

Supplement of

Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity

Deborah F. McGlynn et al.

Correspondence to: Gabriel Isaacman-VanWertz (ivw@vt.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Compound	k_{O3} (cm ³ molec ⁻¹ s ⁻¹)	k_{OH} (cm ³ molec ⁻¹ s ⁻¹)
thujene	6.20 x 10 ^{-17, a}	7.10 x 10 ^{-11, a}
tricyclene	0	2.66 x 10 ^{-12, h}
α-pinene	8.70 x 10 ^{-17, e}	5.37 x 10 ^{-11, a}
α -fenchene	1.20 x 10 ^{-17, h}	5.70 x 10 ^{-11, h}
camphene	9.00 x 10 ^{-19, c}	5.33 x 10 ^{-11, c}
sabinene	8.30 x 10 ^{-17, d}	1.17 x 10 ^{-10, c}
β-pinene	2.20 x 10 ^{-17, b}	7.89 x 10 ^{-11, a}
cymene	0	1.51 x 10 ^{-11, f}
limonene	2.10 x 10 ^{-16, c}	1.71 x 10 ^{-10, a}
β-phellandrene	1.80 x 10 ^{-16, d}	1.68 x 10 ^{-10, e}
v-terpinene	1.40 x 10 ^{-16, d}	1.77 x 10 ^{-10, g}

Table S1. Ozone and OH rate constants and associated compounds

^aPinto et al. (2007), ^bKhamaganov et al. (2000), ^cAtkinson et al. (1990), ^dAtkinson and Arey (2003), ^eHakola et al. (1994), ^fCorchnoy and Atkinson 1990, ^gFriedman and Farmer 2018, ^bEstimated using King et al. (1999)

Table S2. Mapping of bootstrap factors to base factors for 2019-2020 PMF fun					
Bootstrapping run	Base Factor 1	Base Factor 2	Unmapped		
Boot Factor 1	95	5	0		
Boot Factor 2	0	100	0		

Table S2 Manning of bootstran factors to base factors for 2019-2020 PMF run

Table S3. Percent of factor attributed to light	
independent (%LI) and light dependent (%LD)	
emissions by compound for 2019-2020 data	
- ·	-

compound	%LI	%LD
α -pinene	57.9	6.0
β-pinene	14.2	2.6
β-phellandrene	3.2	3.8
camphene	11.9	5.2
limonene	5.9	34.8
tricyclene	3.0	0.8
thujene	0.2	5.3
fenchene	2.3	0.9
sabinene	0.0	13.5
cymene	0.9	25.0
γ-terpinene	0.5	2.2

Figure S1. The 12-hour average of α -pinene and limonene between September 2019 and September 2021. The averaging period for each compound was between 7 AM and 7 PM.

Figure S2. Time series of isoprene concentration, the two positive matrix factorization factors between January 2021 and September 2021, and the breakdown of the monoterpene species that contribute to each factor (pie charts).

Figure S3. Correlation plots of Isoprene vs. the Light Dependent Factor and Isoprene vs. the Light Independent factor. Linear regression equations and r^2 is provided on each plot.

Figure S4. A four-day period in July 2021 of isoprene, and the two PMF factors (Light Dependent and Light Independent).

Figure S5. The 2021 summer diurnal profile of (a) measured monoterpene concentration, (b) calculated monoterpene ozone reactivity and (c) calculated OH reactivity, as well as light dependent (LD) (d) concentrations, (e) ozone reactivity, and (f) OH reactivity, and light independent (LI) (g) concentration, (h) ozone reactivity, (i) OH reactivity. The dashed lines in a, b, and c represent the contribution from LD monoterpenes (d, e, and f) while the dotted lines represent the contribution from LI monoterpenes (g, h, and i).