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Abstract. Earth system models suggest that anthropogenic
climate change will influence marine phytoplankton over the
coming century with light-limited regions becoming more
productive and nutrient-limited regions less productive. An-
thropogenic climate change can influence not only the mean
state but also the internal variability around the mean state,
yet little is known about how internal variability in marine
phytoplankton will change with time. Here, we quantify the
influence of anthropogenic climate change on internal vari-
ability in marine phytoplankton biomass from 1920 to 2100
using the Community Earth System Model 1 Large Ensem-
ble (CESM1-LE). We find a significant decrease in the inter-
nal variability of global phytoplankton carbon biomass un-
der a high emission (RCP8.5) scenario and heterogeneous
regional trends. Decreasing internal variability in biomass is
most apparent in the subpolar North Atlantic and North Pa-
cific. In these high-latitude regions, bottom-up controls (e.g.,
nutrient supply, temperature) influence changes in biomass
internal variability. In the biogeochemically critical regions
of the Southern Ocean and the equatorial Pacific, bottom-up
controls (e.g., light, nutrients) and top-down controls (e.g.,
grazer biomass) affect changes in phytoplankton carbon in-
ternal variability, respectively. Our results suggest that cli-
mate mitigation and adaptation efforts that account for ma-
rine phytoplankton changes (e.g., fisheries, marine carbon
cycling) should also consider changes in phytoplankton in-

ternal variability driven by anthropogenic warming, particu-
larly on regional scales.

1 Introduction

Anthropogenic climate change significantly impacts marine
ecosystems from phytoplankton (Bopp et al., 2001, 2013;
Laufkötter et al., 2015; Kwiatkowski et al., 2020) to fish
(Perry et al., 2005; Cheung et al., 2009, 2010; Mills
et al., 2013; Wernberg et al., 2016; Flanagan et al., 2018;
Staudinger et al., 2019). As the base of the marine food
web, phytoplankton support diverse marine ecosystems by
providing food for higher trophic levels (Falkowski, 2012).
Constraining future changes in phytoplankton with anthro-
pogenic warming is important at regional scales for fish-
ery adaptation (Pauly and Christensen, 1995; Chassot et al.,
2010; Link and Marshak, 2019; Marshak and Link, 2021),
particularly as phytoplankton biomass is incorporated into
offline fishery models to predict changing catch potential
(Christensen and Walters, 2004; Travers-Trolet et al., 2009;
Lehodey et al., 2010; Maury, 2010; Blanchard et al., 2012;
Christensen et al., 2015; Jennings and Collingridge, 2015;
Tittensor et al., 2018; Petrik et al., 2019; Heneghan et al.,
2021). In this context, understanding changes in both phy-
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toplankton biomass and its internal variability is essential in
reducing uncertainty in marine ecosystem projections.

The abundance and distribution of phytoplankton, the base
of the marine food web and an important component of the
marine carbon cycle, will likely change with anthropogenic
warming. Future projections of climate change impacts re-
veal a global loss of marine net primary production (NPP)
and phytoplankton biomass, particularly at middle and low
latitudes (Steinacher et al., 2010; Bopp et al., 2013; Lotze
et al., 2019; Tittensor et al., 2021). A majority of Earth sys-
tem models (ESMs) project an increase in phytoplankton
abundance in the high-latitude ocean as light limitation is al-
leviated by stratification, increasing temperature stimulates
photosynthesis, and sea ice cover declines (Steinacher et al.,
2010; Bopp et al., 2013). In contrast, a decrease in phyto-
plankton abundance in the low-latitude oceans is projected
as nutrient limitation from thermal stratification is enhanced
(Steinacher et al., 2010; Kwiatkowski et al., 2020). While
bottom-up controls (e.g., nutrient flux, light availability) have
been shown to affect phytoplankton growth in a changing cli-
mate, top-down controls (i.e., zooplankton grazing) also play
a role. For example, analysis across a suite of models forced
under climate change scenarios reveals grazing pressure as a
driver of biomass decline in low- to intermediate-latitude re-
gions (Laufkötter et al., 2015). Additionally, top-down con-
trols have been shown to affect regional changes in NPP and
export production (Bopp et al., 2001), as well as the timing
of phytoplankton bloom onset (Yamaguchi et al., 2022). Re-
gional redistributions of phytoplankton biomass have con-
sequences for fishery management and conservation (Blan-
chard et al., 2017; Stock et al., 2017) and may have impli-
cations for economics and policy making decisions (Moore
et al., 2021).

While climate change is known to impact the mean
state of phytoplankton biomass or NPP (Bopp et al., 2013;
Kwiatkowski et al., 2020), less is known about how cli-
mate change will affect internal variability in these quanti-
ties. One recent modeling study found that climate change
alters the timing of seasonal blooms in many regions of the
global ocean, an effect that could be realized by the end
of the century (Yamaguchi et al., 2022). Several other re-
cent studies have demonstrated how other aspects of the cou-
pled atmosphere–ocean climate system are projected to ex-
perience changes in internal variability in a changing cli-
mate (Resplandy et al., 2015; Landschützer et al., 2018;
Kwiatkowski and Orr, 2018; Rodgers et al., 2021). For ex-
ample, Resplandy et al. (2015) examined the contribution of
internal variability to air–sea CO2 and O2 fluxes with cli-
mate change using a suite of six ESMs. Their analyses re-
vealed distinct regional differences in internal variability of
air–sea gas fluxes, with the Southern Ocean and the tropi-
cal Pacific playing a significant role. Other studies have re-
vealed increases in the frequency of modes of internal vari-
ability such as El Niño and La Niña events in response to
greenhouse warming (Timmermann et al., 1999; Cai et al.,

2014, 2015, 2022). Clarifying how internal variability in phy-
toplankton biomass may be changing over long timescales
with climate change is important for fishery management,
especially at regional scales, as it affects our ability to make
accurate near-term predictions of fishery production. Near-
term predictions of phytoplankton biomass may also benefit
from knowledge of the projected magnitude of internal vari-
ability as the chaotic nature of internal variability hampers
near-term predictions (Meehl et al., 2009, 2014).

Here, we quantify changes in the internal variability (en-
semble spread) of phytoplankton biomass over the next cen-
tury by using a large ensemble of an ESM in which each
ensemble member experiences a different phasing of internal
climate variability but is forced with a common emissions
scenario. We illustrate the drivers of these changes in inter-
nal variability via statistical analysis of physical and biogeo-
chemical model output and demonstrate their relative impor-
tance in key fishery regions.

2 Methods

2.1 Community Earth System Model 1 Large
Ensemble

2.1.1 Model description

We evaluate changes in phytoplankton biomass internal vari-
ability using output from the Community Earth System
Model 1 Large Ensemble (CESM1-LE) (Kay et al., 2015).
CESM1 is a fully coupled climate model that simulates
Earth’s climate under historical and Representative Concen-
tration Pathway (RCP) 8.5 external forcing by simulating the
evolution of coupled atmosphere, ocean, land, and sea ice
component models (Hurrell et al., 2013). The ocean phys-
ical model is the ocean component of the Community Cli-
mate System Model version 4 (Danabasoglu et al., 2012)
and has a nominal 1◦ resolution and 60 vertical levels.
The Parallel Ocean Program version 2 (POP2) ocean model
consists of an upper-ocean ecological module that incor-
porates multi-nutrient co-limitation of nitrate, ammonium,
phosphate, dissolved iron, and silicate into phytoplankton
growth and dynamic iron cycling (Moore et al., 2004; Doney
et al., 2006; Moore and Braucher, 2008). The Biogeochem-
ical Elemental Cycle (BEC) model simulates three phyto-
plankton functional types (PFTs): diatoms, diazotrophs, and
small phytoplankton (i.e., cyanobacteria, nanophytoplank-
ton, picoeukaryotes). Each PFT plays a unique role in the
marine ecosystem and occupies a distinct ecological niche.
For example, diatoms grow faster in cool, high-nutrient envi-
ronments, while small phytoplankton thrive in warmer, low-
nutrient environments. In contrast, diazotrophs are not lim-
ited by nitrogen availability due to their ability to biologi-
cally fix nitrogen from the atmosphere. Each PFT has a max-
imum growth rate, which is dictated by temperature (scaled
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by a temperature function with a Q10 of 2.0) and limited by
nutrient and light availability (Moore et al., 2004, 2013). An-
thropogenic warming can alter these environmental variables
and, in turn, affect phytoplankton abundance and productiv-
ity. Photoadaptation (variable chlorophyll to carbon ratios)
occurs in response to variations in irradiance and nutrient
availability (Geider et al., 1998; Moore et al., 2004). In addi-
tion to these bottom-up controls, top-down controls, such as
zooplankton grazing, can also affect phytoplankton biomass.
The ecosystem model simulates a single generic zooplank-
ton functional type (ZFT) with different grazing rates and
half-saturation constants prescribed for different PFTs (e.g.,
slower zooplankton grazing rates for larger phytoplankton,
i.e., diatoms). Grazing rate is computed using a Holling Type
III (sigmoidal) relationship and is a function of both prey
density and temperature (Fig. S1, Eq. 5). Zooplankton loss is
a function of a linear mortality term, which represents natural
mortality, and a non-linear predation term, which represents
losses from predation. Both of these loss terms scale with
temperature. While zooplankton growth and loss terms both
scale with temperature, a non-linear parameterization of the
loss term results in a relatively larger increase in loss than
increase in production with warming.

Large ensembles of ESMs are a recently developed re-
search tool that allows us to disentangle fluctuations due
to internal climate variability from those imposed by exter-
nally forced anthropogenic trends. Internal variability refers
to variability in the climate system that occurs in the ab-
sence of external forcing and includes processes related to
the coupled ocean–atmosphere system (e.g., Pacific Decadal
Oscillation, El Niño–Southern Oscillation – ENSO) (Santer
et al., 2011; Deser et al., 2010; Meehl et al., 2013). In con-
trast, external forcing refers to the signal imposed by pro-
cesses external to the climate system, such as solar vari-
ability, volcanic eruptions, and rising greenhouse gases from
fossil fuel combustion (Deser et al., 2012, 2010; Schnei-
der and Deser, 2018). The CESM1-LE simulates the evo-
lution of the climate system with multiple ensemble mem-
bers, each initiated with slightly different atmospheric tem-
perature fields and branched from a multi-century 1850 con-
trol simulation with constant pre-industrial forcing (Lamar-
que et al., 2010; Danabasoglu et al., 2012). The CESM1-
LE simulates the evolution of the climate system from 1920
to 2100 with multiple ensemble members, each express-
ing a different phasing of internal climate variability while
responding to a shared external forcing prescription (Kay
et al., 2015). Variable phasing of internal climate variability
(e.g., ENSO) across ensemble members can influence phy-
toplankton biomass variability through the propagation of
physical climate variability to biologically relevant environ-
mental variables. RCP8.5 forcing was applied from 2006 to
2100 (Meinshausen et al., 2011) with well-mixed greenhouse
gases and short-lived aerosols projected by four different in-
tegrated assessment models (Lamarque et al., 2010). A total
of 40 ensemble members were generated for the CESM1-LE

experiment. Of the 40, 6 CESM1-LE members had corrupted
ocean biogeochemistry; therefore, we used the 34 CESM1-
LE members with valid ocean biogeochemistry.

2.1.2 Statistical analysis of model output

Analyses were conducted using annual mean output at 1◦ res-
olution from 1920 to 2100. Changes in CESM1 phytoplank-
ton internal variability can be assessed via statistical anal-
ysis of chlorophyll concentration, net primary productivity
(NPP), or phytoplankton carbon concentration (an indicator
of total biomass). In our analysis we focus on biomass (phy-
toplankton carbon concentration) because it is an important
predictor variable in offline fishery models (Christensen and
Walters, 2004; Travers-Trolet et al., 2009; Lehodey et al.,
2010; Maury, 2010; Blanchard et al., 2012; Christensen
et al., 2015; Jennings and Collingridge, 2015; Tittensor et al.,
2018). Additionally, under climate change scenarios, phyto-
plankton biomass may be a more reliable indicator of climate
change impacts than NPP (Bopp et al., 2022). Vertical inte-
grals (top 150 m) of biomass carbon concentration from each
PFT were calculated and then summed to create maps of total
phytoplankton biomass.

We classified the marine environment into 11 ecologically
cohesive biomes as in Tagliabue et al. (2021) and Vichi et al.
(2011) (Fig. S2), which are a consolidation of the 38 ecologi-
cal regions defined in Longhurst (2007). The provinces were
aggregated using multivariate statistical analysis of physical
(i.e., salinity, temperature, mixed layer depth) and biological
(i.e., chlorophyll concentration) ocean parameters to group
ocean regions with similar physical and environmental con-
ditions (Vichi et al., 2011). The ocean provinces were de-
fined by randomly selecting from a combination of model
and observational datasets and testing for statistical signifi-
cance using analysis of similarities (ANOSIM) (Vichi et al.,
2011). Although we consider all 11 biomes in our analysis,
we analyze drivers in 4 biomes that are particularly relevant
for fishery production and/or of high biogeochemical inter-
est: the subpolar Atlantic (ASP), the subarctic Pacific (SAP),
the equatorial Pacific (EQP), and the Southern Ocean (SOC)
(Fig. S2). ASP is a consolidation of aggregated biogeochem-
ical provinces 4, 11, and 15; SAP a consolidation of 50 and
51; EQP a consolidation of 61, 62, and 63; and SOC a consol-
idation of 21, 81, 82, and 83 (Longhurst, 2007; Vichi et al.,
2011) (Fig. S2). Important biogeochemical regions are those
characterized by coherent physical and environmental condi-
tions, which support unique marine ecosystems and play an
outsized role in global ocean biogeochemistry.

Internal variability at each location (x,y) is approximated
as the standard deviation (σ ) across ensemble members
(EMs) at a given time (t),

σ(x,y, t)= σ(EM(x,y, t)). (1)

The coefficient of variation (CoV) is calculated as the stan-
dard deviation across the ensemble members divided by the
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Figure 1. Comparison between observed and modeled phytoplankton biomass interannual variability. (a) Temporal standard deviation in
annual mean phytoplankton carbon concentration (mg m−3) reconstructed from remotely sensed chlorophyll concentrations, backscattering
coefficients, and phytoplankton absorption (1998 to 2019) (Bellacicco et al., 2020). (b) Temporal standard deviation in annual mean phyto-
plankton carbon concentration (mg m−3) simulated by ensemble member 1 of the CESM1-LE over the same observational period (1998 to
2019). Note the different magnitudes on the color bars.

ensemble mean,

CoV(x,y, t)=
σ(EM(x,y, t))

LEEM . (2)

The forced response of the large ensemble is calculated as
the mean of ensemble members at a given location and time,

LE(x,y, t)=
∑n

1EM(x,y, t)
n

, (3)

where n is the number of ensemble members.
We quantified the drivers of phytoplankton carbon

biomass CoV in key ocean regions by generating an ensem-
ble of boosted regression trees. Unlike linear models, boosted
trees are able to capture non-linear interaction between the
predictors and the response and have been used in a num-
ber of ecological applications (Elith et al., 2008; Roberts
et al., 2016; Lamb et al., 2021; Dannouf et al., 2022; Denvil-
Sommer et al., 2023). A regression tree ensemble is a pre-
dictive model composed of a weighted combination of mul-
tiple regression trees. At every step, the ensemble fits a new
learner to the difference between the observed response and
the aggregated prediction of all learners grown previously,
aiming to minimize mean-squared error. We generate an en-
semble of boosted regression trees (maximum tree depth of
10) using the MATLAB function fitrensemble. Our predictor
variables are the regional mean, ensemble mean temperature,
mixed layer depth, incoming shortwave radiation, physically
mediated iron, physically mediated phosphate, zooplankton
carbon, and zooplankton grazing (diatom, small phytoplank-
ton, or their sum) annually resolved from 2006 to 2100, while
our response variable is CoV of phytoplankton carbon (di-
atom, small phytoplankton, or their sum) annually resolved
from 2006 to 2100. We use the MATLAB function predic-
torImportance to estimate the importance of the predictors
for each tree learner in the ensemble; it computes the im-
portance of the predictors in a tree by summing changes due

to splits on every predictor and dividing the sum by the to-
tal number of branches. The machine learning model was
tuned to a learning rate of 1 and a tree depth of 10, generat-
ing 100 trees. We tuned several hyperparameters to generate
the highest-quality predictive results with the least computa-
tional expense. While learning rate can affect the quality of
the solution, we experimented with a range of learning rates
(0.1–1) with no change in the predictive results. Similarly, we
tuned the tree depth using a range of 1 to 10 splits, and tree
depths less than 10 produced a higher RMSE of the testing
dataset.

2.2 Model evaluation

We used remotely sensed estimates of phytoplankton carbon
to evaluate the representation of phytoplankton interannual
variability in the CESM1-LE. In other words, we evaluate
the temporal variability in modeled phytoplankton biomass
from year to year. We note that this interannual variability is
different than the internal variability (ensemble spread) that
we discuss at length in this study, but is nevertheless a target
for model validation. Although phytoplankton carbon con-
centrations cannot be measured directly by satellites, they
can be reconstructed using algorithms that incorporate re-
motely sensed chlorophyll concentrations, detrital backscat-
tering coefficients, and phytoplankton absorption (Kostadi-
nov et al., 2016; Martinez-Vicente et al., 2017; Roy et al.,
2017; Sathyendranath et al., 2020; Brewin et al., 2021). We
use the observational phytoplankton carbon dataset of Bel-
lacicco et al. (2020), annually averaged and interpolated onto
a 1◦ grid, to evaluate interannual variability in phytoplank-
ton biomass in a single model ensemble member. Figure 1a
shows satellite-derived estimates of interannual variability
in phytoplankton carbon with regions of relatively low phy-
toplankton variability shown in yellow and regions of rel-
atively high variability in purple. Remotely sensed obser-
vations capture areas of high interannual variability in the
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subpolar North Atlantic, North Pacific, and Southern Ocean
and areas of low interannual variability in the subtropical
gyre regions. Similar spatial patterns are apparent when com-
pared to the range of phytoplankton interannual variability
in ensemble member 1 of the CESM1-LE over the obser-
vational period (1998 to 2019) (Fig. 1b). However, while
the model ensemble captures regional patterns of observed
variability, the CESM1-LE overestimates the magnitude of
observed interannual variability. Some regions of the global
ocean display a substantial mismatch in interannual variabil-
ity between the model and that estimated from observations
(Fig. 1, Table S1). While the differences can be quite large
in some regions, we note that this is an evaluation of inter-
annual variability (rather than internal variability, the focus
of this study) and that estimates from the satellite product
are derived from a collection of data products that may also
display biases (Table S1).

As an evaluation of the model’s ability to represent in-
ternal variability (ensemble spread), we compare the inter-
nal variability in chlorophyll simulated in the CESM1-LE
to a synthetic ensemble generated from observed surface
chlorophyll concentrations over the MODIS remote sensing
record (Elsworth et al., 2020, 2021) (Fig. S3; chlorophyll
was readily available in the CESM1-LE and can be directly
compared with our synthetic ensemble of observed surface
chlorophyll). A synthetic ensemble is a technique that allows
the observational record to be statistically emulated to cre-
ate multiple possible evolutions of the observed record, each
with a unique sampling of internal climate variability (McK-
innon et al., 2017; McKinnon and Deser, 2018). Compared
to the internal variability over the observational period (2002
to 2020) (purple circle, Fig. S3), the model ensemble slightly
overestimates the magnitude of internal variability in chloro-
phyll observed in the real world.

Taken together, our model validation exercises demon-
strate that the model tends to overestimate both the tem-
poral (interannual) variability and the internal variability in
phytoplankton, as compared to satellite observations on both
global and regional scales. Thus, we must interpret our find-
ings with this caveat in mind.

3 Results

We evaluate the change in mean phytoplankton biomass
and its internal variability across the CESM1-LE globally
and regionally. Annually averaged, global mean, upper-
ocean (top 150 m) integrated phytoplankton biomass across
the model ensemble decreases from 76.1 mmol C m−2 to
66.2 mmol C m−2 from the historical period through the
RCP8.5 forcing scenario (1920 to 2100), a decline of 13 %
(black curve; Fig. 2a). The change in the mean is calculated
as the difference between the first (1920 to 1930) and last
(2090 to 2100) decades across the historical and RCP8.5
forcing scenario. Phytoplankton biomass declines globally,

Figure 2. (a) Global change in annual mean total phytoplankton
carbon concentration simulated by the CESM1-LE (mmol C m−2)
from the historical period through the RCP8.5 forcing scenario
(1920 to 2100). The ensemble mean is shown in the black curve
and the 34 individual ensemble members are shown in the gray
curve. (b) Global change in the coefficient of variation in annual
mean total phytoplankton carbon concentration over the same pe-
riod, smoothed using a 5-year window. The trend in the coefficient
of variation over the RCP8.5 forcing scenario is shown with the
black dashed line.

except in polar regions (Fig. 3a). Regional changes in mean
phytoplankton biomass across the RCP8.5 forcing scenario
(2006 to 2100) display increasing biomass in portions of the
Arctic and the Southern Ocean that gradually become ice free
over the century (on the order of 20 %–40 % of the mean
biomass across the century) and decreasing biomass across
the subtropical gyres (on the order of 15 %–30 % of the mean
biomass across the century; Figs. 3a, S4a). In the North At-
lantic subpolar gyre, the phytoplankton biomass declines by
40 %–50 % of its mean (Figs. 3a, S4a). This result is con-
sistent with previous modeling studies that identified a 50 %
reduction in North Atlantic primary production associated
with AMOC (Atlantic Meridional Overturning Circulation)
weakening during the last glacial period (Schmittner, 2005).
A weakening of the AMOC is also projected with anthro-
pogenic warming (Manabe and Ronald, 1993; Stocker and
Schmittner, 1997).

Regional changes in phytoplankton biomass are domi-
nated by changes in diatom and small phytoplankton (Ta-
ble 1). We aggregate biomass across 11 ecological provinces
(Vichi et al., 2011; Tagliabue et al., 2021) and present
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Figure 3. (a) Percentage change in annual total phytoplankton carbon concentration over the RCP8.5 forcing scenario (2006 to 2100)
simulated by the CESM1-LE. (b) Percentage change in annual total phytoplankton internal variability over the same period. The change in
the mean and the variability is calculated using averages across the first (2006 to 2016) and last (2090 to 2100) decades of the RCP8.5 forcing
scenario. Hatched areas indicate regions of trend insignificance determined by a t test with a p value greater than 0.05. Summary statistics
for the t test are available in the Supplement (Table S2).

changes in total and PFT biomass over the RCP8.5 sce-
nario in Table 1. The CESM1-LE simulates the largest de-
cline in total phytoplankton carbon concentration in the At-
lantic subpolar (ASP) region, where diatom biomass declines
by ∼ 80 mmol C m−2 and small phytoplankton biomass
increases slightly (∼ 8 mmol C m−2). We observe moder-
ate decreases in the subpolar Pacific (SAP) region that
are again driven by declines in diatom carbon concentra-
tion, with minor contributions from changes in small phy-
toplankton carbon concentration (Table 1). The CESM1-
LE simulates a smaller decline in total carbon concentra-
tion in the EQP region, where diatom biomass declines
by ∼ 7 mmol C m−2 and small phytoplankton biomass de-
clines by ∼ 5 mmol C m−2. The smallest decline in total
carbon concentration occurs in the South Pacific subtropi-
cal gyre (SPS) region, where diatom biomass declines by
∼ 4.3 mmol C m−2 and small phytoplankton biomass de-
clines by ∼ 4.6 mmol C m−2.

Internal variability in global phytoplankton biomass,
which is indicated by the spread across the individual ensem-
ble members (gray lines; Fig. 2a), declines over the RCP8.5
forcing period from 2006 to 2100. To quantify how the range
of internal variability in phytoplankton biomass is changing
with anthropogenic warming, we calculated the coefficient
of variation as the standard deviation across the ensemble
members for a given year (ensemble spread) divided by the
ensemble mean. Figure 2b illustrates the change in the co-
efficient of variation from the historical period through the
RCP8.5 forcing scenario (1920 to 2100). The coefficient of
variation is relatively constant across the historical period
(1920 to 2005) and then significantly declines by ∼ 20 %
from 2006 to 2100.

A decrease in global phytoplankton internal variability
with anthropogenic warming is not unique to the CESM1-
LE. We illustrate this by analyzing surface phytoplankton

chlorophyll (rather than biomass as surface chlorophyll was
readily available in the CMIP5 archive) from three other
CMIP5 ESM large ensembles that include representation of
ocean biogeochemistry: the GFDL-ESM2M from the Geo-
physical Fluid Dynamics Laboratory (GFDL; Dunne et al.,
2012, 2013), the CanESM2 from the Canadian Centre for
Climate Modelling and Analysis (Christian et al., 2010;
Arora et al., 2011), and the MPI-ESM-LR from the Max
Planck Institute for Meteorology (MPI; Giorgetta et al.,
2013; Ilyina et al., 2013). These ensembles consist of 30,
50, and 100 ensemble members, respectively. Similarly to
the CESM1-LE, historical forcing was applied through 2005,
followed by RCP8.5 forcing through 2100. While there is
substantial spread in the mean coefficient of variation across
the four models, a similar decline in the coefficient of vari-
ation can be observed across each of the four ESM en-
sembles (Fig. S3). From 2006 to 2100, the coefficient of
variation decreases by 3.3× 10−5 yr−1 in the CESM1-LE,
2.0× 10−4 yr−1 in the MPI-ESM-LR1, 5.2× 10−5 yr−1 in
the CanESM2, and 3.9× 10−4 yr−1 in the GFDL-ESM2M.
The change in the coefficient of variation is calculated us-
ing averages across the first (2006 to 2016) and last (2090
to 2100) decades of the RCP8.5 forcing scenario. These de-
clines are statistically significant in all model ensembles with
the exception of the MPI-ESM-LR1 (Fig. S3).

In comparison to the mean change in phytoplankton
biomass, changes in phytoplankton internal variability with
time are spatially more heterogeneous across the global
ocean (Fig. 3b). The largest decreases in internal variability
are apparent in the North Atlantic and North Pacific subpolar
regions (on the order of 50 %–70 % of the mean biomass in-
ternal variability), with smaller declines in the equatorial Pa-
cific and Southern oceans (on the order of 30 %–50 % of the
mean biomass internal variability) (Figs. 3b, S4b). Changes
in internal variability in the subtropical regions are charac-
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terized by mixed trends with areas of both increasing and
decreasing internal variability across the RCP8.5 forcing sce-
nario (Figs. 3b, S4b).

Global changes in total phytoplankton biomass standard
deviation are a manifestation of changes in diatom and small
phytoplankton variability (Table 1). We observe the largest-
magnitude decline in total phytoplankton carbon standard
deviation in the subpolar Atlantic (ASP) region, where
diatom standard deviation declines by ∼ 10 mmol C m−2

and small phytoplankton standard deviation declines by
∼ 2 mmol C m−2 (Table 1). The CESM1-LE simulates a
moderate-magnitude decline in total phytoplankton stan-
dard deviation in the subarctic Pacific (SAP) region, driven
by a decrease in small phytoplankton standard deviation
(∼ 2 mmol C m−2) with minor contributions from declines
in diatom standard deviation (∼ 1 mmol C m−2) (Table 1).
Moderate declines in standard deviation are also simulated
in the Arctic (ARC), North Atlantic subtropical gyre (NAS),
SOC, and EQP regions, driven by declines in diatom car-
bon standard deviation in the SOC region and declines in
small phytoplankton internal variability in the EQP region
(Table 1).

To guide our analysis of changing phytoplankton biomass
internal variability, we considered the dominant ecological
assemblage across different regions of the global ocean.
The CESM1-LE simulates three phytoplankton functional
types, each of which thrive in distinct regions of the global
ocean. Diatoms dominate in the subpolar Atlantic and Pa-
cific, the eastern equatorial upwelling zone, and portions of
the Southern Ocean, while small phytoplankton dominate
across the subtropical gyres and portions of the Southern
Ocean (Fig. 4). In contrast, diazotrophs, a minor contributor
to total carbon biomass, are present at such low concentra-
tions that they do not dominate anywhere in the global ocean
(Fig. 4). Using the ecologically cohesive regions defined by
Tagliabue et al. (2021) and Vichi et al. (2011), we selected
areas that align with the most productive fishery regions by
catch in the Atlantic and Pacific basins (FAO, 2020), as well
as regions of global biogeochemical importance for further
analysis. In each ecological region we identified the domi-
nant phytoplankton functional type to include in our analy-
sis. In regions where multiple phytoplankton functional types
dominated, we used total carbon concentrations to reflect the
mixed ecological assemblage.

We identify the importance of different predictors to
changing phytoplankton biomass CoV in four distinct eco-
logical regions using a machine learning (boosted regression
tree) approach. In the subpolar Atlantic (ASP) and subpolar
Pacific (SAP) ecological provinces (Fig. 4), diatom biomass
CoV declines between the beginning and end of the cen-
tury (Table 1). In the Atlantic subpolar region, the most im-
portant predictor of diatom biomass CoV is phosphate ad-
vection, with smaller contributions from zooplankton carbon
(Fig. 5a). In the subarctic Pacific region, sea surface temper-

Figure 4. Distribution of the dominant phytoplankton functional
type in biomass carbon averaged across the RCP8.5 forcing sce-
nario (2006 to 2100). The CESM1-LE simulates three phytoplank-
ton functional types: diatoms, diazotrophs, and small phytoplank-
ton. Regions where diatoms dominate are shown in yellow, and re-
gions where small phytoplankton dominate are shown in purple. Di-
azotrophs do not dominate in any region of the global ocean. The
four ecological provinces shown are the subpolar Pacific (SAP),
the subpolar Atlantic (ASP), the equatorial Pacific (EQP), and the
Southern Ocean (SOC).

ature is the most important predictor of diatom biomass CoV,
with phosphate advection playing a secondary role (Fig. 5b).

As the SOC and EQP ecological provinces are character-
ized by mixed phytoplankton assemblages where both di-
atoms and small phytoplankton dominate (Fig. 4), we iden-
tify the predictors of total phytoplankton CoV here. In con-
trast to the subpolar Atlantic and subpolar Pacific provinces,
we observe a relatively smaller decline in phytoplankton
CoV between the beginning and end of the century in the
Southern Ocean (Table 1). The most important predictors of
phytoplankton CoV in the SOC region derive from solar flux,
with more minor contributions from iron and phosphate ad-
vection (Fig. 5c). In the equatorial Pacific region, zooplank-
ton carbon is the most important predictor of total phyto-
plankton CoV, while iron and phosphate advection play less
of a predictive role (Fig. 5d).

In all four ecological provinces, a combination of bottom-
up controls (e.g., nutrient supply, light availability) and top-
down controls (e.g., grazer biomass) predicts the decline in
phytoplankton biomass CoV with anthropogenic warming.
Our statistical analysis reveals that phosphate advection is an
important predictor in the high-latitude regions of both the
subpolar Atlantic and Pacific, with sea surface temperature
playing an important role in the subpolar Pacific. However,
in the Southern Ocean and the equatorial Pacific, solar flux
and grazer biomass dominate the predictive skill in phyto-
plankton biomass CoV.
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Table 1. Changes in phytoplankton biomass and its internal variability in the CESM1-LE from 2006 to 2100 for the 11 ecological provinces
defined in Vichi et al. (2011) and Tagliabue et al. (2021) (mmol C m−2). The change in the mean and standard deviation is calculated using
averages across the first (2006 to 2016) and last (2090 to 2100) decades of the RCP8.5 forcing scenario.

Region Change in mean Change in standard deviation

Biome Name Total Diatom Small Total Diatom Small

ARC Arctic −21 −58 +37 −1.4 −2.8 −0.3
ASP Atlantic subpolar −71 −79 +8.2 −5.6 −9.9 −2.2
NAS North Atlantic subtropical gyre −18 −15 −2.9 −1.8 −2.8 −0.3
EQA Equatorial Atlantic −12 −6.6 −5.9 −0.1 −0.4 +0.2
SAS South Atlantic subtropical gyre −10 −7.2 −3.1 −0.5 −0.6 −0.1
IND Indian Ocean −11 −6.1 −4.7 +0.1 0 +0.1
SAP Subarctic Pacific −21 −15 −5.4 −0.1 −1.4 −2.4
NPS North Pacific subtropical gyre −11 −5.6 −4.9 −0.2 −0.4 +0.1
EQP Equatorial Pacific −12 −6.6 −5.0 −2.0 −2.0 −0.2
SPS South Pacific subtropical gyre −8.9 −4.3 −4.6 −0.1 0 −0.1
SOC Southern Ocean −9.3 −2.8 −6.6 −1.0 0 −1.3

Figure 5. Relative importance of predictor variables for phytoplankton biomass coefficient of variation across the RCP8.5 forcing scenario
(2006 to 2100). Marine ecological regions are defined in Tagliabue et al. (2021). Regions were selected that aligned with the highest fishery
catch in the (a) Atlantic and (b) Pacific basins and the biogeochemically important (c) Southern Ocean and (d) equatorial Pacific regions. The
dominant phytoplankton functional type is considered in each region. In regions with a mixed ecological assemblage, total phytoplankton
carbon is considered. The RMSE (mmol C m−2) for the testing dataset of each machine learning analysis is included in the upper right corner
of each panel.

4 Conclusions and discussion

We quantify both global and regional changes in phyto-
plankton internal variability across the RCP8.5, a business-
as-usual forcing scenario, in the CESM1-LE. We observe
a global decline in phytoplankton internal variability in the
model ensemble, which is reflected in similar declines in
phytoplankton internal variability across a suite of CMIP5
models (Fig. S3). Regional changes in phytoplankton vari-

ability with anthropogenic climate change in the model en-
semble are spatially heterogeneous, with highly productive
fishery regions and important global biogeochemical regions
experiencing large changes in internal variability. Using a
machine learning approach, we identify the importance of
different predictors to changing phytoplankton biomass in-
ternal variability. In all four ecological provinces, a combina-
tion of bottom-up controls (e.g., nutrient supply, light avail-
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ability) and top-down controls (e.g., grazer biomass) pre-
dicts the decline in phytoplankton biomass CoV with anthro-
pogenic warming.

While the CESM1-LE represents the overall spatial pattern
of observed interannual variability in phytoplankton carbon,
the model overestimates the magnitude of observed inter-
annual and internal variability in phytoplankton on regional
scales. This caveat is particularly important to consider when
interpreting projections from offline fishery models in the
context of fishery adaptation and planning in a warming cli-
mate.

Our statistical analysis approach has inherent limitations,
especially in the context of a attributing changes in an inher-
ently coupled system (i.e., one in which predictor variables
co-vary). In a coupled system such as this, it is difficult to
definitively identify cause and effect. In this context, the sta-
tistical method can be used as an effective tool to provide a
first-order approximation of contributions to changing phy-
toplankton CoV.

While many studies attribute bottom-up controls to chang-
ing phytoplankton with anthropogenic warming (Steinacher
et al., 2010; Bopp et al., 2013; Lotze et al., 2019; Titten-
sor et al., 2021), top-down controls may also play an im-
portant role, particularly in our understanding of chang-
ing phytoplankton biomass and its internal variability. Our
study demonstrates a connection between phytoplankton in-
ternal variability and zooplankton carbon in the subpolar
North Pacific and equatorial Pacific. Previous studies of
phytoplankton change with climatic warming have demon-
strated that grazing pressure, the fraction of phytoplankton
biomass grazed, is a contributor to biomass decline in low-
to intermediate-latitude regions across a suite of model sim-
ulations with different marine ecosystem models (Laufkötter
et al., 2015) and that top-down controls can affect regional
changes in NPP and export production (Bopp et al., 2001)
and are a contributor to future shifts in bloom timing (Yam-
aguchi et al., 2022). While grazing pressure has been shown
to increase in response to climate change, several ecosystem
models have also identified zooplankton grazing as a dom-
inant contributor to phytoplankton assemblage succession
during blooms (Hashioka et al., 2013; Prowe et al., 2012a).
Additionally, top-down controls have also been observed
to affect the onset of the spring bloom (Behrenfeld, 2010;
Behrenfeld et al., 2013) and to influence primary production
in a trait-based ecosystem model (Prowe et al., 2012b).

The relative simplicity of the ocean biogeochemical
ecosystem model in CESM1 (e.g., representation of a sin-
gle zooplankton functional type with multiple grazing rates)
may limit a more detailed evaluation of changing grazing
pressures with climate change. While the recent parameter-
ization of the biogeochemical ecosystem model in CESM2
(MARBL – Marine Biogeochemistry Laboratory) includes
similar representation of three PFTs and a single adaptive
ZFT (Long et al., 2021), more complex configurations of
MARBL include explicit representation of additional PFTs

such as coccolithophores (Krumhardt et al., 2019) and ZFTs.
Additional insights into contributions to internal variability
may be gained using more complex models. Additionally,
the use of an ecosystem model of higher complexity may
provide more realistic projections of the marine ecosystem
with climate change considering change in phytoplankton
and zooplankton species diversity with anthropogenic warm-
ing (Benedetti et al., 2021).

The magnitude and direction of regional changes in phy-
toplankton internal variability are an essential constraint for
near-term (subseasonal to decadal) predictions of the local
marine ecosystem, particularly in important fishery regions
such as the subpolar Atlantic (ASP) and the subpolar Pacific
(SAP) ecological provinces (FAO, 2020). Accurate near-term
predictions require foreknowledge of both internal climate
variability and external climate change signals. On subsea-
sonal to decadal timescales, the magnitude of internal cli-
mate variability is often stronger than forced climate change
signals (Meehl et al., 2009, 2014). In this context, a decline
in phytoplankton internal variability with anthropogenic cli-
mate change may improve the accuracy of near-term pre-
dictions of phytoplankton biomass, producing more reliable
forecasts of fishery productivity and marine carbon cycling.
Future work can utilize these constraints on phytoplankton
internal variability, particularly on regional scales, to inform
climate mitigation and adaptation efforts.
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