂ flux
F _R	µmol m ⁻² s ⁻¹	gross ecosystem respiration CO ₂ flux
F_R^b	µmol m ⁻² s ⁻¹	a priori mean of F _R
F _{rd}	$\mu mol m^{-2} s^{-1}$	leaf dark respiration CO ₂ flux
F _{soil}	µmol m ⁻² s ⁻¹	soil respiration CO ₂ flux
F _{stem}	µmol m ⁻² s ⁻¹	stem respiration CO ₂ flux
Н	W m ⁻²	net ecosystem sensible heat flux
H~	W m ⁻²	net turbulent sensible heat flux
ht	m	canopy height
J		cost function
J _{max25}	µmol m ⁻² s ⁻¹	maximum electron transport rate at 25 °C
k _{ball}		slope of Ball-Berry model after Collatz et al. (1991)
K_c, K_o, K_T, K_v	$m^2 s^{-1}$	eddy diffusivity of CO ₂ , O ₂ , heat and water vapor
LAI	$m^2 m^{-2}$	leaf area index
LE	W m ⁻²	net ecosystem latent heat flux
LE~	W m ⁻²	net turbulent latent heat flux
leafout		DOY for the start of leaf growth
leaf _{full}		DOY for the end of leaf growth
leaf _{fall}		DOY for the start of leaf fall
$leaf_{fall_complete}$		DOY for the end of leaf fall
MCMC		Markov-Chain Monte Carlo methods
$O_{2 atm}$	ppm	atmospheric O ₂ mole fraction
OR		oxidative ratio
r ₁ , r ₂		coefficients for exponential relationship between soil temperature and soil
R _{d25}	µmol m ⁻² s ⁻¹	leaf dark respiration at 25 °C
RMSE		root mean squared error

Т	°C	air temperature
T_{leaf}	°C	leaf temperature
T _{optjm}	°C	optimum temperature for electron transport
Toptvc	°C	optimum temperature for maximum carboxylation
V _{cmax25}	$\mu mol m^{-2} s^{-1} **$	maximum carboxylation at 25 °C
WAI	$m^2 m^{-2}$	wood area index
Z	m	height above the surface
α		fraction of the photosystem II activity
Δc	ppm	vertical CO ₂ mole fraction difference
$\Delta F_{O_2,(c,T,v)}$	μ mol m ⁻² s ⁻¹	difference between O_2 fluxes derived by the flux-gradient method and by model simulations. The subscripts c, T and v represent the considered scalar profiles for CO_2 mole fraction, temperature and water vapor.
Δο	ppm	vertical O_2 mole fraction difference
ΔΤ	°C	vertical air temperature difference
Δv	kg m ⁻³	vertical water vapor density difference
Δz	m	vertical height difference
θ_{J}		curvature parameter of light response curve
λ	J kg ⁻¹	latent heat of vaporization
$ ho_{m}$	kg m ⁻³	air mass density
ρ_n	mol m ⁻³	air molar density
$\sigma_{ER_{A}}$	mol mol ⁻¹	a posteriori uncertainty of ER _A
$\sigma_{ER_A^b}$	mol mol ⁻¹	a priori uncertainty of ERA
σ_{ER_R}	mol mol ⁻¹	a posteriori uncertainty of ER _R
$\sigma_{ER_R^b}$	mol mol ⁻¹	a priori uncertainty of ER _R
$\sigma_{F_{\mathbf{A}}}$	µmol m ⁻² s ⁻¹	a posteriori uncertainty of FA
$\sigma_{F^b_A}$	μ mol m ⁻² s ⁻¹	a priori uncertainty of F _A
$\sigma_{F_{CO_2}}$	$\mu mol m^{-2} s^{-1}$	uncertainty of CO ₂ flux estimates
$\sigma_{F_{O_2}}$	µmol m ⁻² s ⁻¹	uncertainty of O ₂ flux estimates
$\sigma_{F_{R}}$	µmol m ⁻² s ⁻¹	a posteriori uncertainty of F _R
$\sigma_{F_R^b}$	µmol m ⁻² s ⁻¹	a priori uncertainty of F _R

References

5 Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration - a model that includes a laminar boundary-layer, Agricultural and Forest Meteorology, 54, 107-136, doi:10.1016/0168-1923(91)90002-8, 1991.