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Abstract. Seagrass meadows are a highly productive and
economically important shallow coastal habitat. Their sen-
sitivity to natural and anthropogenic disturbances, combined
with their importance for local biodiversity, carbon stocks,
and sediment dynamics, motivate a frequent monitoring of
their distribution. However, generating time series of sea-
grass cover from field observations is costly, and mapping
methods based on remote sensing require restrictive condi-
tions on seabed visibility, limiting the frequency of obser-
vations. In this contribution, we examine the effect of ac-
counting for environmental factors, such as the bathymetry
and median grain size (D50) of the substrate as well as the
coordinates of known seagrass patches, on the performance
of a random forest (RF) classifier used to determine sea-
grass cover. Using 148 Landsat images of the Venice Lagoon
(Italy) between 1999 and 2020, we trained an RF classifier
with only spectral features from Landsat images and seagrass
surveys from 2002 and 2017. Then, by adding the features
above and applying a time-based correction to predictions,
we created multiple RF models with different feature combi-
nations. We tested the quality of the resulting seagrass cover
predictions from each model against field surveys, showing
that bathymetry, D50, and coordinates of known patches exert
an influence that is dependent on the training Landsat image
and seagrass survey chosen. In models trained on a survey
from 2017, where using only spectral features causes pre-
dictions to overestimate seagrass surface area, no significant
change in model performance was observed. Conversely, in
models trained on a survey from 2002, the addition of the

out-of-image features and particularly coordinates of known
vegetated patches greatly improves the predictive capacity
of the model, while still allowing the detection of seagrass
beds absent in the reference field survey. Applying a time-
based correction eliminates small temporal variations in pre-
dictions, improving predictions that performed well before
correction. We conclude that accounting for the coordinates
of known seagrass patches, together with applying a time-
based correction, has the most potential to produce reliable
frequent predictions of seagrass cover. While this case study
alone is insufficient to explain how geographic location in-
formation influences the classification process, we suggest
that it is linked to the inherent spatial auto-correlation of
seagrass meadow distribution. In the interest of improving
remote-sensing classification and particularly to develop our
capacity to map vegetation across time, we identify this phe-
nomenon as warranting further research.

1 Introduction

Seagrass meadows are emblematic shallow-water ecosys-
tems, well-known for their diverse wildlife (Sfriso et al.,
2001) and capacity to sequester carbon and nutrients (Greiner
et al., 2013; Russell et al., 2013; Johnson et al., 2017).
Early landmark valuations of ecosystem services estimated
the benefits generated by seagrass and algae beds at over
USD 19 000 (1997) ha−1 yr−1, second only to forested wet-
lands such as swamps and floodplains (Costanza et al., 1997).
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Furthermore, seagrass meadows modify velocity and turbu-
lence regimes (Hendriks et al., 2008; Ganthy et al., 2015;
Carniello et al., 2016), resuspension (Widdows et al., 2008;
Volpe et al., 2011; Hansen and Reidenbach, 2013; Carniello
et al., 2014; Venier et al., 2011), and sediment trapping (Hen-
driks et al., 2010), influencing sediment dynamics in estuar-
ies and lagoons. Hence, in the current context of rising sea
levels (Nicholls et al., 2021) and sediment deprivation (Syvit-
ski and Kettner, 2011), understanding their role in shap-
ing coastal landforms is crucial: reliable and reproducible
observations of space–time seagrass presence and change
are a key missing element towards a complete understand-
ing of tidal environment dynamics, now largely focusing on
salt marsh eco-geomorphodynamics (D’Alpaos et al., 2007;
Marani et al., 2007, 2011, 2010; Yousefi Lalimi et al., 2020).

Multiple monitoring campaigns, at several different sites
and using diverse methods, have been conducted over the
years to map seagrass cover, leading to the recent compila-
tion of a global seagrass distribution assessment (McKenzie
et al., 2020). Field mapping is widely employed to determine
vegetation characteristics such as stem density, biomass, and
metabolism (e.g. Smith et al., 1988; Caffrey and Kemp, 1991;
Kutser et al., 2007), but high costs and long completion times
prevent frequent surveys of the state and extent of submerged
vegetation. And yet timeliness is particularly important in
understanding the response of seagrass meadows to environ-
mental stressors. In favourable conditions and in the grow-
ing season, seagrass can recover from heat waves (Peder-
sen et al., 2016; Gamain et al., 2018) or shallow scouring
within just a few months (Collier and Waycott, 2014), mak-
ing the effect of such disturbances invisible to infrequent ob-
servations. Remote sensing using multi- and hyper-spectral
sensors constitutes an attractive alternative and complements
field mapping, provided that detection methods can reliably
classify the seabed. Such methods have been applied success-
fully to satellite data for salt marsh vegetation in the Venice
Lagoon (Wang et al., 2007; Yang et al., 2020) as well as
for the quantification of suspended sediment concentration
(Volpe et al., 2011; Zhou et al., 2017); detecting seagrass us-
ing the same data sources remains challenging, due to highly
variable water depth and constituents, but would allow for
consistent environmental monitoring. Satellite-borne sensors
also provide up to daily observations and are cost-efficient,
making them an ideal support for high-frequency and spa-
tially extended monitoring.

Table 1 reviews 16 publications concerning seagrass map-
ping from satellite imagery, ordered by decreasing pixel foot-
prints of the image product. These studies classify seagrass
density in steps of 25 % pixel surface cover, using various
methods such as the maximum likelihood method (Cam,
1990), trained support vector machines (Noble, 2006), and
random forest (Biau and Scornet, 2016) methods. Landsat
data, with 30 m pixels that can be larger than some seagrass
patches and few spectral bands, do not perform significantly
worse than commercially available data with higher resolu-

tion and a larger number of bands, such as IKONOS. The
wider range of performances for Landsat over other prod-
ucts may be a result of the greater number of studies that
use this support. Overall, trained machine learning methods
perform marginally better than more traditional classifiers on
remote-sensing data of the same resolution. However, a sys-
tematic comparison among different classifiers can hardly be
inferred from the literature because of the widely different
resolutions explored in the existing studies. Indeed, the max-
imum likelihood classifier is used primarily on Landsat prod-
ucts. The wide variety of performances shown in such appli-
cations suggests a strong dependence of classification results
on the quality of the data and the conditions in which the data
were acquired. Indeed, atmospheric conditions, water depth,
the presence of waves, and chlorophyll and sediment concen-
trations all affect reflectance at the water surface and thus the
visibility of the seabed. As a result, acquisitions to be clas-
sified must be subject to a strict selection process, making
frequent and regular monitoring difficult.

An inconsistent classification performance and the con-
sequent irregular monitoring frequency (e.g. see Table 1)
pose significant limitations to seagrass cover monitoring: the
high primary productivity of seagrass implies that meadow
density and canopy characteristics, and therefore spec-
tral reflectance, vary greatly seasonally with growth stages
and stochastically with storm-induced thinning or scouring
(Sfriso and Francesco Ghetti, 1998). This high rate of vari-
ation in density and extent also implies that seagrass maps
separated by more than a few months cannot capture sea-
sonal, and much less stochastic, variations in seagrass cover.
Yet few of the studies listed in Table 1 classify more than
one image (Lyons et al., 2012; Dekker et al., 2005; Wabnitz
et al., 2008; Hossain et al., 2015; Kohlus et al., 2020; Roelf-
sema et al., 2014), while most limit the analyses to single
illustrative data acquisitions.

The observations made from Table 1 highlight the con-
clusions drawn by the extensive review of Hossain et al.
(2014) in that while seagrass detection through remote sens-
ing is imperfect, applications such as machine learning are
used on extended time series of multispectral satellite im-
ages. For instance, Landsat products show the potential to
improve greatly with more advanced processing, amongst
which are the integration of ecological data or models. Here
we apply a random forest (RF) classifier (Bakirman and Gu-
musay, 2020) to map seagrass cover in approximately 150
Landsat scenes between 1999 and 2020 from the Venice La-
goon, Italy. Based on nine field surveys performed between
2002 and 2017 as well as remote digitisations on images be-
tween 2000 and 2019, we investigate the influence of envi-
ronmental conditions, known seagrass coordinates, and the
temporal persistence of detected features on the performance
of the classifier. By adding these features and corrections in
the classification process, we take a step towards the integra-
tion of ecological data in classification models.
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Table 1. Compilation of published works on seagrass detection from satellite data. References for the sources are given in Table A1 as
indicated by the numbering in the last column. ROI: return on investment. OBIA: object-based image analyses. SVM: support vector machine.
KM: k means. MD: minimum distance. ML: maximum likelihood. LSU: linear spectral unmixing.

Sensor Pixel size Scenes Area [km2] Method Performance Ref. no.

Landsat 5 30 m 1 200 minimum distance to means UA: 11 %–55 %; OA: 35 % 1
30 m 1 105 maximum likelihood UA: 83 %–99 %; OA: 92 % 2

Landsat 4, 5, 7 30 m 60 200 multiresolution segmentation OA: 52 %–80 % 3

Landsat 5, 7 30 m 4 94 maximum likelihood OA: 54 %–100 % 4
30 m 40 > 106 maximum likelihood UA: 0 %–88 %; OA: 45 %–85 % 5

Landsat 5, 7, 8 30 m 49 6 ROI growth UA: 84 %–92 %; OA: 91 %–96 % 6

Landsat 5, 8 30 m 2 42.6 maximum likelihood A: 89 %–93 %; OA: 85 % 7
Landsat 8 OLI 30 m 2 33 000 Lyons et al. (2012) UA: 13 %–95 %; OA: 29 %–99 % 8

30 m 1 100 Roelfsema et al. (2014) UA: 22 %–73 %; OA: 59 % 9

Landsat 8, Sentinel-2 10–30 m 6 140 maximum likelihood UA: 13 %–95 %; OA :65 %–75 % 10

ALI 30 m 1 105 maximum likelihood UA: 86 %–99 %; OA: 95 % 11

Hyperion 30 m 1 105 maximum likelihood UA: 89 %–99 %; OA: 96 % 12

Sentinel-2 10 m 1 100 Roelfsema et al. (2014) UA: 21 %–81 %; OA: 57 % 13
10 m 1–2 340 empirical RMSE: 14 % of area 14
10 m 1 41 000 support vector machines UA: up to 99 %; OA: 72 % 15

Ziyuan-3A 5 m 1 100 Roelfsema et al. (2014) UA: 28 %–67 %; OA: 54 % 16

CASI-2 4 m 1 200 minimum distance to means UA: 16 %–68 %; OA: 46 % 17

IKONOS, WV2, QB2 2.4–4 m 9 142 hierarchical OBIA UA: 10 %–57 %; OA: 52 %± 4 % 18

QuickBird 2.4 m 1 200 minimum distance to means UA: 9 %–52 %; OA: 31 % 19

WorldView-2 2.4 m 1 8.6 SVM/random forest OA: 72 %–94 % 20

WorldView-3 2 m 1 100 Roelfsema et al. (2014) UA: 29 %–76 %; OA: 59 % 21

IKONOS 2 m 1 1.78 KM/MD/ML/LSU UA: 65 %–85 %; OA: 40 %–67 % 22

GeoEye1 1.65 m 1 20 ML UA: 78 %–90 %; OA: 85.7 % 23

2 Materials and method

With a surface area of 550 km2, the Venice Lagoon is the
largest lagoon in the Mediterranean Sea. Due to its socio-
economic and environmental importance and to a significant
erosional trend (Carniello et al., 2009), the ecological and
morphological state of the lagoon has been systematically
monitored for decades. Historic and modern bathymetric in-
formation complemented by a long record of tidal data pro-
vides the opportunity of quantitatively describing, also via
numerical modelling, the detailed hydrodynamic circulation
throughout the lagoon (Tommasini et al., 2019). Numerous
sampling campaigns of sediment composition on the lagoon
bed (Amos et al., 2004; Guerzoni and Tagliapietra, 2006;
Carniello et al., 2012) are used to infer the preferred habi-
tat of seagrass meadows, and multiple submerged vegetation
surveys conducted throughout the 21st century provide a ref-
erence for classification testing.

With this wealth of data, the Venice Lagoon is a prime can-
didate to test new approaches of submerged vegetation detec-

tion. In this section, we first describe the collection and pro-
cessing of local data as well as satellite images from Land-
sat 7 ETM (Enhanced Thematic Mapper) and Landsat 8 OLI
(Operational Land Imager) repositories, used as input and for
validation. Then, we describe the structure of the random for-
est model developed to classify the images, and explain how
local environmental data, as well as data pertaining to the co-
ordinates of known seagrass patches, are added to improve
the skill of the classifier. We also describe a simple process
used to correct initial predictions, based on the analysis of
the predicted seagrass cover time series. Finally, we define
the metrics used to assess the classifier’s performance.

2.1 Local data collection and processing

A full-lagoon bathymetric survey was performed in 2003
by the Venice Water Authority (Nuova-Technital, 2007)
and subsequently updated to account for engineering works
that modified the bathymetry within the inlets of Chioggia,
Malamocco, and Lido (Carniello et al., 2009) (Fig. 1). Fur-
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Figure 1. Out-of-image data used as features for seagrass detection.
Background image: gridded bathymetry of the Venice Lagoon, col-
lected in 2003 and updated only for the inlets in 2012; data points:
gridded median grain size. Triangles indicate the locations of tide
and wind gauges. The grey area represents a zone in the lagoon
where no seagrass was found during field surveys. The coordinate
system used is the local Monte Mario projection (EPSG: 3003). In-
set image: © Google Earth.

thermore, samples of bed sediment composition have been
collected over the years, resulting in a dataset of more than
900 estimates of median grain size (D50) (Carniello et al.,
2012) (Fig. 1). A network of tidal and wind speed gauges
has recorded hourly water surface elevation, wind speed, and
direction in key locations of the lagoon since before 2000:
among these, we chose stations close to Chioggia in the
south and the Saline station in the north (red triangles in
Fig. 1; source data: (https://www.comune.venezia.it/content/
dati-dalle-stazioni-rilevamento, last access: 1 June 2021).
Those stations were chosen as they have the most consis-
tent record over the 1999–2020 period. The station in Saline
records both wind velocities and tidal elevation, whereas
these data are recorded by two separate stations, located
500 m apart, in Chioggia.

In addition to physical data, we used field surveys de-
tailing the extent of seagrass cover, species composition,
and stem density, hosted on the Atlante della Laguna web-
site (http://cigno.atlantedellalaguna.it/maps/6/view last ac-
cess: 1 June 2021).

These surveys were performed by SELC (https://www.
selc.it/, last access: 1 June 2021) by delineating seagrass
cover, both using a GNSS in the field and by having an oper-
ator digitise patches of seagrass from aerial images. Species
identified during those surveys were principally Zostera
noltii and Cymodocea nodosa, with Zostera marina and Rup-
pia maritima being found locally. The surveys were con-
ducted and the images acquired to cover the entire lagoon
in the late summer of 2002, 2004, 2009, 2010. and 2017.

However, given the extent of the lagoon, field surveys took
place over periods of several months, such that they do not
represent the state of the lagoon at a single moment in time.
Furthermore, the criteria used to estimate seagrass cover may
have varied over time or as a result of different observers. Ad-
ditional surveys were conducted in the late summer of every
year between 2006 and 2015, focusing on the inlets of Lido,
Malamocco, and Chioggia (footprints appear in Fig. A1),
mapping seagrass cover according to density classes derived
from field, satellite, and aerial image observations. In this
study, we do not use these density classes and instead re-
gard all density classes that are not bare as vegetated. Indeed,
this classification was likely performed by different operators
over the years and introduces a source of uncertainty in ref-
erence maps. Finally, an operator digitised seagrass patches
from 25 Landsat images between 2000 and 2020 on a spe-
cific tidal flat near Chioggia with a wide range of bathymetry,
where visual inspection revealed multiple changes in sea-
grass cover (Fig. A1). This digitisation, conducted by visu-
ally distinguishing bare and vegetated areas, complemented
existing reference maps to produce more frequent references
and enable comparisons of vegetated surface area.

2.2 Satellite data collection and processing

We downloaded 164 cloud-free Level 2 multispectral acqui-
sitions from the Landsat 7 ETM and Landsat 8 OLI data
repository, covering the entire Venice Lagoon between 1999
and 2020. Landsat 5 data were not considered due to incon-
sistent results in the studies examined in Table 1. Level 2
products are atmospherically corrected using the LEDAPS
(Schmidt et al., 2013) and LaSRC algorithms (Ilori et al.,
2019) and yield surface reflectance values corrected for the
scattering and absorbing effects of gas, vapour, and aerosols.
In May 2003, the Scan Line Correction (SLC) system on the
Landsat 7 ETM sensor failed, causing all subsequent ETM
scenes to contain strips of empty data. Nevertheless, we did
not disregard these acquisitions and take this into account
when interpreting our results. From July 2013 onward, Land-
sat 8 OLI data were brought online, effectively resolving the
issue for the purposes of our study. We selected a number
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of images among those downloaded according to two crite-
ria (Fig. 2). (a) The tidal elevation at the full hour closest
to overpass time is less than 0.75 m above the national datum
(Rete Altimetrica dello Stato 1897). This value was chosen to
cut off specific stormy events during which sediment load in-
creased water column absorption and masked the lagoon bed;
this approach was not complemented by the implementation
of a correction for sediment suspended load to emulate situ-
ations where such models cannot be calibrated. (b) The third
quartile of the series of wind speeds up to 3 d prior to over-
pass time does not exceed 8 m s−1 and the 90th percentile
does not exceed 15 m s−1. This criterion limits the probabil-
ity of inorganic suspended sediment and wind waves impact-
ing visibility of the seabed. Applying these criteria leaves
148 scenes that are a priori fit for the detection of seagrass
meadows on the lagoon bed.

Landsat scenes corresponding to field surveys are listed
in Table A2, while those associated with digitised reference
information are shown in Table A3.

Bathymetric (Carniello et al., 2009) and sediment grain
size data (Carniello et al., 2012), excluding channels and salt
marshes, were gridded with the Geospatial Data Abstraction
Library (GDAL) (GDAL/OGR contributors, 2021) at a pixel
size of 30 m according to the nearest-neighbour method. All
surveyed and digitised seagrass meadows, initially in vec-
tor format, were also rasterised using GDAL at a pixel size
of 30 m, to match bathymetry and sediment size data. Sea-
grass cover vector data were gridded by regarding pixels cov-
ered by a seagrass polygon by more than 50 % as vegetated
(coded as “1”). The remaining pixels were considered bare
soil (coded as “0”).

2.3 Description of the random forest model

We used a random forest (RF) classifier designed to detect
the presence of seagrass meadows on the lagoon bed based
both on spectral and non-spectral information. Random for-
est modelling is an ensemble learning algorithm that uses the
results of a large number of decision trees (Ho, 1995). This
class of algorithms is being used more frequently in remote-
sensing classification problems in general (Pal, 2005; Belgiu
and Drăgu, 2016) and in seagrass detection in particular (Ta-
ble 1). RF classifiers are trained to predict a set of target prop-
erties based on the values of a set of several features. Here,
we train multiple classifiers to predict the absence (0) or pres-
ence (1) of seagrass in a given pixel, each with a different set
of features and using different training target values.

Common features used to determine seagrass cover are the
atmospherically corrected spectral reflectance values in the
blue, red, green, and sometimes near-infrared bands (see ref-
erences in Table 1). When the seagrass is submerged, these
reflectances at the water surface are not linearly connected
to the reflectance of the bed. Indeed, water depth, organic
and inorganic suspended sediment concentrations, and water
surface roughness, all contribute to define a complex relation

between intrinsic seagrass reflectance and remote-sensing at-
water-surface reflectance. These parameters are rarely simul-
taneously measured or acquired to be used in a radiative
transfer model (Lee et al., 1998; Lee and Carder, 2002) to
infer the bed reflectance. In this contribution, we retrieve red,
green, blue, and near-infrared band data from selected Land-
sat and Sentinel images without applying a water column cor-
rection: instead, we test how the random forest performs un-
der unknown water column influence, simulating conditions
where calibration of inversion methods is problematic. We
further note that the band width for the NIR band is different
for Landsat and Sentinel images: consequently, when inter-
preting the model’s performance on test data, we separate the
performance of the model on images sourced from Landsat
or Sentinel images.

Given the uncertainties affecting the spectral reflectance
properties that may be retrieved from remote sensing, it is
reasonable to leverage all available information with the aim
to reliably perform seagrass mapping across multiple acqui-
sitions.

Figure 3 shows the frequency distribution of seagrass
meadows across bathymetry and median sediment grain
size (D50) for full-lagoon field surveys performed in 2002
(Fig. 3a) and 2017 (Fig. 3b). We notice that seagrass mead-
ows in the Venice Lagoon occupy a quite characteristic
range of bed elevations, mostly between −2.1 and −0.5 m
above datum and much narrower than the overall bathymetric
range. Furthermore, the peak seagrass occurrence frequency
does not correspond to the mode of the bathymetry (hori-
zontal red lines); i.e. it is not located at the most commonly
occurring bottom depth. This indicates that seagrass occurs
within a preferential range of water depths, dictated by its
need for access to light and by preferred flooding frequencies
(Carruthers et al., 2002). Even more evidently, seagrass is
preferentially found on fine sandy seabeds, where D50 ranges
between 60 and 150 µm, even though these are not the most
common sediment sizes in the lagoon (visualised by verti-
cal red lines). Whether such ranges of bathymetry and sedi-
ment size are purely the expression of preferred habitat or the
product of self-organisation and eco-geomorphic feedbacks
is not debated in this contribution. However, the existence
of a relationship between environmental parameters, such as
bathymetry and D50 and seagrass distribution may be of as-
sistance to developing effective algorithms for the detection
of seagrass meadows.

A habitat constraint invariably translates into a constraint
in geographical distribution. Figure 4 shows the geographical
distribution of seagrass meadows across available field sur-
veys described above, where each pixel expresses the cross-
product 5N in Eq. (1):

5N =

∑N
i=0

∑N
j 6=iVi ·Vj

N · (N − 1)
, (1)

where N is the number of surveys considered and Vi is the
array representing seagrass cover, with values comprising be-
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Figure 2. Tide and wind conditions used to select Landsat scenes at the stations of (a) Chioggia and (b) Saline. The red dashed line shows
the high limit for tidal elevation relative to station datum: scenes where water level exceeds this elevation were not selected and are shown in
red. Scenes where wind speed exceeded the limit condition are also shown in red.

tween 0 and 1. In both the full-lagoon and the inlet surveys,
large swathes of seagrass meadows harbour 5= 1 or 5= 0
(shown as empty data in Fig. 4).

Figure 4 corroborates the notion that preferred habitats,
shown simply in Fig. 3, constrain the geographical range of
seagrass meadows in the Venice Lagoon. The north and cen-
tral parts of the lagoon host patchy, disconnected meadows,
while the southern lagoon hosts large interconnected mead-
ows separated by navigation channels. This observation im-
plies a degree of spatial auto-correlation in the presence of
seagrass meadows, which may be explained by mechanisms
of seagrass patch development: these are in general driven
by environmental factors, such as differences in depth, nu-
trient fluxes, and salinity (Ghezzo et al., 2011; Sfriso et al.,
2003), while clonal reproduction is the primary mechanism
through which seagrass plants become established after an
initial colonisation (McMahon et al., 2014) and sexual re-
production allow their spread over large distances.

The global Moran index provides additional evidence of
spatial auto-correlation in seagrass distributions. This index
represents the degree of spatial auto-correlation (SAC) for a
dataset, varying between −1 and 1, with −1 corresponding
to evenly spaced patches, 0 being the value approached by
a random distribution of elements, and 1 being attained if a
space is divided into two halves of contiguous elements of
the same value (Fan and Myint, 2014). This further indicates
a strong positive auto-correlation that suggests a zonation of
the lagoon into areas, with some being favourable to seagrass
development and others not. Here, all full-lagoon surveys

present a global Moran index greater than 0.8. As a result,
the value of pixel coordinates, expressed as row and columns
in the array, may represent a useful feature in seagrass detec-
tion. Because such a feature carries the risk of introducing
confirmation bias in the results, its influence on prediction
variability will be examined closely.

Figures 3 and 4 show that features other than spectral re-
flectance have the potential to improve the performance of a
classifier seeking to determine seagrass presence. To assess
the impact of their inclusion among predictors on classifica-
tion uncertainty, we train RF classifiers with a combination
of features comprising spectral, environmental, and location-
based features, as shown in Fig. 5. In order to be used si-
multaneously in the RF classifier, all features used were first
normalised relative to the 5th and 95th percentile of their
value in their respective zone (instead of the minimum and
maximum). Because seagrass patches in the north and cen-
tral parts of the lagoon show different sizes and density than
in the southern lagoon, we divided the lagoon into two ge-
ographic zones at the Malamocco Inlet channel (see Fig. 4)
and adopted a different RF classifier in each zone. The pre-
dictors (features) used are spectral reflectances, bed eleva-
tion, and D50. The RF classifiers, implemented in the scikit-
learn package (Pedregosa et al., 2011), include 100 trees,
each considering three input features with a maximum depth
of 30 nodes. This RF classifier structure was chosen to avoid
overfitting, which would limit the model’s capacity to clas-
sify seagrass in the presence of a variable spectral response
(caused by the presence of algae, local chlorophyll hotspots,

Biogeosciences, 20, 4551–4576, 2023 https://doi.org/10.5194/bg-20-4551-2023



G. Goodwin et al.: Coherent space–time mapping of seagrass using Landsat data 4557

Figure 3. Two-dimensional frequency distribution of seagrass according to bathymetry relative to IGM (Istituto Geografico Melitare)) refer-
ence and median sediment grain size (D50). (a) Seagrass distribution for the 2002 survey; (b) seagrass distribution for the 2017 survey.

etc.). The RF classifiers are trained using Landsat scenes
taken on 14 September 2002 and 30 August 2017, with a
training / validation / test ratio of 0.2/0.6/0.2, correspond-
ing to field surveys conducted in the summers of 2002 and
2017. The ratio of bare / vegetated pixels in the 2002 survey
is 16.1/1 in the north-central lagoon and 1.1/1 in the south-
ern lagoon; for the 2017 survey, it is 3.1/1 and 1/4.3, respec-
tively. Hence, the 2002 survey provides a balanced training
dataset in the southern lagoon; other surveys and zones are
imbalanced in favour of bare ground in the north and central
parts of the lagoon and in favour of vegetation in the southern
lagoon in 2017. In the discussion of our results, we examine
how this imbalance may affect model predictions.

These survey dates were chosen over the remaining ones
because the corresponding remote-sensing acquisitions are
not affected by the Landsat 7 Scan Line Correction (SLC)
failure. For each survey, we train one model per each north-
ern/southern geographical zone and per each combination of
features, resulting in eight RF models being trained in total.
We then use these models to predict seagrass cover in 148
selected Landsat images (see Fig. 2).

2.4 Time-based correction

Seagrass cover predictions are liable to instability due to vari-
ations in data quality, water absorption, and scattering prop-
erties. The failure of the Landsat 7 ETM scan line correc-
tor on 31 May 2003 caused all subsequent Landsat 7 ETM
data to contain no-data strips, the position of which varies
between images. To account for this discrepancy in data, we
gave any no-data pixel at a given classification date t the clas-
sification it had in its previous classification t−1 and the fol-
lowing classification t + 1, provided these were identical. If
not, the pixel remains as no-data. Further instability in the
predictions may be caused by classifications switching from
bare to vegetated (or inversely) for a single image, for in-
stance because of changes in seagrass or seabed reflectance
caused by the intermittent presence of macroalgae or fish-
ing activities. For instance, a pixel may appear bare for a set
of contiguous scenes and then be classified as vegetated for
one scene only, to return to a bare classification thereafter.
Given the frequency of the scenes acquired, we consider it
unreasonable to assume that seagrass patches appear or dis-
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Figure 4. Map of 5 calculated for (a) five full-lagoon surveys and (b–d) six inlet surveys at the inlets of Lido (b), Malamocco (c), and
Chioggia (d). Additionally, the area appearing blurred in (d) represents the map of 5 for all surveys plus 25 manually classified images.

appear in isolated scenes. Indeed, we considered it unlikely
for both a scouring event and subsequent full recovery to
occur within less than 5 months, which corresponds to the
largest gap between images. Instead, these abrupt changes in
seagrass classifications may be caused by the apparition or
disappearance of algal patches, which appear similar to sea-
grass in the visible and infrared bands but, lacking a rooted
anchor to the seabed, are more mobile than seagrass. Conse-
quently, we applied the following post-processing correction
rule: any pixel being classified in a scene at time t differently
from classifications in scenes t − 2, t − 1, t + 1, and t + 2
(provided these are identical), is given the opposite classifica-
tion. Finally, given the resolution of Landsat images, isolated
patches of less than 4 pixels in surface area, whether they be
bare or vegetated, are switched to the dominant classification
around them. These corrected sets of predictions represent
another set of eight predictions to validate (see Fig. 5).

2.5 Definition of model performance

For binary classifications such as the one performed here,
model performance is quantified by the use of the numbers
of true positives (TPs), true negatives (TNs), false positives
(FPs), and false negative (FNs).

A global accuracy metric is defined as the ratio of true clas-
sifications (TP+TN) over the total number of pixels, a ratio
often referred to as overall accuracy in non-binary classifica-
tion problems (OA; see Table 1). In the Venice Lagoon, the
presence of large areas of bare tidal flat relative to seagrass
meadow area implies that OA is biased toward the correct
prediction of bare tidal flats rather than toward the correct
prediction of seagrass meadows (having a much smaller total
area). Hence, sensitivity (S) (Eq. 2) and precision (P ) (Eq. 3)
give a measure of the model’s performance that better fits our
purpose, by eliminating TN:
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Figure 5. Workflow of the study, depicting the different features used (a) and the target surveys and the year in which they were performed
(b); in (c) the successive training, prediction, correction, and validation steps of the models are described.

S =
TP

TP+FN
, (2)

P =
TP

TP+FP
. (3)

S can be construed as a measure of the model’s capacity to
identify existing seagrass meadows. In non-binary problems
such as those described in Table 1, S becomes the user’s
accuracy (UA) and is specific to each class. Conversely, P

reflects the model’s capacity not to include bare seafloor in
the detected seagrass meadows and becomes the producer’s
accuracy (PA) in non-binary problems. These metrics may
be combined through their harmonic mean F1 (Dice, 1945;
Sorensen, 1948), defined in Eq. (4):

F1= 2 ·
S ·P

S+P
. (4)

The F1 score increases non-linearly but symmetrically
with S and P , allowing us to measure the model’s perfor-
mance through a single metric. Contrary to the OA accuracy,
F1 does not include the term TN and is therefore not affected
by the presence of extensive areas unequivocally classified as
tidal flats: as such, this metric is more sensitive to changes in
the detection of positives. The F1 score is used in the results
section to describe the performance of the classifier, which
we test on full-lagoon and inlet surveys as shown in Fig. 4.

3 Results

3.1 Effect of added features

In this section, we describe the performance of the RF classi-
fiers in all eight training scenarios before applying the time-
based correction. Figure 6 shows this performance expressed
as the F1 score.

Figure 6 highlights the different behaviours of models
trained with the 2002 survey (a, c) with respect to those
trained with the 2017 survey (b, d). We first examine the dif-
ferences in performance between models using only spectral
features, all trained on full-lagoon data and tested on either
full-lagoon data (full circles) or inlet surveys (empty circles).
Tests on full-lagoon data have generally lower F1 scores than
tests on inlet surveys, particularly in 2017-trained models.
This decreased performance on larger training datasets can
be explained by slightly lower sensitivity values (Fig. A3)
and significantly lower precision values (Fig. A2): this means
that on test datasets including the full lagoon, models tended
to more consistently classify bare ground as vegetated. This
is a natural effect of testing on the full lagoon, where large ar-
eas, specifically in the north-central area, are bare and leave
an opportunity for error in the prediction.

Models using only spectral features (black in Fig. 6)
perform very differently than those including either envi-
ronmental (blue, red) or spatial (green, red) features when
trained on a 2002 survey. This is not the case if trained
on the 2017 survey. Indeed, the addition of extra features
to a 2002-trained model has a positive effect on the F1
score for most test instances (with exceptions in the north-
central zone), with the addition of location features having
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Figure 6. F1 score of all models trained, tested on lagoon (full circles) and inlet (empty circles) surveys performed on the years indicated
on the x axis. Black markers indicate models trained only with spectral features. The models tested were trained in the northern and central
zone for the 2002 (a) and 2017 (b) surveys and in the southern zone for the 2002 (c) and 2017 (d) surveys.

the greater effect; in contrast it has a slightly negative influ-
ence on most 2017-trained models. Tests where full-lagoon
surveys are less likely to over-identify vegetated areas (2002-
trained models) are therefore more positively affected by the
additional features. This indicates that the inclusion among
the features of spatial position and environmental features
produces large potential benefits, without generating signifi-
cant negative effects on performance. Such advantages seem
consistent as the same model formulation is tested across dif-
ferent images.

Decomposing this influence into the effects of sensitivity
and precision (Figs. A2 and A3), we note that improvements
occur mostly in the former, while the increase in precision is
small (for 2002-trained models) or even negative (for 2017-
trained models). In general, Figs. A2 and A3 show that 2002-
trained models generally have higher precision but lower sen-
sitivity values than 2017-trained models, indicating a ten-
dency of the former to “miss” vegetated areas, while the lat-
ter will tend to overestimate the extent of seagrass meadows.
In the southern zone, where most seagrass meadows are lo-
cated, 2017-trained models using only spectral features per-
form significantly better than 2002-trained models. Models
trained on 2017 data also perform consistently better when
tested on inlet surveys rather than lagoon surveys, suggesting
that false predictions lie outside the inlet areas. Conversely,
2002-trained models in the southern zone benefit the most

from the addition of environment and coordinate features,
improving F1 scores from under 0.5 to up to 0.9. Because
the north-central zone harbours much less extensive seagrass
than the southern zone, F1 scores are more difficult to eval-
uate in this region.

Figures 7 and 8 demonstrate visually the effect of location
features on model behaviour, providing an overview of the
performances of a 2002-trained model on all other training
data combined. Each figure maps, for each pixel of the full
lagoon and in more detail for the three inlets, the proportion
of test surveys for which a given pixel is correctly classi-
fied, whether bare or vegetated. Because not all pixels are
associated with the same number of surveys, colour contrast
is variable, with starker contrast appearing in areas where
fewer surveys exist. Figure 7 shows the performance of a
model using only spectral features, whereas Fig. 8 shows that
of a model using both environmental and location features.
The comparison of these two figures, with Fig. 4 as a refer-
ence, reveals several points of interest regarding the effect of
the additional features on model performance. In both maps,
some areas are consistently and correctly classified as bare:
for example, in the north-westernmost area of the lagoon,
correct prediction rates are equal to 1 over large surfaces.
Such areas are spectrally unambiguous, with a relatively high
seabed and light sediment which is never mistaken for sea-
grass by the model. Conversely, areas that are vegetated in
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Figure 7. Proportion of correct predictions of a 2002-trained model using spectral features only, tested on all surveys (lagoon, inlets, and
digitised meadows).

at least one survey are rarely correctly classified as such in
all tests (i.e. the proportion of correct predictions is below
1), particularly when using only spectral features: from this
we deduce that seagrass, if confused by the model with bare
ground, exhibits low separation between its spectral proper-
ties and that of bare ground in the bands used. This is partic-
ularly true in the southern lagoon, where the water column is
generally thicker. Furthermore, when using only spectral fea-
tures, maps of correct prediction rates appear “grainy”: this
reflects irregularities in reflectance on the seabed or in sea-
grass patches – irregularities which cause local misclassifi-
cations. Irregularities are significantly reduced when adding

environmental and location features. With fewer local mis-
classifications, models using these additional features gen-
erate more cohesive seagrass meadows: consequently, ap-
plying these models to monitor seagrass meadow evolution
in time is less likely to erroneously predict changes inside
the meadows, thus reducing errors in surface area change.
The reduction in prediction “grain” also enhances, in Fig. 8,
wide swathes of lower correct prediction rates: these swathes
are an artefact of the ETM Scan Line Correction failure and
are unclassified in some images. It is interesting to compare
Figs. 7 and 8, obtained with a 2002-trained model with rela-
tively well-balanced training data, to Figs. A4 and A5, which
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Figure 8. Proportion of correct predictions of a 2002-trained model using all described features, tested on all surveys (lagoon, inlets, and
digitised meadows).

use less-balanced training data. In these figures, large areas
are consistently misclassified regardless of features used, at-
testing to an inadequate training dataset. In such a case, the
addition of features has very little effect on model perfor-
mance, as previously shown in Fig. 6.

3.2 Effect of time-based correction

Figure 9 demonstrates the effect of the time-based correc-
tion process described in Sect. 2.4 on correct prediction rates,
complementing Figs. 7 and 8. It showcases the increase in
the rates of correct prediction at almost all points of the map

brought by this correction, with the notable exception of ar-
eas for which correct prediction rates were already below
50 %. This is a direct consequence of the method of the time-
based correction, which confirms classifications through time
even if they are incorrect. Such an effect is unfavourable for
models that perform poorly before correction, as showcased
by Fig. A6, where large areas where correct predictions oc-
curred in less than 50 % of tests dropped to 0. This further
highlights the fact that models trained on imbalanced training
data are ill-suited for the modifications proposed in this con-
tribution. It also shows the elimination of swathes of lower

Biogeosciences, 20, 4551–4576, 2023 https://doi.org/10.5194/bg-20-4551-2023



G. Goodwin et al.: Coherent space–time mapping of seagrass using Landsat data 4563

rates through unclassified data, as it assumes continuity of
classification between scenes.

Figure 10 examines the effect of the time-based correction
process described in Sect. 2.4 on the F1 score of all tested
models.

In the north-central zone (a, b), no obvious pattern in the
change in F1 after correction is detected. In the southern
zone (c, d), however, both 2002-trained models and 2017-
trained models respond in a discernible pattern to the applica-
tion of the time-based correction: of the 2002-trained models
(c), models using only spectral or spectral and environmental
features, which have a lower F1 score initially, generally see
a decrease in F1 after correction, whether they are tested on
the full lagoon or at the inlets. This coincides with the lower
F1 scores for these models’ predictions. Conversely, mod-
els including known seagrass locations as features, for which
predictions initially have a higher F1 score, mostly see an
increase in F1 scores. For these models, it appears that the
F1 score after time-based correction has a stronger positive
effect the higher the initial F1 score. For 2017-trained mod-
els (d), the addition of features having little effect, the time-
based correction has a uniform effect regardless of features .
Notably, whether for lagoon or inlet surveys, tests conducted
during the period of the Landsat 7 SLC failure display lower
F1 values (see Fig. 6d) as well as the largest positive change
in F score after correction: this suggests that the proportion
of true positives reinstated through the time-based correction
outweighs the proportion of false predictions added in the
process.

4 Discussion

Several key issues pertaining to the reliability of seagrass de-
tection arise from the examination of the performance of the
models in Sect. 3: first, the strong disparity in performance,
expressed through the F1 score between models trained us-
ing data from 2002 and 2017; then, the significant difference
in the influence of environmental and, particularly, spatial
features on F1 scores; finally, the opposing effects of time-
based correction on the performance of different models. The
behaviour of RF models being non-linear, we do not presume
to identify a general relationship between the observations
made in a single case study and the performance of seagrass
cover predictions using an RF classifier. Nevertheless, we at-
tempt to break down the influence of additional features and
time-based corrections, using the southern zone, where most
seagrass is found, as a testing ground. Figure 11 shows the
relative importance of features employed in each RF classi-
fier used, where location features dominate, when present,
for both 2002-trained and 2017-trained models. In all sce-
narios, the red band is the most important spectral band for
2017-trained models. As this band is particularly sensitive
to suspended sediment concentration, we may surmise that
its high importance could impede classification performance,

particularly if turbidity is not accounted for in the classifi-
cation. Conversely, the near-infrared band shares the high-
est importance among spectral features with the green band.
Given the sensitivity of the NIR band to suspended chloro-
phyll concentrations, the importance of this band may be
conceived of as a potential hindrance to the performance of
the RF. We note however that in previous iterations of the RF
using only the RGB bands, performance was not only lower
after adding positional and environmental features and time-
based corrections but also before the applications of these
modifications, despite the difference in band width between
Landsat 7 and Landsat 8; This disparity may contribute to the
diverging behaviours of the models trained on 2002 or 2017
data.

In Sect. 1, we mentioned the difficulty of producing con-
sistent seagrass cover predictions at a high frequency. Fig-
ure 12 showcases the potential use of location and environ-
mental features to improve the reliability of seagrass cover
predictions, demonstrated on a 2002-trained model. Panels
a–d are each a map of the success rate of seagrass cover pre-
dictions for each pixel near Chioggia Inlet, shown in yellow
in Fig. A1, tested on 36 reference datasets from surveyed and
digitised seagrass cover. In each panel, R represents the av-
erage success rate. In dark red, panels a–d show the outlines
of vegetated patches in the summer 2002 survey. In panels
a and b, where only spectral features were used, we observe
that pixels with lower prediction success rates overlap with
those with higher occurrence rates but not necessarily with
the presence of seagrass in the summer 2002 survey. Pan-
els c and d, both of which include location features as well
as environmental features, experience a notable increase in
prediction success rates in these regions. Notably, increases
in success rate match areas of high 5 value (see Fig. 4d),
suggesting that where spectral features alone did not detect
the presence of seagrass, models with all features did. Fur-
thermore, we note that the implementation of the time-based
correction shown has little effect on R when using only spec-
tral features (b) but causes an increase when other features
are used. This is consistent with our previous observation
that the time-based correction mostly improves predictions
of higher initial quality.

In panel e, we further note that seagrass surface area pre-
dictions decrease by up to a factor of 2 in the year 2000, sug-
gesting that location features are not demonstrably impeding
the model’s capacity to predict seagrass surface area change.
The root mean square error (RMSE) after implementing the
time-based correction is 28.89 ha, a 7.5 % decrease in RMSE
with respect to predictions without the time-based correction,
and amounts to 22 % of the average seagrass surface area in
the examined pixels. This value matches and exceeds half
of the variation in seagrass surface area between most dates
where vegetation cover is predicted. While the error in sur-
face area prediction remains high for the purposes of moni-
toring high-frequency changes in seagrass cover, it represents
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Figure 9. Proportion of correct predictions of a 2002-trained model using all described features and after time-based correction, tested on all
surveys (lagoon, inlets, and digitised meadows).

a significant improvement over models using only spectral
features and no time-based corrections.

While the error in surface area prediction remains high
for the purposes of monitoring high-frequency changes in
seagrass cover, the improvements made over models us-
ing only spectral features and without time-based correc-
tions are significant. This result points to future research av-
enues in seagrass monitoring. First, performance increases
achieved through incorporating coordinates as features vali-
date the notion that observed seagrass meadows are a good
proxy for favourable habitat. Second, performance improve-
ments achieved through time-based corrections show that

real-world dynamics that bound the growth and degradation
of seagrass meadows positively influence remote-sensing
results. Together, these observations indicate that remote-
sensing methods would benefit from being coupled with
habitat and ecological models. Ultimately, such coupled clas-
sification models may be able to detect the intra-and inter-
annual variability observed in digitised seagrass cover: in
large habitats such as the Venice Lagoon, these models would
allow the identification of seagrass degradation events and
quantify regrowth and colonisation at scales that are imprac-
tical to observe through fieldwork.
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Figure 10. Comparison of F1 scores before and after time-based correction (respectively, left and right of vertical bars), tested on lagoon
(full circles) and inlet (empty circles) surveys. The models tested were trained in the north-central zone for the 2002 (a) and 2017 (b) surveys
and in the southern zone for the 2002 (c) and 2017 (d) surveys.

Figure 11. Relative importance of each feature used in models trained with 2002 and 2017 data.

5 Conclusions

In this contribution, we implemented several random for-
est classifiers using various sets of features, supplemented
by time-based corrections, to detect the spatial and tempo-
ral dynamics of seagrass meadows in the Venice Lagoon. We
trained eight such models using a combination of spectral
data, bathymetry, median sediment grain size, and coordi-
nates of known seagrass extent as features. Four models were

trained using data taken from field surveys and Landsat im-
ages of summer 2002 and four others with data taken in 2017.

We found that 2002-trained models and 2017-trained mod-
els responded differently to both the addition of out-of-image
features and to the time-based correction. Adding location in-
formation was shown to significantly improve the F1 score
without preventing the model from detecting variations in
seagrass cover but only for 2002-trained models. Examin-
ing the importance of different features in each of the mod-
els, we observed that 2002-trained models and 2017-trained

https://doi.org/10.5194/bg-20-4551-2023 Biogeosciences, 20, 4551–4576, 2023



4566 G. Goodwin et al.: Coherent space–time mapping of seagrass using Landsat data

Figure 12. (a–d) Map of the proportion of surveys correctly identified for 36 surveys and digitisations combined. R represents the average
value across all mapped pixels. Red outlines show the extent of seagrass patches in the summer 2002 survey; (e) surface area of seagrass
predicted by surveys framed in (c) and (d), filled with the RMSE value. Black dots indicate surveyed or digitised surface area value.

models were under the dominating influence of seagrass lo-
cation when used but otherwise did not share the same most
important spectral features. This may be a reason for their
discordant behaviour. Furthermore, the vote count, which ex-
presses the probability of a given pixel to be seagrass accord-
ing to an RF model, was generally more polarised toward ex-
treme values in 2017-trained models. While not a root cause
of the difference between the sets of models, it revealed the
effect of using geographic location features on tree voting.
This shows that true change in seagrass meadows can be de-
tected by location-dependent models when taking into ac-
count prior knowledge of seagrass location. Ultimately, ac-
curately accounting for spatial auto-correlation will require
the examination of more cases as well as a generally applica-
ble formulation of its influence.

This contribution demonstrated the potential of mixing
spatial auto-correlation patterns and time-series analysis with
commonly used spatial detection methods, such as random
forest classifiers to increase the performance of submerged
vegetation detection methods. The positive effects of these
modifications to standard methods have been shown to out-
weigh their potential “side effects”, although further re-
search is required to generalise their influence. The result-
ing increased confidence in each seagrass cover map al-
lows the generation of dense sequences of maps, through
which the space–time dynamics of seagrass meadows may
be described and connected to their governing environmen-
tal drivers. This, in turn, can inform ecological models and
sediment transport simulations and ultimately feed into pre-
dictions of tidal basin response to environmental change.
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Appendix A

Figure A1. Footprint of the inlet surveys of Lido, Malamocco, and Chioggia (blues) and of the digitised patch (yellow). The coordinate
system used is EPSG: 3003. Inset image: © Google Earth.
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Figure A2. Precision score of all models trained, tested on lagoon (full circles) and inlet (empty circles) surveys performed on the years
indicated on the x axis. Black markers indicate models trained only with spectral features. The models tested were trained in the north-
central zone for the 2002 (a) and 2017 (b) surveys and in the southern zone for the 2002 (c) and 2017 (d) surveys.

Figure A3. Sensitivity score of all models trained, tested on lagoon (full circles) and inlet (empty circles) surveys performed on the years
indicated on the x axis. Black markers indicate models trained only with spectral features. The models tested were trained in the north-central
zone for the 2002 (a) and 2017 (b) surveys and in the southern zone for the 2002 (c) and 2017 (d) surveys.
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Figure A4. Percentage of correct predictions of a 2017-trained model using only spectral features tested on all images (lagoon, inlets, and
additional digitisations combined).
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Figure A5. Percentage of correct predictions of a 2017-trained model using all considered features tested on all images (lagoon, inlets, and
additional digitisations combined).
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Figure A6. Percentage of correct predictions of a 2017-trained model using all features and the time-based correction tested on all images
(lagoon, inlets, and additional digitisations combined).
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Table A1. Compilation of published works on seagrass detection from satellite data.

Reference number Reference

1 Phinn et al. (2008)
2 Pu et al. (2012)
3 Lyons et al. (2012)
4 Dekker et al. (2005)
5 Wabnitz et al. (2008)
6 Hossain et al. (2015)
7 Misbari and Hashim (2016)
8 Topouzelis et al. (2018)
9 Kovacs et al. (2018)
10 Kohlus et al. (2020)
11 Pu et al. (2012)
12 Pu et al. (2012)
13 Kovacs et al. (2018)
14 Zoffoli et al. (2020)
15 Traganos et al. (2018), Traganos and Reinartz (2018)
16 Kovacs et al. (2018)
17 Phinn et al. (2008)
18 Roelfsema et al. (2014)
19 Phinn et al. (2008)
20 Bakirman and Gumusay (2020)
21 Kovacs et al. (2018)
22 O’Neill and Costa (2013)
23 Amran (2017)

Table A2. Selected Landsat scenes with full-lagoon or inlet surveys.

Lagoon surveys LE07_L1TP_192028_20020914_20170128_01_T1
LE07_L1TP_192028_20040903_20170119_01_T1
LE07_L1TP_192028_20090901_20161218_01_T1
LE07_L1TP_192028_20100904_20161212_01_T1
LC08_L1TP_192028_20170830_20170914_01_T1

Inlet surveys LE07_L1TP_192028_20080610_20161228_01_T1
LE07_L1TP_192028_20090901_20161218_01_T1
LE07_L1TP_192028_20100904_20161212_01_T1
LE07_L1TP_192028_20111009_20161206_01_T1
LE07_L1TP_192028_20120909_20161129_01_T1
LC08_L1TP_192028_20130904_20170502_01_T1
LC08_L1TP_192028_20140806_20170420_01_T1
LC08_L1TP_192028_20150809_20170406_01_T1
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Table A3. Selected Landsat scenes with digitised areas.

Digitised scenes LE07_L1TP_192028_19990906_20170217_01_T1
LE07_L1TP_192028_20000316_20170213_01_T1
LE07_L1TP_192028_20001127_20170209_01_T1
LE07_L1TP_192028_20010911_20170203_01_T1
LE07_L1TP_192028_20020117_20170201_01_T1
LE07_L1TP_192028_20020322_20191106_01_T1
LE07_L1TP_192028_20020914_20170128_01_T1
LE07_L1TP_192028_20030325_20170214_01_T1
LE07_L1TP_192028_20040428_20170121_01_T1
LE07_L1TP_192028_20050720_20170113_01_T1
LE07_L1TP_192028_20060213_20170110_01_T1
LE07_L1TP_192028_20070216_20170104_01_T1
LE07_L1TP_192028_20090104_20161223_01_T1
LE07_L1TP_192028_20100328_20161215_01_T1
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