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Abstract. Climate change is predicted to lead to major
changes in terrestrial ecosystems. However, substantial dif-
ferences in climate model projections for given scenarios of
greenhouse gas emissions continue to limit detailed assess-
ment. Here we show, using a traditional Köppen–Geiger bio-
climate classification system, that the latest CMIP6 Earth
system models actually agree well on the fraction of the
global land surface that would undergo a major change
per degree of global warming. Data from “historical” and
“SSP585” model runs are used to create bioclimate maps at
various degrees of global warming and to investigate the per-
formance of the multi-model ensemble mean when classi-
fying climate data into discrete categories. Using a stream-
lined Köppen–Geiger scheme with 13 classifications, global
bioclimate classification maps at 2 and 4 K of global warm-
ing above a 1901–1931 reference period are presented. These
projections show large shifts in bioclimate distribution, with
an almost exclusive change from colder, wetter bioclimates
to hotter, drier ones. Historical model run performance is
assessed and examined by comparison with the bioclimatic
classifications derived from the observed climate over the
same time period. The fraction (f ) of the land experienc-
ing a change in its bioclimatic class as a function of global
warming (1T ) is estimated by combining the results from
the individual models. Despite the discrete nature of the
bioclimatic classification scheme, we find only a weakly
saturating dependence of this fraction on global warming
f =1− e−0.141T , which implies about 13 % of land experi-
encing a major change in climate per 1 K increase in global
mean temperature between the global warming levels of 1
and 3 K. Therefore, we estimate that stabilizing the climate

at 1.5 K rather than 2 K of global warming would save over
7.5 million square kilometres of land from a major biocli-
matic change.

1 Introduction

Understanding the impacts that climate change will have at
a regional level yields vital information for adaptation to cli-
mate change. Furthermore, quantifying the performance of
climate models is important for the continued improvement
of climate models and for understanding the areas where
particular models underperform. There are substantial dif-
ferences in climate model projections for given scenarios of
greenhouse gas emissions (Masson-Delmotte et al., 2021).
Climate change is predicted to lead to major changes in ter-
restrial ecosystems (Pörtner et al., 2022).

Here we use the Köppen–Geiger (KG) bioclimate classifi-
cation to examine and quantify changes in biome under vari-
ous levels of projected future global warming within the Cou-
pled Model Intercomparison Project phase 6 (CMIP6) cli-
mate models (Eyring et al., 2016). CMIP6 is an international
collaboration to run a standardized set of potential future sce-
narios with a range of climate models developed at various
institutions. The results make a compelling case for the need
to further prioritize climate change mitigation policies. How-
ever, this may not be immediately clear to the public or pol-
icy makers. Improved understanding of the consequences of
climate change is needed, and climate classification schemes
can help in that respect.
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The biome of a region is largely dictated by that region’s
climate. Bioclimates are defined by the preferences of liv-
ing organisms. Bioclimate classification empirically sepa-
rates regions of the globe based on climate data and the geo-
graphical distribution of biomes. The KG bioclimate classifi-
cation scheme is one of the most established, first developed
by Wladimir Köppen (Köppen, 1884) and then enhanced by
Rudolf Geiger. The original KG classification scheme con-
sists of 30 separate bioclimates based on the dominant vege-
tation as determined by Köppen’s experience as a botanist.
These classifications are based on monthly average tem-
perature and precipitation at each location. The seasonality
of these variables, combined with threshold values, deter-
mines the bioclimate classification of the region (Peel et al.,
2007). Classifications include hot and cold deserts, i.e. re-
gions where there is no rainfall, and tropical rainforests, i.e.
regions where the minimum temperature and threshold pre-
cipitation are met.

Bioclimate classification systems, such as the KG and
Holdridge schemes (Lugo et al., 1999), have been used to
map regions and even the entire globe. These maps have been
created using observational (Kottek et al., 2006) and climate
model data, the latter including CMIP5 (Rahimi et al., 2020;
Phillips and Bonfils, 2015) and CMIP6 climate models (Kim
and Bae, 2021). Despite the changes and updates suggested
by various authors, the classification scheme as originally de-
veloped by Köppen and updated by Geiger is still a highly
popular climate classification system. Although bioclimate
maps for specific years (such as 2100) have previously been
created (Beck et al., 2018), an area that is less explored are
global KG climate maps at specific levels of global warming.
To remove the leading order uncertainty that arises from dif-
ferent climate model sensitivities to radiative forcing (Sher-
wood et al., 2020; Nijsse et al., 2020) and to make our results
relevant to the Paris climate targets (Paris-Agreement, 2015),
here we look at changes in KG classification at different lev-
els of global warming (1.5, 2, and 4 K). A streamlined KG
scheme is also implemented to visually demonstrate the im-
pacts of warming on global biome distribution.

KG classification maps at 1.5, 2, and 4 K of global warm-
ing above reference period levels (taken as the 1901–1931
global mean temperature) are presented. Due to the 30 dif-
ferent classifications in the traditional KG scheme, it can
be difficult to identify the changes in bioclimate classifica-
tion, so we present a novel “streamlined” classification sys-
tem that allows for easy identification of bioclimate change
with a naming scheme that is more intuitive. To quantify this,
classification change matrices are also given. By comparing
the classifications given by models under the historical ex-
perimental run to the known historical observational values
and by assessing model deviation from their initial classifi-
cations, we gain insight into the performance and behaviours
of individual models and the multi-model ensemble mean.

We show there are large shifts in bioclimate distribution
under global warming, with an almost exclusive change from

colder, wetter bioclimates to hotter, drier ones. Specifically
we find the fraction (f ) of the land experiencing a change in
its bioclimatic class has a weakly saturating dependence on
global warming f =1− e−0.141T , which implies about 13 %
of land experiences a major change in climate per 1 K in-
crease in global mean temperature between the global warm-
ing levels of 1 and 3 K.

2 Methods

2.1 Köppen–Geiger classification scheme

The Köppen–Geiger (KG) classification scheme has been de-
scribed extensively in other publications (Peel et al., 2007;
Beck et al., 2018). The scheme has also undergone many al-
terations. Here we follow (Peel et al., 2007), whose criteria
for each classification are given in Table 1.

These classifications have three differences compared to
those described by (Köppen, 1936). First, C and D climates
follow a 0 ◦C threshold instead of −3 ◦C (Russell, 1931).
Secondly, BW and BS are distinguished using a 70 % thresh-
old for precipitation seasonality (Peel et al., 2007). Finally,
climates C and D subclassifications s and w are made mutu-
ally exclusive (Peel et al., 2007). In this analysis, each month
is set to have the same length of time (1/12 of a year).

The KG system has been applied to a broad spectrum of
scientific interests, including for locally adjusting an irradia-
tion model (Every et al., 2020), for use in hydrological stud-
ies (Peel et al., 2001), and for use when modelling the distri-
bution of Lyme disease (Cox et al., 2021).

The outcome of competition between different plant types
varies depending on the climatic conditions, such that the
long-term equilibrium biome (which is a mixture of differ-
ent plant types) will also vary with the climate. This is the
underlying basis for bioclimatic schemes such as Köppen–
Geiger, which is used here to classify the climate rather than
to predict biome shifts. Changes in the actual distribution of
vegetation also depend on the direct effects of changes in car-
bon dioxide and nutrient availability and may take decades to
materialize (e.g. because the rate of climate change is signifi-
cant compared to the characteristic multi-decadal timescales
of a forest). These changes are best predicted with complex
dynamical global vegetation models (DGVMs), which are
based on detailed representations of plant physiology and de-
mographic processes (Argles et al., 2022). Although biocli-
matic schemes are no substitute for DGVMs to predict veg-
etation changes, they have the advantage of being transpar-
ently simple and offering a more intuitive demonstration of
the nature of a projected climate change. It is in this spirit
that the Köppen–Geiger bioclimatic scheme is applied in this
study.
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Table 1. Classification criteria for the Köppen–Geiger classifica-
tion scheme. Tmin is the average temperature of the month with
the lowest average temperature. Tmax is the average temperature
of the month with the highest average temperature. Pmin is the av-
erage precipitation of the driest month. Pmax is the average pre-
cipitation of the wettest month. Tavg is the mean annual temper-
ature. Pyear is the mean annual precipitation. Pthresh varies ac-
cording to the following rules (if 70 % of Pyear occurs in winter
then Pthresh= 2× Tavg, if 70 % of Pyear occurs in summer then
Pthresh= 2× Tavg+ 28, otherwise Pthresh= 2× Tavg+ 14). Psdry
is the precipitation of the driest month in summer, Pwdry is the pre-
cipitation of the driest month in winter, Pswet is the precipitation
of the wettest month in summer, and Pwwet is the precipitation of
the wettest month in winter. In the Northern Hemisphere, summer
is defined as AMJJAS and winter as ONDJFM; the opposite is true
for the Southern Hemisphere. Due to overlapping criteria, dry (B)
climates are prioritized above all others (temperature is given in ◦C,
and precipitation is given in centimetres per month and cm yr−1).
Here we follow (Peel et al., 2007).

Classification Criteria

A Tmin ≥ 18 ◦C
F Pmin ≥ 6 cm per month
S Pmin ≥ 100− (Pyear× 10/25)
W Pmin < 100− (Pyear× 10/25)

B Pyear× 10 < 10×Pthresh
W Pyear× 10 < 5×Pthresh
S Pyear× 10≥ 5×Pthresh

h Tavg ≥ 18 ◦C
k Tavg < 18 ◦C

C 0 ◦C < Tmin < 18 ◦C, Tmax ≥ 10 ◦C
W Pwdry < Pswet/10
S Pwwet > 3×Psdry, Psdry < 4
F Neither W nor S

a Tmax ≥ 22 ◦C, months above 10 ◦C≥ 4
b Tmax < 22 ◦C, months above 10 ◦C≥ 4
c 0 < months above 10 ◦C < 4, not A or B

D Tmin ≤ 0 ◦C, Tmax ≥ 10 ◦C
W Pswet > 10×Pwdry
S 3×Psdry < Pwwet, Psdry < 4
F Neither W nor S

a Tmax ≥ 22 ◦C, months above 10 ◦C≥ 4
b Tmax < 22 ◦C, months above 10 ◦C≥ 4
c 0 < months above 10 ◦C < 4, not A or B or D
d Tmin <−38 ◦C, 0 < months above 10 ◦C < 4

E Tmax < 10 ◦C
T 0 ◦C < Tmax < 10 ◦C
F 0 ◦C≥ Tmax

2.1.1 Streamlined Köppen–Geiger classification
scheme

A key goal of bioclimatic classifications is to illustrate cli-
mate change in a way that is intuitive. To this end we de-
signed a simplified Köppen–Geiger scheme that combines
classifications to make changes clearer in both scale and the

Table 2. Breakdown of the streamlined classification scheme and
the assignment of traditional classifications within the new scheme.

Streamlined classification Traditional classifications

Desert BWh, BWk
Semi-arid BSh, BSk
Tropical rainforest AF
Tropical monsoon AM
Tropical savanna AW
Mediterranean CSa, CSb, CSc
Subtropical CWa, CWb, CWc, CFa
Oceanic CFb, CFc
Continental hot summer DFa, DSa, DWa
Continental cold summer DFb, DSb, DWb
Subarctic DFc, DFd, DSc, DSd, DWc, DWd
Arctic tundra ET
Ice cap EF

nature of projected transitions. Additionally, the new scheme
implements a more traditional naming system. A breakdown
of this streamlined system and the constituent traditional
classifications involved in each of the 13 streamlined clas-
sifications is given in Table 2.

Difference maps are also plotted to demonstrate the geo-
graphical locations of major transitions between bioclimatic
classifications. These difference maps plot the 10 largest
transitions globally (by total land area). Areas for which less
than 66 % of the models agree are hatched, demonstrating
that in these regions the results are less certain.

Classification change matrices are used to quantify biocli-
mate transitions in terms of global land area at key levels of
global warming. The columns represent the initial classifica-
tion coverage, and the rows indicate the altered classification
distribution. Shading highlights the size of changes in terms
of the projected change as a fraction of the initial area of a
given bioclimatic class.

2.2 Climate model and observational data

Historical observations of monthly mean temperature and
precipitation are from the CRU TS v. 4.05 dataset (Harris
et al., 2020). Analogous climate model data come from the
“historical” CMIP6 experiments (Eyring et al., 2016). Mod-
els within the CMIP6 multi-model ensemble which had read-
ily available historical experiment data and achieved a mini-
mum of 4 K warming under the SSP585 scenario were cho-
sen. These models are listed in Table 3.

CMIP6 model data were regridded to 0.5◦ by 0.5◦, the
same spatial resolution as CRU TS observations. Antarctica
was excluded as observations are limited in this region, and
we do not expect substantial changes in bioclimatic classifi-
cation in this region.

The model output data are typically at a coarser resolution
than the underlying 0.5◦ climatology. The anomaly-corrected
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Table 3. Details of the models used in this study.

Model Institution Frequency Nominal resolution Publication

CanESM5 CCCma mon 100 km Swart et al. (2019a)
(Swart et al., 2019b)

CanESM5-CanOE CCCma mon 100 km Swart et al. (2019c)
(Swart et al., 2019d)

CESM2 NCAR mon 100 km Danabasoglu (2019b)
(Danabasoglu, 2019a)

CESM2-WACCM NCAR mon 100 km Danabasoglu (2019c)
(Danabasoglu, 2019d)

IPSL-CM6A-LR IPSL mon 100 km Boucher et al. (2018)
(Boucher et al., 2019)

UKESM1-0-LL Met Office Hadley Centre mon 100 km Tang et al. (2019)
(Good et al., 2019)

ACCESS-CM2 CSIRO-ARCCSS mon 250 km Dix et al. (2019a)
(Dix et al., 2019b)

AWI-CM-1-1-MR NCAR mon 100 km Danek et al. (2020)
(Semmler et al., 2019)

CAS-ESM2-0 UCI mon 100 km Chai (2020)
(Cas, 2018)

EC-Earth3 EC-Earth-Consortium mon 100 km EC-Earth-Consortium (2019b)
(EC-Earth-Consortium, 2019a)

EC-Earth3-Veg EC-Earth-Consortium mon 100 km EC-Earth-Consortium (2019d)
(EC-Earth-Consortium, 2019c)

TaiESM1 AS-RCEC mon 100 km Lee and Liang (2020b)
(Lee and Liang, 2020a)

fields therefore contain spatial variability that is solely due to
the underlying climatology at scales that are not resolved by
a model. This also implies that the diagnosed changes in bio-
climatic types (which are dependent on the model anomalies)
tend to be somewhat smoother at these finer spatial scales.

2.3 Model performance assessment

Comparison of KG observed classifications with the CMIP6
model-simulated classifications is made for the years 1901–
2014. To reduce the effect of short-term variability, model
and observational data are smoothed with a 30-year centred
rolling mean.

The ability of individual models in the CMIP6 ensemble
to simulate KG classifications of observational data during
the historical period is assessed in two ways: (i) percentage
land area that a model has correctly classified for each year
relative to observations and (ii) percentage change in land
area classification at each year compared to the initial mean
1901–1931 classifications.

2.4 Maps of KG classification versus global warming

Future KG classification maps under 1.5, 2, and 4 K of annual
mean global warming above reference period levels were cre-
ated from the CMIP6 “SSP585” 2015–2100 future scenario.
We used SSP585 because all models pass 4 K under SSP585,
which enables us to define changes in bioclimatic zones con-
sistently for these different levels of global warming.

The timing of each warming level is found from the cen-
tred 30-year annual mean global surface air temperature
above the model’s reference temperature, here defined as
1901–1931. Monthly mean anomalies of precipitation and
surface air temperature are calculated relative to this same
reference period. Model outputs are anomaly corrected to
agree with the observational over the period 1901–1931. This
is done by calculating anomalies relative to that period for
each model and then adding these anomalies to the observa-
tional climatology. Multi-model ensemble mean KG classifi-
cation maps are calculated using the multi-model ensemble
mean of the anomalous temperature and precipitation fields
at each warming level. As usual in climate modelling, we fo-
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cus primarily on the ensemble mean, although we note that
ensemble mean and ensemble median climates have been
found to be very similar (Sillmann et al., 2013; Kim et al.,
2020; Li et al., 2021). These maps are hatched to indicate
where models disagree on the classification. A grid point is
hatched if less than 66 % of the models agree on the classifi-
cation at the point.

3 Results and discussion

3.1 Model performance assessment

To gain insight into the behaviour of individual models, we
create KG maps of individual models and compare these with
maps derived from the observed climate. As expected, there
is variation in the classification distribution of models and the
observational data. For example, desertification in the Ama-
zon is apparent in CanESM5 and CanESM5-CanOE mod-
els (Appendix A). This may show that these models have a
tendency towards reduced precipitation in the tropics when
compared to other models. Another area of disagreement be-
tween the models is the change in biome classification in
northern Eurasia and America at various levels of global
warming. The multi-model ensemble mean model state, how-
ever, reduces the effect of individual model discrepancies and
compares favourably with observations.

In Fig. 1, simulated classification changes from the CMIP6
historical runs are compared to those calculated from the
observed climate. The CMIP6 models broadly capture the
degree of expected global classification change. All mod-
els show a similar behaviour: a large change in classifica-
tions at the start of the observed period until 1940, when the
mid-century then presents an approximately constant set of
classification with very little change until 1980, where again
all models display further changes in climate classification.
Although the multi-model ensemble mean follows the same
pattern as the individual models and the observational data,
it shows a lesser degree of change throughout the observed
time period. This reduced variation is inherent to the nature
of this ensemble mean; large changes in individual models
have their impact reduced in the meaning process. This may
lead to the multi-model ensemble mean displaying a simi-
lar but mitigated and delayed trend “lagging” the individ-
ual models and the observational data when creating discrete
classes from climate data.

To assess the performance of individual models and their
multi-model ensemble mean in classifying the bioclimate
distribution according to observation-based KG for a par-
ticular year, the percentage land area correctly classified by
each model every year according to observation-based KG is
shown in Fig. 2. The results show that the ensemble mean is
one of the best performing for classification. This is in con-
trast to Fig. 1, which showed that the ensemble mean was
one of the worst performing for classification change. The

result is also likely due to the reduced variation in data result-
ing from the averaging process in the creation of the multi-
model ensemble mean dataset. The impact of “extreme” val-
ues present in each model are averaged out in the multi-
model ensemble mean provided they are distributed around
the “true” climate values. This would suggest that for indi-
vidual time points, the ensemble mean is likely to provide
the most reliable projection. The results from Figs. 1 and 2
give insight into the behaviour of ensemble mean datasets
and when their application is appropriate. Traditionally the
ensemble mean has been taken as the most likely scenario
and therefore the most representative of the real-world cli-
mate. The results presented here indicate that although the
ensemble mean is appropriate for assessing model output at
individual points, the ensemble mean does not accurately dis-
play the variability evident in observed climate data.

3.2 Maps of KG classification versus global warming

Figure 3 shows the multi-model ensemble model mean KG
classification for 1.5, 2, and 4 K of global warming above
the reference period, as well as the no warming classifica-
tions. Plots for individual models for the reference period
without anomaly correction and at 1, 1.5, 2, 3, and 4 K of
global warming with anomaly correction are shown in Ap-
pendix A under the traditional scheme and Appendix B under
the streamlined scheme. Comparison to the reference climate
suggests that there could be dramatic changes in bioclimate
classification, particularly in the middle to high latitudes, as
the planet warms. There is less agreement in classification at
the boundaries of classified regions, this is expected as the
models will likely be split in classifying grid cells as one of
two classifications. These changes become more apparent in
Fig. 4, which uses the streamlined KG classification scheme
and highlights the 10 largest bioclimatic shifts for each level
of warming. Figure 4 again demonstrates less certainty at
the classification change boundaries; however, the degree of
agreement between the models, even at 4 K of warming, is
surprisingly high.

These shifts are almost exclusively from wetter and colder
classes to drier and hotter ones as the global temperature
increases. This agrees strongly with the results found by
Feng et al. (2014), which under CMIP5’s RCP8.5 scenario
suggested bioclimatic shifts toward warmer and drier types
across the global region with climate change. Large areas
undergo desertification in the Southern Hemisphere. The ma-
jority of North America and northern Eurasia has a shift to-
wards warmer climates as subarctic gives way to continen-
tal cold summer, and continental cold summer is replaced
by continental warm summer. All changes in classification
with the streamlined KG scheme are quantified in Fig. 5. Al-
though the KG scheme exclusively maps climate, the bio-
logic implications of these changes can be seen. The subarc-
tic region has historically been dominated by the boreal for-
est (Kayes and Mallik, 2020), though there is evidence sug-
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Figure 1. The percentage of land area change in KG classification for each model versus year through the 20th century (without anomaly
correction). The equivalent trajectory based on the observed climate is shown for comparison in dark grey. The dotted line shows the trajectory
derived from the ensemble mean climate.

Figure 2. The percentage of land area correctly classified (without anomaly correction).

gesting a slow northward migration of non-native warmth-
adapted tree species into historically boreal areas (Viacheslav
et al., 2007; Boisvert-Marsh et al., 2014). However, the rate
of global warming far exceeds the rate of boreal migration
due to limits on the tree’s ability to migrate (McKenney et al.,
2007). With the continued reduction in the subarctic biocli-
mate we predict a likely continuation of these trends. The
indicated shift in the Amazon from tropical rainforest to sa-
vanna can also be seen; an expansion of white-sand savannas
in the Amazon has already been found (Flo and Holmgren,
2021).

At 4 K areas of classification change represent over 33 %
of land area. The change in percentage of total land area
in Fig. 5c gives some alarming perspectives; for example,
at +4 K arctic tundra is indicated to cover over 25 % less
land area than in the reference period. At 2 K the models al-
ready project substantial changes to the global distribution

of bioclimates; at 4 K these changes become even more pro-
nounced.

In Table 4 we give the percentage change in global land
area of each of the streamlined classifications per degree of
warming assuming the dependence is linear up to 4 K of
warming. Linear dependence is a good approximation for
most classifications with all but three having r2 > 0.9. The
three poorly fitting classifications, those for Mediterranean,
subtropical, and continental cold-summer bioclimates, may
be transitory classifications whose peak or minimum land
area coverage is within the 4 K range the linear equation
is based on. Classifications predicted to decrease in global
fraction under global warming (with good r2) are tropical
rainforest, oceanic, subarctic, arctic tundra, and ice cap, the
largest decrease of which globally is subarctic (2.03 % K−1).
Classifications that increase under global warming with good
certainty are desert, semi-arid, tropical monsoon, tropical sa-
vanna and continental hot-summer with the largest increase
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Figure 3. Maps of the original KG classifications calculated from the multi-model ensemble mean for the reference period and 1.5, 2.0, and
4.0 K of global warming relative to the reference period. These were calculated from the SSP585 runs by anomaly correction relative to the
observed reference climate. Hatching is present when less than 66 % of models agree on a region’s classification.

predicted to be continental hot-summer (2.18 % K−1). Raw
plots for these fits without lines fitted can be found in Ap-
pendix C.

3.3 Sensitivity of bioclimate to global warming

Figure 6 displays a weakly saturating increase with global
warming, the fraction of land area that experiences a change

in classification follows Eq. (1):

f = 1− e−k1T , (1)

where f is the fraction of land area that experiences a change
in bioclimatic classification, 1T is the global warming rela-
tive to the reference period climate, and k is a fitting param-
eter. The mean response across the models suggests a value
of k ∼ 0.14 K−1. This was calculated to have a coefficient of
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Figure 4. Multi-model ensemble mean difference maps highlighting the 10 largest classification changes for 4 K of warming above the refer-
ence period using the streamlined classification system. Hatching is present when less than 66 % of models agree on a region’s classification
change.

determination of 0.84. For the range of global warming of
particular interest to the Paris Climate Agreement (1 to 3◦C
of warming) the land area experiencing a change in biocli-
matic classification is approximately 13 % of the global land
per kelvin of global warming. The total land area (neglecting
Antarctica) is approximately 146 million square kilometres,
so this implies a bioclimatic change for 18.9 million square

kilometres of land per degree of warming between 1 and 3 K.
This highlights the benefits of keeping global warming to
1.5 K as opposed to 2 K of warming, as the 0.5 K difference
represents an additional bioclimatic change for over 7.5 mil-
lion square kilometres of land. These bioclimatic changes be-
ing increases of 1 % in land area of desert, tropical savanna,
and continental hot summer biomes. Subarctic and arctic tun-
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Figure 5. Multi-model ensemble mean difference matrices highlighting the classification changes for levels of warming above the reference
period of (a) 1.5 K, (b) 2 K, and (c) 4 K using the streamlined classification system.
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Figure 6. The percentage of land area projected to see a change in bioclimate as a function of global warming, using the traditional Köppen–
Geiger classification with anomaly correction. Note the robust agreement between models, which implies a multi-model ensemble mean
change which is well approximated by f = 1− e−0.141T .

Table 4. Percentage change in the global land area of each of the
streamlined classifications per degree of global warming. Change is
based on linear approximations of results from reference period to
4 K of warming.

Classification Change in global land Coefficient of
area coverage (%) per determination

degree of warming (K) (r2)

Desert 0.30 % K−1 0.93
Semi-arid 0.35 % K−1 0.94
Tropical rainforest −0.26 % K−1 0.96
Tropical monsoon 0.09 % K−1 0.97
Tropical savanna 1.01 % K−1 0.97
Mediterranean 0.07 % K−1 0.33
Subtropical 0.25 % K−1 0.20
Oceanic −0.35 % K−1 0.94
Continental hot summer 2.18 % K−1 0.98
Continental cold summer −0.25 % K−1 0.21
Subarctic −2.03 % K−1 0.97
Arctic tundra −1.24 % K−1 0.95
Ice cap −0.13 % K−1 0.99
Streamlined total change 10.85 % K−1 0.99
Traditional total change 11.91 % K−1 0.97

dra decrease by 1 and 0.7 % respectively. Between 1.5 and
2 K there are relatively small or no changes between the re-
maining classifications in Fig. 5a, b.

Previous studies of classification change with global
warming have been regional, studies such as Kim and Bae
(2021) suggest a classification area change of approximately
15 % of Asian monsoon regions at 2 K of warming. How-
ever, regional assessments at the Equator or in the Southern
Hemisphere are likely to under-represent global changes in
classification, as the majority of classification change is pre-
dicted to be north of 30◦ N (Feng et al., 2014). A quantitative
distribution of climate classification changes between global
warming levels of 1.5 and 2 K can be seen in Appendix C
(note that this breakdown uses the streamlined KG system

and subsequently will not represent all changes included in
Fig. 6).

4 Conclusions

Despite the difference in climate projections for given green-
house gas emissions, we present strong evidence that climate
models agree well on the extent of bioclimatic change the
global land surface will undergo per degree of global warm-
ing. The Köppen–Geiger scheme has been used to present
the impact of global warming at 1.5, 2, and 4 K of warming
above reference period levels in the form of climate maps,
showing the global distribution of bioclimates, and as graphs
and classification change matrices at various levels of warm-
ing.

Bioclimate classifications are fundamentally climate clas-
sifiers, but they are designed to represent and correlate with
biome distribution. In this way the warming maps and classi-
fication changes represent tangible shifts in the global dis-
tribution of ecosystems, giving insight into the nature of
Earth at various levels of warming. This paper also uses the
Köppen–Geiger scheme as a method for climate model ver-
ification that is relevant to the impacts of climate change on
ecosystems. The Köppen–Geiger maps at levels of global
warming demonstrate the impact that climate change could
have. The transition matrices present an easily interpretable
method for understanding and quantifying the scale of all
classification changes. The results presented by the maps and
matrices predict large changes in global bioclimate distri-
bution, with hotter, drier bioclimates expanding and colder,
wetter bioclimates shrinking and moving further towards the
poles.

The combination of the techniques presented in this pa-
per indicate that the impact of global warming on KG biocli-
mates is roughly linear for levels of warming between 1 and
3 K. We find that 13 % of land could experience a substantial
change in bioclimate per degree Celsius of global warming.
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Appendix A

Figure A1.
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Figure A1. Maps of KG classifications for each model for the reference period (1901–1931) without anomaly correction.
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Figure A2.
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Figure A2. Maps of KG classifications for each model at +1 K with anomaly correction.
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Figure A3.
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Figure A3. Maps of KG classifications for each model at +1.5 K with anomaly correction.
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Figure A4.
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Figure A4. Maps of KG classifications for each model at +2 K with anomaly correction.
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Figure A5.
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Figure A5. Maps of KG classifications for each model at +3 K with anomaly correction.
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Figure A6.
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Figure A6. Maps of KG classifications for each model at +4 K with anomaly correction.
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Appendix B

Figure B1.
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Figure B1. Maps of streamlined KG classifications for each model for the reference period (1901–1931) without anomaly correction.
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Figure B2.
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Figure B2. Maps of streamlined KG classifications for each model at +1 K with anomaly correction.
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Figure B3.
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Figure B3. Maps of streamlined KG classifications for each model at +1.5 K with anomaly correction.
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Figure B4.
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Figure B4. Maps of streamlined KG classifications for each model at +2 K with anomaly correction.
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Figure B5.
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Figure B5. Maps of streamlined KG classifications for each model at +3 K with anomaly correction.
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Figure B6.
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Figure B6. Maps of streamlined KG classifications for each model at +4 K with anomaly correction.
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Appendix C

Figure C1. Land area bioclimate classification change between 1.5 and 2 K of global warming.

Appendix D

Figure D1. Land area distribution of individual streamlined classifications. Classifications that show large growth in their coverage include
continental hot summer and tropical savanna. Classifications that show major reductions include ice cap, arctic tundra, and subarctic.
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