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Abstract. Most phosphorus (P) in soils is unavailable for di-
rect biological uptake, as it is locked within primary or sec-
ondary mineral particles, adsorbed to mineral surfaces, or im-
mobilized inside of organic material. Deciphering the com-
position of different P forms in soil is critical for understand-
ing P bioavailability and its underlying dynamics. However,
widely used global estimates of different soil P forms are
based on a dataset containing few measurements in which
many regions or soil types are unrepresented. This poses a
major source of uncertainty in assessments that rely on these
estimates to quantify soil P constraints on biological activity
controlling global food production and terrestrial carbon bal-
ance. To address this issue, we consolidated a database of six
major soil P “forms” containing 1857 entries from globally
distributed (semi-)natural soils and 11 related environmental
variables. These six different forms of P (labile inorganic P
(Pi), labile organic P (Po), moderately labile Pi, moderately
labile Po, primary mineral P, and occluded P) were measured
using a sequential P fractionation method. As they do not
represent precise forms of specific discrete P compounds in
the soil but rather resemble operational pools, we will now
refer to them as P pools. In order to quantify the relative
importance of 11 soil-forming variables in predicting soil P
pool concentrations and then make further predictions at the

global scale, we trained random forest regression models for
each of the P pools and captured observed variation with R2

higher than 60 %. We identified total soil P concentration as
the most important predictor of all soil P pool concentrations,
except for primary mineral P concentration, which is primar-
ily controlled by soil pH and only secondarily by total soil P
concentration. When expressed in relative values (proportion
of total P), the model showed that soil pH is generally the
most important predictor for proportions of all soil P pools,
alongside the prominent influences of soil organic carbon,
total P concentration, soil depth, and biome. These results
suggest that, while concentration values of P pools logically
strongly depend on soil total P concentration, the relative val-
ues of the different pools are modulated by other soil proper-
ties and the environmental context. Using the trained random
forest models, we predicted soil P pools’ distributions in nat-
ural systems at a resolution of 0.5◦× 0.5◦. Our global maps
of different P pools in soils as well as the pools’ underly-
ing drivers can inform assessments of the role of natural P
availability for ecosystem productivity, climate change miti-
gation, and the functioning of the Earth system.
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1 Introduction

Phosphorus (P) is a key nutrient limiting plant growth across
a wide range of ecosystems (Augusto et al., 2017; Elser et al.,
2007; Hou et al., 2020). Soil is typically the major P source
for plants in natural terrestrial ecosystems (Weihrauch and
Opp, 2018). P supplied by the soil plays a vital role in deter-
mining the structures, functions, and processes in terrestrial
ecosystems (Peltzer et al., 2010; Wardle et al., 2004). For
example, soil P availability imposes a major constraint on
plant productivity in terrestrial ecosystems worldwide (Au-
gusto et al., 2017; Ellsworth et al., 2022; Elser et al., 2007;
Hou et al., 2020, 2021) and affects modeled projections of
terrestrial carbon cycle responses to climate change and in-
creasing atmospheric carbon dioxide concentrations (Cunha
et al., 2022; Fleischer et al., 2019; Goll et al., 2012). The size
of soil P stocks is large compared to annual plant P require-
ments (Wang et al., 2018) and the amount of P stored in vege-
tation (Wang et al., 2018; Zhang et al., 2021). However, only
a small proportion of soil P can be directly taken up by plants
(Morel et al., 2014), with most P tightly sorbed to soil miner-
als, organic compounds, or organo-mineral complexes with a
turnover time of centuries to millennia or longer (Helfenstein
et al., 2020; Vitousek et al., 2010). Consequently, vegetation
growth is often limited by P availability in ecosystems across
the globe (Vitousek et al., 2010; Wardle et al., 2004). For
these reasons, the investigation of P dynamics and P bioavail-
ability in the soil requires the identification and separation of
different soil P pools (Crews et al., 1995; Walker and Syers,
1976).

Our knowledge of the various pools of P existing in soils
is largely based on soil chronosequences and climosequences
that investigated how P is cycled during pedogenesis (Crews
et al., 1995; Walker and Syers, 1976). These studies revealed
that chemical weathering results in the release of P from pri-
mary minerals, after which it can be converted to organic
P through biological uptake, sorbed to soil particles, or oc-
cluded within secondary minerals. The most commonly used
procedures for the sequential fractionation of P in soils were
developed by Hedley et al. (1982) and later modified by
Tiessen and Moir (1993). This method exploits differences
in solubility to separate different “forms” of P occurring in
the soil. Though it cannot be used to identify specific dis-
crete P compounds in the soil, this approach has proven in-
dispensable for the study of soil P cycling and, as such, is
widely used (Condron and Newman, 2011; Klotzbücher et
al., 2019; Barrow et al., 2021). In addition to forming the
basis for modeling soil P dynamics, these procedures yield
operationally defined pools that are used to assess soil fer-
tility and soil development (Wang et al., 2010, 2022). Sev-
eral studies have called the validity of sequential extractions
into question, pointing out that, while it is often assumed that
pools from sequential extractions contain distinct forms of P,
the reality is much more complex (Condron and Newman,
2011; Gu and Margenot, 2021; Klotzbücher et al., 2019).

Nevertheless, radioisotope tracer experiments show that se-
quentially extracted pools have distinct P exchange behav-
iors that result in significantly different turnover times (Büne-
mann et al., 2004; Helfenstein et al., 2018, 2021; Vu et al.,
2010).

Numerous studies have used data from P fractionations to
explore drivers of spatial differences in soil P pools from lo-
cal to global scales (e.g., Brucker and Spohn, 2019; Hou et
al., 2018a; Yang and Post, 2011; Chen et al., 2015). Yang
and Post (2011) compiled Hedley P pools data from 178 soil
samples to explore P dynamics along a soil development gra-
dient. Their results generally supported the conceptual model
proposed by Walker and Syers (1976): the gradual decrease
of primary mineral-bound P, the continual increase and even-
tual dominance of occluded P, and the overall decrease of
total P as pedogenesis progresses. However, the conceptual
model of Walker and Syers (1976) disagreed with the re-
sults of Yang and Post (2011), who found that labile Pi and
moderately labile Pi (non-occluded P in Walker and Syers’
model) formed a significant fraction of total P at every stage
of pedogenic development. Augusto et al. (2017) compiled
1684 measurements of P pools that were taken worldwide
using the Hedley fractionation method. This work found that
total P content was a main factor in determining the concen-
trations of labile Pi and organic P pools. Almost concomi-
tantly, Hou et al. (2018a) used a global dataset compiled from
analyses of 802 soil samples to examine climate effects on
the soil P cycle and P availability and found that soil labile
Pi concentration decreased with increasing mean annual tem-
perature, which was mainly due to decreasing soil organic
P and primary mineral P with increasing temperature. Al-
though those studies advanced our understanding of factors
controlling the size of various soil P pools, their focus was
largely contained to the effects of climatic factors or the soil
weathering stage on a few select P pools, mainly labile Pi and
organic P. Thus, we still lack a comprehensive understanding
of the relationships between environmental drivers and the
various soil P pools at a global scale.

Despite significant efforts to synthesize global Hedley soil
P pool data, to our knowledge, only a single mapping of soil
P fractions across natural terrestrial ecosystems exists, and
this work was based on the upscaling of measurements taken
from only 178 samples (Yang et al., 2013). These global es-
timates and associated maps of soil P pools have been used
to explore global patterns of soil P supply and to estimate P
availability in natural and managed systems (e.g., Ringeval
et al., 2017; Sun et al., 2017). They have also been used to
calibrate or initialize a range of global P models (Wang et
al., 2010; Yang et al., 2014). However, the poor global cover-
age of the underlying data introduces significant uncertainty,
potentially resulting in misinformed model predictions and
assessments.

We recently developed a new global map of soil total P
concentrations and explored the underlying drivers, taking
advantage of improved data availability and the use of non-
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linear statistical modeling (He et al., 2021). Here, we con-
structed a database of soil P pools in 1857 globally dis-
tributed (semi-)natural soils collected from 274 published
studies, 1 order of magnitude larger than the dataset used by
Yang et al. (2013) (see comparison in Fig. S1 in the Supple-
ment). Using this database, we trained random forest models
to capture observed variations in Hedley P pool concentra-
tions at the site level with two aims: (1) to quantify the rel-
ative importance of different drivers of spatial variation in
each soil P pool and (2) to develop global distribution maps
of various P pools at a spatial resolution of 0.5◦×0.5◦ using
the calibrated random forest regression model.

2 Material and methods

2.1 Soil P fractionation terminology and procedure

In the present study, we use the word “pool” to indicate the
concentrations quantified in each step during sequential frac-
tionation and the word “proportion” to represent the size of
a pool relative to total P. We try to avoid using “fraction” to
describe different P forms anymore because it is easy to con-
fuse with proportion. There is disagreement about how to in-
terpret the different pools yielded by sequential fractionation
(Gu and Margenot, 2019; Barrow et al., 2021; Klotzbücher
et al., 2019; Condron and Newman, 2011; Helfenstein et al.,
2020). Here, we adopt a widely used regime for understand-
ing these pools, which correspond to different forms of soil
P: the resin Pi pool represents the soil soluble Pi pool, which
is immediately accessible to plants. The HCO−3 Pi pool can
be released by ligand exchange with bicarbonate ions; this
pool is available to plants and persists only for short periods
(e.g., a growing season). Due to their functional similarity,
the resin and HCO−3 Pi pools can be combined and used as
an index of labile inorganic P (i.e., “available” P). The HCO−3
Po pool represents labile Po that can be utilized by plants af-
ter mineralization. The OH− P (Pi and Po) pools mainly indi-
cate moderately labile P that is bound to both amorphous and
crystalline Al and Fe; these pools represent P that is moder-
ately available to plants. The 1 M HCl Pi pool represents pri-
mary mineral P that is bound to calcium and that can be uti-
lized by plants after it is released by weathering. And other P
pools, such as residual P, are the least available to plants due
to their particularly low solubility.

To integrate data from studies that use different interpre-
tations, we consider a set of six simplified P pools (Fig. 1):
labile Pi, labile Po, moderately labile Pi, moderately labile
Po, primary mineral P, and occluded P. Labile Pi includes the
resin Pi and HCO−3 Pi pools; labile Po and moderately la-
bile Po are organic pools extracted by carbonate and NaOH,
respectively; moderately labile Pi is the NaOH Pi fraction;
primary mineral P represents the 1 M HCl Pi pool; and oc-
cluded P includes any remaining P (Hou et al., 2018b).

We collected, filtered, and processed soil P pool data (see
Sect. 2.2.) from the literature (Sect. S1 data source references
in the Supplement). First, we added all measured P pools to-
gether to calculate total soil P, unless at least one pool had a
missing value. In this case, we used the measured value of to-
tal soil P presented in that paper instead. Second, if phosphate
was extracted using deionized water before the resin P ex-
traction step, the labile Pi pool includes both resin and aque-
ous P. If the extraction procedure began by using a sodium
bicarbonate solution instead of resin P, we classified HCO−3
Pi as labile Pi. Third, the labile Po pool and the moderately
labile Po pool represent the HCO−3 -extracted Po and NaOH-
extracted pools, respectively. The raw data contained other
organic P pools (e.g., Po extracted by sonication and NaOH
or by hot, concentrated HCl), which we included as part of
occluded P. Fourth, if occluded P was not reported, we calcu-
lated this pool’s concentration by subtracting the sum of the
five other pools from total P.

2.2 Data source and processing

We collected soil P pool data by aggregating all the publica-
tions that cited either one of two main references dedicated
to Hedley’s method (Hedley et al., 1982; Tiessen and Moir,
1993). We included all studies that reported data from (semi-
)natural soils that supported primary vegetation or that had
been reforested with a stand older than 10 years and no doc-
umented history of P fertilization. We excluded observations
taken from pot experiments, mine zones, and intertidal zones,
as P pools in these soils could be affected by factors differ-
ent from those influencing (semi-)natural soils. Despite our
best efforts, we cannot rule out that our database includes
data collected from soils affected by undocumented anthro-
pogenic activities in the past (e.g., P fertilization occurring
before reforestation), particularly in western Europe and the
eastern USA (e.g., De Schrijver et al., 2012). All data were
collected at the plot scale. For data that included replicates
within a plot or soil layer, average values were calculated.

To compile our database, we first combined the two ex-
isting global databases (Augusto et al., 2017; Hou et al.,
2018b). Detailed information about the methods used to con-
struct these datasets can be found in the original publica-
tions. We extracted observations from these two databases by
selecting only unfertilized, uncultivated, and (semi-)natural
soils. This yielded 1684 observations from 182 studies from
the dataset developed by Augusto et al. (2017) and 802 obser-
vations from 99 studies from the dataset developed by Hou
et al. (2018b). Next, we removed 375 duplicates, after which
our dataset contained 2111 observations from 245 studies
(Fig. S2). Because we use total soil P concentration as a pre-
dictor of soil P pools, we removed data that did not include
total soil P (calculated as the sum of P pools or measured by
a separate method) or that did not identify the concentration
of at least one pool (e.g., labile Pi, labile Po, moderately la-
bile Pi, moderately labile Po, primary mineral P, or occluded
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Figure 1. Flow chart of soil P fractionation. The flow chart follows the procedures outlined by Hedley et al. (1982) and Tiessen and
Moir (1993). Redrawn according to Hou et al. (2018b).

P). In this step, 816 observations were removed, resulting in
a dataset that included 1295 observations from 178 studies.

Next, we added additional observations by compiling data
from literature published after 2016, the final year included
in the database compiled by Hou et al. (2018b). We used
Google Scholar to search for studies published between 2016
and 8 August 2021 that referenced either Hedley et al. (1982)
or Tiessen and Moir (1993). This search returned 701 pub-
lications citing Hedley et al. (1982) and 245 citing Tiessen
and Moir (1993). From this set, we selected studies that pre-
sented soil P data collected using the fractionation method
for (semi-)natural soils. The resulting 562 observations from
96 studies were added to our final dataset, which includes
a total of 1857 observations collected from 729 sites from
274 studies (Sect. S1).

In addition to soil P pool concentration and site coor-
dinates, our dataset contains site characteristics including
climate variables (i.e., mean annual temperature (MAT),
mean annual precipitation (MAP), and potential biome), soil
physicochemical properties (e.g., soil organic carbon con-
centration (SOC), soil clay and sand content, and soil pH),
and elevation (Table 1). The potential biome was identi-
fied using a global map of potential natural biomes (i.e.,
the global distribution of biomes that would exist in the ab-
sence of human activity) (Hengl et al., 2018). This catego-
rization includes seven ecosystem types, including tropical
forest, temperate forest, boreal forest, grassland, savanna,
desert, and tundra. We did not include a parent material type
because it can be inferred from soil total P concentration
and other soil properties (e.g., soil texture and pH) (Au-
gusto et al., 2017; He et al., 2021). Because soil age was
rarely reported, we used USDA soil order identity as a proxy

for three age classes: slightly, intermediately, and strongly
weathered (Smeck, 1985; Yang et al., 2013). Among the
12 USDA soil orders, Entisols, Inceptisols, Histosols, An-
disols, and Gelisols are classified as slightly weathered soils.
Alfisols, Mollisols, Aridisols, and Vertisols are classified as
intermediately weathered soils. Oxisols, Ultisols, and Spo-
dosols are classified as strongly weathered soils (Yang et
al., 2013; Smeck, 1985). Given that atmospheric P inputs
are small (0.3 kg P ha yr−1, on average) compared to soil P
stocks (Mahowald et al., 2008; Wang et al., 2015) and are
also highly uncertain over timescales relevant to soil devel-
opment, we do not consider atmospheric inputs to be a pre-
dictor of P pools. As such, we did not include this informa-
tion in our dataset. We extracted data from each publication
as available. In cases in which relevant information was not
reported, we extracted the missing data from gridded datasets
(Table S1 in the Supplement) based on the geographic coor-
dinates of the study sites.

In random forest modeling, correlated predictors can be
substituted for each other so that the importance of correlated
predictors will be shared, making each predictor’s estimated
importance smaller than its true value (Strobl et al., 2008).
Thus, we did not include the soil total nitrogen content, as it
is strongly correlated with SOC (r =+0.94), nor did we in-
clude the aridity index as it is strongly correlated with MAP
(r =+0.72). We also did not include rarely reported vari-
ables that were included in the referenced studies (e.g., soil
extractable aluminum and iron concentrations).

Biogeosciences, 20, 4147–4163, 2023 https://doi.org/10.5194/bg-20-4147-2023
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Table 1. Summary of training data used to predict soil P pool concentrations. P10 and P90 indicate percentile ranks of 10 % and 90 %,
respectively. Proportions from literature (PFL) and proportions from gridded maps (PFGMs) indicate proportions of measurements from the
literature and extracted from global gridded maps, respectively.

Group Variables Unit Min P10 Median P90 Max PFLa PFGMb

Climate MAT ◦C −12 1.1 12.8 25.7 30.0 96 % 4 %
MAP mm yr−1 10 414 970 2750 5180 96 % 4 %

Soil property Total P mg kg−1 4.8 114.0 455.5 1107.9 14973.6 100 % 0 %
SOC g kg−1 < 0.1 4.8 24.4 130 545.2 87 % 13 %
Soil pH unitless 3.0 4.2 5.7 8.1 10.5 92 % 8 %
Soil clay g kg−1 < 0.1 70.0 195.5 410.7 945.5 52 % 48 %
Soil sand g kg−1 < 0.1 164.9 420.0 757.6 982.0 49 % 51 %
Depth cm 0.5 4.2 10.0 47.5 450.0 100 % 0 %
Soil order unitless 12 USDA soil orders 80 % 20 %

Vegetation Biome unitless 8 major biomes 0 % 100 %

Topography Elevation m −2 37 616 3015 4813 85 % 15 %

MAT: mean annual temperature; MAP: mean annual precipitation; SOC: soil organic carbon. a PFL: proportion from literature.
b PFGM: proportion from gridded map. PFL and PFGM indicate proportions of measurements from literature and extracted from global gridded
maps, respectively.

2.3 Statistical modeling

All statistical analyses and plotting were performed in the R
environment (v. 4.0.2) (R Core Team, 2018).

The database includes some extreme values in each P pool.
These values were likely observed in exceptional geological
contexts (Porder and Ramachandran, 2013) or in special soils
(e.g., very young volcanic soils). We included these extreme
values in the shared version of the dataset. However, these
values were excluded from data used in model training, as
the extremely high values could have a large influence on
modeled relationships between soil P pools and predictors.
To this end, we only included values falling in the interval
between 1 % and 99 % (Table 2). As we only generate pre-
dictions in the top 100 cm depth, the training of the model
was done using observations in 0–100 cm.

We used random forest regression models (Breiman, 2001)
to predict global patterns of distribution for individual soil P
pools. It is a type of ensemble learning algorithm that com-
bines multiple decision trees to make predictions. It reduces
the risk of overfitting and improves the generalization perfor-
mance by using random subsets of input variables and train-
ing data. The output is the average prediction of all the trees
(James et al., 2013). All models included the same 11 predic-
tors: MAT, MAP, potential biome, total P, soil depth, SOC,
soil clay and sand content, soil pH, elevation, and soil weath-
ering stage. The random forest analysis accounts for inter-
actions and nonlinear relationships between predictors and
is appropriate for handling the multicollinearity problem in
the multivariate regression (Delgado-Baquerizo et al., 2017).
We performed random forest regression analysis using the
R package caret by applying the embedded R package ran-
domForest version 3.1 (Liaw and Wiener, 2002) with an au-

tomated mtry parameter. A 5-fold cross-validation was per-
formed using the R package caret (v. 6.0-86) (Kuhn, 2020) to
evaluate model performance. The mean decrease in accuracy
(%IncMSE) was used to evaluate the relative importance of
each variable as a predictor of a soil P pool. The mean de-
crease in accuracy plot shows how the accuracy of the fitted
model declines with the exclusion of a predictor. The greater
the decline in accuracy, the more important the variable is for
prediction. In this study, the importance measure was calcu-
lated for each tree and averaged across the forest (500 trees).
Our model found that all 11 variables are important for pre-
dicting pool concentrations; thus, all were used as predictors
as we developed the global distribution map. Partial depen-
dence plots are a graphical technique used in machine learn-
ing to show how the value of a particular input variable af-
fects the predictions of a model, while holding all other input
variables constant at their average values in the training data
(James et al., 2013). We used the partial_dependence func-
tion in the R package edarf version 1.1.1 (Jones and Linder,
2016) to calculate the partial dependence of the response on
an arbitrary dimensional set of continuous predictors from a
fitted random forest model.

Finally, we applied the above trained models for each of
the soil P pools to global databases of the 11 predictors to
generate global predictions of each soil P pool. The gridded
predictor variables used for the global prediction were all re-
gridded to a spatial resolution of 0.5◦×0.5◦ (the original res-
olution can be found in Table S1). The predict function in
the ranger package (Wright and Ziegler, 2017) can compute
the standard error of a predicted value. To estimate standard
errors based on out-of-bag predictions, we used the infinites-
imal jackknife for bagging approach (Wager et al., 2014).
We did not mask croplands or other areas heavily influenced
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Table 2. Statistical summary of P pools in global (semi-)natural soils. Results are based on our database of collected sites. P1, P10, P25, P75,
P90, and P99 indicate percentile ranks of 1 %, 10 %, 25 %, 75 %, 90 %, and 99 %, respectively.

Count P1 P10 P25 Median Mean P75 P90 P99

Concentration (mg kg−1)

Labile Pi 1722 0.1 2.2 6.2 14.3 37.1 34.3 78.6 444.6
Labile Po 1567 0.6 2.5 5.9 14.0 31.1 35.0 85.2 225.4
Moderately labile Pi 1742 0.1 4.0 10.0 25.0 58.4 57.7 122.4 378.6
Moderately labile Po 1588 1.2 8.3 22.1 60.8 120.3 155.1 333.4 631.1
Primary P 1629 < 0.1 1.2 4.7 38.9 106.8 145.0 328.3 635.2
Occluded P 1453 5.5 34.5 86.2 178.0 260.5 309.6 532.9 2172.9

Proportion of total P (%)

Labile Pi 1448 < 0.1 0.6 1.7 4.0 5.9 7.7 13.6 29.6
Labile Po 1331 0.1 0.8 1.7 4.1 5.9 7.8 13.1 29.3
Moderately labile Pi 1448 0.1 0.9 3.0 7.5 9.3 12.9 20.2 39.3
Moderately labile Po 1384 0.4 3.1 8.0 18.0 19.5 27.1 38.5 59.8
Primary P 1448 < 0.1 0.5 1.6 7.9 19.0 29.4 60.9 83.2
Occluded P 1448 4.2 15.4 26.8 42.4 41.9 56.4 67.9 83.0

by human activity (e.g., urban areas), so pool concentrations
predicted for these regions should be interpreted as the natu-
ral state prior to anthropogenic activity.

Soil depth was used as a predictor, allowing models to pre-
dict soil P pool concentration for any given depth (Hengl et
al., 2017). The partial dependence plot indicated that soil P
pool concentration changed with soil depth in the top 50 cm
but not in deeper layers (> 50 cm) (Fig. S3e). As such, we
generated predictions at six standard depths for all soil P pool
concentrations: 0, 10, 20, 30, 50, and 100 cm. Averages for a
depth interval (e.g., 0–30 or 0–100 cm) can be derived by cal-
culating the weighted average of the predictions within that
interval (Hengl et al., 2017).

3 Results

3.1 Characters of P pools in natural soils across the
world

Our soil P pool database includes 1857 measurements from
729 geographically distinct sites and covers 6 continents, all
major biomes, and all 12 USDA soil orders in terrestrial
ecosystems (Fig. 2). The database includes pool concentra-
tions measured in samples collected from the 0.5 cm to a
depth of 450 cm, with 83 % of the measurements taken from
the topsoil (0–30 cm).

From the global median values (Table 2), the largest pool
among the six pools considered is the occluded P, account-
ing for more than 40 % of the soil total P, followed by the
moderately labile pools (Pi and Po mainly bound to Al and
Fe), accounting for about a quarter of total P. Primary min-
eral P (bound to calcium) accounted for a minor proportion

(7.9 %) of soil total P; labile P pools (Pi and Po) represent the
smallest proportions of total P (around 4 %, respectively).

3.2 Model performance of different P pools in soils

The random forest regression models explained 62 %, 64 %,
60 %, 83 %, 76 %, and 82 % of the variance in the concentra-
tions of labile Pi, labile Po, moderately labile Pi, moderately
labile Po, primary P, and occluded P, respectively (Fig. 3).
Using the importance measure (%IncMSE), we identified to-
tal P concentration as the most important predictor for con-
centrations of soil labile Pi, labile Po, moderately labile Pi,
moderately labile Po, and occluded P and soil pH as the most
important predictor for soil primary P (Fig. 3). The random
forest regression models explained 48 %, 58 %, 52 %, 64 %,
80 %, and 58 % of the variance in proportions of labile Pi, la-
bile Po, moderately labile Pi, moderately labile Po, primary
P, and occluded P, respectively (Fig. S4). Based on the im-
portance measure, soil pH is generally the most important
predictor for proportions of all soil P pools, with prominent
influences of total P concentration, soil organic carbon, soil
depth, and biome (Fig. S4). These results suggest that, while
concentration values of P pools logically strongly depend on
soil total P concentration, the relative values of the different
pools are modulated by other soil properties and the environ-
mental context.

3.3 Global patterns and drivers of P pools in natural
soils

Our global predictions (Fig. 4) revealed that average values
across all P pools were higher in slightly weathered soils
compared to those in more weathered soils (Fig. 5a), reflect-
ing the strong effect of the initial stages of soil development
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Figure 2. Distribution of site-level training data (a). The database contains 1838 observations covering 12 USDA soil orders (b) and all
major terrestrial biomes (c).

Figure 3. Relative importance of variables for predicting the concentration of soil P pools quantified using random forest models. The mean
decrease accuracy (%IncMSE) indicates the relative importance of each variable for predicting soil P pools. SWS: soil weathering stage.
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Figure 4. Global maps of P pool concentrations at depths of 0–30 cm. Note that croplands and other heavily influenced areas were not
masked from the maps, so soils in these areas can be used to represent soils without extensive anthropogenic activity.

on soil P depletion. While occluded P proportion increased
with soil development, the proportions of labile and mod-
erately labile P (Pi and Po) were fairly independent of soil
weathering stage (Fig. 5b).

Our global predictions also indicated that soil P pool
concentrations varied substantially among different biomes.
Lower P pool concentrations were found in warm and/or hu-
mid biomes (e.g., tropical forest and savanna), while higher
P pool concentrations were found in northern cold biomes
(e.g., tundra and boreal forest) (Fig. 5c). The spatial patterns
of pool proportions were different from those of pool con-
centrations across biomes (Fig. 5d). For example, variation
in the proportion of labile Pi was relatively small compared
to the variation observed in labile Pi concentrations; more-
over, the proportion of occluded P tended to increase in the
transition from tundra and boreal forest to tropical forest and
savanna (Fig. 5d). It should be noted that the mapped pre-
dictions of P pool concentrations across biomes (see Fig. 5c)
are not consistent with the measured data (Fig. S5), which
indicates that total soil P in tropical forests is higher than in
any other biome. This result suggests a sampling bias due
to overrepresentation of high total soil P sites in the tropical
forest data.

Partial dependence plots (Fig. S3) and the results of Pear-
son correlation analysis (Fig. 6) were generally consistent.
Both analyses revealed that concentrations for all six pools
were significantly and positively correlated with total P con-
centration. SOC was significantly and negatively correlated
with primary mineral P concentration but positively corre-
lated with the other five pool concentrations. MAT and MAP
were significantly and negatively correlated with concentra-
tions of all soil P pools. Soil pH was significantly and pos-
itively correlated with primary mineral P concentration but
significantly and negatively correlated with concentrations
of the other five P pools. The results of Pearson correlation
analysis also indicated that P pool concentrations were well
correlated with each other, except for primary mineral P; this
pool was negatively correlated with labile Po and not cor-
related with moderately labile Po concentration. The partial
dependence plot indicated the variation of P pool concentra-
tions with increasing soil depth (Fig. S3e). We found a drastic
decrease of P pools with soil depth in the top 50 cm of soil,
which then became relatively stable at 50–100 cm soil depth.
Labile and moderately labile P (both Pi and Po) concentra-
tions also decreased with an increase in soil depth in the top
50 cm, while primary mineral P and occluded P concentra-
tions generally increased with soil depth.
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Figure 5. Average concentrations of P pools and their proportions of total soil P concentration across soil weathering stages and biomes.
Labile and moderately labile Po form the organic pool. The results are based on global estimates for 0–30 cm depth. Dry vegetation combines
grassland and savanna biomes to simplify the figure.

As for the P pools’ proportions, Pearson correlation anal-
ysis (Fig. 6) revealed that soil pH was positively correlated
with the primary mineral P proportion and negatively corre-
lated with the other five P pool proportions. Soil labile Po,
moderately labile Pi, and moderately labile Po proportions
decreased substantially with an increase in MAT, while the
occluded P proportion increased with MAT. Soil labile Po,
moderately labile Pi, and moderately labile Po proportions
increased substantially with increasing total P concentration,
while the soil labile Pi and occluded P proportions decreased
substantially with total P concentration.

There are significant differences between our predictions
and those made by Yang et al. (2013) (Fig. S6) in both
the magnitude and the spatial patterns associated with most
P pool concentrations. The two global estimates were only
weakly to moderately correlated (Pearson correlation coeffi-
cients between 0.09 and 0.38) (Fig. 7). Yang et al.’s (2013)
predictions are lower than ours for organic P, moderately la-
bile Pi, primary mineral P, and occluded P concentrations
(Table S2). Although average values for labile Pi concentra-
tions estimated by Yang et al. (2013) were close to ours, they

were only weakly correlated with each other (Pearson corre-
lation coefficient of 0.09) (Fig. 7).

4 Discussion

4.1 Improved mapping of different P pools in global
natural soils

We trained random forest regression models using 11 vari-
ables to predict six soil P pools at different depths in (semi-
)natural terrestrial ecosystems, resulting in significant im-
provements over earlier estimates (Yang et al., 2013). First,
we used a new global map of total P concentrations in nat-
ural soils (He et al., 2021) as a predictor. Because total P is
an important predictor and is highly correlated with all other
P pools, a higher quality map of total soil P will also lead
to improved predictions of other P pools. Further improve-
ments in global P data availability will thus also be useful to
improve maps of other P pools. Second, Yang et al. (2013)
used a limited number (n= 178) of measurements of Hedley
P pools across soils. Our database represents a nearly 10-
fold increase, which can better represent the heterogeneous
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Figure 6. Coefficients of Pearson correlations among proportions and concentrations of soil P pools. The results are based on the average
global predictions in the top 30 cm of soils. Coefficients with P < 0.001 are shown in black and bold. Labile Pi P. indicates the labile Pi
proportion. The same meanings apply to the labile Po P., moderately labile Pi P., moderately labile Po P., primary P P., and occluded P P.
Elevation is not included this plot, as it is not well correlated with P pool variation in our results.

conditions on Earth. Third, Yang et al. (2013) estimated P
pool concentrations using total soil P concentrations, global
soil order maps, and average proportions of various P pools
for different soil orders. However, there are still consider-
able variabilities in P concentrations within any given soil
order, though it could be a good predictor of P pool vari-
ation (Cross and Schlesinger, 1995; Yang and Post, 2011).
Indeed, we found that soil orders were less informative than
other environmental predictors. By including more predictors
(e.g., SOC, climate, and soil pH), our model offers significant
improvements for capturing the variation observed in soil P
composition across the globe.

The above-named technical improvements have made it
possible to produce more accurate maps. For example, while
Yang et al.’s (2013) global predictions indicated that the high-
est organic P concentrations were found in the temperate
zone, our maps suggest they are in boreal forest and tundra.

This is more consistent with general understanding of global
soil organic matter distribution (Hengl et al., 2017). Differ-
ences between our estimates of different P pools and those
presented by Yang et al. (2013) have significant implications
for soil P availability to vegetation. The averages and median
values of Yang et al.’s (2013) predicted soil organic P, moder-
ately labile Pi, and occluded P concentrations were substan-
tially lower than our estimates. Evidence suggests that soil
organic P and moderately labile Pi remain bioavailable on
timescales of days to months (Helfenstein et al., 2020; Au-
gusto et al., 2017; Maharjan et al., 2018), while occluded P
is bioavailable in the order of years to millennia (Hou et al.,
2016; Wang et al., 2007). Thus, soil P availability might be
larger than previously assumed in assessments based on esti-
mates by Yang et al. (2013) (e.g., Sun et al. 2017).
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Figure 7. Relationship between our predicted P fraction concentrations and Yang et al.’s predictions. Panels (a)–(e) and (f) depict correlations
between both sets of predictions for soil labile Pi, organic P, primary mineral P, moderately labile Pi, and occluded P, respectively. The dashed
lines indicate the 1 : 1 line; the blue lines indicate the regression line.

4.2 Major drivers of different P pools in natural soils

Our results indicate that global variation in soil P pools
is jointly controlled by total P concentration, soil pH, soil
development, climatic factors, and soil depth. Given that
our models explain >48% of the variance observed in P
pools (concentration and proportion), our results suggest that
edaphic properties and climatic factors play significant roles
in the size and composition of different soil P pools globally.

4.2.1 Effects of total soil P concentration on P pools

We found that total soil P concentration was a prominent pre-
dictor of most soil P pools at the global scale and that total P
was positively correlated with all P pool concentrations and
Po pool proportions. This is consistent with findings at lo-
cal (Turner and Blackwell, 2013) and global (Augusto et al.,
2017; Hou et al., 2018a; Harrison, 1987) scales. Total soil
P is influenced by multiple soil-forming factors (e.g., parent
material P concentration, climate, soil organic carbon con-
tent, and soil texture) (He et al., 2021). Thus, total soil P pro-
vides an integrated measure of factors that regulate the size
of the P pools. Moreover, this result is consistent with the
emerging idea of substrate-based P cycling in natural ecosys-
tems (Lang et al., 2016, 2017): soils with high total P content
are usually also associated with a large primary mineral P
pool. At these P-rich sites, plant and microbial communi-

ties tend to promote P release from primary minerals, with
subsequent biological and abiotic transformations resulting
in high concentrations in all other P pools (Lang et al., 2016;
He et al., 2021) and higher proportions of organic P (Hou et
al., 2018c). In contrast, at P-poor sites, plant and microbial
communities are more reliant on P recycling systems that
promote the mineralization of Po by soil microbes (Achat
et al., 2009; Marklein and Houlton, 2012) and the mobiliza-
tion of moderately labile Pi or even occluded P (Augusto et
al., 2017) to sustain the P supply. Therefore, soil P pool con-
centrations are expected to strongly co-vary with total soil P
concentration.

4.2.2 Effects of soil pH on P pools

Consistent with previous studies (Hou et al., 2018c; Kruse
et al., 2015; Oburger et al., 2011; Barrow et al., 2020), our
results indicate that soil pH is an important predictor of P
pool concentrations and proportions in natural soils globally.
The relative importance of pH is unsurprising, since the se-
quential fractionation procedure is based on dissolving a soil
sample in solutions of varying acidity/alkalinity. However,
the observed pH effects also support the existing mechanis-
tic understanding of the various P forms. The strong posi-
tive correlation of primary P and soil pH is expected because
(1) the primary P pool is composed mainly of calcium phos-
phate/apatite, which is highly soluble at low pH but becomes
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less soluble with increasing pH, and (2) soil pH declines with
soil weathering intensity (Delgado-Baquerizo et al., 2020)
(e.g., the highest values of soil pH are usually found in dry
regions where chemical weathering rates are limited by wa-
ter availability; Slessarev et al., 2016). Both factors affect the
transformation of primary mineral P to other forms.

Soil pH shows important but negative influences on the
proportions of other soil P pools (i.e., proportions of la-
bile Po, moderately labile Pi and Po, occluded P, and la-
bile Pi). There are several possible explanations for these
relationships. First, low soil pH values (< 5.0) inhibit soil
microbial activities and the extracellular activity of phos-
phatase enzymes (Aciego Pietri and Brookes, 2008; Eivazi
and Tabatabai, 1977; Xu et al., 2017). Thus, in acidic soils,
more organic P (i.e., labile and moderately labile Po) may
accumulate than in neutral soils. Second, decreasing soil pH
is associated with the accumulation of Fe and Al oxides,
which leads to enhanced adsorption of P (i.e., moderately la-
bile Pi and Po). Third, pH tends to decrease as soil weather-
ing advances and base cations are progressively washed out
(Slessarev et al., 2016). As soils weather, occluded P accu-
mulates. Therefore, the occluded pool proportion decreases
with increasing pH. Fourth, increasing soil pH is associated
with enhanced adsorption of dissolved Pi to Ca and Mg, re-
ducing the amount of labile Pi available for plants and soil
microorganisms (Fink et al., 2016; Gerke, 2015). This could
explain the negative relationship between soil pH and the la-
bile Pi proportion as identified in this study. But increasing
soil pH in acidic soils favors soil microbial growth and phos-
phatase enzyme activity, which could increase P availability.
These conflicting mechanisms may be responsible for the rel-
ative low importance of predicting the spatial variation of la-
bile Pi proportion.

4.2.3 Effects of climate on P pools

Our global predictions indicated negative effects of climatic
factors (i.e., MAT and MAP) on the soil P concentrations,
which means a decrease in soil P concentrations, as MAT
increases from northern cold biomes (e.g., tundra and bo-
real forest) to a warm tropical biome (e.g., tropical forest)
or MAP increases from arid to humid regions. These results
fit well with our understanding of broad P concentration vari-
ation with increasing weathering (Walker and Syers, 1976).
Also, these results are expected because the main determin-
ing factor of soil P pool concentrations (i.e., soil total P con-
centration) shows a similar pattern (He et al., 2021). Interest-
ingly, we found contrasting responses of the labile Pi pool’s
proportions along the MAT and MAP gradients. The posi-
tive correlations between labile Pi proportion and both MAT
and MAP indicated that labile Pi concentration decreased
slower than the soil total P as temperature and precipitation
increased. This result supported the idea that biological sys-
tems evolved to retain soil labile Pi levels despite an overall
decrease in total soil P as long as climate factors are favorable

for biological activity. In strongly weathered soil with limited
soil P stocks but otherwise optimal growing conditions, like
in warm and humid tropical forests, the mineralization of Po
and mobilization of moderately labile Pi or occluded P could
contribute to maintaining high levels of labile Pi due to the
high soil temperature for soil enzyme kinetics and abundant
carbohydrate supply from photosynthesis fueling biological
activity (Vitousek, 1984; Achat et al., 2009; Chacon et al.,
2006; Liptzin and Silver, 2009).

4.2.4 Effects of soil development on P pools

The variations of P concentrations and proportions across
weathering stages predicted by our model partially support
Walker and Syers’ (1976) theory based on soil chronose-
quences. While our results are consistent with the expecta-
tions from Walker and Syers’ (1976) theory about the in-
crease in the proportion of occluded P that occurs at the ex-
pense of primary and organic P during soil development, our
results disagree with Walker and Syers’ (1976) ideas regard-
ing the evolution of the labile Pi and moderately labile Pi
pools during soil development. The evolution of occluded P
is commonly explained by the increase of Al and Fe oxide
minerals and the decrease of soil pH; in addition to being
fixed onto Fe and Al oxides, P that is released from primary
minerals or mineralized from organic matter can be occluded
by being adsorbed onto mineral surfaces or precipitating in
poorly soluble secondary soil minerals (Crews et al., 1995;
Quesada et al., 2010; Selmants and Hart, 2010).

In the Walker and Syers model, non-occluded inorganic P
increases initially to a peak value and then declines to very
low levels during pedogenesis. However, our results showed
that labile Pi and moderately labile Pi (non-occluded P in
Walker and Syers’ (1976) model) formed significant propor-
tions of the total P throughout all soil orders across weather-
ing stages. This could be due to the coarse classification of
weathering stages in our study, which may be insufficient to
characterize the end members of the range. This explanation
is supported by the small proportion of primary mineral P
in the slightly weathered soil and the moderate amounts of
primary P remaining in strongly weathered soils. In addition,
the theory of P distributions along soil development stages
stems largely from relatively isolated island locations in New
Zealand (Walker and Syers, 1976) and Hawaii (Crews et al.
1995). However, in most other places in the world there is
higher dust deposition from surrounding land masses, which
is a source of primary P to even highly weathered soils (Vo-
gel et al., 2021). Nevertheless, the contribution of dust de-
position to primary P and other forms of P in soil remains
unquantified in most land areas.

4.2.5 Effects of soil depth on P pools

We found that soil P pool concentrations varied significantly
with soil depth. Total soil P concentration is often higher in
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topsoil than in subsoil due to biological uplift, which was
reported by previous studies (Jobbágy and Jackson, 2001;
Porder and Chadwick, 2009). The labile and moderately la-
bile P (in both inorganic and organic pools) concentrations
were higher in the topsoil, which can also be explained by
biological uplift and highly available P inputs from plants
and dust to the topsoil. In contrast, the primary P and oc-
cluded P concentrations in the topsoil were lower than in the
subsoil. This can be explained by the fact that topsoil tends
to be more weathered and developed than the subsoil (Achat
et al., 2012; Chen et al., 2021).

4.3 Limitations and prediction uncertainty

In our database, some regions were underrepresented (e.g.,
northern Canada, middle and northern Asia, and inner
Africa), which may result in low accuracy of the predicted
values in those regions. In the tropics, high P soils were over-
represented, and the accuracy of predicted values in tropical
regions may be quite low. Our database contains 4 times as
many observations from surface mineral soils (0–30 cm) than
it does from soils deeper than 30 cm. As such, the predicted
concentrations of different P pools for deep soils may suffer
from larger uncertainties. Finally, large portions of variation
remain unexplained by our models, especially variation in
soil labile Pi concentrations and proportions (40 % and 52 %
unexplained, respectively), indicating that other significant
factors were not accounted for in our modeling. These factors
may include microbial processes, Fe and Al oxide concen-
trations, plant community composition, atmospheric deposi-
tion, and soil erosion (Kruse et al., 2015; Achat et al., 2016).
These limitations highlight the need for additional measure-
ments, particularly from underrepresented regions and the
subsoil, as well as measurements of closely associated vari-
ables, especially those related to labile Pi.

5 Conclusion

Here, we compiled the largest database to date of different
soil P pools. Using machine learning modeling, we quanti-
fied the relative importance of multiple predictors for esti-
mating different soil P pools and estimated these pools at
the global scale. Our results indicated that the global con-
centrations of soil labile Pi, labile Po, moderately labile Pi,
moderately labile Po, and occluded P could be generally pre-
dicted mainly by the total soil P concentration, while primary
P concentration was mainly predicted by soil pH and total
soil P concentration. For predicting proportions of different
P pools, soil pH, and to a lesser extent soil depth, SOC and
total P were the most important predictors for all P pool pro-
portions at the global scale. In addition, our results also re-
vealed significant effects of climate and other edaphic factors
on spatial variation in P pools. We concluded that edaphic
properties and climatic factors were significant predictors of

soil P pools, including concentration and proportion of to-
tal P. These findings represent a significant step towards im-
proving understanding of global variations in different soil
P pools. Our global maps of predictions of different P pools
will be important to improving global models of the terres-
trial P cycle.
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