Supplement of

Coordination of rooting, xylem, and stomatal strategies explains the response of conifer forest stands to multi-year drought in the southern Sierra Nevada of California

Junyan Ding et al.

Correspondence to: Junyan Ding (junyan.ding @ pnnl.gov)

The copyright of individual parts of the supplement might differ from the article licence.

Figures S1 a) monthly GPP and b) latent heat flux of full sensitivity analysis grouped by rooting depth
a)

Efficient xylem	Safe xylem
-*-	-*- P50gs=P50x
	- P50gs=P40x
--*--	--*- P50gs=P30x
-----	.-. P50gs=P20x

b)

Efficient xylem	Safe xylem
\rightarrow -	-*-P50gs=P50x
	P50gs=P40x
--*--	--*- P50gs=P30x
-----	-.. P50gs=P20x

Figure S2. Mean hourly GPP and Latent Heat flux by month and year of five effective rooting depth scenarios: a) 8 m, b) 6.5 m , c) 5 m, d) 3 m , and e) 1 m .
a) GPP and LH of 8 m rooting depth

c) GPP and LH of 5 m rooting depth

d) GPP and LH of 3 m rooting depth

Latent Heat Flux(2013) - roota, rootb:0.8,1.8

Efficient xylem		Safe xylem
$-*$	$-*-$	P50gs $=\mathrm{P} 50 \mathrm{x}$
-	-	P50gs $=\mathrm{P} 40 \mathrm{x}$
$\cdots \cdots$	$\cdots *-$	P50gs $=\mathrm{P} 30 \mathrm{x}$
$\cdots \cdots$	$\cdots-$	P50gs $=\mathrm{P} 20 \mathrm{x}$

- Observed
e) GPP and LH of 1 m rooting depth

Figure S3 A.) monthly mean stem fraction of conductance (SFCL, K/Kmax) of all cohorts and B.) monthly mean leaf water potential (LWP) of all cohorts

Deep rooted cases

Size class in DBH (cm)

Shallow rooted cases

Efficient xylem

Safe xylem
Risky stoma

Risky stoma

Figure S4 Seasonal variation of water content for selected layers

$$
\begin{array}{ll}
& \text { Deep root (8m) } \\
& \text { Shallow root (1m) } \\
-\quad & \text { Efficient xylem } \\
* & \text { Safe xylem } \\
* & \begin{array}{l}
\text { Risky stoma (P50gs=P50x) } \\
\text { Safe stoma (P50gs=P20x) }
\end{array}
\end{array}
$$

Figure S5. Relation between simulated day time leaf water potential (LWP) and absorbing root water potential (AWP)

Figure S6. Vulnerability curves for two xylem strategies shown in both absolute units (K) as pressure-conductance curve (solid lines) and relative units ($\mathrm{K} / \mathrm{K}_{\text {max }}$) as pressurefraction of conductance (dashed lines). The red dot indicates the intersection point of the absolute pressure-conductance curve. On the right side of the point, efficient xylem has higher conductance at any given pressure but a lower fraction of conductance as compared to the safe xylem.

Figure S7. Estimated vulnerability curve of pine based on xylem vulnerability traits (P12, P50,P88) from TRY database

Fitted curved using P12, P50 and P88 values from TRY database for pine

Fig. S8 Comparison of MACA and flux tower meteorology data: monthly mean of a) precipitation, b) relative humidity c), air temperature, and d) incident solar radiation

