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Abstract. In 2022, a large part of Europe experienced an ex-
tremely dry and hot summer. In the Alps, this episode oc-
curred after an unusually low-snowfall winter, which aggra-
vated the dryness of soils. This study examines the impact
of this particular year on the canopy greenness of above-
treeline ecosystems by comparison with previous heat waves
that hit the Alps during the last 2 decades. Normalized differ-
ence vegetation index (NDVI) time series derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite were processed to extract the temporal variability
in yearly maximum NDVI (NDVImax). The responsiveness
of NDVImax to snow cover duration and growing-season
weather conditions was evaluated in contrasting hydrocli-
mate regions of the Alps using linear mixed-effect models.
The year 2022 was unique in that the summer heat wave led
to a widespread negative anomaly of NDVImax. The magni-
tude of this anomaly was unprecedented in the southwestern,
driest part of the Alps, where vegetation activity was found to
be particularly responsive to snow cover duration and early
summer precipitation. In the colder and wetter regions, all
warm to very warm summers before 2022 had led to in-
creased canopy greenness, but the combination of a reduced
snow cover and low early summer precipitation counteracted
this expected beneficial effect in 2022. This study provides
evidence that the control of canopy greenness by tempera-
ture and water balance differs markedly across regions of the
Alps and that the year 2022 bears witness to a shift toward an
increasing importance of moisture availability for regulating
plant growth at high elevation. This is viewed as a warning
sign of what could become the new norm in the years ahead
in the context of increasing frequency and intensity of ex-
treme droughts throughout temperate mountain ecosystems.

1 Introduction

A severe heat wave and drought hit a large part of the North-
ern Hemisphere during the 2022 summer (Lu et al., 2023).
Over the last 2 decades, similar long-lasting warm and dry
summer events have been recorded in Europe, such as in
2003 and 2015, and the recurrence of these events has no
equivalent in the last centuries (Buntgen et al., 2021). In a
warmer climate, it is widely acknowledged that the duration,
frequency, and intensity of extreme meteorological events
will increase and that an increasing proportion of lands will
be affected (Coumou and Rahmstorf, 2012; Russo et al.,
2014). The combination of drought and heat has an overall
negative effect on the gross primary productivity of terres-
trial ecosystems (von Buttlar et al., 2018). However, a range
of factors are known to modulate ecosystem responses, for
example the type of vegetation, its sensitivity to water and
temperature, the phenological period during which extreme
events occur, and the soil moisture content during warm
episodes (Sippel et al., 2018, 2016; Von Buttlar et al., 2018).
Most of these factors operate at a local scale, rendering a
comprehensive analysis of these impacts particularly chal-
lenging.

The primary productivity of above-treeline ecosystems is
primarily controlled by temperature and the length of the
growing season (Churkina and Running, 1998; Choler, 2015;
Myers-Smith et al., 2015). Over the last decades, most of
these ecosystems have benefitted from warmer conditions
during the snow-free period – and this all the more so as
the rate of warming is particularly pronounced at high el-
evation (Beniston, 2005; Pepin et al., 2015). As a result, a
long-term increase in fractional vegetation cover and primary
productivity has been documented in temperate mountains
using remote sensing studies (Choler et al., 2021; Anderson
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et al., 2020; Zhong et al., 2019) and vegetation surveys (Ro-
gora et al., 2018; Steinbauer et al., 2018), although contrary
results exist (Lamprecht et al., 2018). In terms of seasonal
variation, several reports have outlined the positive effects
of very warm summers on the peak productivity of high-
elevation ecosystems (Jolly et al., 2005b; Corona-Lozada et
al., 2019). However, these reports also highlighted marked
regional differences in ecosystem responsiveness, suggest-
ing that other factors in addition to temperature are modu-
lating the interannual variations in their primary productiv-
ity. When drought coincides with heat wave, the positive ef-
fects of a warm summer fade away, and this is more likely
to happen in the driest and warmest parts of mountain ranges
(Jolly et al., 2005b; Corona-Lozada et al., 2019; De Boeck
et al., 2016; Cremonese et al., 2017). Other reports examin-
ing ecosystem phenology (Fu et al., 2015) or radial growth
of mountain shrubs (Francon et al., 2021) also suggested that
carbon gain has become more sensitive to water availability
in the last decades. All these results call for further investiga-
tion to determine where and when water availability becomes
a co-dominant limiting factor of primary productivity at high
elevation.

Above-treeline temperate ecosystems are seasonally
snow-covered ecosystems, characterized by complex inter-
actions between snowmelt dynamics and vegetation proper-
ties, including plant distribution, growth, and functional traits
(Jonas et al., 2008; Walker et al., 1993; Choler, 2015). On the
one hand, early snowmelt can be beneficial to canopy green-
ness as it increases the favorable period for carbon gain. On
the other hand, it may exacerbate the dryness of soils and
the exposure to early frosts, both of which are detrimental
to plant growth (Francon et al., 2020). Regarding prolonged
snow cover duration, the negative effect of a short growing
season can be partially or totally compensated by an increas-
ing rate of early growth because of enhanced water supply
and nutrient availability liberated by the snowpack during the
optimal, warm growth period. Understanding this interplay
between snow cover duration and meteorological conditions
during the early summer is pivotal in order to disentangle the
underlying causes of variability in the vegetation productiv-
ity of above-treeline ecosystems.

Long-term ground surveys of primary productivity are no-
toriously difficult to carry out in complex high-elevation ter-
rain, and the few data available cannot inform us about the
trends and their geographical variations at the massif scale.
Earth observation is the only way to evaluate how ecosys-
tems have responded to extreme events and to what extent
this response varies across regions. Medium-resolution re-
motely sensed data with daily revisiting times have proven
useful to track snow cover dynamics and vegetation activity
in arctic and alpine ecosystems (Beck et al., 2006; Choler,
2015; Xie et al., 2020). Specifically, the peak value of vege-
tation indices is commonly used as a proxy for annual max-
imum canopy greenness, capturing vegetation growth occur-
ring during the first part of the growing season (Tucker, 1979;

Rossini et al., 2012). This approach provides an avenue for
developing empirical models of canopy greenness with the
aim of unraveling the relative importance of snow and me-
teorological drivers to vegetation activity at a broad spatial
scale (Choler, 2015; Xie et al., 2020; Fu et al., 2021).

In the European Alps, previous remote sensing approaches
have mainly focused on the long-term trends of greenness
(Choler et al., 2021) and between-site variations in ecosys-
tem phenology (Xie et al., 2020). By contrast, there has been
no comprehensive study examining the interannual variabil-
ity in canopy greenness, its sensitivity to extreme events, and
the extent to which this sensitivity differs among regions.
The European Alps provide an interesting case study to ad-
dress these questions given the variety of hydroclimate sub-
regions (Rubel et al., 2017). The Alps exhibit strong gra-
dients of precipitation between the wet external ranges and
the rather dry inner alpine valleys (Isotta et al., 2014), as
well as the influence of the Mediterranean climate in south-
ern regions, whereas the northeastern ranges are exposed to
oceanic influences (Brunetti et al., 2006; Hiebl et al., 2009).
In this context, I addressed three main questions. (i) What
were the effects of the 2022 heat wave and drought on the
canopy greenness of above-treeline ecosystems in the Euro-
pean Alps and to what extent did these effects differ from
those observed during previous extreme events? (ii) What is
the sensitivity of these ecosystems to interannual variation
in snow cover, water availability, and temperature? (iii) Does
the relative strength of these drivers differ between the con-
trasting bioclimatic subregions of the European Alps?

I delineated bioclimate clusters for the European Alps
using growing-season climate variables. Then, I evaluated
the variability in canopy greenness using the annual peak
value of the normalized difference vegetation index (NDVI-
max) of the Moderate Resolution Imaging Spectroradiometer
(MODIS) for the period 2000–2022. I used the ERA5-Land
reanalyses to evaluate early summer meteorological condi-
tions. Finally, I developed a linear mixed-effect (lme) model
to assess the effects of snow cover duration, water stress, and
temperature on the variability in productivity in the different
bioclimate clusters and over the MODIS period.

2 Material and methods

2.1 Study area

This study focuses on the above-treeline ecosystems of the
European Alps, a mountain range stretching over 1200 km
from Nice (France) to Vienna (Austria). The 250 m reso-
lution MOD09Q1 products in the native sinusoidal projec-
tion were used as a reference grid to select the pixels of in-
terest based on ancillary data. I used the Tree Cover Den-
sity of the year 2018 (https://land.copernicus.eu/en/products/
high-resolution-layer-tree-cover-density, last access: 11 Oc-
tober 2023) to extract non-forested pixels (< 5 %) and a 25 m
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resolution digital elevation model to discard non-forested
pixels below the natural treeline. The elevation of the nat-
ural treeline was set for each latitudinal band according to
the polynomial regression given in Korner (1998). To ac-
count for locally lower treeline positions, I also included
non-forested pixels located 100 m lower than the regression
line. Very sparsely vegetated pixels with a long-term aver-
age NDVImax below 0.15 showed inconsistent annual peaks
of greenness and were discarded. Densely vegetated pixels
with a NDVImax above 0.75 were also removed because the
sensitivity of NDVImax to canopy greenness decreases when
biomass is high due to saturation issues (Huete et al., 2002).
The final dataset comprised 227 318 pixels. According to the
100 m resolution land cover product of Copernicus Global
Land Service (CGLS) (Buchhorn et al., 2020), the selected
pixels were a majority of herbaceous vegetation and a mi-
nority of sparsely vegetated areas (Supplement Table S1). I
calculated pairwise dissimilarities between NDVI time se-
ries using Euclidean distance and used the Partition Around
Medoids algorithm of the Cluster R package (Maechler et
al., 2022) to identify clusters. This allowed me to check
that selected pixels exhibited the characteristic phenology of
seasonally snow-covered vegetated ecosystems, i.e., with an
abrupt rise in greenness after snowmelt and a maximum ND-
VImax achieved at the end of July–early August (Supple-
ment Fig. S1).

2.2 Snow and climate datasets

I used CHELSA v2.1 and CHELSA-BIOCLIM+ datasets
(Brun et al., 2022; Karger et al., 2021) to retrieve the climate
averages of the reference period 1981–2010. CHELSA is a
high-resolution climatology that provides downscaled sur-
face variable estimates at a horizontal resolution of 30 arcsec
(Karger et al., 2017). The following variables were used to
characterize the summer (June, July, and August) climate in
the study area: mean daily air temperatures (bio10), mean
monthly precipitation amount (bio18), surface downwelling
shortwave radiation (rsds), and vapor pressure deficit (vpd).
To identify climate subregions, I computed pairwise dis-
similarities between observations using Euclidean distance
and performed a cluster analysis with the Partition Around
Medoids algorithm of the Cluster R package (Maechler et
al., 2022). I varied the number of prescribed clusters from
four to nine. For the sake of simplicity, results are only pre-
sented for six clusters. This was a fair compromise between
a fine-scale regionalization and a sufficient number of pixels
per cluster for further analyses.

I used ERA5-Land gridded datasets to estimate early sum-
mer meteorological conditions during the MODIS period.
ERA5-Land is a process-based, climate reanalysis providing
0.1◦ resolution variables related to the energy and water bal-
ance of land surfaces (Muñoz-Sabater et al., 2021). The study
area encompassed 1053 ERA5-Land cells (Table S1). I ex-
tracted the pre-calculated monthly means of air temperature

(T2M), monthly accumulation of precipitation (PRE), and
potential evapotranspiration (PET) for the months of June
and July, i.e., the early growing season. In the absence of
available data on soil water capacity, I calculated the differ-
ence between PRE and PET, which represents atmospheric
water balance used as a proxy for plant water availability
during the early summer and which is hereafter referred to
as WBA. Using daily products, I also computed a heat wave
index (HWI) for the June–July period. This index, proposed
by Russo et al. (2014), accounts for the magnitude and du-
ration of heat waves. It was calculated following the simpli-
fied methodology described in Corona-Lozada et al. (2019).
Briefly, heat waves corresponded to sequences of at least
3 consecutive days during which the maximum daily air tem-
perature was above the eighth decile for the reference period
(1981–2010). For each heat wave, I computed the difference
between the daily maximum air temperature and the eighth
decile and summed all these differences for the June–July
period.

To evaluate the interannual variability in snow cover ex-
tent, I extracted the number of snow-covered days during the
first 6 months of the year from the 8 d composite MODIS
Terra (MOD10A1) Collection 6 products (Riggs et al., 2016).
The estimate is based on a 500 m resolution Normalized Dif-
ference Snow Index, an indicator of the snow cover that uses
the blue and middle-infrared bands (Salomonson and Appel,
2004).

2.3 Variability in MODIS-derived NDVImax

The study exploits MOD09Q1 Terra Collection 6 prod-
ucts, which consist of 250 m resolution 8 d composites of
the Moderate Resolution Spectroradiometer (MODIS) sen-
sor on board the Terra satellite. The decision to select this
particular product was justified due to its extended time
coverage starting from the year 2000, the short revisit pe-
riod of 1–2 d, and the moderate spatial resolution. Specif-
ically, these attributes enabled (i) the comparison of sev-
eral heat waves over the past 23 years, including the sig-
nificant one in 2003; (ii) the analysis of abrupt changes in
vegetation during the brief growing season at high eleva-
tion; and (iii) the implementation of a more robust statisti-
cal analysis of the drivers of NDVI response in a topographi-
cally heterogeneous landscape. To the best of my knowledge,
achieving these outcomes would not have been feasible with
alternative remote sensing products like those provided by
the Copernicus Global Land Service. MODIS data are dis-
tributed by the Land Processes Distributed Active Archive
Center (https://e4ftl01.cr.usgs.gov/). I downloaded images
from 18 February 2000 to 31 December 2022 for the tiles
h18.v4 and h19v04 to cover the European Alps. Reflectance
values (ρ) in the red and infrared bands that were produced
at high quality (according to the MOD09Q1 Quality Control
flag) were used to generate raw NDVI time series, i.e., the ra-
tio (ρNIR−ρRED)/(ρNIR+ρRED). A vast range of techniques
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now exists to reduce the noise of these NDVI time series,
and it is important to examine the sensitivity of the retrieved
NDVI metrics to the chosen algorithms (Zeng et al., 2020).
Here, I compared two curve-fitting methods: the Savitzky–
Golay (SG) smoother (Savitzky and Golay, 1964; Chen et
al., 2004), based on a local window, and the Whittaker (Wh)
smoother (Eilers, 2003; Whittaker, 1922), which utilizes a
penalized least square regression on the whole time series.
For the SG smoother, I varied the window size from 7 to 14
observations and a polynomial degree (filter order) of n= 3.
For the Wh smoother, I varied the lambda parameter from
5 to 15 and used a second-order difference. The weight up-
date function of TIMESAT was used for successive iterations
(Jonsson and Eklundh, 2004), and I compared results after
three and five iterations. Finally, I extracted the following an-
nual metrics from the denoised time series and for each pixel:
the start of the season (SOS) as the first day of the year when
NDVI surpasses 15 % of NDVImax and the maximum NDVI
of the growing season (NDVImax). I used the MODIStsp R
package (Busetto and Ranghetti, 2016) to download the na-
tive hdf MOD09Q1 files and the phenofit R package (Kong
et al., 2023) to process raw NDVI time series.

As this study focuses on variability, an important initial
step consisted of detrending NDVImax time series. The ND-
VImax variability for a given data span is defined as the
residue of the NDVImax after the removal of the trend (Wu
et al., 2007). For each pixel, I fitted a monotonic func-
tion of NDVImax over time using both the whole data span
(22 years) and subperiods of 13 years. I used either the non-
parametric Theil–Sen estimator or a least-squares estimator
to assess the linear trend, the first being often preferred when
data strongly depart from normality (Hirsch et al., 1991).
The final results were not affected by this choice, and I only
showed the results produced with the non-parametric method
implemented in the Kendall R package (Mcleod, 2005). Our
previous study based on the same raw dataset (Choler et al.,
2021) showed that NDVImax trends were robust to a ±5 %
perturbation of the red and infrared reflectances, a value
which corresponds to uncertainties associated with MODIS
products (Miura et al., 2000), and so I did not reiterate this
numerical simulation for this paper.

To test for a collective, or per cluster, significance of
anomaly, I used a test based on the counting of signs (Huth
and Dubrovsky, 2021). This test allows for fast computing
and performs as well as other tests such as the false detection
rate (Wilks, 2016) when spatial autocorrelation is moderate
(Huth and Dubrovsky, 2021). To limit spatial autocorrelation,
all tests were based on the random sampling of 10 % of pix-
els per cluster, and I report the median value of the statistics.
The null hypothesis states that the number of pixels showing
a positive anomaly will not significantly differ from the num-
ber of sites showing a negative one and therefore will follow
a binomial distribution with parameters p = 0.5 and N the
number of trials corresponding to the number of sites that
were randomly sampled per cluster. A two-tailed binomial

test allowed for calculating the probability of the alternative
hypothesis, i.e., that positive anomalies may be either greater
than or less than negative anomalies.

2.4 Linear mixed-effect modeling

I implemented a linear mixed-effect (lme) model to charac-
terize the variability in NDVImax over time within pixels
and its variation between clusters. Lme models extend lin-
ear models by allowing for fixed and random effects in a hi-
erarchical design. The lme model can be expressed as the
following:

Y= Xβ +Zγ + ε, (1)

where Y is the response or dependent variable, X is predic-
tors or fixed effects, β is the size of the fixed effects, Z is
a matrix of random effects that depends on data structure,
γ is the size of the random effects, and ε is a vector of
unobserved random errors. I tested the following fixed ef-
fects: snow cover (MSE), air temperature (T2M), heat wave
index (HWI), precipitation (PRE), and atmospheric water
balance (WBA), i.e., the difference between PRE and PET.
I also included an interaction term between a temperature-
related variable and a water-related variable. Random effects
included clusters as the main effect, hereafter CLU, and an
interaction between cluster and cells specifying that cells are
grouped within clusters. Because NDVImax and predictors
were not available at the same spatial resolution (250 m vs.
9 km for ERA5, and 500 m for MSE), I computed the me-
dian value of NDVImax per ERA5 cell and used this median
as the response variable. When ERA5 cells included MODIS
pixels belonging to different bioclimate clusters, I assigned to
that cell the cluster containing the highest number of pixels.
Complementary lme models were also fitted for specific sub-
sets of MODIS pixels based on (i) the long-term average of
NDVImax (0.15–0.35; 0.35–0.55; 0.55–0.75) to enable com-
parison of ecosystem responses along a gradient of fractional
vegetation cover and (ii) the value of the diurnal anisotropic
index (DAH) to enable comparison of ecosystem responses
along a gradient of exposure to solar radiation (Böhner and
Antonić, 2009).

All models were fitted using standardized anomalies of the
response and the predictors. A stepwise procedure was used
in which I first tested whether a random structure was justi-
fied and subsequently whether including a particular fixed ef-
fect or an interaction between fixed effects was justified. The
comparison of competing models was based on the Akaïke
information criteria (AIC), and I retained models with the
lowest AIC score. Models were fitted by maximizing the
restricted log-likelihood with the lme function of the nlme
R package (Pinheiro et al., 2022). The Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm was chosen for nonlin-
ear optimization. Model parameters, variance explained by
the fixed effects (or marginal variance), and variance ex-
plained by both fixed and random effects (or conditional vari-
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ance) were estimated using the MuMIn R package (Barton,
2023).

3 Results

The cluster analysis of summer climate revealed a marked
precipitation gradient that stretched from the southwestern
to the northeastern Alps (Fig. 1). Along with the decrease in
precipitation, there was a strong increase in shortwave radi-
ation. These two gradients were not only driven by latitude.
For a given latitude, external ranges are wetter and less sunny
than the dry inner valleys, indicating that the well-known rain
shadow effect was correctly captured by the CHELSA high-
resolution climate model. The summer temperature gradient
did not fully coincide with the precipitation gradient because
of an overlapping effect of elevation occurring locally. This
explained for example the difference between the two dry
clusters (2 and 3), the latter including pixels at lower eleva-
tion compared to the former. In the colder and wetter context
of the northeastern Alps, the same contrast was observed be-
tween clusters 5 and 6 (Fig. 1).

NDVImax anomalies for the period 2000–2022 are pre-
sented for each climate cluster (Fig. 2). The year 2022 was
characterized by a widespread, negative NDVImax anomaly
and by the lowest NDVImax anomaly ever recorded for clus-
ter 1. This was in sharp contrast with the 2003 and 2015 sum-
mer heat waves, when the NDVImax anomalies were either
significantly positive (clusters 3, 4, 5, 6) or not significantly
different from 0 (clusters 1, 2). Noticeably, the ranking of
NDVImax anomalies during these three warm years closely
aligned with the warm/dry to cold/wet gradient; i.e., there
was an increasing value of NDVImax anomaly as one goes
from cluster 1 to cluster 5 (or 6). An opposite pattern was
found for cold and wet years, such as in 2013, 2014, and
2021, when the NDVImax anomaly of dry and warm clusters
was systematically above that of cold and wet ones (Fig. 2).

Figure 3 presents the relationships between anomalies of
NDVImax and anomalies of snow cover duration and early
summer conditions for clusters 1 and 6, i.e., the two clusters
lying at the extremes of the climate gradients (see Fig. S3
for the other four clusters). For cluster 1, the four best years
for NDVImax were associated with a positive water balance
(Fig. 3b). The year 2011 was an exception, which could
be explained by the relatively cold conditions prevailing in
the early summer (Fig. 3c). The two worst years for ND-
VImax were 2022, which combined early snowmelt with a
negative water balance and high temperatures later in the
summer, and 2001, which was characterized by very early
snowmelt (Fig. 3a). For cluster 6, the opposite situation was
found with three of the four warmer summers (2003, 2006,
2010, and 2015) associated with a significantly positive ND-
VImax anomaly (Fig. 3f). In 2006, it is plausible that this
effect was offset by a very negative water balance (Fig. 3e).
As for cluster 1, early snowmelt was associated with a neg-

ative anomaly, although the year 2006 marked an exception
(Fig. 3d).

Results from the linear mixed-effect model provided a
quantitative analysis of the drivers of NDVImax variability.
Models including a hierarchical random structure, i.e., clus-
ters and cells within clusters, performed significantly better
than models without (Table 1). The water-related variable
(WBA) and the temperature-related variable (T2M) were bet-
ter predictors than PRE and HWI, respectively (Table 1). The
model exhibiting the lowest AIC included the three fixed ef-
fects (MSE, WBA, and T2M), the interaction between WBA
and T2M, and random slopes. The variance explained by the
fixed effects, or marginal variance, was 9.1 % and that in-
cluding fixed and random effects, or conditional variance,
was 14.7 % (Table 1). Overall, the fixed effects MSE, WBA,
and T2M were significantly positive, and the interaction be-
tween WBA and T2M was significantly negative (Fig. 4a,
Table S2). These findings were highly robust to the parame-
ters used for NDVI curve-fitting methods (Table S3).

Noticeably, the size of the random effect cluster showed
considerable variations for WBA and T2M (Fig. 4b). For
WBA, there was a shift from high to low sensitivity along
the southwest to northeast gradient (clusters 1 to 6), and
an inversely related shift from low to high sensitivity for
T2M. The negative interaction between WBA and T2M was
stronger in the southernmost clusters (1 and 2), meaning that
the negative effect of temperature was amplified when the
positive effect of water availability was strong. By contrast,
a positive interaction for cluster 5 was indicative of a syner-
gistic effect of temperature and water availability. The lowest
sensitivity to MSE was detected in cluster 5, which combines
cold and wet conditions (Fig. 1).

The comparison of lme models fitted for the first (2000–
2012) and the second (2011–2022) periods showed a slight
increase in the fixed-effect estimates (Fig. 4c). Changes were
more noticeable at the cluster level, with an increasing sensi-
tivity to MSE and WBA for the two driest clusters (1 and
2) and a somewhat reverse pattern for the other clusters
(Fig.4d). Finally, temperature showed more positive effects
in the recent period for clusters 5 and 6, whereas trends were
negligible for the other clusters.

4 Discussion

Using a remote sensing approach, I carried out a comprehen-
sive analysis of year-to-year variation in canopy greenness
of above-treeline ecosystems in the European Alps, with a
special emphasis on vegetation responses to the summer heat
waves and extreme droughts that have affected the range dur-
ing the last 2 decades. First, I showed that the positive ef-
fect of warm summers on plant growth vanishes when water
becomes limited. This was particularly noticeable in 2022,
a year of a negative NDVImax anomaly that sharply con-
trasted to what happened during the previous heat waves in
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Figure 1. Geographical distribution of above-treeline ecosystems in the European Alps and delineation of the six subregions based on the
clustering of summer climate averages for the 30-year reference period (1981–2010). The top-left panel shows the study area’s location.
Violin plots in the lower-right panels depict the distribution of summer climate normals across the six subregions. The climate information
utilized was sourced from the high-resolution climatology dataset CHELSA v2.1.

Figure 2. Anomalies of NDVImax (yearly maximum value of NDVI) for the six climate clusters identified in the European Alps. The ND-
VImax time series underwent detrending using a monotonic function, and the anomalies illustrate the difference from the established trend.
The values are scaled by a factor of 1000. The upper (lower) colored indicators signify whether the anomaly, per cluster, was significantly
above (or below) 0, as based on a counting-of-signs test applied to a randomly sampled 10 % of pixels within each cluster. To enhance clarity,
the colored indicators only highlight the most significant results (P < 0.001). Three rectangles point to the occurrences of three major heat
wave events that occurred in the Alps over the last 2 decades. See Fig. 1 for the color legends of the clusters.
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Figure 3. Anomalies in the duration of snow cover extent (MSE), the summer atmospheric water balance (WBA), and the heat wave index
(HWI) for climate cluster 1 (a, b, c) and cluster 6 (d, e, f). Crosshatched bars indicate significant positive anomalies in NDVImax, while
dotted bars indicate significant negative anomalies. Comparable visualizations for the remaining clusters can be found in Fig. S2.

Figure 4. Predictors of NDVImax variability. The panels display the estimates of the fixed effects (gray bars) and of the cluster random
effects (colored bars) for the snow cover extent (MSE), the summer air temperature (T2M), the summer atmospheric water balance (WBA),
and the interaction between WBA and T2M. Panels (a) and (b) present results for the entire period (2000–2022), while panels (c) and (d)
show the differences in the estimates between the second 13-year period (2011–2022) and the first 13-year period (2000–2012). The results
correspond to those achieved in the best linear mixed-effect model outlined in Table 1. Further details can be found in the “Material and
methods” section.

2003 and 2015. Second, the shift from water-limited growth
in the southwestern Alps to temperature-limited growth in
the northeastern Alps parallels the shift from warm/dry to
cold/wet bioclimate gradient in the range. Finally, I provided
evidence that water-limited ecosystems are increasingly sen-
sitive to interannual variations in water availability, whereas
the most temperature-limited ecosystems are still benefitting
from recent warm summers.

4.1 Causes of NDVImax variability

Phenomenologically, between-site differences in NDVImax
anomalies have two possible causes: (i) contrasting expo-
sure to the key factors controlling canopy greenness and
(ii) the different sensitivity of ecosystems to these factors.
The lme model supported the second explanation, consider-
ing that the fixed effects, which quantify the sensitivity of
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Table 1. Structure and evaluation of competing linear mixed-effect models to characterize the variability in NDVImax for above-treeline
ecosystems of the European Alps. Models were fitted using response and predictors for a total of 1053 cells (CELL) within six biocli-
mate clusters (CLU). MSE: maximum snow cover extent for the first 6 months; PRE: precipitation; WBA: atmospheric water balance (the
difference between precipitation and potential evapotranspiration); T2M: air temperature; HWI: heat wave index. Meteorological variables
correspond to total (PRE, WBA, HWI) or means (T2M) for the early summer months of June–July. The model in bold with the lowest AIC
is the selected model. The Savitzky–Golay smoother was used as the NDVI curve-fitting method.

Model formulation Model evaluation

Fixed effect Random effect Random structure Marginal variance Conditional variance

Intercept Slope AIC (%) (%)

MSE CELL Fixed Random 39993 4.3 4.3
MSE CLU/CELL Fixed Random 39878 4.4 5.0
MSE CLU/CELL Random Random 39886 4.4 5.0
MSE + HWI CLU/CELL Fixed Random 39706 4.4 6.1
MSE + T2M CLU/CELL Fixed Random 39084 4.2 8.9
MSE + PRE CLU/CELL Fixed Random 38758 6.7 11.0
MSE +WBA CLU/CELL Fixed Random 38792 6.2 10.7
MSE +WBA + T2M CLU/CELL Fixed Random 37852 8.9 14.6
MSE +WBA ·T2M CELL Fixed Random 38618 8.7 12.5
MSE+WBA ·T2M CLU/CELL Fixed Random 37802 9.1 14.7
MSE +WBA ·T2M CLU/CELL Random Random 37816 9.1 14.3

canopy greenness to drivers, differed between the bioclimate
clusters. Global-scale assessments of vegetation sensitivity
to climate have pointed out the high sensitivity of arctic and
alpine ecosystems to temperature and cloud cover (Higgins
et al., 2023; Seddon et al., 2016). The present study pro-
vides a more balanced picture, accounting for water avail-
ability and highlighting important subregional variability in
the drivers/limiting factors of canopy greenness for above-
treeline ecosystems. The spatial variability was consistent
with Liebig’s law of the minimum, which states that growth
is primarily controlled by the most limiting resource. In the
southernmost part of the study area, water balance is a strong
co-limiting factor of canopy greenness, and the high temper-
atures recorded during heat waves exacerbate the negative
impact of drought on NDVImax. In the northeastern part of
the massif, vegetation activity still benefits from hot sum-
mers, a finding that aligns with previous observations of cold
ecosystems (Jolly et al., 2005b).

Although the model captured broad-scale patterns of
ecosystem responsiveness, a large part of the NDVImax vari-
ability remained unexplained, which could be attributed to
multiple causes. First, land surface meteorological variables
are notoriously difficult to model at high elevation because
of the scarcity of available observations and the importance
of processes that depend on topography and that are not ac-
counted for by climate reanalyses (Vionnet et al., 2019). The
ERA5-Land products have proven useful for capturing the
main features of surface variable trends in the European Alps
(Monteiro and Morin, 2023) and have outcompeted other cli-
mate gridded products, such as E-OBS, in areas where the
density of weather stations is low (Bandhauer et al., 2022), as

is the case in the southwestern Alps. However, its coarse spa-
tial resolution limits its usefulness for representing local het-
erogeneity in bioclimatic conditions on the ground. Further
efforts should strive to reduce the mismatch between the spa-
tial resolution of climate drivers and that of remotely sensed
vegetation indices. One possible approach includes the statis-
tical downscaling of climate variables to MODIS resolution
using a digital elevation model (Baba et al., 2018).

Further unexplained NDVImax variability could be at-
tributed to the fact that each pixel includes a variety of
plant communities that may respond differently to climate.
To tackle this issue, we need a deeper and more process-
based understanding of interactions between vegetation and
climate variables in order to produce microclimate layers at
the landscape scale (Zellweger et al., 2019; Lenoir, 2020).
Several studies have emphasized how biotic–abiotic interac-
tions shape the microclimate variables that are key for con-
trolling the functioning of cold ecosystems, such as woody
vegetation trapping windblown snow (Beringer et al., 2001;
Sturm et al., 2001; Lett et al., 2020). Of utmost importance
will be improved modeling of soil moisture and soil tem-
perature dynamics in heterogeneous mountain landscapes.
Unfortunately, this is currently hampered by our very poor
knowledge of key mountain soil properties, such as soil water
capacity or thermal conductivity. Finally, we overlooked the
possibility that variability in canopy greenness might reflect
interannual variability in land management practices. Sum-
mer grazing is the dominant form of land-use in the study
area. Although a decline in mountain livestock systems has
been reported in parts of the European Alps (Tappeiner et al.,
2008), no dataset is available to depict trends and anomalies

Biogeosciences, 20, 4259–4272, 2023 https://doi.org/10.5194/bg-20-4259-2023



P. Choler: Above-treeline ecosystems facing drought 4267

in stocking rates and land management at the scale of the
European Alps. So far, there is limited evidence that grazing
activity has a significant effect on the NDVImax of mountain
grasslands in the southwestern Alps (Carlson et al., 2017),
probably because extensive grazing by sheep predominates.
Further studies should examine whether similar patterns are
observed in more intensively managed livestock systems.

4.2 Sensitivity of canopy greenness to snow cover

My findings pointed out an overall positive effect of snow
cover on canopy greenness. Snow cover is a complex eco-
logical factor having multiple direct and indirect effects on
vegetation activity and phenology (Gao et al., 2013; Choler,
2015; Walker et al., 1993). Control of the length of the grow-
ing season, reduced risk of early frosts because of snow’s
insulating properties, and supply of water and nutrients by
the melting snowpack are among the most commonly cited
processes. While many studies have examined the sensitivity
of the timing of spring leaf unfolding to snow cover dura-
tion (Jolly et al., 2005a; Fu et al., 2021, 2015; Currier and
Sala, 2022; Xie et al., 2020; Stockli and Vidale, 2004), the
effect of snow cover duration on the maximum canopy green-
ness, i.e., peak biomass, has received less attention. Trujillo
et al. (2012) reported on the positive response of mountain
forests to snowy winters in California’s Sierra Nevada. Sim-
ilar responses were recorded in the forested ecosystems of
central Siberia (Grippa et al., 2005). It was also suggested
that negative anomalies of snow cover do not cascade to in-
creased canopy greenness likely because the intrinsic growth
constraints limit the ability of alpine plants to benefit from
early snowmelt (Baptist et al., 2010). In mountain grasslands,
I previously showed that a low amount of NDVImax variance
was explainable by the interannual variations in snow cover
duration, essentially because faster growth after a delayed
snowmelt and a slower growth after an early snowmelt both
resulted in similar NDVImax values. However, this study was
carried out on a more limited spatial (French Alps) and tem-
poral (2000–2012) scale (Choler, 2015). The present results
suggest greater sensitivity to snow cover, especially in the
driest areas. It is likely that negative anomalies of snow cover
duration in the recent warm years resulted in more detrimen-
tal effects than before because of increasing evaporative de-
mand during the early summer. In the context of declining
snow cover in the European Alps (Matiu et al., 2021), one
may expect increasing detrimental effects of early snowmelt,
particularly in the driest parts of the range.

4.3 Impact of drought on long-term greening trends

Over the last 2 decades, a significant increase in NDVImax
has been detected for most of the above-treeline ecosystems
of the European Alps (Choler et al., 2021). Similar greening
trends have been detected in arctic ecosystems though with
large spatial heterogeneity (Berner et al., 2020; Myers-Smith

et al., 2011). In the Alps, these trends were attributed to the
combination of summer warming, maintained snow cover
duration at high elevation (above 1800 m), and the density-
dependent nature of plant cover increase. Interestingly, the
southwestern Alps, which are shown here to be the most sen-
sitive region to drought, were also previously identified as a
hotspot of greening (Choler et al., 2021). The present results
suggest that recurrent dry years may halt or even reverse this
greening trend, calling for the need for ongoing earth obser-
vation monitoring in order to identify potential break points
(Filippa et al., 2019). Recent observed decreases in global net
primary productivity trends have been attributed to drought
in the context of water-sensitive ecosystems (Zhao and Run-
ning, 2010). Transitions from greening to browning trends
were observed by de Jong et al. (2013) in several water-
limited regions including Patagonia, the Sahel, and northern
Kazakhstan. Even if no major trend in precipitation has so
far been detected in the Alps over the last decades, warmer
summer temperatures will lead to increased evaporative de-
mand, with detrimental effects on vegetation activity in the
driest regions. Additional studies are needed to further inves-
tigate how decadal trends in climate and short-term responses
of vegetation to meteorological extremes interact to influ-
ence trajectories of high-elevation plant growth. A recent ac-
count from Poppe et al. (2023) demonstrated increasing wa-
ter use efficiency in European grasslands, with the most posi-
tive trends observed in highly productive grasslands. In areas
combining fast greening (i.e., trends of primary productivity)
and evidence of water limitation, it would be of particular in-
terest to examine whether vegetation changes lead to a func-
tional shift toward drought tolerance and to changes in water
use efficiency. In the European Alps, the Global Observa-
tion Research Initiative in Alpine Environments (GLORIA)
provides long-term surveys of the summit flora (Pauli et al.,
2005) and would offer opportunities to tackle this issue, if
water-related functional plant attributes were documented.

5 Conclusion

This study shows that the drought accompanying the most
recent 2022 heat wave had unprecedented negative impacts
on the canopy greenness of above-treeline ecosystems in the
European Alps. This main finding emerged from a broader
attempt to improve our understanding of the drivers of inter-
annual variation in vegetation activity and their geographical
variations across different subregions of the Alps. Although
the developed model proved useful to capture the contribu-
tion of temperature- and water-related variables at this broad
scale, it fell short of predicting the substantial amount of lo-
cal variability that is detectable using remote sensing. Ef-
forts should be devoted toward improved representation of
the local conditions that matter for plant growth in complex
mountain landscapes. High-spatial-resolution products such
as Sentinel-2 will undoubtedly contribute to address this is-
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sue. In this line of thought, better accounting for the interplay
between snowmelt dynamics, soil water availability, and lo-
cal temperature is pivotal. I anticipate that the implementa-
tion of such fine-grained soil climate layers will enable us to
take greater advantage of remotely sensed proxies for veg-
etation activity, allowing us to develop empirical models of
ecosystem functioning and to forecast how these ecosystems
will respond to the increasing frequency and intensity of ex-
treme meteorological events during the coming years.

Code and data availability. The estimates of NDVImax
climate layers and all ancillary data for selected pixels
(coordinates, attribution to climate clusters) are avail-
able at https://doi.org/10.5281/zenodo.8170661 (Choler,
2023). All other data used in this study were from
the following open-access sources: CHELSA products
(https://chelsa-climate.org/bioclim/, CHELSA, 2023), ERA5
Land (https://cds.climate.copernicus.eu/cdsapp#!/home,
Copernicus Climate Data Store, 2023), MODIS products
(https://e4ftl01.cr.usgs.gov/, NASA’s Land Processes Dis-
tributed Active Archive Center, 2023), and Copernicus Global
Land Service products (https://land.copernicus.eu/en/products/
high-resolution-layer-tree-cover-density, Copernicus Land
Monitoring Service, 2023).
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