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Abstract. Leaf stoichiometric traits are central to ecosystem
function and biogeochemical cycling, yet no accepted the-
ory predicts their variation along environmental gradients.
Using data in the China Plant Trait Database version 2, we
aimed to characterize variation in leaf carbon and nitrogen
per unit mass (Cmass,Nmass) and their ratio and to test an eco-
evolutionary optimality model for Nmass. Community-mean
trait values were related to climate variables by multiple lin-
ear regression. Climatic optima and tolerances of major gen-
era were estimated; Pagel’s λ was used to quantify phyloge-
netic controls, and Bayesian phylogenetic linear mixed mod-
els to assess the contributions of climate, species identity,
and phylogeny. Optimality-based predictions of community-
mean Nmass were compared to observed values. All traits
showed strong phylogenetic signals. Climate explained only
18 % of C : N ratio variation among species but 45 % among
communities, highlighting the role of taxonomic replacement
in mediating community-level responses. Geographic distri-
butions of deciduous taxa were separated primarily by mois-
ture and evergreens by temperature. Cmass increased with ir-
radiance but decreased with moisture and temperature.Nmass
declined with all three variables. C : N ratio variations were
dominated by Nmass. The coefficients relating Nmass to the
ratio of maximum carboxylation capacity at 25 ◦C (Vcmax25)
and leaf mass per area (Ma) were influenced by leaf area in-
dex. The optimality model captured 68 % and 53 % of varia-
tion between communities for Vcmax25 and Ma, respectively,
and 21 % for Nmass. We conclude that stoichiometric varia-

tions along climate gradients are achieved largely by envi-
ronmental selection among species and clades with differ-
ent intraspecific trait values. Variations in leaf C : N ratio
are mainly determined by Nmass, and optimality-based mod-
elling shows useful predictive ability for community-mean
Nmass. These findings should help to improve the representa-
tion of C : N coupling in ecosystem models.

1 Introduction

Nitrogen (N) has long been recognized as a key nutrient
that influences photosynthesis, plant biomass, and carbon (C)
allocation and therefore the terrestrial C cycle (Fernández-
Martínez et al., 2014; Terrer et al., 2019). Many land surface
models (LSMs) have recently incorporated representations
of coupled C and N cycling, the intention being to increase
the realism of model predictions of C cycling under climate
change (Wiltshire et al., 2021). The leaf C : N ratio plays an
essential role in this coupling; however it is often assigned
a constant value per plant functional type (PFT), due to the
lack of data and/or theory that would predict more realis-
tic, continuous stoichiometric variation along environmental
gradients (Meyerholt et al., 2020). One aspect of model un-
certainty could be reduced if such variation were better un-
derstood and quantified (Boonman et al., 2020; Niu et al.,
2023).
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Many studies on leaf C and N along climate gradients have
been carried out, but there is still no consensus on the ma-
jor controls of such leaf traits at individual and community
levels, hindering our understanding of trait–environment re-
lationships (Anderegg, 2023). There is evidence for leaf sto-
ichiometry being affected by many factors, including species
identity, phylogeny, climate, and soil properties (Elser et al.,
2010; Ma et al., 2018; Tang et al., 2018; Yang et al., 2016).
The demonstrated roles of species identity and phylogeny in-
dicate that leaf C and N contents (Cmass, Nmass) and their
ratios are phylogenetically conservative (Sardans and Penue-
las, 2014; Vallicrosa et al., 2021; Zhang et al., 2012). Dif-
ferences among life forms and vegetation types have also
been widely noted (Ma et al., 2018; Tang et al., 2018). On
the other hand, few studies have examined the differences
between evergreen and deciduous leaves, which are expected
to diverge as they represent alternative life-history strategies,
expressed in different responses of leaf mass per area (Ma)
to climate (Kikuzawa et al., 2013; Wang et al., 2023). The
patterns of stoichiometric response to environment remain
inconsistent across studies. A potential contributory problem
is their reliance on annual average climate variables, such as
mean annual temperature – which does not accurately reflect
actual growing-season conditions, especially in regions with
cold winters (Körner, 2021) – and mean annual precipitation,
which is generally not a good metric for plant-available mois-
ture because it does not take account of the large variations
in potential evapotranspiration (driven by solar radiation and
temperature) across the world.

Many land surface models (LSMs) treat leaf C : N ratios
as fixed parameters for PFTs (Boonman et al., 2020; Zaehle
et al., 2014); some allow the C : N ratio to vary, within a
prescribed range, based on C and N allocation to different
tissues (Ghimire et al., 2016; Meyerholt and Zaehle, 2015;
Smith et al., 2014; Wang et al., 2010). But the fixed-PFT
schemes fail to capture the observed range of leaf stoichiom-
etry within each PFT, while the dynamic schemes have not
been extensively tested against observations. Responses of
N use efficiency and net primary production (NPP) to ele-
vated CO2 vary considerably among models and are not al-
ways realistic (Zaehle et al., 2014). Here eco-evolutionary
optimality (EEO) principles may help by providing a route
towards testable, general trait predictions (Caldararu et al.,
2020; Dong et al., 2022; Harrison et al., 2021; Xu et al.,
2021). Caldararu et al. (2020) applied an optimality-based
approach (maximizing carbon export and growth) to improve
leaf Nmass prediction, but this analysis did not consider the
large and potentially confounding effect ofMa variation with
environment (Wang et al., 2023). We infer that there is still a
need to investigate the eco-evolutionary basis of leaf C : N ra-
tio variations and to reconsider how they are treated in LSMs
(Sistla and Schimel, 2012).

In this study, we applied EEO principles to predict Nmass
from a trait-correlation perspective. We assumed that the
metabolic and structural components of leaf N are propor-

tional to carboxylation capacity (Vcmax25, at a reference tem-
perature of 25 ◦C) andMa, respectively. The coordination hy-
pothesis provides predictions of Vcmax25: it is assumed that
the light- and RuBisCO-limited assimilation rates under day-
time conditions tend to equality, thus minimizing both main-
tenance respiration and the metabolic component of leaf N
(Chen et al., 1993). An EEO-based hypothesis for the leaf
economics spectrum provides predictions of Ma: it is as-
sumed that the average net carbon gain by a leaf during its
life cycle is maximized. The sum of the N in metabolic and
structural components then determines the optimal leaf N
content (Nmass). We set out (1) to analyse the contributions
of climate, species identity, and phylogeny to leaf Cmass,
Nmass, and their ratio; (2) to characterize geographic patterns
in these traits along environmental gradients; and (3) to test
the extent to which variation in Nmass among communities
could be captured by the EEO principles outlined above. Us-
ing a data set comprising 1705 samples at 79 sites throughout
China, we quantified the phylogenetic signal in species’ traits
and fitted a Bayesian mixed-effects model to partition indi-
vidual trait variation into effects of climate, species identity,
and phylogeny. We examined trait relationships with biocli-
mate variables (which improve on annual mean quantities by
accounting for seasonality and latitude) and gridded data on
soil C : N ratios by multiple regression.

2 Materials and methods

2.1 Trait and environmental data

Our analyses are based on trait data in the China Plant
Trait Database version 2 (CPTDv2, Wang et al., 2022). The
CPTDv2 contains morphometric, chemical, and photosyn-
thetic leaf trait data on 1529 species at 140 sites represent-
ing the different biomes in China as well as climate informa-
tion for each site. In CPTDv2, a stratified sampling strategy
was consistently used at each site to ensure that the dominant
species in each canopy layer were sampled (detailed in Wang
et al., 2018) and to avoid bias from different sampling strate-
gies. A total of 25 trees, 5 shrubs, 5 lianas or vines, and 5 un-
derstorey species (grasses and/or forbs) were sampled at each
site. When the number of trees was less than 25 at a site, all
the tree species were sampled and additional samples from
the other life forms were supplemented up to a maximum
of 40 species. Thus, the species sampled at each site can be
regarded as a representative sample of the plant community
and average trait values at each site. We extracted leaf car-
bon concentration (Cmass, %), nitrogen concentration (Nmass,
%), leaf mass per area (Ma, g biomass m−2), stable carbon
isotope ratios (δ13C, ‰) and Vcmax25 (µmol C m−2 s−1) data
from the CPTDv2. Although Ma data are available from 124
sites, Cmass, Nmass, and δ13C data are only available at 79
(Cmass, Nmass) and 74 sites (δ13C). However, these sites are
well distributed across the temperature and aridity gradients
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(Supplement Fig. S1). Although Vcmax25 data are available
only at 32 sites from southwestern and northeastern China
and along an elevational transect in the Gongga Mountains,
there are 960 measurements from these sites.

Xu et al. (2021) and Wang et al. (2018) provided full de-
tails of the species sampled and trait measurements made at
each site. Ma was estimated from measurements of leaf area
and dry weight following standard protocols (Cornelissen et
al., 2003). Leaf area was taken as the projected area of a ran-
domly selected leaf, or leaflet for compound leaves, using
a LiDE 220 Scanner (Canon Inc., Huntington, NY, USA).
The dry weight was measured after oven-drying at 75 ◦C for
72 h to constant weight. The average of three measurements
made on leaves from different individuals was taken as the
Ma value of one species at each site. We used a portable in-
frared gas analyser system (LI-6400; LI-COR Inc., Lincoln,
NE, USA) to make leaf-gas-exchange measurements in the
field. Terminal branches from the outer canopy were col-
lected and re-cut under water immediately prior to measure-
ment. The relative humidity and chamber block temperature
were set close to that of the ambient environment at the time
of measurement with a constant airflow rate (500 µmol s−1).
Vcmax was calculated from the light-saturated rate of CO2 fix-
ation at ambient CO2 using the one-point method (De Kauwe
et al., 2016) and adjusted to a standard temperature of 25 ◦C
with the Arrhenius equation (Bernacchi et al., 2001). Due
to the time-consuming measurement of leaf-gas exchange,
the photosynthetic traits of one sample were measured for
each species. For each species at a site, leaf C content, N
content, and δ13C were measured using pooled samples of
leaves from at least three individuals of the same species with
an isotope ratio mass spectrometer (Thermo Fisher Scientific
Inc., Carlsbad, CA, USA). Carbon isotope ratios were used
to calculate isotopic discrimination (1) and then to estimate
the ratio of leaf-internal to ambient CO2 partial pressure (χ )
using the method of Cornwell et al. (2018) with a standard
formula using the recommended values of a′ and b′ of 4.4 ‰
and 27 ‰, respectively (Cernusak et al., 2013; Farquhar et
al., 1989):

χ =
1− a′

b′− a′
. (1)

The bioclimate variables available for each site include an
annual plant-available moisture index (αp, an estimate of the
ratio of annual actual evapotranspiration to potential evap-
otranspiration), the mean temperature of the coldest month
(MTCO, ◦C), the mean temperature during the thermal grow-
ing season, defined as the period with temperatures above
0 ◦C (mGDD0, ◦C), and the leaf-area-index-(LAI-)weighted
photosynthetic photon flux density (Iabs, mol m−2 s−1) dur-
ing the thermal growing season. The climate variables were
interpolated to each site from 1814 weather stations in
China using ANUSPLIN (Hutchinson and Xu, 2013). The
LAI during the sampled month and year for each site from
both data sets was extracted from the MODIS LAI prod-

uct (MCD15A3H: https://modis.gsfc.nasa.gov/, last access:
3 February 2022) to provide a measure of canopy cover. We
used the C : N ratio in topsoil (0–30 cm) extracted from the
gridded soil data set of Shangguan et al. (2013) as an inverse
index of soil fertility.

2.2 Trait prediction

The maximum capacity of carboxylation (Vcmax) was pre-
dicted using an EEO model based on the coordination
hypothesis (Eq. 2), which states that plants coordinate
RuBisCO-limited and light-limited photosynthesis rates to
be equal under daytime conditions so that the available light
is used without incurring futile maintenance costs (Prentice
et al., 2014; Wang et al., 2017):

Vcmax ≈
ϕ0Iabs(caχ +K)

caχ + 20∗
, (2)

ϕ0 =
0.352 + 0.021T − 0.00034T 2

8
, (3)

where ϕ0 is the intrinsic quantum efficiency of photosynthe-
sis (µmol C µmol−1 photon), which can be estimated for C3
plants using Eq. (3) (Bernacchi et al., 2003); ca is the ambi-
ent partial pressure of CO2 (Pa); χ is the ratio of leaf-internal
to ambient CO2 partial pressure (Pa Pa−1); K is the effec-
tive Michaelis–Menten coefficient of RuBisCO (Pa); 0∗ is
the photorespiratory compensation point (Pa); and T is tem-
perature (◦C). We used mGDD0 as the temperature input.
Ma was predicted using an eco-evolutionary optimality

model that predicts the relationship between Ma and leaf
longevity, based on the assumption that leaves maximize net
carbon gain during their life cycle (Wang et al., 2023). The
predicted environmental effects on Ma differ between ever-
green and deciduous species:

ln
(
Ma,de

)
= ln(f )+ ln(Iabs)− 0.052T

− 0.27ln
(
αp

)
+ 2.65, (4)

ln
(
Ma,ev

)
= 0.25ln(f )+ 0.5ln(Iabs)− 0.013T

− 0.51ln
(
αp

)
+ 3.53, (5)

where Ma,de and Ma,ev are the predicted Ma for deciduous
and evergreen species, respectively, and f is the ratio of ther-
mal growing-season length (days) to the number of days in
the year.

Dong et al. (2017) proposed a model for Narea as the sum
of components proportional toMa and Vcmax25. A simple ma-
nipulation of this model gives:

Nmass = a+
bVcmax25

Ma
, (6)

where a (g N g biomass−1) and b (g N s µmol C−1) are empir-
ical coefficients fitted across all species. To test whether ni-
trogen allocation varied within the canopy (Charles-Edwards
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et al., 1987), the random effect of binned LAI on the intercept
(a) and slope (b) was tested using a mixed-effects model. The
fitted values of a and b can be found in Supplement Table S1.

The C : N ratio was estimated as the ratio of predicted
Cmass from Eq. (7) and Nmass from Eq. (6) (Fig. 6). We also
calculated C : N ratios using observed Cmass and predicted
Nmass (Fig. 7a) to check whether Cmass values influence the
prediction of C : N ratios. Due to the lack of an existing the-
oretical basis to predict Cmass, we fitted the following linear
regression using all observed trait data and three climate vari-
ables:

ln(Cmass)= 3.06ln(Iabs)− 0.18T − 0.48ln
(
αp

)
. (7)

2.3 Data analysis

Statistical analyses were carried out in R4.1.1 (R Core Team,
2021). The relative importance of Cmass and Nmass in con-
trolling the leaf C : N ratio was evaluated using the relaimpo
package (Groemping, 2006). Within- and between-site vari-
ability in traits was measured by the standard deviation (SD).
Bioclimatic effects on leaf stoichiometry at the community
level (i.e. with unweighted community-mean values as the
data points) were examined using standard multiple (fixed-
effects) linear regression (lm), and partial effects of each
climate variable were visualized using visreg (Breheny and
Burchett, 2017). To account for the potential effect of spa-
tial processes on trait variation, we performed multiple re-
gression on distance matrices (MRM) to separate the spa-
tial and bioclimatic effects using the ecodist package (Lich-
stein, 2006). Phylogenetic analyses were carried out on all
species (including 561 genera in 175 families and 57 orders).
The phylogenetic trees were constructed and coloured with
species-averaged trait values using the S.PhyloMaker and
ggtree packages (Qian and Jin, 2016; Yu et al., 2017). Phy-
logenetic signal was calculated for each trait, using Pagel’s
λ, which measures the extent to which related species tend
to have similar trait values. Pagel’s λ varies from 0 to 1,
indicating a low to high phylogenetic signal. It was calcu-
lated using the phytools package (Münkemüller et al., 2012;
Revell, 2012). The significant values obtained indicate that
values of these traits tend to be conserved within lineages.
A Bayesian phylogenetic linear mixed model was applied
at the species level (i.e. each occurrence of each species
was treated as a data point), with species identity and phy-
logeny as random effects, using the MCMCglmm package
(Hadfield, 2010). The model was repeated using three differ-
ent phylogenetic hypotheses to account for the uncertainty
in phylogenetic trees generated in these scenarios. Marginal
(climate effects alone as fixed effects, without random ef-
fects) and conditional r2 (with species and phylogeny as ran-
dom effects) were compared (Nakagawa et al., 2017; Naka-
gawa and Schielzeth, 2013). The phylogenetic comparative
method, which implicitly attributes overlapping effects of
phylogeny and climate entirely to phylogeny (Westoby et al.,

1995), was used to estimate trait variations explained by cli-
mate alone using the ape package (Paradis et al., 2004).

The temperature and moisture optima and tolerances
of frequently occurring genera were calculated as follows
(Meng et al., 2015). Each bioclimatic variable was binned
and the mean abundance was calculated for the sites within
each bin. The frequency distributions of abundance for each
species and bioclimatic variable were obtained by selecting
widths of the bins. The optimum was estimated as the aver-
age of the bioclimatic variable in the bins where a species
was present, weighted by its mean abundance in the bins.
Similarly, the tolerance was estimated as the abundance-
weighted standard deviation of the bioclimatic variable. Fre-
quently occurring species were defined as those that occurred
more than 25 times for deciduous and more than 10 times for
evergreen species.

We used trait-gradient analysis to access the intraspe-
cific variation along the environmental gradient (Ackerly and
Cornwell, 2007). The individual trait values were plotted
against community-mean trait values which were strongly
determined by external filters at a large scale, such as abiotic
factors. By definition, the slope of the relationship between
individual and community-mean trait values is unity. To char-
acterize the plasticity (here including both genetic and phe-
notypic variation) of one species, the regression of individ-
ual trait values among one species against community-mean
values represents its within-species ability to shift along the
environmental gradient. The steep slope indicates plastic
species and a large contribution of intraspecific trait varia-
tion to the overall trait gradient. Species that were measured
at more than five sites were selected to estimate the slope.

3 Results

3.1 Roles of phylogeny and species in stoichiometric
variation

In general, related species tended to have similar stoichio-
metric traits; Pagel’s λ was significant for all traits (Fig. 1).
The mixed model produced higher conditional r2 values
when species and phylogeny were included as random ef-
fects, with species contributing 21 %–35 % and phylogeny
contributing 16 %–18 % on average (Table 1). No significant
relationships were found between leaf stoichiometric traits
and the soil C : N ratio (Supplement Fig. S2).

These findings are consistent with species turnover (tax-
onomic replacement) being a principal mechanism account-
ing for the observed trends in stoichiometry along environ-
mental gradients. Figure 2 illustrates the turnover of ma-
jor woody genera along the climatic gradients. The decid-
uous genera covered a wide range in moisture (αp from 0.2
to 1) and light (Iabs from 7 to 16 mol m−2 s−1) but showed
limited temperature tolerance ranges (Fig. 2a). Conversely,
evergreen genera occupied a wide range on the tempera-
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Figure 1. Phylogenetic tree and signal for (a) leaf carbon content (%), (b) nitrogen content (%), and (c) carbon-to-nitrogen ratio. The red-
to-blue colours of phylogenetic trees indicate low to high trait values. The phylogenetic signal is indicated by a statistic metric of Pagel’s λ
with its significance level (∗∗∗ p<0.001). Orders with more than five species in the data set are labelled.

Table 1. Regression models for each trait. The multiple linear regression (MLR) model was fitted at the community level, using only climate
predictors. The Bayesian phylogenetic linear mixed model (BPLMM) was fitted at the species level. The marginal r2 includes climate effects
only; the conditional r2 also includes species identity and phylogeny as random effects. The phylogenetic comparative method (PCM), also
fitted at the species level, quantifies the variation attributed to climate alone, after factoring out effects of phylogenetic relatedness. The
standard deviations of r2 in BPLMM come from three different scenarios of phylogeny.

Trait BPLMM PCM MLR

marginal r2 conditional r2 species r2 phylogeny r2 r2 r2

Cmass 0.08 0.54± 28 0.29± 0.27 0.17± 0.05 0.02 0.10
Nmass 0.03 0.54± 0.34 0.35± 0.31 0.16± 0.06 0.02 0.13
C : N 0.18 0.57± 0.17 0.21± 0.17 0.18± 0.02 0.10 0.45

ture axis (from 6 to 21 ◦C) but occurred only in wetter ar-
eas with αp>0.6 (Fig. 2b). Growing-season (mGDD0) and
coldest-month (MTCO) temperatures were positively corre-
lated (not shown). The distribution of deciduous genera along
the MTCO axis was similar to their distribution along the
mGDD0 axis (Fig. 2c), whereas evergreen genera were more
separated on the mGDD0 gradient than by MTCO – with
the exception of Pinus, which showed a wide cold-tolerance
range from around −30 to 0 ◦C (Fig. 2d).

Trait-gradient analysis showed that in addition to species
turnover, intraspecific trait variation played a role in deter-
mining trait shifts at a regional scale (Fig. 3). The intraspe-
cific slopes for Cmass, Nmass, and their ratio were calculated
for 19, 19, and 42 species, respectively. Only 9, 8, and 16
of these species showed significant slopes. The intraspecific
slopes for Nmass and C : N ratio ranged from 0.7 to 2.1 and
0.6 to 1.9, respectively. The slopes for Cmass ranged from 0.8
to 1.4 except for one species (Asparagus dauricus) that had
a negative slope.

3.2 Leaf stoichiometric trait responses to climate

At the community level, climatic variables explained 10 %,
13 %, and 45 % of variation in Cmass, Nmass, and C : N ra-
tio, respectively. At the species level, climatic variables ex-
plained 8 %, 3 %, and 18 % according to the mixed model.
Smaller amounts of variation (2 %, 2 %, and 10 %) were cap-
tured by climate according to the phylogenetic comparative
method (Table 1). MRM analysis also showed that trait varia-
tions were strongly explained by climatic factors but not sig-
nificantly related to geographic distance – indicating that the
purely spatial effect on trait values was weak (Supplement
Table S2).

Stoichiometric trait responses to climate were generally
similar in deciduous and evergreen species (Fig. 4). Cmass
was significantly positively related to light and negatively
related to moisture and growing-season temperature in both
deciduous and evergreen species (Fig. 4a–c). Nmass signifi-
cantly decreased with increasing light and moisture in both
deciduous and evergreen species. Nmass also decreased with
temperature in deciduous species but showed no significant
relationship with temperature in evergreen species (Fig. 4d–
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Figure 2. Optima and tolerances of major genera in climate space. αp is a moisture index, mGDD0 is the mean temperature during the
thermal growing season, MTCO is the mean temperature of the coldest month, and Iabs is the leaf-area-index-weighted photosynthetic
photon flux density. Colours of circles represent the values of the leaf C : N ratio and the sizes of circles represent Iabs. The grey triangles are
sampling sites. Also shown are abbreviated names of genera: Ac, Acer; Al, Allium; Ar, Artemisia; Cg, Caragana; Cx, Carex; Ls, Lespedeza;
Ln, Lonicera; Pt, Potentilla; Qc, Quercus; Rb, Rubus; Sl, Salsola; Th, Thalictrum; Cm, Camellia; Cs, Castanopsis; Cy, Cyclobalanopsis; Fc,
Ficus; Il, Ilex; Lt, Lithocarpus; Pn, Pinus; Rh, Rhododendron; Sm, Smilax; Sy, Symplocos.

f). The response of the leaf C : N ratio to climate was a com-
bination of the Cmass andNmass responses but was dominated
by climate effects on Nmass. The leaf C : N ratio was pos-
itively related to light and moisture in both deciduous and
evergreen species. It was also positively related to tempera-
ture for deciduous species but marginally negatively related
to temperature for evergreen species (Fig. 4g–i).

3.3 Eco-evolutionary optimality models for leaf traits

Cmass was relatively constant at different values of the leaf C :
N ratio (grey lines, Supplement Fig. S3), whileNmass showed
much greater variability. This pattern held for both deciduous
and evergreen species. The analysis of relative importance
showed that Nmass explains on average 90 % of variation in
the leaf C : N ratio.

Leaf Nmass was positively related to its theoretical predic-
tor (Vcmax25/Ma) (Fig. 5). We found a significant LAI effect
on the slope (b) and intercept (a) of this relationship, with
the slope increasing and intercept decreasing towards greater
LAI. The r2 of Eq. (6) was improved from 0.14 to 0.21 at
the species level after including the LAI effect. The opti-
mality models captured 68 % and 53 % of the community-

level variation in Vcmax25 and Ma, respectively (Fig. 6a, b).
Vcmax25 was somewhat underestimated at most sites, with
the largest bias when observed Vcmax25 was at alpine sites
above 4000 m. Ma was distributed evenly near the 1 : 1 line,
with the largest bias occurring at a semi-arid site with very
high observed Ma. The optimality model, with LAI effect
included, explained 21 % of Nmass variation using predicted
values of Vcmax25 and Ma (Fig. 6c). The predicted leaf C : N
ratios fell within the observed range in each PFT and out-
performed fixed values prescribed in LSMs for most PFTs
(Fig. 7). The prediction of the leaf C : N ratio using constant
Cmass (45.6 %) was similar to that using observed Cmass.

4 Discussion

We have demonstrated that across-site variations in leaf sto-
ichiometric traits along climate gradients are driven mainly
by species turnover and that an optimality-based model can
predict 30 % of Nmass variation, highlighting the potential of
applying EEO principles to leaf stoichiometry. Predicted leaf
C : N ratios are within the range of observations. These find-
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Figure 3. Distribution of site-mean trait values and within-species regression lines for leaf stoichiometric traits. The black dots are individu-
als, and black dashed line is the regression of all individuals with slope equal to 1 by definition. The red lines represent significant regressions
within species that were sampled at more than five sites.

Figure 4. Empirical partial relationships between leaf traits and climate. Iabs is the leaf-area-index-weighted photosynthetic photon flux
density, αp is a moisture index, and mGDD0 is the mean temperature during the thermal growing season. Yellow dots: deciduous species;
green dots: evergreen species. The Nmass scale is inverted, so that the slopes of the regression lines in panels (a)–(c) and (d)–(f) should add
up to the slopes in panels (g)–(i). The significance of each regression is listed in the panels. ∗∗∗ p<0.001; ∗∗ p<0.01; ∗ p<0.05.

ings provide a potential avenue for improving the represen-
tation of leaf stoichiometry in LSMs.

4.1 Climate effects mediated by compositional shifts
and intraspecific variation

For Cmass and Nmass separately, the contribution of cli-
mate variables in the multiple regression was modest (10 %–
13 %), while the mixed model attributed larger fractions of
variation to species identity and phylogeny than to climate
(Table 1). For the C : N ratio, climate explained 45 % of vari-
ation in the multiple regression, while the mixed model at-
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Figure 5. The relationship between Nmass and Vcmax25/Ma along
the leaf area index (LAI) gradient. Colour saturation represents dif-
ferent levels of LAI. Lines are separate regressions for sites within
each LAI bin.

tributed similar fractions (19 %–20 %) of variation to species
identity, phylogeny, and climate (Table 1). The phylogenetic
comparative method (Table 1) attributed only 2 % of varia-
tion in Cmass and Nmass and 10 % of variation in the C : N
ratio to climate alone. The trait-gradient analysis also in-
dicated an important role of intraspecific variation in trait
shift at a regional scale. These results are consistent both
with strong phylogenetic control of leaf stoichiometry and
with strong patterns of variation (especially for C : N ratio)
in community-mean values determined to a substantial de-
gree by environmental selection among species and clades
characterized by different trait values (Liu et al., 2022), and
they emphasize the contribution of within-species variation,
which has often been neglected in community ecology (Vio-
lle et al., 2012).

Within-site variations – unconstrained by macroclimate –
were usually larger than between-site variations (Supplement
Fig. S4). This large within-site variability might explain why
no significant effect of climate on leaf stoichiometry was de-
tected in some previous regional studies (Yang et al., 2016;
Zhang et al., 2017; Zhao et al., 2018). Zhang et al. (2019)
showed a weak phylogenetic signal for the leaf C : N ratio
evaluated by Blomberg’s K . We used Pagel’s λ due to its
better performance and reliability with a large number of
species (Münkemüller et al., 2012). The significant phylo-
genetic signals for leaf stoichiometric traits confirmed that
species with similar evolutionary history tend to have similar
leaf stoichiometry, indicating that leaf stoichiometric traits
of extant species at a site may not remain adaptive under a
changing environment (He et al., 2010; Li et al., 2021; Yang
et al., 2016). It has been suggested that a high phenotypic
plasticity of the leaf C : N ratio would be associated with
a high mortality risk, supporting the idea that tight regula-

tion of leaf stoichiometry within species helps to ensure plant
survival (Luong et al., 2021). Within-site diversity may help
communities to maintain their function in the face of climate
variability and extremes.

Plant species may occupy different “biogeochemical
niches” to ensure the full use of available resources and avoid
competition (Sardans and Penuelas, 2014; Sardans et al.,
2021). At the community level, climate variables captured
more of the observed leaf stoichiometric variations, due to
the averaging of data from co-occurring species and intraspe-
cific variability (Vallicrosa et al., 2021). Systematic varia-
tion in community-mean leaf stoichiometric traits along cli-
mate gradients can be achieved through progressive species
replacement at a macroclimatic scale and intraspecific trait
variability at a regional scale (Liu et al., 2019; Yang et al.,
2016).

The distributions of common deciduous genera were
shown to be more sensitive to moisture, while the distribu-
tions of evergreen genera were mainly driven by tempera-
ture. This distinction may be related to the different adap-
tation strategies represented by differences in leaf longevity
(LL). Kikuzawa et al. (2013) indicated that temperature is
the best predictor of LL for evergreen species, while a con-
sideration of an additional moisture factor was expected to
improve the explanatory power of climate for LL in decidu-
ous species. According to Kikuzawa’s optimality model, LL
of evergreen species is higher at low temperatures, in order to
compensate for low total carbon gain during the short grow-
ing season. For deciduous species, however, LL should not
exceed the length of the growing season – which can be af-
fected by moisture as well as temperature in semi-arid and
arid areas. Thus, our study suggests that climate shapes leaf
stoichiometric variation at a macroclimatic scale via environ-
mental selection among taxa and emphasizes the neglected
role of phenology in biogeochemical cycles (He et al., 2006;
Vallicrosa et al., 2021; Xiong et al., 2021).

Although some studies have shown an important role of
soil fertility in determining plant stoichiometry, published
studies have shown inconsistent results (Fang et al., 2019;
Fyllas et al., 2009; He et al., 2010; Ordoñez et al., 2009;
Xiong et al., 2021). Soil fertility as indexed by the soil C : N
ratio had no significant effect on leaf stoichiometry in our
analysis, indicating a decoupling of soil and leaf stoichiom-
etry (Delgado-Baquerizo et al., 2017; Elser et al., 2010).
Plant–soil interactions may affect whole-plant stoichiome-
try nonetheless, through effects on C allocation to different
tissues. Allocation of N to leaves shows stronger homeosta-
sis than in other tissues, possibly as a consequence of the
need to maintain the crucial functions of photosynthesis and
leaf respiration; the stoichiometry of other tissues may ad-
just to soil conditions in order to support leaf-level function
(Chen et al., 2013; Delgado-Baquerizo et al., 2017; Zhang et
al., 2017). Uncertainty in our soil fertility data may was in-
evitably introduced due to our reliance on a gridded soil map
(Shangguan et al., 2013). More studies including in situ soil
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Figure 6. Optimality-based predictions versus observations of leaf traits at the site level. Grey lines are ordinary least-squares regressions.
The black dashed line is the 1 : 1 line.

Figure 7. Comparison of observed and predicted C : N ratios with target values in LSMs. The blue boxes represent predicted C : N ratios
using observed Cmass (a) and using constant mean Cmass (b). The green boxes represent observed C : N ratios. Red crosses show target
values in LSMs (adopted from CLM4).

measurements are needed to more comprehensively investi-
gate the effect of soil properties on plant stoichiometry.

4.2 Trait responses reflect plant strategies

Leaf stoichiometry integrates traits that reflect different plant
functions, resulting in a potentially complex response to cli-
mate. In contrast with many previous studies, we have con-
sidered (and found significant effects of) functionally signif-
icant bioclimatic variables, including light, in leaf-level sto-
ichiometry. Our analyses indicate general relationships that
are quite similar between evergreen and deciduous plants.

Higher leaf Cmass was observed in cold and dry areas with
high radiation (Fig. 4). Chen et al. (2021) found that leaf
Cmass is positively related to vein density, which relates to
the efficiency of water transport. At strong light, plants tend
to have a higher photosynthetic rate, requiring more water
for transpiration to maintain open stomata – which could be
achieved by high carbon investment in venation (Sack and
Scoffoni, 2013). In dry areas, high vein density is a common
adaptation to drought, allowing plants to respond quickly to
available water for carbon fixation and to keep leaves cool in
the face of high air temperature (Scoffoni et al., 2011; Yao
et al., 2021). Meanwhile, plants may accumulate nonstruc-

tural carbohydrates to adjust osmotic potential and avoid leaf
desiccation (Bartlett et al., 2014). The leaf Cmass response
to temperature as observed here, however, is the opposite of
some previous reports (Ma et al., 2018; Xing et al., 2021).
Global analysis showed an overall positive response to tem-
perature with a range from −10 to 30 ◦C, whereas leaf Cmass
decreased when the mean annual temperature was lower than
20 ◦C (Ma et al., 2018). Ma, which is positively related to
leaf Cmass (Xing et al., 2021), is generally negatively corre-
lated with temperature (Wright et al., 2004). A higher starch
concentration is observed at low temperatures, due to con-
ditions that allow photosynthesis but not growth (Hoch and
Körner, 2012). This suggests that the leaf Cmass response to
temperature may not be monotonic, owing to different func-
tions dominating at the extremes.

The components of leaf N variation adapt to the climate
in different ways (Dong et al., 2017; Peng et al., 2020; Xu
et al., 2021). Nmass is also constrained by the trade-offs in-
herent in the leaf economics spectrum. Leaves with high Ma
(and LL) have low photosynthetic rates per unit mass and low
nutrient contents by mass (Wright et al., 2004). Thus, climate
drives Nmass variation both directly and indirectly. Moisture
has a negative effect on Nmass (Yang et al., 2016; Zhang et
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al., 2019; Zhao et al., 2018). It has been reported that N-
containing compounds (such as amides) accumulate in plants
in order to adjust osmotic pressure under drought (Raggi,
1994). In addition, N-rich leaf defence compounds increase
towards more arid climates, at the expense of C-based de-
fences such as spines and thorns (de Oliveira et al., 2020;
Ghimire et al., 2017; Meloni et al., 2012). In the existing op-
timality modelNarea should be positively related to radiation,
since light has a positive effect on Ma and Vcmax25 (Smith et
al., 2019; Wang et al., 2023). However, when N is expressed
on a mass basis (Nmass), light has a negative effect, suggest-
ing a lower sensitivity of Vcmax25 to light thanMa. The nega-
tive effect of temperature on Nmass has been observed across
vegetation types (Han et al., 2005; He et al., 2008; Tang et al.,
2018; Weih and Karlsson, 2001). This is consistent with the
hypothesis that more nutrients are required to compensate for
low enzyme activity at low temperatures (Reich and Oleksyn,
2004). Although the leaf C : N ratio response to climate is a
combination of the responses of both C and N, it is dom-
inated by the variation in N. Thus, understanding of Nmass
variation should help elucidate variation in C : N ratios (Re-
ich, 2005). Positive effects of temperature and moisture on
leaf C : N ratios have also been observed in previous studies,
implying higher N use efficiency in hot and wet areas (Fang
et al., 2019; Zhang et al., 2019).

4.3 Leaf nitrogen content predicted by optimality
models

C : N ratios couple C and N cycling, thus influencing the es-
timation of carbon assimilation and plant growth in LSMs
(Wang et al., 2010; Zaehle et al., 2014). Fixed leaf C : N ra-
tios assigned to PFTs, as for example in CLM4 and ED2.1,
may result in inaccurate representations of this coupling (Bo-
nan and Doney, 2018; Lawrence et al., 2011; Medvigy et al.,
2009). Although model outputs such as ecosystem responses
to elevated CO2 are more consistent with observations in
models where flexible C : N ratios are allowed (Lawrence et
al., 2019; Meyerholt and Zaehle, 2015), large differences be-
tween models persist (Du et al., 2018).

Meyerholt and Zaehle (2015) highlighted the potential of
optimality theory to improve the representation of N cy-
cling in LSMs. Caldararu et al. (2020) showed that models
that implement dynamic leaf stoichiometry schemes based
on EEO principles can perform better than those with fixed-
PFT schemes. Here we have shown that leaf Nmass covari-
ation with Vcmax25 and Ma as predicted by EEO principles
can provide further insights. Since Nmass is the key to de-
termining the leaf C : N ratio, given the relative constancy
of Cmass (Reich, 2005), we focused on the predictability of
Nmass. The variation in leaf N per unit area (Narea) can be
represented as the sum of two components, proportional to
leaf mass per area (Ma) and the maximum capacity of car-
boxylation at 25 ◦C (Vcmax25) (Dong et al., 2017), and now
both Ma and Vcmax25 can be predicted from EEO princi-

ples (Smith et al., 2019; Wang et al., 2023; Xu et al., 2021).
Community-level variations inMa, Vcmax25, andNarea can in-
deed be largely captured (r2

= 0.53, 0.68, and 0.62, respec-
tively) using climate variables as predictors. We also showed
a tendency for the relationship between Nmass and the ra-
tio Vcmax25/Ma to become steeper with increasing LAI. This
finding is consistent with N redistribution within the canopy,
as an acclimation to light conditions that maximizes total car-
bon gain (Hirose and Werger, 1987; Niinemets et al., 2015).
The strong vertical light gradient in high-LAI canopies im-
plies a large advantage for optimized N distribution, in con-
trast with more open canopies (Field, 1983). The same model
framework as Narea, with this additional LAI effect included,
showed good predictive skill for Nmass (and better than that
of Boonman et al. (2020), obtained using an ensemble mod-
elling approach) based on climate. However, our predicted
Nmass was constrained within a narrow range, despite the
well-captured variations in Ma and Vcmax25. The predicted
Nmass in tropical forest with high LAI was systematically un-
derestimated due to the low intercept (Supplement Table S1).
We recognize that our method to predict Nmass may over-
look additional functions of N in leaves, such as chemical
defences, perhaps causing greater variation than predicted.
This requires further investigation. Some species in this study
apparently adjusted their leaf stoichiometry along major en-
vironmental gradients, possibly via genetic adaptation over
multigenerational timescales. Due to the lack of intraspecific
data within communities, we could not assess the degree of
variation among conspecific plants in the same environment.
Intraspecific variation within communities may, however, in-
crease functional diversity and promote species coexistence
(Westerband et al., 2021) and potentially provide a buffer
against climatic variation and change (Ahrens et al., 2021).
Further studies are needed to better understand intraspecific
trait variation (Moran et al., 2016) in order to assign appro-
priate timescales for the dynamic responses of traits to envi-
ronmental changes in Earth system models.

Predicted C : N ratios, whether using observed or constant
Cmass, lie within the range of observed data, supporting the
dominant role of Nmass in driving leaf C : N ratios (Fig. 6).
The target (PFT-specific) values used in several LSMs such
as CLM4, ORCHIDEE, and YIBs (Fig. 7) are based on data
sets nearly 20 years old and fail to represent continuous trait
variations that can now be inferred from much larger data
sets. Our EEO-based approach thus suggests a way forward
to improve the dynamic representation of leaf stoichiometry
in LSMs.

5 Conclusions

This study shows that the leaf C : N ratio is mainly driven by
mass-based leaf nitrogen content which can be estimated via
the sum of metabolic and structural components of leaf ni-
trogen using eco-evolutionary optimality-based models. This

Biogeosciences, 20, 4511–4525, 2023 https://doi.org/10.5194/bg-20-4511-2023



H. Xu et al.: Leaf carbon and nitrogen stoichiometric variation 4521

provides another perspective to improve dynamic represen-
tation of stoichiometry in Earth system models. The varia-
tions in leaf stoichiometric traits at the individual level are
mainly controlled by species identity and phylogeny; thus,
the shift in leaf stoichiometry variations at the community
level along climate gradient is achieved via species turnover
and intraspecific variability. This allows the prediction of
community-mean values of leaf stoichiometric traits using
EEO-based models. We show that the coefficient represent-
ing nitrogen allocation to metabolic and structural compo-
nents is related to leaf area index, which highlights the im-
portance of nitrogen allocation in its prediction. The unex-
plained variation in leaf nitrogen content may attribute to
other unclear physiological processes, which requires further
effort to improve the prediction of the leaf C : N ratio.
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