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Abstract. We develop high-resolution (1 km) estimates of
gross primary productivity (GPP), ecosystem respiration
(ER), and net ecosystem exchange (NEE) over the Australian
continent for the period January 2003 to June 2022 by em-
pirical upscaling of flux tower measurements. We compare
our estimates with nine other products that cover the three
broad categories that define current methods for estimating
the terrestrial carbon cycle and assess if consiliences be-
tween datasets can point to the correct dynamics of Aus-
tralia’s carbon cycle. Our results indicate that regional em-
pirical upscaling greatly improves upon the existing global
empirical upscaling efforts, outperforms process-based mod-
els, and agrees much better with the dynamics of CO2 flux
over Australia as estimated by two regional atmospheric in-
versions. Our nearly 20-year estimates of terrestrial carbon
fluxes revealed that Australia is a strong net carbon sink of
−0.44 PgC yr−1 (interquartile range, IQR= 0.42 PgC yr−1)
on average, with an inter-annual variability of 0.18 PgC yr−1

and an average seasonal amplitude of 0.85 PgC yr−1. Annual
mean carbon uptake estimated from other methods ranged
considerably, while carbon flux anomalies showed much bet-
ter agreement between methods. NEE anomalies were pre-
dominately driven by cumulative rainfall deficits and sur-
pluses, resulting in larger anomalous responses from GPP
than ER. In contrast, we show that the long-term average
seasonal cycle is dictated more by the variability in ER than
GPP, resulting in peak carbon uptake typically occurring dur-
ing the cooler, drier austral autumn and winter months. This
new estimate of Australia’s terrestrial carbon cycle provides
a benchmark for assessment against land surface model sim-
ulations and a means for monitoring of Australia’s terres-

trial carbon cycle at an unprecedented high resolution. We
call this new estimate of Australia’s terrestrial carbon cycle
“AusEFlux” (Australian Empirical Fluxes).

1 Introduction

The global terrestrial biosphere has acted as a net carbon
sink, absorbing approximately 29 % of anthropogenic CO2
emissions each year and thereby mitigating impacts from
global warming (Friedlingstein et al., 2022). Australia’s vast
semi-arid ecosystems play a large and critical role in control-
ling the inter-annual variability (IAV) of the global terrestrial
carbon sink and are therefore of crucial importance to under-
stand if we are to make reliable predictions about the fate of
the global carbon cycle under a warming climate (Ahlström
et al., 2015; Chen et al., 2017; Ma et al., 2016; Poulter et
al., 2014; Metz et al., 2023). However, uncertainties in the
methods used for quantifying components of the terrestrial
biosphere preclude definitive inferences about the magnitude
of Australia’s terrestrial carbon sink, the seasonal and inter-
annual oscillations, and the drivers of change in carbon flux
variability.

Several methods exist to quantify the spatio-temporal dy-
namics of the terrestrial carbon cycle. Dynamic global veg-
etation models (DGVMs) and land surface models (LSMs)
simulate responses of vegetation to changes in climate by
parameterising ecological processes but are limited by sev-
eral uncertainties that relate to their parameterisations and
limited inclusion of key ecological processes (Kowalczyk et
al., 2006; Li et al., 2021; Quillet et al., 2010). Uncertain-
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ties in these models can lead to large differences in land
carbon flux estimates, even where similar models are used
(Teckentrup et al., 2021). For example, over a 17-year period
from 2003 to 2019, the Community Atmosphere Biosphere
Land Exchange (CABLE) model extracted from TRENDY
v10 estimates Australia’s annual mean gross primary produc-
tivity (GPP) to be 3.01 PgC yr−1 (Friedlingstein et al., 2022),
while a regionally forced CABLE run (covering the same pe-
riod) using a similar model configuration estimates GPP to
be more than 50 % higher at 4.58 PgC yr−1 (Villalobos et al.,
2022).

Atmospheric inversion methods, which rely upon atmo-
spheric CO2 measurements and an atmospheric transport
model, provide a semi-empirical method for quantifying as-
pects of the carbon cycle, but their capacity to spatially re-
solve CO2 fluxes is severely constrained by the sparse ob-
servational network of measuring sites (51 sites globally,
with only 4 locations in Australia) (Rödenbeck et al., 2018).
Satellite-based remote sensing of atmospheric CO2 has be-
come possible using the Greenhouse Gas Observing Satellite
(GOSAT) and the Orbiting Carbon Observatory (OCO-2 and
OCO-3) satellites (Basu et al., 2013; Eldering et al., 2017).
This allows for spatially comprehensive monitoring of CO2
sources and sinks over continental to global scales. Several
global inversion studies have incorporated these datasets, but
results over Australia have been contradictory (Basu et al.,
2013; Chevallier et al., 2014; Detmers et al., 2015). Villalo-
bos et al. (2022) conducted a regional atmospheric inversion
over Australia assimilated with OCO-2 data to infer a gridded
estimate (∼ 81 km cells) of net ecosystem exchange (NEE)
for 2015–2019. They found that Australia was a strong an-
nual carbon sink (−0.47 PgC yr−1) on average and that peak
carbon uptake occurred during the cooler, drier months of
the austral winter. Similarly, using an atmospheric inversion
of GOSAT satellite measurements, Metz et al. (2023) found
that Australia’s seasonal CO2 flux variability coincided with
the onset of rainfall after the dry season, leading to CO2 flux
releases during the October–December period and carbon
uptake occurring during the drier March–September period.
These studies provided valuable insight into the dynamics
of Australia’s terrestrial carbon cycle, but their very coarse
spatial resolution prevents these approaches from resolving
spatially detailed estimates of Australia’s carbon cycle.

A third approach relies on data-driven machine learning
(ML) methods to upscale eddy covariance (EC) micromete-
orological tower data from global networks of long-term car-
bon and water flux measurement sites. This approach has the
advantage of relying on a denser network of empirical obser-
vations than the atmospheric inversion approaches (for exam-
ple, the popular FLUXNET2015 dataset contains 206 sites;
Pastorello et al., 2020). Another advantage of data-driven ML
approaches is their ability to accurately model highly non-
linear relationships to explanatory variables, as is common
in complex environmental systems. Nevertheless, the results
of global empirical upscaling products, most notably FLUX-

COM (Jung et al., 2020; Tramontana et al., 2016), are prone
to several limitations, including significant underestimation
of the magnitude of the IAV of carbon fluxes, an inability to
resolve carbon flux trends (e.g. from CO2 fertilisation), and
overestimation of the size of the tropical carbon sink (Jung et
al., 2020). The global FLUXNET2015 dataset is also biased
to the Northern Hemisphere, which may preclude global up-
scaling products from making quality predictions in regions
that both are underrepresented in the training data and do
not conform to Northern Hemisphere climate dynamics (Bal-
docchi et al., 2018; Baldocchi, 2020). Over Australia, two
FLUXCOM products, “FLUXCOM-Met” and “FLUXCOM-
RS”, show substantially different mean annual NEE fluxes of
−0.23 and −0.05 PgC yr−1, respectively (averaged over the
period 2003–2015). Furthermore, the annual mean GPP and
ER components show a >60 % difference in magnitude be-
tween the two products. IAV of NEE, as estimated by 1 stan-
dard deviation of the fluxes, is also subdued compared with
estimates from LSMs and atmospheric inversions.

This lack of agreement between the different approaches
to quantifying Australia’s land carbon sinks and sources calls
into question how well constrained the magnitudes, IAV, tem-
poral trends, and spatial allocations of Australia’s land car-
bon fluxes are. Here we explore the potential for empirical
upscaling of the regional “OzFlux” eddy covariance network
(Isaac et al., 2017; Beringer et al., 2016, 2022) to better char-
acterise Australia’s terrestrial carbon cycle. Models built on
global datasets (and with a strong Northern Hemisphere bias)
will necessarily need to generalise across vastly different cli-
mates, ecosystem types, and plant functional traits, limiting
their ability to accurately represent ecosystem dynamics in
regions where ecosystem responses do not conform to the
dominant dynamics in the global dataset. This may be es-
pecially prevalent in Australia, where extreme climate vari-
ability and evolutionary isolation have created sclerophyl-
lous, evergreen, woody species that do not fit into standard
globally predominant plant functional types used by LSMs
(Beringer et al., 2016, 2022; Williams and Woinarski, 1997).
Furthermore, Australia’s data record of EC flux tower mea-
surements has grown substantially in the intervening years
since the inception of the commonly used FLUXNET2015
training dataset. For example, the FLUXCOM product in-
cluded data from only four EC flux towers over Australia
(∼ 43 site years of data), and the current FLUXNET2015
dataset contains 23 sites equating to ∼ 115 site years of
Australian data. Contrast this with the full OzFlux dataset
over Australia, which, as of January 2022, contains 33 sites
and 238 site years of data. These later years of EC flux
tower measurements since 2015 are especially valuable given
they have recorded a period of extreme climate variability
in Australia such as the historic drought from 2017–2019
(Fang et al., 2021), culminating in the Black Summer bush-
fires (Byrne et al., 2021), and the subsequent triple La Niña,
with record-breaking rainfall in eastern Australia from 2020–
2023. A further advantage of upscaling fluxes at a regional
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scale is the ability to take advantage of higher-resolution in-
put datasets than is tractable at the global scale, due to both
the unavailability and uncertainty in global high-resolution
datasets and the computational constraints that attend global
upscaling.

Our objectives for this study are as follows:

– Develop an accurate, high-resolution (∼ 1 km) empiri-
cal upscaling of net ecosystem exchange (NEE), ecosys-
tem respiration (ER), and gross primary productivity
(GPP) for Australia covering the period January 2003
to June 2022.

– Evaluate our empirical upscaling of Australian flux data
in comparison with LSM, inversion-derived, and global
empirical upscaling estimates of the carbon cycle with
the aim of identifying consiliences between datasets that
may point to the correct dynamics of Australia’s terres-
trial carbon cycle.

– Assess if the upscaling approach can offer new insights
into Australia’s carbon cycle and/or affirm if the upscal-
ing can replicate known biogeochemical controls on the
carbon cycle.

2 Data and methods

2.1 Data

2.1.1 CO2 flux tower data

We used monthly fluxes of NEE, GPP, and ER produced
by the OzFlux regional network of eddy covariance flux
towers (https://ozflux.org.au/, last access: 1 April 2023).
These data are processed at Level 6 and are freely acces-
sible through the Terrestrial Ecosystem Research Network
THREDDS portal (https://dap.tern.org.au/thredds/catalog/
ecosystem_process/ozflux/catalog.html; TERN, 2023). All
site data used in this study are version “2022_v2”, and in
instances where both “site-pi” and “default” versions of the
datasets were available, we utilised the “default” datasets. A
total of 29 of the 33 freely available sites were selected. The
four sites that were excluded showed strong landscape het-
erogeneity within the flux tower footprint, insufficient tem-
poral duration, or non-representative land cover (e.g. almond
farms). A summary of the selected sites and their locations
is shown in Fig. A1. The Level 6 OzFlux data used in this
study provide two separate estimates of constituent carbon
fluxes derived from two methods for partitioning NEE into
its component fluxes of GPP and ER. This study uses the
“SOLO” data version, which is calculated using a data-driven
nocturnal-respiration approach for partitioning, where respi-
ration is modelled using an artificial neural network driven
by air temperature, soil temperature, and soil water content
(a full description of the SOLO partitioning method is pro-
vided within Isaac et al., 2017). We trained ML models with

the flux data at a monthly temporal resolution using 2825
monthly observations, equating to 235 site years.

2.1.2 Gridded explanatory variables

The variables in Table 1 were selected for inclusion in the
modelling framework as they were considered to cover most
of the expected climate and landscape controls on the ter-
restrial carbon cycle in Australia. MODIS-derived datasets
were temporally resampled to monthly resolution using the
mean of all clear observations within a given month and re-
projected onto a 1 km× 1 km geographic grid for prediction
using averaging resampling techniques. The static variables
of land cover fractions and vegetation height were also re-
sampled to 1 km resolution using the average of all pixels
within a 1 km grid. The 1 km grid was selected to match the
coarsest-native-resolution explanatory variables, namely the
climate datasets. The training procedure uses data extracted
from the same 1 km gridded data (using the pixel located over
the EC tower).

2.1.3 Comparison datasets

Datasets included for comparative purposes cover the three
current categories of methods for estimating the exchange of
terrestrial carbon with the atmosphere: process-based mod-
els, empirical upscaling of eddy covariance data, and atmo-
spheric inversions. Observation-based GPP products derived
from light-use-efficiency methods and solar-induced fluores-
cence are also included for completeness. Where possible,
datasets are processed and plotted in their native resolutions
to avoid introducing errors from spatially resampling finer-
resolution datasets to very coarse resolutions (or vice versa).
The exceptions to this are the higher-resolution MODIS-GPP
and DIFFUSE-GPP products (described below), which were
resampled to 1 km resolutions to match the resolutions of our
ML upscaling product. A summary table of all the compari-
son datasets is available in the Appendix (Table A1).

Process-model simulations

We compared our results with two runs of the CABLE model.
The first was a regional, fine-resolution (0.25◦) offline run
forced by Australian regional climate drivers that follows the
protocol from Haverd et al. (2018), but with land use remain-
ing static in the year 2000 (hereafter referred to as CABLE-
BIOS3). CABLE-BIOS3 net biosphere production (NBP) in-
cludes GPP and autotrophic and heterotrophic respiration but
does not include fire disturbances, harvest, erosion, or export
of carbon through rivers (a fuller description of the set-up is
outlined in Villalobos et al., 2022). A second CABLE run
was extracted from the TRENDY v10 ensemble (Friedling-
stein et al., 2022), hereafter referred to as CABLE-POP. This
dataset has a spatial resolution of 1◦, it is forced by global
climate data, and NBP includes additional fluxes from fire
emissions and land use change.
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Table 1. Gridded feature layers used in the modelling framework to train and predict terrestrial carbon fluxes over Australia.

Explanatory variable
(abbreviation)

Description Data source and reference

Land surface temperature
(LST),
normalised difference water
index (NDWI),
kernel normalised difference
vegetation index (kNDVI)

This suite of MODIS-derived products characterises the
land surface responses to climate. In addition, fractional
anomalies are calculated for the kNDVI variable to ac-
count for disturbances from fire or land use change.
Fractional anomalies are calculated against a long-term
climatological mean from 2003–2021.

MODIS collections MCD43A4 and
MOD11A1 (version 6.1) down-
loaded from Google Earth En-
gine: https://developers.google.com/
earth-engine/datasets/catalog/modis,
last access: January 2023

Average air temperature
(Tavg),
vapour pressure deficit (VPD),
incoming shortwave radiation
(srad),
total precipitation (rain)

The ∼ 1 km resolution gridded climate products are
based on topographically conditional spatial interpola-
tion of Australia’s extensive network of weather sta-
tions. In addition, fractional anomalies are also cal-
culated for all variables except VPD. In addition to
monthly fractional rainfall anomalies, 3-, 6-, and 12-
month cumulative fractional rainfall anomalies are
added to help characterise memory and lag in the car-
bon response to water deficit.

ANUClimate: https://dapds00.nci.org.
au/thredds/catalogs/gh70/catalog.html,
last access: January 2023
(Hutchison et al., 2014)

LST minus Tavg
(LST−Tair)

The subtraction of air temperature from land surface
temperature is indicative of vegetation canopy moisture
stress.

Derived from MODIS LST and ANU-
Climate Tavg

Fraction of trees (trees),
fraction of C4 grass (C4_grass),
fraction of grass (grass),
bare fraction (bare)

Trees, grass, and bare per-pixel fractions derived from
temporal decompositions of the MODIS Normalised
Vegetation Index (NDVI) into persistent and recurrent
fractions. An estimate of the proportion of C4 grass is
also included. These variables are static and represent
conditions in 2020.

Correspondence
(Donohue, 2009)

Vegetation height (VegH) The per-pixel estimate of vegetation height is given in
metres. This variable is static and represents the average
vegetation height from 2007–2010.

Accessible from https://dapds00.
nci.org.au/thredds/catalog/ub8/au/
LandCover/OzWALD_LC/catalog.
html, last access: January 2023
(Liao et al., 2020)

FLUXCOM

Our regional ML upscaling product is compared with the
well-known global ML upscaling product, FLUXCOM (Jung
et al., 2020; Tramontana et al., 2016). FLUXCOM is built
using similar machine learning methods to those used in this
study, though trained on the global FLUXNET2015 dataset.
Two products are available: FLUXCOM-RS was trained ex-
clusively on MODIS remote sensing data, and FLUXCOM-
RS+METEO (FLUXCOM-Met hereafter) was trained on
climate reanalysis data and climatological remote sensing
data (Jung et al., 2020). For FLUXCOM-Met, we use the
multi-model mean of the ERA5-based product. Both RS-
METEO and RS products are assessed here and were down-
loaded at monthly temporal resolution from the Max Planck
Institute for Biogeochemistry (https://www.bgc-jena.mpg.
de/geodb/projects/Home.php, last access: 13 January 2023).

Atmospheric inversions

A regional inverse modelling product, produced by Villalo-
bos et al. (2022), was included for comparison as it pro-
vides a wholly independent measure of NEE. This regional
inversion estimates carbon fluxes over the Australian conti-
nent from 2015–2019 by assimilation of carbon dioxide mea-
surements from the Orbiting Carbon Observatory-2 (OCO-2)
satellite. The product is provided at ∼ 81 km spatial resolu-
tion and monthly temporal resolution (available for down-
load from https://doi.org/10.5281/zenodo.6649768). NEE in
this dataset includes fire emissions and fossil fuel emis-
sions, so to facilitate better comparisons fossil fuel emis-
sions were subtracted from the NEE time series. A second re-
gional satellite-assimilated atmospheric inversion from Metz
et al. (2023) is also included. This time series represents
the spatially averaged net flux of CO2 over the Australian
TRANSCOM region (which includes New Zealand). There-
fore, the time series is only shown where Australia-wide, spa-
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tially averaged time series are plotted, and some differences
between time series may be attributable to the inclusion of
the New Zealand land mass in the estimate.

Observation-based GPP products

We compare our GPP estimates with a suite of observation-
based GPP products: the MODIS Terra GPP product
(MOD17A2H), based on a per-biome light-use-efficiency ap-
proach (Running et al., 2015); the GOSIF GPP product, gen-
erated through a data-driven approach based on OCO-2 solar-
induced fluorescence (SIF) soundings, MODIS remote sens-
ing data, and meteorological reanalysis data (Li and Xiao,
2019); and DIFFUSE GPP, which is based on total and dif-
fuse irradiance and the fraction of shortwave irradiance ab-
sorbed by foliage (Donohue et al., 2014). All datasets are
averaged to monthly temporal resolution, and MODIS-GPP
and DIFFUSE-GPP are spatially resampled to 1 km grid cells
by averaging the pixels within each 1 km pixel grid.

2.1.4 Fire emissions

Fire emissions were added to our estimates of NEE from
the Global Fire Assimilation System version 12 (GFASv12)
(Kaiser et al., 2012). Daily fire emissions are temporally re-
sampled to monthly totals by summing daily values.

2.1.5 Bioclimatic regions

Bioclimatic regions used for separating fluxes into spe-
cific ecosystems were identical to those defined in Haverd
et al. (2013) and include six bioclimatic classes: tropics,
savanna, warm–temperate, cool–temperate, Mediterranean,
and desert (Fig. 10a).

2.2 Methods

2.2.1 Empirical ML upscaling

The most common ML models implemented in the literature
on empirical upscaling of EC data are random forest regres-
sion, support vector regression, model tree ensembles, piece-
wise regression models, and artificial neural networks (Ver-
relst et al., 2015). Random forest (RF) regression has proven
itself to be the go-to model for many remote-sensing-based
studies owing to its high accuracy, robustness to overfitting,
scalability, and easy-to-configure hyperparameters (Belgiu
and Drăguţ, 2016). In recent years, gradient-boosting deci-
sion tree (GBDT) learning algorithms have also proven to be
highly accurate and robust to overfitting (Chen and Guestrin,
2016; Wei et al., 2019). Here, rather than rely on any one ML
method, we rely on both RF and GBDT methods to develop
an ensemble of predictions.

Beyond the ML algorithm used, there are numerous other
sources of uncertainty associated with the empirical upscal-
ing of EC flux tower data. Epistemic uncertainties arise from

the limitations of the training data (e.g. biases in the locations
sampled) and uncertainties in the features used for training as
well as the hyperparameters used during model optimisation.
In addition to these reducible (or at least quantifiable) epis-
temic uncertainties, aleatoric uncertainties arise from the un-
certainties in the eddy covariance measurements themselves
(Isaac et al., 2017), along with the non-deterministic de-
pendencies between variables (Hüllermeier and Waegeman,
2021). Here we attempt to account for a portion of the em-
pirical uncertainty by iterating the training data and the mod-
els used for fitting. During model fitting, two randomly se-
lected EC sites are removed from the training data, and both
a GBDT model (from the Python package LightGBM; Ke
et al., 2017) and a RF model are fit on the remaining data
(hyperparameter optimisation is conducted on every fit us-
ing a random grid search technique with 250 iterations; Ta-
ble A2). We selected two sites to remove per iteration as we
felt it balanced the need to significantly alter the training
dataset per iteration while not overly degrading the quality
of the model by removing too much data. This procedure is
repeated 15 times to increase the likelihood of every site be-
ing removed from the training dataset, resulting in 30 unique
models. These 30 models are used to generate 30 gridded
estimates for each of the variables modelled (GPP, ER, and
NEE). In the results that follow, we report the interquartile
range of these 30 predictions as our envelope of uncertainty
and the “best estimate” as the median of the ensemble pre-
dictions.

The overall modelling framework is summarised in Fig. 1.
Each flux is independently modelled, and therefore there is
no inherent exact mass balance between GPP-ER and NEE.
The same predictor variables were used for modelling each
flux, so the resulting products originate from a consistent
set of drivers. All processing and modelling steps described
in the Methods section have been thoroughly documented
within a series of Jupyter notebooks, available with the as-
sets of this paper.

2.2.2 Model evaluation

The accuracy of each ML model in the ensemble was as-
sessed using a nested, time-series-split cross-validation ap-
proach (Fig. 2). This approach ensured minimal data leak-
age between training and testing sets while still allowing the
algorithm to “see” all the sites during training, a desirable
feature in the cross-validation technique due to the relatively
limited number of sites (n= 29), with some ecosystems sam-
pled by only one or two flux towers (e.g. alpine regions,
cereal cropping). Five outer cross-validation splits are per-
formed, with each split containing 20 % of test data from ev-
ery site (as a discrete length of time equal to 20 % of the total
length of the dataset; i.e., if a site contained 10 years of data,
then testing was conducted on five iterations of 2-year contin-
uous periods), while the remaining 80 % of the data are used
for training. Five “inner” cross-validation splits were con-
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Figure 1. A flow chart showing the modelling framework for creating gridded estimates of GPP, ER, and NEE for the Australian continent.

ducted to optimise the hyperparameter selection for the outer
loop. Using a nested approach to cross-validation prevents
use of the same data to tune model parameters to those the
model is tested on, and thus prevents creation of overly op-
timistic cross-validation scores (Cawley and Talbot, 2010).
Across the five outer cross-validation splits, all samples in
the dataset were tested. Mean absolute error (MAE) and the
coefficient of determination (R2) are reported to assess the
accuracy of the fit for each of the variables modelled. The
cross-validation scores reported in the results section sum-
marise the train–test splits of all 30 model fits. Throughout
the remainder we use the terms “observed” and “predicted”
to refer to in situ measurements from EC towers and the pre-
dictions, respectively. We also use the convention of negative
NEE values referring to net carbon uptake by the land sur-
face.

In addition to evaluating the overall predictive capacity us-
ing temporal cross-validation, we also perform an intercom-
parison between the results of this study and similar products
covering Australia. This is performed through scatterplots of
modelled vs. observed fluxes for several products (statistics
for comparison are MAE and r2, the square of Pearson’s
correlation), through comparison of the mean seasonal cy-
cles disaggregated by bioclimatic region, and through the as-
sessment of annual anomalies. It is important to note that
NEE calculated through empirical upscaling of EC flux tower
data is conceptually distinct from inversion-based NEE and
process-model NBP. The addition of fire emissions to our es-
timates of NEE narrows the conceptual distance between the
estimates, and where a conceptual difference still applies, we
contend that fluxes from other sources are unlikely to be large
enough to warrant the additional complexity of their inclu-
sion.

3 Results

3.1 Cross-validation performance

Temporal cross-validation results revealed a comparatively
high degree of agreement between observations and pre-
dictions (Fig. 3). As for other regional and global upscal-

ing products, GPP and ER were predicted with better skill
than NEE. GPP scored a R2

= 0.91 and MAE= 19.4 gC m−2

per month. For ER, R2
= 0.89 and MAE= 15.8 gC m−2 per

month, while for NEE, R2
= 0.68 and MAE= 17.9 gC m−2

per month. To understand how well the predictions repro-
duce annual mean fluxes and the per-biome predictability of
fluxes, we produced scatterplots comparing the annual mean
fluxes of the EC flux tower sites with the annual mean fluxes
of the median of the prediction ensemble (Fig. 3d–f). Regard-
less of biome, annual mean fluxes were exceptionally well re-
produced by the median of the ensemble, with the “all-data”
fit closely matching the one-to-one line. The climatological
seasonal cycles of NEE at each of the EC sites were also very
well reproduced (Fig. A2).

Scatterplots showing the trend and strength of the re-
lationships between EC flux tower observations and mod-
elled values for other products can be found in the Ap-
pendix (Fig. A3). The EC flux tower values are compared
with the nearest pixel in each product, and the products have
been reprojected to match the resolution of CABLE-BIOS3
(∼ 25 km). Only those products with a reasonably high spa-
tial resolution have been compared with the flux tower (i.e.
CABLE-POP, FLUXCOM-Met, and the OCO-2 inversion
have been excluded). Most products perform reasonably well
at predicting GPP (Fig. A3a–f). Typically, products show an
overestimation of small GPP and ER values and an underes-
timation of large values, except for CABLE-BIOS3, which
overestimates GPP and ER across the distribution. CABLE-
BIOS3’s estimates of NEE showed almost no correlation
with EC flux tower observations, recording an r2 of 0.04
(Fig. A3j). The FLUXCOM NEE products performed con-
siderably worse than the cross-validation scores reported in
this study (Fig. A3k–l).

3.2 Feature importance

To understand which explanatory variables most impacted
flux predictions, feature importance plots were produced us-
ing the Shapley Additive Explanations (SHAP) Python li-
brary (Lundberg and Lee, 2017). Shapley values represent
the average marginal contribution of a feature value across all
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Figure 2. A schematic representation of a single cross-validation split using a nested time series cross-validation procedure. Five outer splits
and five inner splits were conducted per model iteration. For each split, models were trained on data from every site included in that model
iteration (i.e. 80 % of every site) and tested on a continuous period for every site (i.e. 20 % of each site). For each subsequent split, the test
period is moved forward in time.

Figure 3. Pooled temporal cross-validation results for EC flux tower sites: scatterplots of observed and predicted monthly (a) GPP, (b) ER,
and (c) NEE, with heat colours indicating data density. Scatterplots of observed and predicted annual mean (d) GPP, (e) ER, and (f) NEE,
with colour coding indicating bioclimatic regions, as shown in Fig. 10a.

possible coalitions (Lundberg et al., 2020). The feature im-
portance bar plots of Fig. 4 show the top five ranked features
for each modelled flux, ranked in descending order, with the
most important variables at the top. These plots were de-
rived by calculating the mean absolute SHAP values for each
feature in each model iteration and subsequently averaging
those values across all the models in the ensemble. Flux pre-
dictions were strongly influenced by the remote sensing vari-
ables of kNDVI and NDWI, which respond to canopy den-
sity, health, and water status. Solar radiation and average air
temperature were the most important climate variables across
the fluxes. The land cover variables of vegetation height and
fraction of trees also proved important for flux predictions.

SHAP dependence plots for kNDVI along with the four
principal climate drivers in the model (temperature, rainfall,
solar radiation, and VPD) aid in the interpretation of fea-
ture importance (Fig. 5; these plots were created using a

single optimised GBDT model fit on all the training data).
In these plots, feature values are plotted against their corre-
sponding SHAP values. For the climate features, the points
are coloured by their kNDVI value. In the case of kNDVI,
the points are coloured by the feature with the strongest in-
teraction effect. A strong interaction between two variables
produces a distinct vertical colour gradient. The dependency
plots for the climate features are coloured by kNDVI as it
aids in approximately disaggregating the influence of climate
on carbon fluxes between the wetter, cooler, and high-kNDVI
coastal fringe regions of the Australian continent from the
drier, warmer, lower-kNDVI regions of Australia’s (semi-
)arid interior. In the dependence plot for kNDVI (Fig. 5a), so-
lar radiation shows a clear interaction effect. Where kNDVI
is low (<∼ 0.2), increasing solar radiation produces predic-
tions of GPP that are relatively lower than in regions with
higher kNDVI. Solar radiation was the third-most important
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Figure 4. Shapley additive explanation (SHAP) feature importance plots. (a) GPP, (b) ER, (c) NEE. The plots summarise feature importance
across all models in the ensemble by first calculating mean absolute SHAP values for each feature in each model and then averaging those
values across all the models in the ensemble. The error bars show the 95 % confidence interval.

feature in the prediction of GPP (Fig. 4a), and high-kNDVI
regions had a greater light sensitivity than low-kNDVI re-
gions (Fig. 5b).

Solar radiation and kNDVI were also key predictors for
ER, following similar relationships to GPP, but the overall
amplitude of increase is less (Fig. 5f and g). ER also sees a
greater influence from air temperature (Fig. 5h) and rainfall
(Fig. 5i) than GPP, where higher values of these variables
increased predicted rates of ER. In the case of air temper-
ature, in areas of high kNDVI the rate of ER increase was
greater than in low-kNDVI regions. Rates of ER respiration
increase sharply with increased rainfall, but for low kNDVI,
predictions of ER increase at a more rapid rate than for high
kNDVI (Fig. 5i).

Relationships between features and NEE predictions are
more difficult to interpret given the likelihood of complex in-
teraction effects when modelling the carbon balance (NEE)
vs. modelling only ER or GPP. The most important features
for the NEE predictions are kNDVI and NDWI, average air
temperature, and solar radiation (Fig. 4c). Increasing solar
radiation typically resulted in more negative NEE predic-
tions (greater uptake of carbon) (Fig. 5l). The rate of in-
crease in carbon uptake under increasing solar radiation is
lower where kNDVI is low, while regions of high kNDVI
see a much greater sensitivity to increases in solar radiation.
Increasing air temperature tends to result in more positive
NEE predictions (Fig. 5m), though the relationship does not
follow a simple trajectory. For high kNDVI, temperature in-
creases at the highest end of the distribution (>∼ 25 ◦C) re-
sult in a strong positive rate of change in NEE predictions
(i.e. greater release of carbon). For very low kNDVI, temper-
ature changes have a much more modest impact on NEE.

3.3 Prediction uncertainties

The coefficient of variation between the 30 ensemble mem-
bers provides a spatial indication of uncertainty in CO2 flux
predictions (Fig. 6). We use a non-standard definition of the
coefficient of variation where the median absolute devia-
tion between the long-term annual means of each ensemble
member were divided by the median of the ensemble annual

means, expressed as an absolute value. Both GPP and ER
show comparatively low variability across predictions, where
the greatest coefficient of variation values are found in the
arid interior (Fig. 6a and b). NEE shows stronger variation
between ensemble members in some of the arid regions of
the north-west, the savannah regions of western Queensland,
and the agricultural regions of the Western Australian wheat
belt and the Murray–Darling Basin (MDB) (Fig. 6c and d). In
the case of the arid and savanna regions, the uncertainty co-
incides with areas where annual mean NEE is close to zero,
so small deviations in predictions can result in high relative
uncertainty (refer to the annual mean flux map in Fig. 8g).
However, in parts of the aforementioned agricultural regions,
uncertainty is high in both relative and absolute terms (again
refer to Fig. 8g).

3.4 Upscaling results and comparison with other
products

3.4.1 Annual mean and IAV of carbon fluxes across
Australia

We adopted the model ensemble median as our best estimate
and the interquartile range (IQR) of estimates as a measure
of uncertainty. During 2003 to 2022, Australia’s terrestrial
ecosystems were a strong net carbon sink on an annual mean
basis of −0.44 PgC yr−1 (IQR= 0.42 PgC yr−1) (Fig. 7c)
(including fire emissions). IAV defined as 1 standard devia-
tion of the annual mean time series is 0.18 PgC yr−1, and the
average seasonal range of NEE is 0.85 PgC yr−1. The annual
mean estimates of NEE from this study show a greater ter-
restrial carbon uptake than any of the LSMs or FLUXCOM
products, while the regional atmospheric inversion (which
also includes fire emissions) predicts a very similar annual
mean carbon uptake of −0.47 PgC yr−1 (Fig. 9c; though
this is assessed over a much shorter period than the other
products). IAV of NEE for the other products ranges from
0.06 PgC yr−1 for FLUXCOM-Met to 0.26 PgC yr−1 for the
OCO-2 inversion (Fig. 9f). The GOSAT inversion conducted
by Metz et al. (2023) estimated an IAV of 0.207 PgC yr−1

across the Australia TRANSCOM region. CABLE-BIOS3
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Figure 5. SHAP dependency scatterplots for kNDVI, along with the four principal climate features (solar radiation, air temperature, rainfall,
and VPD). In the case of (a, f, k) the SHAP values are coloured by the feature with the largest interaction effect, while the climate variable
SHAP values are coloured by their interaction with kNDVI. Note that the y-axis scale is different for each sub-plot.

also shows a comparatively high IAV of 0.23 PgC yr−1

(Fig. 9f). The per-pixel plots of Fig. 8g–i show how an-
nual NEE fluxes are spatially allocated. The strongest car-
bon sinks are seen along the forested coastal regions of the
eastern seaboard from western Tasmania to northern New
South Wales; the south-western corner of Western Australia,
including the southern part of the Great Western Wood-
lands; and the tropical part of the Northern Territory. The
regions of strongest IAV in NEE are in the savanna regions
of northern Australia; the intensive agricultural regions of
the MDB; and the Channel Country of south-west Queens-
land and into South Australia where episodic river basins
such as Cooper Creek periodically fill during anomalously
large rainfall events (Fig. 8h). The climatological month-of-
maximum-NEE plot in Fig. 8i shows the month during which
NEE typically achieves its most negative value (greatest car-
bon uptake), and the plot shows clear delineations along bio-
climatic regions.

Annual mean GPP across Australia averaged 4.25
(0.91) PgC yr−1, with an IAV of 0.50 PgC yr−1 and an av-
erage seasonal range of 1.47 PgC yr−1 (Fig. 7a). Averaged
over Australia, our estimate of GPP closely approximates
that of GOSIF and MODIS, with the uncertainty enve-
lope encompassing these two products. In contrast, DIF-
FUSE, FLUXCOM, and CABLE-POP report lower esti-

mates (Fig. 9a). The IAV between products varies substan-
tially, with both FLUXCOM products showing the lowest
IAV in GPP (FLUXCOM-Met: 0.13 PgC yr−1; FLUXCOM-
RS: 0.23 PgC yr−1), while this study and CABLE-BIOS3
(0.78 PgC yr−1) display the strongest IAV.

ER averaged 3.64 (1.01) PgC yr−1 (Fig. 7b), with an
IAV of 0.34 PgC yr−1 and an average seasonal range of
1.56 PgC yr−1, notably higher than GPP. Agreement between
products is generally poor, though the long-term mean of
FLUXCOM-Met and this study agree (Fig. 9b). CABLE-
BIOS3 shows the most IAV in ER (0.56 PgC yr−1), while
the two FLUXCOM products record very low IAV, with
FLUXCOM-RS equal to 0.07 PgC yr−1 and FLUXCOM-
Met equal to 0.09 PgC yr−1.

3.4.2 Climatological carbon fluxes

Figure 10e–g show the climatological seasonal cycles of the
component terrestrial fluxes summed across Australia (cli-
matologies were calculated starting in 2003 and extending
over the full remaining length of the time series for each
product). The seasonal cycle of this study’s NEE differs
substantially from those of the LSMs and FLUXCOM-Met
(Fig. 10g). According to our results, a climatological peak
in terrestrial carbon uptake occurs for Australia during the
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Figure 6. Prediction uncertainty estimated from iterating EC flux tower data and model type. Panels (a–c) display the absolute coefficient of
variation for (a) GPP, (b) ER, and (c) NEE, defined as the median absolute deviation between all ensemble members divided by the median
of the ensembles, expressed as an absolute value. Panel (d) shows the fraction of ensemble members where the sign of annual mean NEE
(positive or negative) agrees; i.e. if all ensemble members agree on the sign of NEE then the values is 1, and if positive and negative estimates
are each produced by half of the members, then the value is 0.5.

cooler, drier months of March–September. Examination of
the equivalent plots for GPP (Fig. 10e) and ER (Fig. 10f)
shows that concomitant increases in ER during periods of
peak GPP mean that the time of greatest primary production
across Australia (December–March) is not coincident with
peak carbon uptake. This result contrasts with the findings
of the LSMs and FLUXCOM-Met, which show peak car-
bon coinciding with peak GPP in austral summer (Fig. 10g).
Despite displaying a greater amplitude of seasonal variabil-
ity, the NEE seasonal cycle of the regional OCO-2 inversion
largely matches our estimate. The GOSAT inversion also dis-
plays similarities with this study and the OCO-2 inversion.
However, the GOSAT inversion shows a second peak in July;
it is unclear from the dataset provided if this might be due to
the inclusion of New Zealand in the analysis area.

Breaking the fluxes down into bioclimatic zones (Fig. 10a–
d), we can observe two processes that predominately dic-
tate the typical seasonal pattern of NEE in Australia. Firstly,
seasonal variations in ER in the desert region (peak-to-peak

amplitude= 0.66 PgC yr−1) exceed GPP variations (ampli-
tude= 0.46 PgC yr−1). Beginning in March and extending
through the autumn and winter period, ER declines more
rapidly than GPP, resulting in enhanced carbon uptake dur-
ing this period. Secondly, in the savanna region we observe a
sharp response in ER following the end-of-dry-season rain-
fall events that exceed the response from GPP, resulting in a
net carbon pulse to the atmosphere in the October–December
period (fluxes from these regions are re-plotted in Fig. A5a
to enhance interpretability). The interaction between these
two processes likely explains most of the seasonal variation
in Australia’s terrestrial carbon cycle and is responsible for
peak carbon uptake in Australia occurring in the autumn–
winter months, while the carbon sink tends to be weakest
during the October–December period.

We found that the largest discrepancies between prod-
ucts also occurs in the desert region (Fig. 10a). The LSMs,
FLUXCOM-Met, GOSIF, and this study all report GPP peak-
ing in February–March, with the nadir of GPP occurring
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Figure 7. Monthly carbon fluxes summed across Australia from 2003 to June 2022. (a) GPP, (b) ER, (c) NEE. Shading around time series
shows the interquartile range of the prediction ensembles, and the solid blue line shows the median of the ensemble predictions. Orange lines
show the 12-month running mean of the median model. Boxplots are based on the median model prediction and show the long-term mean
(green triangle), median (line within box), and interquartile ranges (boxes) averaged over the entire time series. Panel (c) also shows NEE
after adding fire emissions (green line), as estimated by the GFASv12 product.

during the May–September period (Fig. 9b). On the other
hand, MODIS-GPP and FLUXCOM-RS show an inverted
climatology with respect to the other products, which are un-
likely to be accurate given the monsoonal climate drivers in
the region, with >70 % of the typical annual median rain-
fall falling between November and April (Bowman et al.,
2010). The CABLE-POP model appeared to significantly un-
derestimate both GPP and ER in desert regions (Fig. 10b–
c). This may explain why the Australia-wide seasonal NEE
curve from CABLE-POP (Fig. 10g) does not align with the
results of this study despite a similar spatial pattern in the
month-of-maximum-NEE flux plot (Fig. A4). The desert and
savanna regions typically contribute the most to annual fluxes
in other products, but CABLE-POP’s NEE fluxes are com-
paratively more influenced by the savanna and tropical re-
gions. This is most likely due to CABLE-POP’s represen-
tation of vegetation cover fractions over inland Australia,
which shows the desert region as entirely bare (Teckentrup
et al., 2021). FLUXCOM-RS follows a similar trajectory in
the Australia-wide NEE to that of our estimate, though with
considerably lower seasonal amplitude (Fig. 10g). Examin-

ing the bioclimatic zones, we see that this is mainly due to
an incorrect GPP seasonal cycle in the desert region, com-
bined with a very low amplitude in the seasonal cycle of ER
in the desert (Fig. 10c). The seasonal cycle of FLUXCOM-
Met is markedly different from FLUXCOM-RS. The per-
biome fluxes from FLUXCOM-Met appear more realis-
tic than those of FLUXCOM-RS but produce an inverted
Australia-wide NEE seasonal cycle with respect to our es-
timate (Fig. 10g). This is due to greater amplitude declines
in seasonal GPP compared with ER, especially in the warm–
temperate and cool–temperate regions.

3.5 Drivers of carbon flux anomalies

As a simple means for interpreting the drivers of carbon flux
anomalies, temporal Pearson correlations between carbon
flux anomalies and climate anomalies (respective to 2003–
2021 averages) for each bioclimatic zone were conducted
(Table 2). Correlations were calculated per pixel and then
averaged over the bioclimatic zone. Caution in interpreting
the results is warranted as the terrestrial carbon cycle is in-
trinsically complex and nonlinear. With that caveat, for GPP,
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Figure 8. Per-pixel summaries derived from the median of the prediction ensemble. Annual means fluxes of GPP (a), ER (d), and NEE (g).
Standard deviation of annual mean fluxes of GPP (b), ER (e), and NEE (h). Climatological month of maximum flux, GPP (c), ER (f), and
NEE (i).

ER, and NEE, cumulative rainfall anomalies almost univer-
sally correlate most strongly with carbon flux anomalies. In
the case of NEE, across all bioclimatic regions monthly rain-
fall anomalies were insignificantly correlated. Yet, the cu-
mulative rainfall anomalies proved to be the strongest corre-
late (where a cumulative rainfall surplus resulted in negative
NEE anomalies, i.e. greater carbon uptake). In the case of
the desert region, correlations of monthly rainfall anomalies
jumped from a statistically insignificant r value of −0.08 to
a highly significant correlation of −0.50 for 6-month cumu-
lative rainfall anomalies (Table 2); similar scores were found
for the savanna region. Correlations for non-lagged monthly
rainfall anomalies in the savanna and desert regions were
both much higher for ER than for GPP, suggesting that ER
responds more quickly to wetting than GPP in the arid and
semi-arid regions of Australia.

4 Discussion

Through our iterative modelling framework, we identified
the largest uncertainties in the flux estimates as occurring in
the semi-arid to arid interior and in the cropping regions of
Western Australia and the Murray–Darling Basin (Fig. 6). A
limitation of the OzFlux network is the necessarily limited
repeat spatial sampling of all main land cover types. Fur-
thermore, not each bioclimatic region is equally well rep-
resented, leading to biases in the sampling. For example,
desert and xeric ecosystems cover nearly half of the Aus-
tralian land mass, but fewer than 10 % of the sites are lo-
cated in these regions (Beringer et al., 2016). Australia’s ex-
pansive cropping ecosystems are also underrepresented. The
limited representation of these systems in the training data
is likely why we found comparatively high uncertainty in
these regions (Fig. 6). Further uncertainty in the cropping
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Figure 9. The 12-month rolling mean terrestrial carbon fluxes from a suite of products covering Australia, compared with this study. Right-
side plots (d–f) show the anomalies of the left-side plots (a–c), where the monthly anomalies are calculated using a climatology that starts
in 2003 and ends at the maximum length of the available time series for each product. The numbers in the left-side plots show the long-term
annual mean flux for a given product. Blue shading around “This study” shows the interquartile range from prediction ensembles.

regions may also be due to the heterogeneity of crop types
and agricultural practices that may not be represented in our
feature layers and potentially large carbon exports as agricul-
tural commodities. Given the Australian government’s em-
phasis on emission offsetting through changes in agricultural
practices and human-induced regeneration of native woody
vegetation, especially in drier regions (DCEEW, 2023), new
EC sites in cropping regions and in the (semi-)arid range-
land areas of New South Wales, Queensland, and Western
Australia might help reduce uncertainties in AusEFlux and
expand the evidential basis for carbon sequestration through
(re-)vegetation (Macintosh et al., 2022). Given the changing
climate conditions of Australia, it is vital to at least main-
tain the current OzFlux infrastructure so that future changes
to climate–carbon interactions can be monitored at the con-
tinental level through iterative retraining of the AusEFlux
model as new data are collected.

Owing to the limitations introduced by the spatial sam-
pling of the OzFlux network, it is very challenging to effec-
tively cross-validate terrestrial carbon fluxes in a manner that
we could confidently claim accurately estimates the true map
accuracy. This is why we also rely heavily on an intercom-
parison between products, as we believe the convergence of

results from multiple independent lines of evidence tells us
more about the true nature of Australia’s terrestrial carbon
cycle than any given cross-validation method. We are encour-
aged by the convergence of our results with the GPP esti-
mates from MODIS and GOSIF as well as, to a lesser-extent,
CABLE-BIOS3 as each of these products applies a different
method to quantifying GPP. ER is harder to effectively val-
idate through a convergence of studies as only FLUXCOM
(similar methods to ours) and CABLE provide estimates of
ER. However, the scatterplots of Fig. A3 demonstrate that
CABLE tends to overestimate ER fluxes, while FLUXCOM-
RS tends to underestimate ER fluxes. AusEFlux estimates
of ER lie between these two estimates (Fig. 9b), perhaps in-
dicating that our estimate of ER is an improvement to the
other methods. NEE offers the prospect of independent vali-
dation as the satellite-assimilated atmospheric inversions are
a wholly independent measurement of NEE (though they still
contain significant uncertainties owing to the uncertainties in
the satellite CO2 measurements themselves, along with the
atmospheric transport model used), which is why we include
the two most recent regional-scale inversions in our inter-
comparisons. Though mean NEE varied between our esti-
mate and those of the GOSAT atmospheric inversion, anoma-
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Figure 10. Climatological seasonal cycles per bioclimatic zone. (a) Map of bioclimatic regions. (b–d) Bioregion-specific annual climatolog-
ical seasonal cycles for GPP, ER, and NEE, respectively. (e–f) Annual climatological seasonal cycles averaged across Australia.
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Table 2. Temporal Pearson correlations between carbon flux anomalies, climate anomalies, and kNDVI anomalies. Every flux and climate
variable anomaly is based on a 2003–2021 baseline. The highest correlation for each flux and bioclimatic zone is shown in bold (for the
climate variables only; kNDVI correlations are ignored).

Bioclimatic region

FLUX Variable Tropics Savanna Warm–temperate Cool–temperate Mediterranean Desert

GPP Rainfall 0.17 0.27 0.21 0.15 0.25 0.39
Rainfall Cml-3 0.28 0.46 0.51 0.41 0.48 0.66
Rainfall Cml-6 0.33 0.54 0.57 0.47 0.57 0.78
Rainfall Cml-12 0.26 0.59 0.50 0.44 0.52 0.74
Air temperature −0.01 −0.36 −0.25 −0.11 −0.23 −0.36
Solar radiation −0.23 −0.43 −0.28 −0.16 −0.29 −0.45
kNDVI 0.86 0.88 0.88 0.81 0.84 0.80

ER Rainfall 0.45 0.49 0.54 0.45 0.60 0.55
Rainfall Cml-3 0.39 0.54 0.67 0.58 0.69 0.68
Rainfall Cml-6 0.38 0.62 0.67 0.59 0.72 0.78
Rainfall Cml-12 0.22 0.63 0.60 0.56 0.68 0.79
Air temperature 0.07 −0.31 −0.17 0.06 −0.14 −0.28
Solar radiation −0.52 −0.59 −0.56 −0.38 −0.55 −0.54
kNDVI 0.68 0.78 0.81 0.69 0.71 0.75

NEE Rainfall 0.12 −0.02 0.09 0.05 0.07 −0.08
Rainfall Cml-3 −0.13 −0.31 −0.30 −0.23 −0.22 −0.42
Rainfall Cml-6 −0.25 −0.40 −0.41 −0.33 −0.32 −0.50
Rainfall Cml-12 −0.34 −0.49 −0.36 −0.29 −0.30 −0.41
Air temperature 0.15 0.35 0.31 0.25 0.28 0.44
Solar radiation −0.09 0.15 0.00 0.00 0.01 0.20
kNDVI −0.69 −0.79 −0.70 −0.67 −0.68 −0.57

lies and the seasonal cycle show better agreement than with
other methods. We take this to be evidence that our regional
empirical upscaling of the OzFlux network provides a bet-
ter estimate of Australia’s net terrestrial carbon cycle than
the global empirical upscaling product, FLUXCOM, which
to date has been the only product available of its type for
Australia. Our study showed that increasing the diversity
of flux tower sites beyond the small Australian set used in
global products improved the quality of carbon flux esti-
mates. We cannot predict whether the same might hold for
other underrepresented regions, which mostly coincide with
the global south, or whether the isolated evolution of Aus-
tralia’s ecosystems also plays a role.

We found evidence that Australia is, on average, a
stronger annual carbon sink than previous CABLE LSM
and FLUXCOM estimates have concluded. Our estimate
of the long-term annual mean carbon sink over Australia
(−0.44 PgC yr−1) is higher than those reported by any study
besides the regional OCO-2 inversion (−0.47 PgC yr−1). We
take the consilience between our estimate and the OCO-2
inversion’s, the fact that 24 out of the 29 OzFlux EC sites
used here report strong to modest annual mean carbon sinks
(Fig. A7), and the theoretical argument that ML predictions
tend to produce good estimates of the mean as evidence
that Australia’s status as a comparatively strong net carbon

sink is robust. Carbon flux anomalies show better agree-
ment between diverse methods, with our estimate, CABLE-
BIOS3, and the GOSAT inversion all largely agreeing on
the timing and magnitude of annual NEE anomalies. The
largest annual anomaly, the 2010–11 La Niña anomaly of
−0.70 PgC yr−1 reported here (based on a 12-month rolling
mean), also aligns well with the −0.77 PgC reported by Ma
et al. (2016) and the −0.79 PgC anomaly reported by Poul-
ter et al. (2014). The OCO-2 inversion, our study, CABLE-
BIOS3, and the GOSAT inversion also converge on a NEE
IAV of ∼ 0.2 PgC yr−1 (the range among these products is
0.18 to 0.26 PgC yr−1). Cross-validation showed that our
predictions generally underestimate large NEE fluxes (both
positive and negative fluxes; Fig. 3). Thus, it is fair to as-
sume that the inter-annual (and seasonal) variability in NEE
should be larger than the estimate reported by this study,
and perhaps the larger variability in the inversions is closer
to the truth. This study is consistent with other studies in
showing that NEE anomalies in Australia are driven by a
greater response of GPP than ER to anomalous rainfall pe-
riods (Ahlström et al., 2015; Ma et al., 2016; Poulter et al.,
2014; Haverd et al., 2016; Trudinger et al., 2016; Tecken-
trup et al., 2021; Fig. 9). This is especially the case where
rainfall anomalies are cumulative. The strong correlations
between cumulative rainfall anomalies and NEE anomalies
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provide some additional support to the study of Cranko Page
et al. (2022), who showed that the inclusion of rainfall lags
increased the predictability of site-level NEE in Australia.
Australia contributes substantially to the IAV of the global
terrestrial carbon sink; an important advantage of our high-
resolution dataset is that it allows us to identify and monitor
fine-resolution hotspots of IAV (maps showing greater detail
are shown in Fig. A8).

We have shown that climatological peak terrestrial carbon
uptake in Australia occurs in the austral autumn and winter
months owing mostly to more rapid declines in rates of ER
compared with GPP over the arid regions of Australia. Con-
comitant increases in ER during times of high GPP mean
that periods of peak primary production do not necessarily
coincide with peak carbon uptake on a seasonal basis. This
finding agrees with Renchon et al. (2018) at the Cumberland
Plains EC flux tower site, where the forest was a CO2 sink in
winter and a source in summer due to larger seasonal ampli-
tudes in ER. Similarly, Metz et al. (2023) found that seasonal
rainfall in semi-arid regions after the dry season drives pulses
of heterotrophic respiration that precede the GPP response,
leading to net carbon uptake not beginning until March.
Cleverly et al. (2013), in a site-based study of a semi-arid
acacia woodland in central Australia, observed that the first
large springtime storms following the dry season resulted in
rapid pulses of ecosystem respiration owing to an uptick in
moisture-limited microbial decomposition of photodegraded
litter and flushing of CO2 from soil pore spaces through in-
filtration. Our results confirm that ER over the savanna re-
gion responds quickly to seasonal rainfall events at the end
of the dry season, while GPP responds more slowly, result-
ing in carbon pulses to the atmosphere during the October–
December period. Correspondingly, we also find non-lagged
correlations between monthly rainfall climatologies and cli-
matological ER stronger than those for GPP over the semi-
arid regions of Australia (Fig. A6). Seasonal fires in the sa-
vanna region contribute to this carbon pulse as more intense
late-dry-season (August–October) fires lead to an earlier net
carbon pulse to the atmosphere and larger peak emissions
(Fig. A5b).

An advantage of this approach over other methods is its
computational efficiency and, owing to the maturing archi-
tecture of the OzFlux infrastructure, the ability to program-
matically ingest updated or new EC datasets to further re-
fine models. Thus, there is an opportunity for AusEFlux to
be incorporated into an annually produced national estimate
of Australia’s terrestrial carbon fluxes. Any annually pro-
duced “bottom-up” estimate of Australia’s terrestrial carbon
fluxes could also serve as a complement to the Global Car-
bon Project’s aims of annually reporting the carbon balance
of the world (Papale, 2020). Through regular updating of this
dataset, the ecosystems that play an outsized role in control-
ling Australia’s mean carbon sink and contribute substan-
tially to its IAV can begin to be systematically monitored for
change.

While our estimate provides a step forward in our means
for assessing the complex, seasonal, and inter-annual dynam-
ics of Australia’s carbon cycle, future work can improve upon
this current effort. Firstly, we aim to extend AusEFlux fur-
ther back in time through the inclusion of satellite observa-
tions from the Advanced Very High Resolution Radiometer
(AVHRR) and Landsat missions. However, this effort will
inform a separate study as it will require addressing cross-
sensor calibration issues. A longer record of empirically de-
rived terrestrial carbon fluxes will assist in defining robust
environmental baselines from which future changes to the
carbon cycle can be assessed. Secondly, new or improved
feature layers can be incorporated as they become available
(e.g. time-varying estimates of the tree, grass, and bare per-
centages). And lastly, we aim to explore the prospects of eco-
logical forecasting (Dietze et al., 2018) of the terrestrial car-
bon cycle as forecasts may be possible where forecasts of the
climate are sufficiently detailed.

5 Conclusions

We show that regional empirical upscaling can improve
considerably upon existing global upscaling products, out-
perform existing LSMs, perform similar to or better than
other empirical GPP products, and replicate the dynamics
of CO2 flux over Australia as estimated by two regional at-
mospheric inversions. Our estimate suggests that Australia
was a strong carbon sink (2003–2021 average) with an an-
nual mean uptake of −0.44 (0.42) PgC yr−1 and has an
IAV of 0.18 PgC yr−1 and an average seasonal amplitude
of 0.85 PgC yr−1. Estimates of the annual mean carbon up-
take from other methods varied considerably, and only our
study and the OCO-2 inversion agreed. However, carbon flux
anomalies showed much better agreement between methods.
NEE anomalies were predominately driven by cumulative
rainfall deficits and surpluses, resulting in larger anomalous
responses from GPP than ER. In contrast, the long-term av-
erage seasonal cycle is dictated more by the variability in
ER than GPP, resulting in peak carbon uptake typically oc-
curring during the cooler, drier austral autumn and winter
months. Our new estimates of Australia’s terrestrial carbon
cycle fluxes improve upon our understanding of the magni-
tudes, seasonal cycles, and processes governing Australia’s
terrestrial carbon cycle and provide a new benchmark for as-
sessment against future LSM developments and a means for
high-resolution monitoring of Australia’s terrestrial carbon
cycle.
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Appendix A

Table A1. Summary table of the comparison datasets used in the study. Spatial and temporal resolution refers to the extents used by this study
and not necessarily the native ranges. For example, the observation-based GPP products have been resampled to 0.01◦, and most datasets
have been clipped to 2003 to match the beginning of AusEFlux.

Dataset name Dataset type Spatial resolution Temporal range References

CABLE-POP Process model 1◦ 2003–2020 Friedlingstein et al. (2022)
CABLE-BIOS3 Process model 0.25◦ 2003–2019 Villalobos et al. (2022)
OCO-2 inversion Atmospheric inversion 0.8◦ 2015–2019 Villalobos et al. (2022)
GOSAT inversion Atmospheric inversion – 2009–2018 Metz et al. (2023)
FLUXCOM-Met ML upscaling 0.5◦ 2003–2015 Jung et al. (2020)
FLUXCOM-RS ML upscaling 0.083◦ 2003–2015 Jung et al. (2020)
MODIS-GPP Observation-based 0.01◦ 2003–2021 Running et al. (2015)
GOSIF-GPP Observation-based 0.01◦ 2003–2021 Li and Xiao (2019)
DIFFUSE-GPP Observation-based 0.01◦ 2003–2021 Donohue et al. (2014)

Table A2. The hyperparameter grids used during model optimisation of the random forest and gradient-boosting models. During model
fitting, a random grid search was conducted with 250 iterations to identify the best-performing set of hyperparameters.

Model Parameter grid

LGBM ’num_leaves’: stats.randint(5,40),
’min_ child_samples’: stats.randint(10,30),
’boosting_type’: [’gbdt’, ’dart’],
’max_depth’: stats.randint(5,25),
’n_estimators’: [300, 400, 500],

RF ’max_depth’: stats.randint(5,35),
’max_features’: [’log2’, None, “sqrt”],
’n_estimators’: [200,300,400,500]}
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Figure A1. Locations of OzFlux eddy covariance flux tower sites used in this study. The table on the right lists the location, start and end dates
of the time series, and the Fluxnet ID for the site where it is available. The “stamen” basemap is provided by © OpenStreetMap contributors,
distributed under the Open Data Commons Open Database License (ODbL) v1.0.

Figure A2. Climatological seasonal cycles of NEE for each EC flux tower site used in this study, plotted along with the seasonal cycle of the
predictions from the nearest pixel to the tower.
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Figure A3. Scatterplots of modelled vs. EC flux tower monthly carbon fluxes for a suite of products. The EC tower flux values are compared
with the nearest pixel in each product, and the products have been reprojected to match the resolution of CABLE-BIOS3 (∼ 25 km). Only
those products with a reasonably high spatial resolution have been compared with the flux tower (i.e. CABLE-POP, FLUXCOM-Met, and
the OCO-2 inversion have been excluded from these plots).
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Figure A4. Climatological month of maximum flux. In the case of NEE (a), the pixels show the month of the most negative value (i.e.,
largest carbon sink). Panel (b) shows ecosystem respiration, and panel (c) shows GPP. Climatologies are calculated from 2003 and extend to
the full length of the available time series for each product, as indicated in the subtitle of each plot.
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Figure A5. (a) Flux climatologies for the savanna and desert regions, showing the same results as those in Fig. 10 but shown on a single plot
to enhance interpretability. (b) NEE per bioclimatic region calculated by subtracting GPP from ER (i.e. not directly modelled), presented
here to show how the fluxes interact to produce NEE. Fire emissions from the Global Fire Assimilation System (GFAS) product have been
added to the savanna fluxes in (b) to highlight how dry-season fires interact with ER to create a pulse of carbon to the atmosphere.

Figure A6. Per-pixel temporal Pearson correlations between ER climatologies and rainfall climatologies.

Figure A7. Boxplots of annual mean NEE for each of the sites used in the empirical upscaling.
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Figure A8. Maps of annual mean NEE and standard deviation of annual mean NEE zoomed in on three regions to show the landscape
features resolved by a high-resolution (1 km) dataset of NEE. The top three panels show a region in central Queensland that extends from the
episodic rivers in the south-east (e.g. Coopers Creek) to Townsville in the north-west. Panel (c) shows a true-colour satellite image (sourced
from Esri World Imagery), panel (a) shows the long-term annual mean, and panel (b) shows the standard deviation of the annual means.
Panels (d)–(f) show the same for south-eastern Australia extending from Adelaide in the west to Mallacoota in the east. Panels (g)–(f) show
the same but for south-western Western Australia.
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